An Operator Approach to Tangent Vector Field Processing

Omri Azencot Technion

Joint work with: Mirela Ben-Chen, Frederic Chazal and Maks Ovsjanikov

Motivation

Pattern Generation

[Ben-Chen et al. 10]

Texture Synthesis

[Fisher et al. 07]

Quad Remeshing

[Bommes et al. 09]

What is a Vector Field (VF)?

Vector field V

Flow ϕ_V^t

Representing Vector Fields

- A powerful toolbox with ability to pose:
 - Low-level constraints, e.g. singularities
 - High-level constraints, e.g. symmetry
- Relate between vector fields and mappings, e.g. flow
- An efficient and robust optimization framework

Previous Work

- Tangent vector per simplex
 - [Polthier et al. 03]
 - [Tong et al. 03]
- DEC
 - [Fisher et al. 07]
- N-RoSy fields
 - [Palacios et al. 07]
 - [Ray et al. 09]
 - [Crane et al. 10]

Our Approach

- Represent VFs using operators: $V \leftrightarrow D_V$
- D_V acts on smooth functions defined on M
- A common view in differential geometry geometry

Our Approach

• Represent VFs using operators: $V \leftrightarrow D_V$

Representing Vector Fields

Using Functional Vector Fields (FVFs):

 $D_V(f) = \langle V, \nabla f \rangle$

FVFs An example

Using Functional Vector Fields (FVFs):

FVFs Properties

- D_V is an FVF if and only if it fulfills:
 - Linearity: $D_V(\alpha f + \beta g) = \alpha D_V(f) + \beta D_V(g)$
 - The product rule: $D_V(fg) = fD_V(g) + gD_V(f)$
- V can be reconstructed from D_V
- *D_V* is also called the covariant derivative derivative

Matrix Representation How do FVFs look like?

• Basis Φ for the function space:

• Laplace-Beltrami eigenfunctions

VFs & FVFs

What are Operators Good For?

Composition

Algebraic properties

Spectral decomposition

What is a Vector Field (VF)?

Vector field V

Flow ϕ_V^t

Relation to Functional Maps

Given a pair of shapes and a map $T: N \rightarrow M$,

The **Functional Map** [OBCS*12] of *T* is defined by:

$$g = T_F(f) = f \circ T \quad f \in \mathcal{F}(M), g \in \mathcal{F}(N).$$

Relation to Functional Maps Flowing a Function

The flow ϕ_V^t is a self-map and its functional map T_F^t is: $T_F^t = \exp(tD_V)$

Relation to Functional Maps Vector Field Transportation

Using a bijective map $T: N \rightarrow M$ we can transport VFs:

Designing FVFs

- **Problem**: Not all matrices are FVFs!
- Solution: Use a basis for the tangent vector fields

Vector Field Design

- $V = \sum a_i \psi_i \iff D_V = \sum a_i D_{\psi_i}$
- In practice we optimize for (a_i)
- We can prescribe:
 - Low-level constraints, e.g. singularities
 - High-level constraints, e.g. symmetry
- We solve a linear system of equations: Wa = c

Directional Constraints

Low-level constraints: Directions and singularities

Symmetric VFs

Symmetric VFs are easily generated using a self-map S:

KVFs

 $|D_V \circ L - L \circ D_V| = 0$

- VF with continuous isometric flows is Killing.
- A high-level linear constraint:

The Lie Bracket

 $[\mathbf{V}, \mathbf{U}] = D_{\mathbf{V}} D_{\mathbf{U}} - D_{\mathbf{U}} D_{\mathbf{V}}$

Function Symmetrization

 $ker(D_V)$ of a KVF V holds a basis for the symmetric functions:

sym(·) is a projection of **f** onto $ker(D_V)$.

Detecting Singularities

Future Work

- Covariant derivative of vector fields
- Vector field simplification
- Joint design on multiple shapes
- Align directions with feature lines
- Design conformal Killing vector fields
- Mesh parameterization using FVFs
- Representation of N-RoSy fields

Conclusions

- A representation of tangent vector fields as operators
- A powerful toolbox:
 - Multiple constraints into a linear system
 - Relation between vector fields and mappings
- Representation using operators.. What's next?