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Nomenclature

2

In our work and throughout the talk:

• shape ≡ compact metric space (sometimes assumed finite or manifold)

• distance between shapes ≡ Gromov-Hausdorff (GH) distance

- stable ≡ variations with GH-distance and base point location are controlled

• signature ≡ persistence diagram (choose the filtration)

- multi-scale ≡ reflects the structure of the shape across scales

- global/local ≡ attached to the whole shape / to a (set of) base point(s)
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TOSCA

Shape Benchmark
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Comparisons between shapes occur in various contexts, including:

• shape classification (organizing large databases of shapes)

• shape retrieval (searching in databases of shapes)

source: SHREC (Shape Retrieval Contest) 2011



Why Compare Shapes

3

Comparisons between shapes occur in various contexts, including:

• shape classification (organizing large databases of shapes)

• partial/global shape matching (finding the best mapping between shapes)

• shape retrieval (searching in databases of shapes)

source: Image Processing and Analysing With Graphs: Theory and Practice, CRC Press, 2011



Why Compare Shapes

3

Comparisons between shapes occur in various contexts, including:

• shape classification (organizing large databases of shapes)

• partial/global shape matching (finding the best mapping between shapes)

• shape retrieval (searching in databases of shapes)

shape comparison is but one piece of the
whole process, yet it is a crucial piece
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Why use Signatures

4

shapes space

signatures space

GH distance

hard to compute

isometries

equality

distance

easy to compute

Ideally, signatures distance = GH distance

In reality, ≤



This signature reveals the structure of the metric space across scales

Rips-Based Signatures
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Input: a compact metric space (X, dX)

Signature: DgR(X, dX), where R(X, dX) is the Rips filtration of (X, dX)



This signature reveals the structure of the metric space across scales

Rips-Based Signatures

5

Input: a compact metric space (X, dX)

Signature: DgR(X, dX), where R(X, dX) is the Rips filtration of (X, dX)

∞

0.25

0

0

0.5

0.75

1-dimensional homology generators

0-dimensional homology generators



Rips-Based Signatures (continued)

6

Theorem (Stability): For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (DgR(X, dX), DgR(Y, dY )) ≤ 2dGH(X,Y ) (plus diags are well-defined).

Variants [Chazal, de Silva, Oudot ’12/’13/’14?]:

- Čech complexe/ extrinsic Čech complex filtrations

- precompact metric spaces

- (dis-)similarity measures

- Witness complex filtrations (landmarks fixed)



the issue with infinite spaces is that they give rise to infinite Rips complexes, whose filtrations may or may not be tame and therefore whose persistence diagrams may not be defined. At least, I will leave the suspense open until Frederic Chazal’s talk.
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Theorem (Stability): For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (DgR(X, dX), DgR(Y, dY )) ≤ 2dGH(X,Y ) (plus diags are well-defined).

finite

Proof:

(X, dX )

(Y, dY )

Take any ε > dGH(X,Y ).

dGH(X, Y ) < ε

d∞B (DgR(X, dX ), DgR(Y, dY ))
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Theorem (Stability): For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (DgR(X, dX), DgR(Y, dY )) ≤ 2dGH(X,Y ) (plus diags are well-defined).

finite

Proof:

(X, dX )

(Y, dY )

(Z, dZ )

f

g

Take any ε > dGH(X,Y ).

dGH(X, Y ) < ε dH(f(X), g(Y )) ≤ ε

d∞B (DgR(X, dX ), DgR(Y, dY ))=d∞B (DgR(f(X), dZ ), DgR(g(Y ), dZ ))
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Theorem (Stability): For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (DgR(X, dX), DgR(Y, dY )) ≤ 2dGH(X,Y ) (plus diags are well-defined).

finite

Proof:

(X, dX )

(Y, dY )

(Z, dZ )

f

g

(f(X) t g(Y ), dZ )

id

id

Take any ε > dGH(X,Y ).

dGH(X, Y ) < ε dH(f(X), g(Y )) ≤ ε

d∞B (DgR(X, dX ), DgR(Y, dY ))=d∞B (DgR(f(X), dZ ), DgR(g(Y ), dZ ))
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Theorem (Stability): For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (DgR(X, dX), DgR(Y, dY )) ≤ 2dGH(X,Y ) (plus diags are well-defined).

finite

Proof:

(X, dX )

(Y, dY )

(Z, dZ )

f

g

(f(X) t g(Y ), dZ )

(R|X|+|Y |, `∞)

id

id

h

Take any ε > dGH(X,Y ).

dGH(X, Y ) < ε dH(f(X), g(Y )) ≤ ε dH(h ◦ f(X), h ◦ g(Y )) ≤ ε

d∞B (DgR(X, dX ), DgR(Y, dY ))=d∞B (DgR(f(X), dZ ), DgR(g(Y ), dZ ))

=d∞B (DgR(h ◦ f(X), `∞), DgR(h ◦ g(Y ), `∞))



the issue with infinite spaces is that they give rise to infinite Rips complexes, whose filtrations may or may not be tame and therefore whose persistence diagrams may not be defined. At least, I will leave the suspense open until Frederic Chazal’s talk.

whenever k balls pairwise intersect pairwise in (Rn, `∞), their common intersection is non-empty because the balls are axis-aligned boxes. Hence, the Rips and Cech filtrations are isomorphic, up to a rescaling of the filtration parameter by a factor of 2 (when going from Cech to Rips, which means that the bottleneck distance is divided by 2 when going from Rips to Cech).
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Theorem (Stability): For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (DgR(X, dX), DgR(Y, dY )) ≤ 2dGH(X,Y ) (plus diags are well-defined).

finite

Proof:

(X, dX )

(Y, dY )

(Z, dZ )

f

g

(f(X) t g(Y ), dZ )

(R|X|+|Y |, `∞)

id

id

h

Take any ε > dGH(X,Y ).

dGH(X, Y ) < ε dH(f(X), g(Y )) ≤ ε dH(h ◦ f(X), h ◦ g(Y )) ≤ ε

d∞B (DgR(X, dX ), DgR(Y, dY ))=d∞B (DgR(f(X), dZ ), DgR(g(Y ), dZ ))

=d∞B (DgR(h ◦ f(X), `∞), DgR(h ◦ g(Y ), `∞))

=2 d∞B (Dg C(h ◦ f(X), Dg C(h ◦ g(Y ))



the issue with infinite spaces is that they give rise to infinite Rips complexes, whose filtrations may or may not be tame and therefore whose persistence diagrams may not be defined. At least, I will leave the suspense open until Frederic Chazal’s talk.

h is Fréchet’s embedding

whenever k balls pairwise intersect pairwise in (Rn, `∞), their common intersection is non-empty because the balls are axis-aligned boxes. Hence, the Rips and Cech filtrations are isomorphic, up to a rescaling of the filtration parameter by a factor of 2 (when going from Cech to Rips, which means that the bottleneck distance is divided by 2 when going from Rips to Cech).

since `∞-balls are convex, their common intersections are always contractible, therefore the Persistent Nerve Lemma ensures that the Cech filtration is isomorphic to the filtration of the offsets in the `∞ distance.
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Theorem (Stability): For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (DgR(X, dX), DgR(Y, dY )) ≤ 2dGH(X,Y ) (plus diags are well-defined).

finite

Proof:

(X, dX )

(Y, dY )

(Z, dZ )

f

g

(f(X) t g(Y ), dZ )

(R|X|+|Y |, `∞)

id

id

h

Take any ε > dGH(X,Y ).

dGH(X, Y ) < ε dH(f(X), g(Y )) ≤ ε dH(h ◦ f(X), h ◦ g(Y )) ≤ ε

d∞B (DgR(X, dX ), DgR(Y, dY ))=d∞B (DgR(f(X), dZ ), DgR(g(Y ), dZ ))

=d∞B (DgR(h ◦ f(X), `∞), DgR(h ◦ g(Y ), `∞))

=2 d∞B (Dg C(h ◦ f(X), Dg C(h ◦ g(Y ))

=2 d∞B (Dg d∞(·, h ◦ f(X)), Dg d∞(·, h ◦ g(Y ))) ≤ 2ε. �



the issue with infinite spaces is that they give rise to infinite Rips complexes, whose filtrations may or may not be tame and therefore whose persistence diagrams may not be defined. At least, I will leave the suspense open until Frederic Chazal’s talk.
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Theorem (Stability): For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (DgR(X, dX), DgR(Y, dY )) ≤ 2dGH(X,Y ) (plus diags are well-defined).

finite

The bound is worst-case tight...

X = 1

Y =
1 + 2ε

dGH(X,Y ) = ε

DgR(X, dX) = {(0,∞), (0, 1)}

DgR(Y, dY ) = {(0,∞), (0, 1 + 2ε)}

⇒ d∞B (DgR(X, dX), DgR(Y, dY )) = 2ε



the issue with infinite spaces is that they give rise to infinite Rips complexes, whose filtrations may or may not be tame and therefore whose persistence diagrams may not be defined. At least, I will leave the suspense open until Frederic Chazal’s talk.

this means that the distance between our signatures is still only a lower bound on the Gromov-Hausdorff distance. In particular, in the example below we see that the signatures distance can be zero even though the spaces are different (with strictly positive GH distance).

- any one-to-one mapping X → Y has a metric distortion of 1 - any correspondence has a metric distortion of at least 1
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Theorem (Stability): For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (DgR(X, dX), DgR(Y, dY )) ≤ 2dGH(X,Y ) (plus diags are well-defined).

finite

The bound is worst-case tight... but it is still only an upper bound

X = 1

Y =

dGH(X,Y ) = 1
2

DgR(X, dX) = {(0,∞), (0, 1), (0.1)}

DgR(Y, dY ) = {(0,∞), (0, 1), (0, 1)}

⇒ d∞B (DgR(X, dX), DgR(Y, dY )) = 0

1

1

1 1

2



Rips-Based Signatures (continued)

Signatures of some elementary shapes (approximated from finite samples):
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This equality is fine, since both curves are isometric when equipped with the geodesic distance (their total lengths are the same). The Euclidean distance allows us to differentiate between them.
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This equality is not fine, since the two spaces are not isometric. Note that the equality does not come from the sampling itself, but from the definition of the signatures. Fortunately, the Euclidean distance allows us to differentiate between the shapes, even though by a single point.
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Signatures of some elementary shapes (approximated from finite samples):
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These observations bring up the question of how good our signatures are in practice.
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8

Experimental results:
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Experimental results:
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Function-Based Signatures

9

Input: a compact metric space (X, dX) and a Lipschitz function f : X → R

Signature: Dg f



Function-Based Signatures
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Examples:

• distance to a base point x0 ∈ X: fx0 (x) = dX(x, x0) is 1-Lipschitz

Input: a compact metric space (X, dX) and a Lipschitz function f : X → R

Signature: Dg f

x0

x0



Sun, Chen, Funkhauser, SGP 2010

Function-Based Signatures

9

Examples:

• fuzzy geodesic [SCF’10] of a pair of base points x0, x1 ∈ X:

Input: a compact metric space (X, dX) and a Lipschitz function f : X → R

Signature: Dg f

fx0,x1 (x) = exp
(
− |dX (x,x0)+dX (x,x1)−dX (x0,x1)|

σ

)
is 2
σ

-Lipschitz,

x0 x1

x0

x1



Function-Based Signatures

9

Examples:

• intersection configuration [SCF’10] of a quadruple of base points:

Input: a compact metric space (X, dX) and a Lipschitz function f : X → R

Signature: Dg f

fx0,x1,x2,x3 (x) = fx0,x1 (x) · fx2,x3 (x) is 4
σ

-Lipschitz.

x0 x1

x0

x1



This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

Desired stability result:
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

Desired stability result:

Definitions:

X

Y

y
x

- correspondence



This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

Desired stability result:

Definitions:

- correspondence

- distortion distm(C) = sup(x,y),(x′,y′)∈C |dX(x, x′)− dY (y, y
′)|

distf (C) = sup(x,y)∈C |f(x)− g(y)|



This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

Desired stability result:

Definitions:

- correspondence

- distortion

- Gromov-Hausdorff distance dGH(X,Y ) = 1
2
infC∈C(X,Y ) distm(C)



d’Amico, Frosini, Landi

This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

Desired stability result:

Note: this is a stability theorem for persistence diagrams

- improves over [CEH’05] (functions have different domains)

- improves over [dAFL’08] (domains are in different homeomorphism classes)

- relies on and is more specific than [CCGGO’09]



this means that the given upper bound cannot hold when X and Y are not homologically equivalent

This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself

Indeed, the finiteness of the bottleneck distance implies that f and g have the same number of essential classes, which represent the homology of their underlying domain
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

Desired stability result:

But it is not true in such generality:

- d∞B (Dg f,Dg g) <∞ ⇒ (X, dX) and (Y, dY ) are homologically equivalent

- distm(C) and distf (C) are finite regardless of homological types of X,Y

Note: this is a stability theorem for persistence diagrams



The idea behind this restriction is that we want to ensure homological equivalence between the two spaces, which we can achieve by assuming that dGH(X,Y ) is small compared to some geometric quantities intrinsic to the two spaces, typically their convexity radii or normal radii

this means that the given upper bound cannot hold when X and Y are not homologically equivalent

This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself

Indeed, the finiteness of the bottleneck distance implies that f and g have the same number of essential classes, which represent the homology of their underlying domain
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→ Restrict the focus to a class of sufficiently regular metric spaces

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

Desired stability result:

But it is not true in such generality:

- d∞B (Dg f,Dg g) <∞ ⇒ (X, dX) and (Y, dY ) are homologically equivalent

- distm(C) and distf (C) are finite regardless of homological types of X,Y

Note: this is a stability theorem for persistence diagrams



This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

length spaces of curvature bounded above

such that distm(C) < 1
10

min{%(X), %(Y )},

≤ 19cdistm(C) + distf (C)

Obtained stability result:



This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

length spaces of curvature bounded above

such that distm(C) < 1
10

min{%(X), %(Y )},

≤ 19cdistm(C) + distf (C)

Prerequisite: dGH(X,Y ) < 1
20

min{%(X), %(Y )}

X =

Y =
d∞B (Dg f,Dg g) =∞

dGH(X,Y ) <∞ = %(Y )

Obtained stability result:



Function-Based Signatures (continued)
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X → R and g :
Y → R. Then, for any correspondence C ∈ C(X,Y ) such that distm(C) <
1
10

min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19cdistm(C) + distf (C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS’09]:

Y

X
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X → R and g :
Y → R. Then, for any correspondence C ∈ C(X,Y ) such that distm(C) <
1
10

min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19cdistm(C) + distf (C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS’09]:

Given any positive ε < 1
10

min{%(X), %(Y )} − distm(C),

• take a finite ε-sample P of X (P ⊆ X)

• equip it with the induced metric dP = dX |P×P

• equip it with the restriction h = f |P

Y

P

X



CPY is the composition of CPX and C as a correspondence

We assign each point of X to its nearest neighbor(s) in P
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1
10

min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19cdistm(C) + distf (C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS’09]:

Given any positive ε < 1
10

min{%(X), %(Y )} − distm(C),

• take a finite ε-sample P of X (P ⊆ X)

• equip it with the induced metric dP = dX |P×P

• equip it with the restriction h = f |P

Y

P

X

CPX = {(p, x) ∈ P ×X : dX(x, p) = minq∈P dX(x, q)}

CPY = {(p, y) ∈ P × Y : ∃x ∈ X s.t. (p, x) ∈ CPX and (x, q) ∈ C}

p
x

y



CPY is the composition of CPX and C as a correspondence

We assign each point of X to its nearest neighbor(s) in P
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Given any positive ε < 1
10

min{%(X), %(Y )} − distm(C),

• take a finite ε-sample P of X (P ⊆ X)

• equip it with the induced metric dP = dX |P×P

• equip it with the restriction h = f |P

Y

P

X

CPX = {(p, x) ∈ P ×X : dX(x, p) = minq∈P dX(x, q)}

CPY = {(p, y) ∈ P × Y : ∃x ∈ X s.t. (p, x) ∈ CPX and (x, q) ∈ C}

p
x

y
→ distm(CPX) ≤ 2ε and distf (CPX) = cε

distm(CPY ) ≤ 2ε+ distm(C) and distf (CPY ) ≤ cε+ distf (C)

→ goal: approximate persistence diagram from GH-close finite metric space
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X → R and g :
Y → R. Then, for any correspondence C ∈ C(X,Y ) such that distm(C) <
1
10

min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19cdistm(C) + distf (C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS’09]:

X, dX , f

P,dP , h

CPX



Function-Based Signatures (continued)

11

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact Rieman-
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min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19cdistm(C) + distf (C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS’09]:

X, dX , f

P,dP , h

CPX

Let φ : P → X be such that (p, φ(p)) ∈ CPX ∀p ∈ P

φ P ′
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X → R and g :
Y → R. Then, for any correspondence C ∈ C(X,Y ) such that distm(C) <
1
10

min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19cdistm(C) + distf (C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS’09]:

X, dX , f

P,dP , h

CPX

Let φ : P → X be such that (p, φ(p)) ∈ CPX ∀p ∈ P

φ

Assume wlog that φ is injective and let ψ : X → P be a left inverse

ψ

P ′



d′P and h′ are the pullbacks of dP and h by the map ψ

Function-Based Signatures (continued)

11

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X → R and g :
Y → R. Then, for any correspondence C ∈ C(X,Y ) such that distm(C) <
1
10

min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19cdistm(C) + distf (C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS’09]:

X, dX , f

P,dP , h

CPX

Let φ : P → X be such that (p, φ(p)) ∈ CPX ∀p ∈ P

φ , dP ′ , h
′

Assume wlog that φ is injective and let ψ : X → P be a left inverse

ψ

Equip P ′ = φ(P ) with dP ′ = dP (ψ(·), ψ(·)) and h′ = h ◦ ψ

‖h′ − f |P ′‖∞ ≤ distf (C) and ‖dP ′ − dX |P ′×P ′‖∞ ≤ distm(C)

→ dH(P ′, X) ≤ distm(C)

P ′
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CPX

Let φ : P → X be such that (p, φ(p)) ∈ CPX ∀p ∈ P
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′

Assume wlog that φ is injective and let ψ : X → P be a left inverse

ψ

Equip P ′ = φ(P ) with dP ′ = dP (ψ(·), ψ(·)) and h′ = h ◦ ψ

‖h′ − f |P ′‖∞ ≤ distf (C) and ‖dP ′ − dX |P ′×P ′‖∞ ≤ distm(C)

→ dH(P ′, X) ≤ distm(C)

P ′

scenario considered in [CGOS’09]
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Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS’09]:

X, dX , f

P,dP , h

CPX

φ , dP ′ , h
′

ψ

‖h′ − f |P ′‖∞ ≤ distf (C) and ‖dP ′ − dX |P ′×P ′‖∞ ≤ distm(C)

→ dH(P ′, X) ≤ distm(C)

P ′

Build {Rδ(h′−1((−∞, α]))}α∈R and {R3δ(h
′−1((−∞, α]))}α∈R

scenario considered in [CGOS’09]

Let δ = 3distm(C)
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CPX

φ , dP ′ , h
′

ψ

‖h′ − f |P ′‖∞ ≤ distf (C) and ‖dP ′ − dX |P ′×P ′‖∞ ≤ distm(C)

→ dH(P ′, X) ≤ distm(C)

P ′

Build {Rδ(h′−1((−∞, α]))}α∈R and {R3δ(h
′−1((−∞, α]))}α∈R

scenario considered in [CGOS’09]

Let δ = 3distm(C)

Thm: d∞B
(
Dg f, Dg {ImH∗(Rδ(h

′−1((−∞, α])))→ H∗(R3δ(h
′−1((−∞, α])))}α∈R

)
≤ 10cdistm(C) + distf (C)
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Computing (approximating) the signatures in practice:

when a triangulation of the manifold X is given:•

- replace f by its PL interpolation f̂ over the triangulation

- compute Dg f̂

- d∞B (Dg f, Dg f̂) is controlled by the stability theorem for PDs [CEH’05]
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Computing (approximating) the signatures in practice:

when a triangulation of the manifold X is given:•

• when a finite approximation (P,dP , g) of (X, dX , f) is given:

- choose a neighborhood parameter δ > 0

- build the filtrations {Rδ(g−1((−∞, α])}α∈R and {R3δ(g
−1((−∞, α])}α∈R

- replace f by its PL interpolation f̂ over the triangulation

- compute Dg f̂

- compute the PD of the image persistence module induced by inclusions:

{ImH∗(Rδ(g
−1((−∞, α]))→ H∗(R3δ(g

−1((−∞, α]))}α∈R

- d∞B (Dg f, Dg f̂) is controlled by the stability theorem for PDs [CEH’05]

- bottleneck distance to Dg f is controlled by the results of [CGOS’09]
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Experimental results:

- input: shapes from the TOSCA database, in mesh form

- select a few base points by hand on each shape

- approximate geodesic distances to base points using the 1-skeleton graph

- use the PDs of the PL interpolations over the meshes as signatures
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Experimental results:
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Experimental results:
∞

∞∞

∞

∞∞



note that blue and green are not contiguous after MDS, however they are in signatures space because they are on the shape and the mapping to signatures space is Lipschitz continuous
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Experimental results:

mapping to R3 via MDS

k-means in R3
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Experimental results:

mapping to R3 via MDS

k-means in R3
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• Two families of signatures: Rips-based and function-based

2-parameters filtration

filtrations

parameter space

α

δ

∞

∞

→ relate the 2 parameters by a linear relation, e.g. α = c.δ + d for fixed c, d

→ 2-parameter family of filtrations

Q Consider bi-filtration directly?

• Flexibility via choice of metric and/or function


