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Motivation

Medical image classification

Given a set of n paired observations {(Ii , yi )}1≤i≤n where

Ii is an medical image and
yi ∈ R is the classification label

the goal is to learn a classification function f .

Problems

1 The representation of φ(I).

Bag of Words approach
Graph representation.

2 Supervised statistical learning framework

arg min
f ∈F

λΩ(f ) +

Empirical Risk︷ ︸︸ ︷
1

n

n∑
i=1

L(f (φ(Ii )), yi )

where L is the loss function and λΩ(f ) is the regularization term.
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Introduction to Graphs

What is a graph and why is it interesting?

Definition

A labeled graph G is defined as a triplet (V ,E ,L), where V is the vertex
set and E ⊆ V ×V is the edge set which represents a binary relation on V
and L : X 7→ Σ is a function assigning a label from an alphabet Σ to each
element of the set X , which can be either V ,E or V ∪ E .

Areas of application

Chemoinformatics Bioinformatics SNA Computer Vision
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Introduction to Graphs

Graph Comparison Problem

Definition

Given a set G of graphs, the problem of graph comparison is defined as a
function

k : G × G 7→ R

such that k(G ,G ′) for G ,G ′ ∈ G quantifies the similarity of G and G ′.

2nd Approach - R-convolution Kernels

⇒ . . .

Calculating all subgraphs is at least as hard as deciding whether two
graphs are isomorphic [Gärtner 03]
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Gkirtzou & Blaschko (ECP-INRIA) January 8, 2014 7



Introduction to Graphs

Graph Comparison Problem

Definition

Given a set G of graphs, the problem of graph comparison is defined as a
function

k : G × G 7→ R

such that k(G ,G ′) for G ,G ′ ∈ G quantifies the similarity of G and G ′.

1st Approach

Graph Isomorphism - No efficient algorithm is known

Subgraph Isomorphism - Proven to be NP-complete

Largest common subgraph - Proven to be NP-hard

2nd Approach - R-convolution Kernels

⇒ . . .

Calculating all subgraphs is at least as hard as deciding whether two
graphs are isomorphic [Gärtner 03]
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Introduction to Graphs

Graph kernels
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︷ [Gärtner 03] O(n2v 6) X X X X

[Mahé 04] X X
[Vishwanathan 10] O(n2v 3) X X X X
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s

︷︸︸
︷ [Borgwardt 05] O(n2v 4) X X X X

[Ralaivola 05] X X

G
ra
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︷︸︸
︷ [Horváth 04] X X

[Shervashidze 09] O(vdk−1) X
[Costa 10] X X
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s
︷

︸︸
︷ [Ramon 03] O(n2v 2h4d) X X

[Bach 08] X X
[Mahé 09] X X

[Shervashidze 11] O(nhe + n2hv) X X

1where n is the number of graphs, v is the maximal number of nodes, e is the
maximal number of edges, h is the height of subtree patterns, d is the maximum degree
and k is the size of graphlets.
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The pyramid quantized Weisfeiler-Lehman graph representation Overview

Overview of the WLpyramid

Given a set G = {Gi = (Vi ,Ei ,Li )}1≤i≤n where Li : Vi 7→ Rd

1 A pyramid quantization of the label space.

2 Transformation of the initial graphs.

3 Produce subtree features with Weisfeiler-Lehman algorithm.

4 Learning the combination of the subtree features.

Why Weisfeiler-Lehman?

1 Computational time O(nhe)

n the number of graphs
e the maximal number of edges and and
h the height subtree features.

2 Competitive accuracy in several classification benchmark data
sets [Shervashidze 11].

Gkirtzou & Blaschko (ECP-INRIA) January 8, 2014 10



The pyramid quantized Weisfeiler-Lehman graph representation Overview

Overview of the WLpyramid

Given a set G = {Gi = (Vi ,Ei ,Li )}1≤i≤n where Li : Vi 7→ Rd

1 A pyramid quantization of the label space.

2 Transformation of the initial graphs.

3 Produce subtree features with Weisfeiler-Lehman algorithm.

4 Learning the combination of the subtree features.

Why Weisfeiler-Lehman?

1 Computational time O(nhe)

n the number of graphs
e the maximal number of edges and and
h the height subtree features.

2 Competitive accuracy in several classification benchmark data
sets [Shervashidze 11].

Gkirtzou & Blaschko (ECP-INRIA) January 8, 2014 10



The pyramid quantized Weisfeiler-Lehman graph representation The Weisfeiler-Lehman algorithm

The Weisfeiler-Lehman test of isomorphism [Weisfeiler 68]

Given labeled graphs G and G ′

G G'

  2    3  

  3    3    1  

  1    1  

  3    3  

  3    2    2  

  1    1  

Label compression via hashing

 1,2   4  

 1,3 

 3,12

  5  

 2,13

3,123

  6  

 2,33

3,133

  7  3,223

  8  

  9  

  10 

  11 

Subtree Pattern of
Compressed label 9

3

1 2 3
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The pyramid quantized Weisfeiler-Lehman graph representation The Weisfeiler-Lehman algorithm

Weisfeiler-Lehman subtree features

Subtree patterns of depth 0.

G G'

  2    3  

  3    3    1  

  1    1  

  3    3  

  3    2    2  

  1    1  

Subtree patterns of depth 1.

G G'

  7    8  

  9    10   5  

  5    5  

  7    11 

  9    7    6  

  5    4  

Original node
labels Σ0︷ ︸︸ ︷ Compressed node labels Σ1︷ ︸︸ ︷

Labels {Σ0,Σ1} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
φ(1)(G ) = (3, 1, 3, 0, 3, 0, 1, 1, 1, 1, 0)
φ(1)(G ′) = (2, 2, 3, 1, 1, 1, 2, 0, 1, 0, 1)

φ(h)(G ) are histograms of occurences of the subtree patterns up to depth
h in graph G .
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The pyramid quantized Weisfeiler-Lehman graph representation The pyramid quantization strategy

The pyramid quantization strategy

Given a set G = {Gi = (Vi ,Ei ,Li )}1≤i≤n where Li : Vi 7→ Rd

Coarser Level Q(0)
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0

5

Less Coarse Level Q(1)

−20 −15 −10 −5 0 5 10
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−10
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10

Less Coarse Level Q(2)

−20 −15 −10 −5 0 5 10
−20

−15

−10

−5

0

5

10 . . . Finer Level Q(L)

where L = dlog2|V |e and |V | =
∑n

i |Vi | [Grauman 07].
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The pyramid quantized Weisfeiler-Lehman graph representation The pyramid quantization strategy

Data guided pyramid quantization scheme

Given labeled graphs G and G ′

G G'

[2 5] [3 6]

[3 6] [3 7] [1 3]

[1 3] [1 3]

[3 6] [3 7]

[3 6] [2 6] [2 4]

[1 3] [1 2]

Notes

Ward’s minimum variance method over the
image of V under L.

Selecting L = dlog2De, where D ≤ |V | the
number of unique values in the image of V
under L
Each level l has 2l discrete labels.
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7
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1 label

2 labels

4 labels
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The pyramid quantized Weisfeiler-Lehman graph representation A sequence of discretely labeled graphs

Transform the initial graphs as a sequence of graphs

The pyramid quantization of label space

Coarser Level Q(0)

−20 −15 −10 −5 0 5 10
−20

−15

−10

−5

0

5

Less Coarse Level Q(1)

−20 −15 −10 −5 0 5 10
−20

−15

−10

−5

0

5

10

. . .

Finer Level Q(L)

Sequence of discretely labeled graphs

G = (V ,E ,L)
Q(l) ◦ L
≈
∀l

(
G (0), . . . ,G (L)

)
=
(

(V ,E ,L(0)), . . . , (V ,E ,L(L))
)

−−−−−−−−−−−−→
Increasing granularity

−−−−−−−−−−−−−−−−−−−−−−→
Increasing granularity

where L(l) : V → Σ
(l)
0 , |Σ(l)

0 | = 2l and l ∈ {0, . . . , L}.
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The pyramid quantized Weisfeiler-Lehman graph representation A sequence of discretely labeled graphs

A sequence of discretely labeled graphs

Given labeled graphs G and G ′

G G'

[2 5] [3 6]

[3 6] [3 7] [1 3]

[1 3] [1 3]

[3 6] [3 7]

[3 6] [2 6] [2 4]

[1 3] [1 2]

Data guided pyramid quantization.

[3 6] [3 7] [2 4] [2 5] [2 6] [1 2] [1 3]
 

 

2 Labels

4 Labels

Quantization level 1 with 21

number of labels.

G G'

1 1

1 1 2

2 2

1 1

1 1 1

2 2

Quantization level 2 with 22

number of labels

G G'

3 1

1 1 4

4 4

1 1

1 3 2

4 4
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The pyramid quantized Weisfeiler-Lehman graph representation Learning the combination of the pyramid levels.

Creating and combining subtree features

Run Weisfeiler-Lehman on each quantization level

G =
(

G (0), . . . ,G (L)
)

Weisfeler−−−−−→
Lehman

(
φ

(0)
(h)(G (0)), . . . , φ

(L)
(h)(G (L))

)
= φ̂(h)(G )

where φ
(l)
(h)(G (l)) are histograms of occurences of the subtree patterns up

to depth h at the quantization level l in graph G

Learning to combine the quantization levels

1 Learn the selection of the subtree features φ̂(h)(G ).

2 Combine the subtree features φ
(l)
(h)(G (l)) per level l into a kernel and

then learn the combination of kernels.
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The pyramid quantized Weisfeiler-Lehman graph representation Learning the combination of the pyramid levels.

Learn the subtree patterns selection

Labeled training data {( ̂φ(h)(Gi ), yi )}1≤i≤n ∈ (N× R)n where

̂φ(h)(Gi ) is the concatination of histograms of the occurences of subtree
patterns up to depth h of graph Gi across all quantization levels,
yi is the ground truth label and

Elastic Net [Zou 05]

arg minw∈Rdλ1‖w‖1+λ2‖w‖2
2+ 1

n

∑n
i=1

(
〈w , ̂φ(h)(Gi )〉 − yi

)2

︸ ︷︷ ︸
`1 norm

︸ ︷︷ ︸
`2 norm

︸ ︷︷ ︸
Squared loss

λ1, λ2 are scalar parameters controling the degree of regularization.
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The pyramid quantized Weisfeiler-Lehman graph representation Learning the combination of the pyramid levels.

The intersection Weisfeiler-Lehman kernel

Subtree patterns of depth 0.

G G'

  2    3  

  3    3    1  

  1    1  

  3    3  

  3    2    2  

  1    1  

Subtree patterns of depth 1.

G G'

  7    8  

  9    10   5  

  5    5  

  7    11 

  9    7    6  

  5    4  

Subtree
patterns h = 0︷ ︸︸ ︷ Subtree patterns h = 1︷ ︸︸ ︷

Labels {Σ0,Σ1} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
φ

(l)
(1)

(G (l)) = (3, 1, 3, 0, 3, 0, 1, 1, 1, 1, 0)

φ
(l)
(1)

(G ′(l)) = (2, 2, 3, 1, 1, 1, 2, 0, 1, 0, 1)

min
(
φ

(l)
(1)

(G (l)), φ
(l)
(1)

(G ′(l))
)

= (2, 1, 3, 0, 1, 0, 1, 0, 1, 0, 0)

The intersection Weisfeile-Lehman kernel is defined :

k
(h)
i−WLsubtree(G (l),G ′(l)) =

|Σ0∪Σ1|∑
j

min
(
φ

(l)
(1)(G (l)), φ

(l)
(1)(G ′(l))

)
j
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The pyramid quantized Weisfeiler-Lehman graph representation Learning the combination of the pyramid levels.

Multiple Kernel Learning

Problem

For each pair of graphs G (l),G ′(l) for all the pyramid levels:(
K

(0)
(h) (G (0),G ′(0)), . . . ,K

(L)
(h) (G (l),G ′(L))

)
we would like to learn a linear combination of them:

K(h)(G ,G ′) =
L∑

l=0

dlK
(l)
(h)(G (l),G ′(l)), with dl ≥ 0,

L∑
l=0

dl = 1.

Solutions

Multiple kernel learning

Average weighted kernel
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Experiments
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Experiments fMRI analysis problem

fMRI Analysis

Key information

1 Inherent spatial structure brains

2 Voxel activation is a continuous
value

⇓

Solution!

Represent fMRI as graphs with
continuous labels.
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Experiments fMRI analysis problem

Dataset

Cocaine Addiction Dataset

16 cocaine addicted vs 17 healthy subjects

Drugstroop experiment with two varying conditions

the cue shown and
the monetary reward.

Input One contrast map per subject that is transformed into a
graph.

Objective The classification between cocaine abuser and control group.

Drugstroop Experiment

Gkirtzou & Blaschko (ECP-INRIA) January 8, 2014 23



Experiments fMRI analysis problem

Graph Transformation

Contrast map

Elastic Net−−−−−−−→

Selected voxels

knn
←−−

Graph
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Experiments fMRI analysis problem

Performance

GKRR Elastic Net WLpyramid Combined WL+voxels

0.5

0.55

0.6

0.65

0.7

0.75
Accuracy for different methods

M
ea

n 
A

cc
ur

ac
y

WLpyramid vs Elastic Net on raw voxels

Wilcoxon signed rank with p = 0.02 show statistical significance.
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Experiments fMRI analysis problem

Performance per pyramid quantization level
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Experiments fMRI analysis problem

Visualization of learned function

Brain Regions

Control

Cocaine
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Experiments fMRI analysis problem

Visualization of learned function

Rostral Anterior Cingulate
Cortex

In cocaine addicted subjects
deactivates during the drug
Stroop experiment as
compared to baseline.

Its activity is normalized by
oral methylphenidate where
the dopamine transporters
increase the extracellular
dopamine, an increase
which is associated with
lower task-related
impulsivity.

Control

Cocaine
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Experiments 3D shape classification

3D shape classification

3D shape problems

Storage

Classification

Retrieval

Areas of applications

3D Game Chemoinformatics Cultural heritage
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Experiments 3D shape classification

3D shape classification

3D shape problems

Storage

Classification

Retrieval

CurvatureAreas of applications

3D Game Chemoinformatics Cultural heritage
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Experiments 3D shape classification

3D shape datasets

Muscle Dataset
H

ea
lt

h
y

su
b

je
ct

P
a

ti
en

t

27 patients vs 14 healthy
subjects

MRI images of the calf muscles

Segmented into 7 muscles

SHREC 2013 Dataset

20 classes of generic objects,
such as bed, biplane, mug, etc.

Each class contains 18 models.

In total 360 3D objects.
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Experiments 3D shape classification

Performance on the muscle dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

 

 

WL pyramid Kernel
Pyramid BoW
Render Image Baseline
Combined WL+Render

WLpyramid
pyramid BoW Rendering Combined

Our Work

Accuracy 78.00% 73.00% 75.50% 82.93%

AUC 0.6410 0.6361 0.6300 0.6648
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Experiments 3D shape classification

Performance on SHREC 2013

Class
WLpyramid

pyramid BoW Rendering Combined
Our Work

Bird 0.85 0.83 0.85 0.86
Bicycle 0.84 0.87 0.90 0.90
Biped 0.89 0.88 0.99 0.99
Biplane 0.60 0.63 0.68 0.69
Bird 0.73 0.73 0.80 0.80
Bottle 0.76 0.76 0.79 0.80
Car 0.78 0.79 0.80 0.80
CellPhone 0.74 0.80 0.88 0.89
Chair 0.69 0.68 0.70 0.72
Cup 0.85 0.84 0.88 0.88
Desklamp 0.80 0.80 0.88 0.89
Fish 1.00 1.00 1.00 1.00
Floorlamp 0.80 0.77 0.89 0.89
Insect 0.64 0.60 0.62 0.66
Monoplane 0.84 0.82 0.88 0.90
Mug 0.82 0.82 0.85 0.87
Phone 0.83 0.74 0.72 0.83
Quadruped 0.89 0.86 0.97 0.98
Sofa 0.76 0.75 0.74 0.75
Wheelchair 0.81 0.79 0.88 0.90

Average 0.80 0.79 0.84 0.85
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Experiments 3D shape classification

SHREC 2013 - Visualization of the learned weights

Subtree patterns of depth 0

Subtree patterns up to depth 1

Subtree patterns up to depth 2
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Conclusion

Contributions - Methodological

The pyramid quantized Weisfeiler-Lehman graph representation

A novel algorithm for comparing graphs with vector labels.

Based on subtree patterns.

Linear computation time in the number of graphs, in the number of
edges in the graphs and in the depth of subtree patterns.

Evaluation on two domains

fMRI analysis and
3D shape classification.

Visualizations of the learned functions provide interpretability.

k-support regularized SVM

A novel regularized SVM algorithm.

Correlated sparse solution under the SVM framework.

Evaluation on a neuromuscular disease task.
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Conclusion

Contributions

Methodological

Code from both algorithms is available online under GNU-GPL at
http://cvc.centrale-ponts.fr/personnel/gkirtzou/code

Clinical and Applications

Investigate the applicability of sparsity regularizers in fMRI analysis.

In the fMRI analysis, we saw that the interconnections between voxels
can contain additional information about brain structure.

In the neuromuscular dystrophy classification task, we saw that
features extracted from DTI images provide significant information.

Interpretation of 3D shape meshes as annotated graphs.
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Future Work

Medical image analysis

Evaluation of k-support norm regularization on fMRI analysis problem
in larger scale.

Evaluation of k-support regularized SVM on neuromuscular disease
discrimination in larger scale.

Exploration of different constructions of the graphs from fMRI.

Graph kernels

Comparison on partially matching subtree patterns.

Comparison on partially labeled graphs.
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