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a numerical approach
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What I did before ?

My PhD thesis is : Numerical Optimization of Dirichlet-Laplace
Eigenvalues on domains in surfaces.
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Geometric problem

Let Ω ⊂ R
2 be a regular, bounded domain.
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Consider the problem: find a non-zero map u : Ω → R and a
scalar λ (both depending on Ω) such that

(P)

{
−∆u = λu in Ω,

u = 0 on ∂Ω.

Theoretical Question : Existence of a solution (λ, u)?
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Geometric problem

Answer: Yes!

Theorem (Spectral Theorem)
Let (H, (· |·)) be a separable Hilbert space of infinite dimension and T a positive (that
is (Tx |x) ≥ 0 for all x ∈ H), self-adjoint and compact operator on H.
Then, there exist a sequence of real positive eigenvalues (µn)n≥1, converging to 0 and
a sequence of eigenvectors (xn)n≥1, defining a Hilbert basis of H such that
Txn = µnxn for all n ≥ 1.
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Geometric problem

Theoretically known examples:

λ1,Disc1 ≃ 18.168 λ1,Square1
≃ 19.739
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Geometric problem

Theoretically known examples:

λ1,Disc1 ≃ 18.168 λ1,Square1
≃ 19.739

Example computed numerically

λ1,h(Ω) ≃ 21.026
λ1,h(

√
2Ω) ≃ 10.513
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Optimization problem

Question : What bounded domain in R
2 minimizes λk,Ω?
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Optimization problem

Question : What bounded domain in R
2 minimizes λk,Ω?

 That is not a good question !

Before, we have to set the frame of the optimization problem:
let’s consider a bounded domain Ω ⊂ R

2 and its corresponding
k-th eigenvalue λk,Ω.

1) If I is an isometry in R
2, then λk,I (Ω) = λk,Ω.

uk,I (Ω)(x) = uk,Ω(I
−1(x)) Ω

I (Ω)
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Optimization problem

2) If Hr is the homothety of factor r centred at the origin,

Ω Hr (Ω)
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Optimization problem

2) If Hr is the homothety of factor r centred at the origin, then

λk,Hr (Ω) =
1

r2
λk,Ω.

uk,Hr (Ω)(x) = uk,Ω

(
1

r
x

) Ω Hr (Ω)

So, the larger Ω is, the smaller the eigenvalue λk,Ω is. Thus, we
have to control the volume of Ω.

Optimization problem : What is the bounded domain of
volume 1 in R

2 which minimizes λk,Ω?

min
vol(Ω)=1,
Ω bounded

λk,Ω ⇔ min
Ω bounded

vol(Ω)λk,Ω
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Optimization problem

Known results:

Theorem (Faber-Krahn, 1923)

Let B be the ball of volume 1. Then,

λ1,B = min
{
λ1,Ω

∣
∣Ω ⊂ R

2, vol(Ω) = 1
}
.

B
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{
λ1,Ω

∣
∣Ω ⊂ R

2, vol(Ω) = 1
}
.

B

Theorem (Krahn-Szegö, 1926)

Let B2 be the union of two identical balls, vol(B2) = 1. Then,

λ2,B2
= min

{
λ2,Ω

∣
∣Ω ⊂ R

2, vol(Ω) = 1
}
.

B2
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Known results:

Theorem (Faber-Krahn, 1923)

Let B be the ball of volume 1. Then,

λ1,B = min
{
λ1,Ω

∣
∣Ω ⊂ R

2, vol(Ω) = 1
}
.

B

Theorem (Krahn-Szegö, 1926)

Let B2 be the union of two identical balls, vol(B2) = 1. Then,

λ2,B2
= min

{
λ2,Ω

∣
∣Ω ⊂ R

2, vol(Ω) = 1
}
.

B2

◮ These theorems also hold in R
n, n ≥ 3;
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Optimization problem

Known results:

Theorem (Bucur 2012 & Mazzoleni, Pratelli 2013)

There exists a minimizer for λk,Ω, k ≥ 3, among all quasi-open

sets Ω of given volume. Moreover, it is bounded and has finite

perimeter.
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Optimization problem

Known results:

Theorem (Bucur 2012 & Mazzoleni, Pratelli 2013)

There exists a minimizer for λk,Ω, k ≥ 3, among all quasi-open

sets Ω of given volume. Moreover, it is bounded and has finite

perimeter.

However, it does not provide the shape of the minimizing
domain!

Open problem

For k ≥ 3, what is the bounded domain of volume 1 in R
2 which

minimizes λk,Ω?
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Optimization problem

Open problem:

Generally, for a given bounded domain Ω, it is quite impossible
to find analytically the eigenvalues λk,Ω.
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Optimization problem

Open problem:

Generally, for a given bounded domain Ω, it is quite impossible
to find analytically the eigenvalues λk,Ω.

 numerics !
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Discretization for the numerical processing

Weak formulation of problem (P):

(WP)







find u ∈ H1
0 (Ω) such that

∫

Ω

(∇u|∇v) =

∫

Ω

uv , ∀v ∈ H1
0 (Ω).
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Discretization for the numerical processing

Galerkin approximation

Discretization of Ω into triangles K of
type P1  we get a mesh Mh with N

nodes inside Ω ; Ω
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Discretization for the numerical processing

Galerkin approximation

Discretization of Ω into triangles K of
type P1  we get a mesh Mh with N

nodes inside Ω ; Ω

Instead of H1
0 (Ω) in (WP), consider the finite dimensional space

Vh :=
{
ϕ ∈ C0(Ω) |ϕ ∂Ω = 0, ϕ K linear ∀K ∈ M

}
;

A basis {ϕh,i}Ni=1 of Vh is given by

ϕh,i ∈ Vh, ϕh,i (Pj) = δij , i , j = 1, . . . ,N.
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Discretization for the numerical processing

1
ϕh,i

MhPi

Figure: A basis function ϕh,i .
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Discretization for the numerical processing

1
ϕh,i

MhPi

Figure: A basis function ϕh,i .

Approximation of u ∈ H1
0 (Ω) by uh =

N∑

j=1

ujϕh,j ∈ Vh.

13 / 23



Discretization for the numerical processing

(WPh)

{
find uh ∈ Vh, uh 6≡ 0, and λ > 0 such that
∫

Ω

(∇uh|∇ϕh,i ) = λ
∫

Ω

uhϕh,i , ∀i = 1, . . . ,N .
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(∇ϕh,j |∇ϕh,i )

︸ ︷︷ ︸

Si,j

uj = λ

N∑

j=1

∫

Ω

ϕh,jϕh,i

︸ ︷︷ ︸

Mi,j

uj , ∀i = 1, . . . ,N.

 (WPh) : find ~u ∈ R
N \ {0}, and λ > 0 such that S~u = λM~u.

 Lanczos algorithm to solve (WPh).
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Discretization for the numerical processing

Shape optimization
The idea is to use a descent algorithm to minimize the cost
functional J(Ω) = λk(Ω) vol(Ω).

The first problem is to determine the domain of the functional J,
that is the admissible shapes Ω.
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Discretization for the numerical processing

Shape optimization
The idea is to use a descent algorithm to minimize the cost
functional J(Ω) = λk(Ω) vol(Ω).

The first problem is to determine the domain of the functional J,
that is the admissible shapes Ω.

Given an initial domain Ω0,
we allow deformations of the
form

Ωθ = (id+θ)(Ω0), θ ∈ W 1,∞(Ω).
Ω

Ωθ

x

x+ θ(x)
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Discretization for the numerical processing

Now, we can compute the derivative with respect to the domain
of J, that is the Fréchet derivative of θ 7→ J(Ωθ).
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Discretization for the numerical processing

Now, we can compute the derivative with respect to the domain
of J, that is the Fréchet derivative of θ 7→ J(Ωθ). It yields

J ′(Ω0)(θ) =

∫

∂Ω0

(

λk(Ω0)− vol(Ω0)

(
∂uk

∂~n

)2
)

(θ|~n) dσ.

And for every node Pi ∈ ∂Ω, we choose θi , and move Pi to

P ′
i := Pi − di~n, with di = J ′(Ω0)(θi ).
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of J, that is the Fréchet derivative of θ 7→ J(Ωθ). It yields

J ′(Ω0)(θ) =

∫

∂Ω0

(

λk(Ω0)− vol(Ω0)

(
∂uk

∂~n

)2
)

(θ|~n) dσ.

And for every node Pi ∈ ∂Ω, we choose θi , and move Pi to

P ′
i := Pi − di~n, with di = J ′(Ω0)(θi ).

Then, we obtain a new domain, we can mesh it,

16 / 23



Discretization for the numerical processing

Now, we can compute the derivative with respect to the domain
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Now, we can compute the derivative with respect to the domain
of J, that is the Fréchet derivative of θ 7→ J(Ωθ). It yields

J ′(Ω0)(θ) =

∫

∂Ω0

(

λk(Ω0)− vol(Ω0)

(
∂uk

∂~n

)2
)

(θ|~n) dσ.

And for every node Pi ∈ ∂Ω, we choose θi , and move Pi to

P ′
i := Pi − di~n, with di = J ′(Ω0)(θi ).

Then, we obtain a new domain, we can mesh it, compute the
associated eigenvalues and eigenfunctions, move the new
boundary, and so on. . .
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Discretization for the numerical processing
15 first candidates to be minimizing domains of volume 1 in R

2.
k λk

1 18.17
2 36.39
3 46.30
4 64.78
5 78.53
6 89.05
7 106.51
8 120.01
9 134.06
10 144.82
11 160.55
12 174.37
13 188.84
14 202.22
15 211.16

Previously found by Oudet (’04, partly) and Antunes-Freitas (’12)
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Generalization to surfaces

Let (M, g) be a Riemannian manifold of dimension 2

(M , g)

P

U

α(P)α

α(U)
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Generalization to surfaces

Let (M, g) be a Riemannian manifold of dimension 2

(M , g)

P

U

α

α(U)

α(P)

geodesic
triangle

Mesh α(U) in order to consider manifold non embeddable in R
3.

 use the expression of the Laplacian in local coordinates:

∆f =
1

√

det(G )

2∑

j ,k=1

∂xj

(

G jk
√

det(G )∂xk f
)

.
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Generalization to surfaces

It implies several modifications. For instance,
◮ for the computation:

(WPh)







find uh ∈ Vh, uh 6≡ 0, and λ > 0 such that
∫

Ω

∇uthG
−1∇ϕh,i

√
detG = λ

∫

Ω

uhϕh,i

√
detG ,

for all i = 1, . . . ,N.
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Generalization to surfaces

It implies several modifications. For instance,
◮ for the computation:

(WPh)







find uh ∈ Vh, uh 6≡ 0, and λ > 0 such that
∫

Ω

∇uthG
−1∇ϕh,i

√
detG = λ

∫

Ω

uhϕh,i

√
detG ,

for all i = 1, . . . ,N.

◮ for the optimization:
There is no homothety any more! The volume constraint
has to be taken into consideration.  Lagrange multiplier.
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Generalization to surfaces

We look for a saddle point of the functional

J(µ,Ω) = λk(Ω) + µ(vol(Ω)− V0),

where V0 is the volume of the initial domain Ω0.
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Generalization to surfaces

We look for a saddle point of the functional

J(µ,Ω) = λk(Ω) + µ(vol(Ω)− V0),

where V0 is the volume of the initial domain Ω0.

 We get a similar formula for the shape optimization.
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Generalization to surfaces

The algorithm gives the same results in R
2. X
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Generalization to surfaces

The algorithm gives the same results in R
2. X

For small domains in surfaces, the results are similar
◮ in the sphere S

2 (curvature = + 1);
◮ in the Poincaré disc D

2 (curvature = -1);
◮ in a hyperboloid H (curvature between 0 and 1);
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Generalization to surfaces
Plot of the optimizers for λ10(Ω

∗
10,S2) and vol(Ω∗

10,S2) = 0.1, 0.2,
. . . , 0.9, 1 and 2.

22 / 23



Generalization to surfaces

I also performed other experiments in order to compare
eigenvalues from different manifolds. The results were not
always expected . . .
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End
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