About optimal domains for Laplace eigenvalues

a numerical approach

What I did before ?
My PhD thesis is: Numerical Optimization of Dirichlet-Laplace Eigenvalues on domains in surfaces.

What I did before?
My PhD thesis is: Numerical Optimization of Dirichlet-Laplace Eigenvalues on domains in surfaces.

1) geometric problem;
2) optimization problem;
3) discretization for the numerical processing.

Geometric problem

Let $\Omega \subset \mathbb{R}^{2}$ be a regular, bounded domain.

Geometric problem

Let $\Omega \subset \mathbb{R}^{2}$ be a regular, bounded domain.

Consider the problem: find a non-zero map $u: \Omega \rightarrow \mathbb{R}$ and a scalar λ (both depending on Ω) such that

$$
(\mathcal{P})\left\{\begin{aligned}
-\Delta u & =\lambda u & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Geometric problem

Let $\Omega \subset \mathbb{R}^{2}$ be a regular, bounded domain.

Consider the problem: find a non-zero map $u: \Omega \rightarrow \mathbb{R}$ and a scalar λ (both depending on Ω) such that

$$
(\mathcal{P})\left\{\begin{array}{rlll}
-\Delta u & =\lambda u & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{array}\right.
$$

Theoretical Question : Existence of a solution (λ, u) ?

Geometric problem

Answer: Yes!

Theorem (Spectral Theorem)

Let $(H,(\cdot \mid \cdot))$ be a separable Hilbert space of infinite dimension and T a positive (that is $\left(T_{x} \mid x\right) \geq 0$ for all $x \in H$), self-adjoint and compact operator on H.
Then, there exist a sequence of real positive eigenvalues $\left(\mu_{n}\right)_{n>1}$, converging to 0 and a sequence of eigenvectors $\left(x_{n}\right)_{n \geq 1}$, defining a Hilbert basis of H such that $T x_{n}=\mu_{n} x_{n}$ for all $n \geq 1$.

Geometric problem

Theoretically known examples:

$$
\lambda_{1, \text { Disc }_{1}} \simeq 18.168 \quad \lambda_{1, \text { Square }_{1}} \simeq 19.739
$$

Geometric problem

Theoretically known examples:

$$
\lambda_{1, \text { Disc }_{1}} \simeq 18.168 \quad \lambda_{1, \text { Square }_{1}} \simeq 19.739
$$

Example computed numerically

$$
\lambda_{1, h}(\Omega) \simeq 21.026
$$

Geometric problem

Theoretically known examples:

$$
\lambda_{1, \text { Disc }_{1}} \simeq 18.168 \quad \lambda_{1, \text { Square }_{1}} \simeq 19.739
$$

Example computed numerically

$$
\lambda_{1, h}(\sqrt{2} \Omega) \simeq 10.513
$$

Optimization problem

Question: What bounded domain in \mathbb{R}^{2} minimizes $\lambda_{k, \Omega}$?

Optimization problem

Question: What bounded domain in \mathbb{R}^{2} minimizes $\lambda_{k, \Omega}$? \rightsquigarrow That is not a good question!

Optimization problem

Question: What bounded domain in \mathbb{R}^{2} minimizes $\lambda_{k, \Omega}$?
\rightsquigarrow That is not a good question!
Before, we have to set the frame of the optimization problem: let's consider a bounded domain $\Omega \subset \mathbb{R}^{2}$ and its corresponding k-th eigenvalue $\lambda_{k, \Omega}$.

1) If I is an isometry in \mathbb{R}^{2},

Optimization problem

Question: What bounded domain in \mathbb{R}^{2} minimizes $\lambda_{k, \Omega}$?
\rightsquigarrow That is not a good question!
Before, we have to set the frame of the optimization problem: let's consider a bounded domain $\Omega \subset \mathbb{R}^{2}$ and its corresponding k-th eigenvalue $\lambda_{k, \Omega}$.

1) If I is an isometry in \mathbb{R}^{2}, then $\lambda_{k, l(\Omega)}=\lambda_{k, \Omega}$.

$$
u_{k, l(\Omega)}(x)=u_{k, \Omega}\left(I^{-1}(x)\right)
$$

Optimization problem

2) If H_{r} is the homothety of factor r centred at the origin,

Optimization problem

2) If H_{r} is the homothety of factor r centred at the origin, then

$$
\begin{aligned}
& \lambda_{k, H_{r}(\Omega)}=\frac{1}{r^{2}} \lambda_{k, \Omega} . \\
& u_{k, H_{r}(\Omega)}(x)=u_{k, \Omega}\left(\frac{1}{r} x\right)
\end{aligned}
$$

Optimization problem

2) If H_{r} is the homothety of factor r centred at the origin, then

$$
\begin{aligned}
& \lambda_{k, H_{r}(\Omega)}=\frac{1}{r^{2}} \lambda_{k, \Omega} \\
& u_{k, H_{r}(\Omega)}(x)=u_{k, \Omega}\left(\frac{1}{r} x\right)
\end{aligned}
$$

So, the larger Ω is, the smaller the eigenvalue $\lambda_{k, \Omega}$ is. Thus, we have to control the volume of Ω.

Optimization problem

2) If H_{r} is the homothety of factor r centred at the origin, then

$$
\begin{aligned}
& \lambda_{k, H_{r}(\Omega)}=\frac{1}{r^{2}} \lambda_{k, \Omega} \\
& u_{k, H_{r}(\Omega)}(x)=u_{k, \Omega}\left(\frac{1}{r} x\right)
\end{aligned}
$$

So, the larger Ω is, the smaller the eigenvalue $\lambda_{k, \Omega}$ is. Thus, we have to control the volume of Ω.

Optimization problem : What is the bounded domain of volume 1 in \mathbb{R}^{2} which minimizes $\lambda_{k, \Omega}$?

Optimization problem

2) If H_{r} is the homothety of factor r centred at the origin, then

$$
\begin{aligned}
& \lambda_{k, H_{r}(\Omega)}=\frac{1}{r^{2}} \lambda_{k, \Omega} \\
& u_{k, H_{r}(\Omega)}(x)=u_{k, \Omega}\left(\frac{1}{r} x\right)
\end{aligned}
$$

So, the larger Ω is, the smaller the eigenvalue $\lambda_{k, \Omega}$ is. Thus, we have to control the volume of Ω.

Optimization problem : What is the bounded domain of volume 1 in \mathbb{R}^{2} which minimizes $\lambda_{k, \Omega}$?

$$
\min _{\substack{\operatorname{vol}(\Omega)=1, \Omega \text { bounded }}} \lambda_{k, \Omega} \Leftrightarrow \min _{\Omega \text { bounded }} \operatorname{vol}(\Omega) \lambda_{k, \Omega}
$$

Optimization problem

Known results:
Theorem (Faber-Krahn, 1923)
Let B be the ball of volume 1. Then,

$$
\lambda_{1, B}=\min \left\{\lambda_{1, \Omega} \mid \Omega \subset \mathbb{R}^{2}, \operatorname{vol}(\Omega)=1\right\}
$$

Optimization problem

Known results:
Theorem (Faber-Krahn, 1923)
Let B be the ball of volume 1. Then,

$$
\lambda_{1, B}=\min \left\{\lambda_{1, \Omega} \mid \Omega \subset \mathbb{R}^{2}, \operatorname{vol}(\Omega)=1\right\}
$$

Theorem (Krahn-Szegö, 1926)
Let B_{2} be the union of two identical balls, $\operatorname{vol}\left(B_{2}\right)=1$. Then,

$$
\lambda_{2, B_{2}}=\min \left\{\lambda_{2, \Omega} \mid \Omega \subset \mathbb{R}^{2}, \operatorname{vol}(\Omega)=1\right\}
$$

Optimization problem

Known results:
Theorem (Faber-Krahn, 1923)
Let B be the ball of volume 1. Then,

$$
\lambda_{1, B}=\min \left\{\lambda_{1, \Omega} \mid \Omega \subset \mathbb{R}^{2}, \operatorname{vol}(\Omega)=1\right\} .
$$

Theorem (Krahn-Szegö, 1926)
Let B_{2} be the union of two identical balls, $\operatorname{vol}\left(B_{2}\right)=1$. Then,

$$
\lambda_{2, B_{2}}=\min \left\{\lambda_{2, \Omega} \mid \Omega \subset \mathbb{R}^{2}, \operatorname{vol}(\Omega)=1\right\} .
$$

- These theorems also hold in $\mathbb{R}^{n}, n \geq 3$;

Optimization problem

Known results:
Theorem (Bucur 2012 \& Mazzoleni, Pratelli 2013)
There exists a minimizer for $\lambda_{k, \Omega}, k \geq 3$, among all quasi-open sets Ω of given volume. Moreover, it is bounded and has finite perimeter.

Optimization problem

Known results:
Theorem (Bucur 2012 \& Mazzoleni, Pratelli 2013)
There exists a minimizer for $\lambda_{k, \Omega}, k \geq 3$, among all quasi-open sets Ω of given volume. Moreover, it is bounded and has finite perimeter.

However, it does not provide the shape of the minimizing domain!

Open problem
For $k \geq 3$, what is the bounded domain of volume 1 in \mathbb{R}^{2} which minimizes $\lambda_{k, \Omega}$?

Optimization problem

Open problem:
Generally, for a given bounded domain Ω, it is quite impossible to find analytically the eigenvalues $\lambda_{k, \Omega}$.

Optimization problem

Open problem:
Generally, for a given bounded domain Ω, it is quite impossible to find analytically the eigenvalues $\lambda_{k, \Omega}$.
\rightsquigarrow numerics !

Discretization for the numerical processing

Weak formulation of problem (\mathcal{P}) :

$$
(\mathcal{W P})\left\{\begin{array}{l}
\text { find } u \in H_{0}^{1}(\Omega) \text { such that } \\
\int_{\Omega}(\nabla u \mid \nabla v)=\int_{\Omega} u v, \quad \forall v \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

Discretization for the numerical processing

Galerkin approximation

Discretization of Ω into triangles K of type $\mathcal{P}_{1} \rightsquigarrow$ we get a mesh \mathcal{M}_{h} with N nodes inside Ω;

Discretization for the numerical processing

Galerkin approximation

Discretization of Ω into triangles K of type $\mathcal{P}_{1} \rightsquigarrow$ we get a mesh \mathcal{M}_{h} with N nodes inside Ω;

Instead of $H_{0}^{1}(\Omega)$ in $(\mathcal{W P})$, consider the finite dimensional space

$$
V_{h}:=\left\{\varphi \in \mathcal{C}^{0}(\bar{\Omega}) \mid \varphi_{\mid \partial \Omega}=0, \varphi_{\mid K} \text { linear } \forall K \in \mathcal{M}\right\} ;
$$

Discretization for the numerical processing

Galerkin approximation

Discretization of Ω into triangles K of type $\mathcal{P}_{1} \rightsquigarrow$ we get a mesh \mathcal{M}_{h} with N nodes inside Ω;

Instead of $H_{0}^{1}(\Omega)$ in $(\mathcal{W P})$, consider the finite dimensional space

$$
V_{h}:=\left\{\varphi \in \mathcal{C}^{0}(\bar{\Omega}) \mid \varphi_{\mid \partial \Omega}=0, \varphi_{\mid K} \text { linear } \forall K \in \mathcal{M}\right\} ;
$$

A basis $\left\{\varphi_{h, i}\right\}_{i=1}^{N}$ of V_{h} is given by

$$
\varphi_{h, i} \in V_{h}, \varphi_{h, i}\left(P_{j}\right)=\delta_{i j}, \quad i, j=1, \ldots, N .
$$

Discretization for the numerical processing

Figure: A basis function $\varphi_{h, i}$.

Discretization for the numerical processing

Figure: A basis function $\varphi_{h, i}$.

Approximation of $u \in H_{0}^{1}(\Omega)$ by $u_{h}=\sum_{j=1}^{N} u_{j} \varphi_{h, j} \in V_{h}$.

Discretization for the numerical processing

$$
\left(\mathcal{W} \mathcal{P}_{h}\right)\left\{\begin{array}{l}
\text { find } u_{h} \in V_{h}, u_{h} \not \equiv 0, \quad \text { and } \lambda>0 \text { such that } \\
\int_{\Omega}\left(\nabla u_{h} \mid \nabla \varphi_{h, i}\right)=\lambda \int_{\Omega} u_{h} \varphi_{h, i}, \quad \forall i=1, \ldots, N .
\end{array}\right.
$$

Discretization for the numerical processing

$$
\left(\mathcal{W} \mathcal{P}_{h}\right)\left\{\begin{array}{l}
\text { find } u_{h} \in V_{h}, u_{h} \not \equiv 0, \text { and } \lambda>0 \text { such that } \\
\int_{\Omega}\left(\nabla u_{h} \mid \nabla \varphi_{h, i}\right)=\lambda \int_{\Omega} u_{h} \varphi_{h, i}, \quad \forall i=1, \ldots, N
\end{array}\right.
$$

Pluging $u_{h}=\sum_{j=1}^{N} u_{j} \varphi_{h, j} \in V_{h}$ into $\left(\mathcal{W} \mathcal{P}_{h}\right)$:

Discretization for the numerical processing

$$
\left(\mathcal{W} \mathcal{P}_{h}\right)\left\{\begin{array}{l}
\text { find } u_{h} \in V_{h}, u_{h} \not \equiv 0, \text { and } \lambda>0 \text { such that } \\
\int_{\Omega}\left(\nabla u_{h} \mid \nabla \varphi_{h, i}\right)=\lambda \int_{\Omega} u_{h} \varphi_{h, i}, \quad \forall i=1, \ldots, N
\end{array}\right.
$$

Pluging $u_{h}=\sum_{j=1}^{N} u_{j} \varphi_{h, j} \in V_{h}$ into $\left(\mathcal{W} \mathcal{P}_{h}\right)$:
$\rightsquigarrow\left(\mathcal{W} \mathcal{P}_{h}\right)$: find $\vec{u} \in \mathbb{R}^{N} \backslash\{0\}$, and $\lambda>0$ such that $S \vec{u}=\lambda M \vec{u}$.

Discretization for the numerical processing

$$
\left(\mathcal{W} \mathcal{P}_{h}\right)\left\{\begin{array}{l}
\text { find } u_{h} \in V_{h}, u_{h} \not \equiv 0, \text { and } \lambda>0 \text { such that } \\
\int_{\Omega}\left(\nabla u_{h} \mid \nabla \varphi_{h, i}\right)=\lambda \int_{\Omega} u_{h} \varphi_{h, i}, \quad \forall i=1, \ldots, N
\end{array}\right.
$$

Pluging $u_{h}=\sum_{j=1}^{N} u_{j} \varphi_{h, j} \in V_{h}$ into $\left(\mathcal{W} \mathcal{P}_{h}\right)$:
$\rightsquigarrow\left(\mathcal{W} \mathcal{P}_{h}\right)$: find $\vec{u} \in \mathbb{R}^{N} \backslash\{0\}$, and $\lambda>0$ such that $S \vec{u}=\lambda M \vec{u}$.
\rightsquigarrow Lanczos algorithm to solve $\left(\mathcal{W P}_{h}\right)$.

Discretization for the numerical processing

Shape optimization

The idea is to use a descent algorithm to minimize the cost functional $J(\Omega)=\lambda_{k}(\Omega)$ vol (Ω).

The first problem is to determine the domain of the functional J, that is the admissible shapes Ω.

Discretization for the numerical processing

Shape optimization

The idea is to use a descent algorithm to minimize the cost functional $J(\Omega)=\lambda_{k}(\Omega)$ vol (Ω).

The first problem is to determine the domain of the functional J, that is the admissible shapes Ω.

Given an initial domain Ω_{0}, we allow deformations of the form
$\Omega_{\theta}=(\mathrm{id}+\theta)\left(\Omega_{0}\right), \theta \in W^{1, \infty}(\Omega)$.

Discretization for the numerical processing

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$.

Discretization for the numerical processing

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$. It yields

$$
J^{\prime}\left(\Omega_{0}\right)(\theta)=\int_{\partial \Omega_{0}}\left(\lambda_{k}\left(\Omega_{0}\right)-\operatorname{vol}\left(\Omega_{0}\right)\left(\frac{\partial u_{k}}{\partial \vec{n}}\right)^{2}\right)(\theta \mid \vec{n}) \mathrm{d} \sigma .
$$

And for every node $P_{i} \in \partial \Omega$, we choose θ_{i}, and move P_{i} to

$$
P_{i}^{\prime}:=P_{i}-d_{i} \vec{n}, \text { with } d_{i}=J^{\prime}\left(\Omega_{0}\right)\left(\theta_{i}\right) .
$$

Discretization for the numerical processing

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$. It yields

$$
J^{\prime}\left(\Omega_{0}\right)(\theta)=\int_{\partial \Omega_{0}}\left(\lambda_{k}\left(\Omega_{0}\right)-\operatorname{vol}\left(\Omega_{0}\right)\left(\frac{\partial u_{k}}{\partial \vec{n}}\right)^{2}\right)(\theta \mid \vec{n}) \mathrm{d} \sigma .
$$

And for every node $P_{i} \in \partial \Omega$, we choose θ_{i}, and move P_{i} to

$$
P_{i}^{\prime}:=P_{i}-d_{i} \vec{n}, \text { with } d_{i}=J^{\prime}\left(\Omega_{0}\right)\left(\theta_{i}\right) .
$$

Then, we obtain a new domain,

Discretization for the numerical processing

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$. It yields

$$
J^{\prime}\left(\Omega_{0}\right)(\theta)=\int_{\partial \Omega_{0}}\left(\lambda_{k}\left(\Omega_{0}\right)-\operatorname{vol}\left(\Omega_{0}\right)\left(\frac{\partial u_{k}}{\partial \vec{n}}\right)^{2}\right)(\theta \mid \vec{n}) \mathrm{d} \sigma .
$$

And for every node $P_{i} \in \partial \Omega$, we choose θ_{i}, and move P_{i} to

$$
P_{i}^{\prime}:=P_{i}-d_{i} \vec{n}, \text { with } d_{i}=J^{\prime}\left(\Omega_{0}\right)\left(\theta_{i}\right) .
$$

Then, we obtain a new domain, we can mesh it,

Discretization for the numerical processing

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$. It yields

$$
J^{\prime}\left(\Omega_{0}\right)(\theta)=\int_{\partial \Omega_{0}}\left(\lambda_{k}\left(\Omega_{0}\right)-\operatorname{vol}\left(\Omega_{0}\right)\left(\frac{\partial u_{k}}{\partial \vec{n}}\right)^{2}\right)(\theta \mid \vec{n}) \mathrm{d} \sigma .
$$

And for every node $P_{i} \in \partial \Omega$, we choose θ_{i}, and move P_{i} to

$$
P_{i}^{\prime}:=P_{i}-d_{i} \vec{n}, \text { with } d_{i}=J^{\prime}\left(\Omega_{0}\right)\left(\theta_{i}\right) .
$$

Then, we obtain a new domain, we can mesh it, compute the associated eigenvalues and eigenfunctions,

Discretization for the numerical processing

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$. It yields

$$
J^{\prime}\left(\Omega_{0}\right)(\theta)=\int_{\partial \Omega_{0}}\left(\lambda_{k}\left(\Omega_{0}\right)-\operatorname{vol}\left(\Omega_{0}\right)\left(\frac{\partial u_{k}}{\partial \vec{n}}\right)^{2}\right)(\theta \mid \vec{n}) \mathrm{d} \sigma .
$$

And for every node $P_{i} \in \partial \Omega$, we choose θ_{i}, and move P_{i} to

$$
P_{i}^{\prime}:=P_{i}-d_{i} \vec{n}, \text { with } d_{i}=J^{\prime}\left(\Omega_{0}\right)\left(\theta_{i}\right) .
$$

Then, we obtain a new domain, we can mesh it, compute the associated eigenvalues and eigenfunctions, move the new boundary,

Discretization for the numerical processing

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$. It yields

$$
J^{\prime}\left(\Omega_{0}\right)(\theta)=\int_{\partial \Omega_{0}}\left(\lambda_{k}\left(\Omega_{0}\right)-\operatorname{vol}\left(\Omega_{0}\right)\left(\frac{\partial u_{k}}{\partial \vec{n}}\right)^{2}\right)(\theta \mid \vec{n}) \mathrm{d} \sigma .
$$

And for every node $P_{i} \in \partial \Omega$, we choose θ_{i}, and move P_{i} to

$$
P_{i}^{\prime}:=P_{i}-d_{i} \vec{n}, \text { with } d_{i}=J^{\prime}\left(\Omega_{0}\right)\left(\theta_{i}\right) .
$$

Then, we obtain a new domain, we can mesh it, compute the associated eigenvalues and eigenfunctions, move the new boundary, and so on...

Discretization for the numerical processing

 15 first candidates to be minimizing domains of volume 1 in \mathbb{R}^{2}.

Previously found by Oudet ('04, partly) and Antunes-Freitas ('12)

Generalization to surfaces

Let (M, g) be a Riemannian manifold of dimension 2

Generalization to surfaces

Let (M, g) be a Riemannian manifold of dimension 2

Generalization to surfaces

Let (M, g) be a Riemannian manifold of dimension 2

Mesh $\alpha(U)$ in order to consider manifold non embeddable in \mathbb{R}^{3}.
\rightsquigarrow use the expression of the Laplacian in local coordinates:

$$
\Delta f=\frac{1}{\sqrt{\operatorname{det}(G)}} \sum_{j, k=1}^{2} \partial x_{j}\left(G^{j k} \sqrt{\operatorname{det}(G)} \partial x_{k} f\right) .
$$

Generalization to surfaces

It implies several modifications. For instance,

- for the computation:

$$
\left(\mathcal{W} \mathcal{P}_{h}\right)\left\{\begin{array}{l}
\text { find } u_{h} \in V_{h}, u_{h} \not \equiv 0, \text { and } \lambda>0 \text { such that } \\
\int_{\Omega} \nabla u_{h}^{t} G^{-1} \nabla \varphi_{h, i} \sqrt{\operatorname{det} G}=\lambda \int_{\Omega} u_{h} \varphi_{h, i} \sqrt{\operatorname{det} G} \\
\text { for all } i=1, \ldots, N .
\end{array}\right.
$$

Generalization to surfaces

It implies several modifications. For instance,

- for the computation:

$$
\left(\mathcal{W P} \mathcal{P}_{h}\right)\left\{\begin{array}{l}
\text { find } u_{h} \in V_{h}, u_{h} \not \equiv 0, \text { and } \lambda>0 \text { such that } \\
\int_{\Omega} \nabla u_{h}^{t} G^{-1} \nabla \varphi_{h, i} \sqrt{\operatorname{det} G}=\lambda \int_{\Omega} u_{h} \varphi_{h, i} \sqrt{\operatorname{det} G}, \\
\text { for all } i=1, \ldots, N .
\end{array}\right.
$$

- for the optimization:

There is no homothety any more! The volume constraint has to be taken into consideration. \rightsquigarrow Lagrange multiplier.

Generalization to surfaces

We look for a saddle point of the functional

$$
J(\mu, \Omega)=\lambda_{k}(\Omega)+\mu\left(\operatorname{vol}(\Omega)-V_{0}\right)
$$

where V_{0} is the volume of the initial domain Ω_{0}.

Generalization to surfaces

We look for a saddle point of the functional

$$
J(\mu, \Omega)=\lambda_{k}(\Omega)+\mu\left(\operatorname{vol}(\Omega)-V_{0}\right)
$$

where V_{0} is the volume of the initial domain Ω_{0}.
\rightsquigarrow We get a similar formula for the shape optimization.

Generalization to surfaces

The algorithm gives the same results in $\mathbb{R}^{2} . \checkmark$

Generalization to surfaces

The algorithm gives the same results in $\mathbb{R}^{2} . \checkmark$
For small domains in surfaces, the results are similar

- in the sphere \mathbb{S}^{2} (curvature $=+1$);

Generalization to surfaces

The algorithm gives the same results in $\mathbb{R}^{2} . \checkmark$
For small domains in surfaces, the results are similar

- in the sphere \mathbb{S}^{2} (curvature = + 1);
- in the Poincaré disc \mathbb{D}^{2} (curvature $=-1$);

Generalization to surfaces

The algorithm gives the same results in $\mathbb{R}^{2} . \checkmark$
For small domains in surfaces, the results are similar

- in the sphere \mathbb{S}^{2} (curvature = + 1);
- in the Poincaré disc \mathbb{D}^{2} (curvature $=-1$);
- in a hyperboloid H (curvature between 0 and 1);

Generalization to surfaces

Plot of the optimizers for $\lambda_{10}\left(\Omega_{10, \mathbb{S}^{2}}^{*}\right)$ and $\operatorname{vol}\left(\Omega_{10, \mathbb{S}^{2}}^{*}\right)=0.1,0.2$,
..., 0.9, 1 and 2.

Generalization to surfaces

I also performed other experiments in order to compare eigenvalues from different manifolds. The results were not always expected ...

Generalization to surfaces

I also performed other experiments in order to compare eigenvalues from different manifolds. The results were not always expected ...

End

