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Nomenclature

In our work and throughout the talk:
e shape = compact metric space (sometimes assumed finite or manifold)
e distance between shapes = Gromov-Hausdorff (GH) distance

e signature = persistence diagram (choose the filtration)
- multi-scale = reflects the structure of the shape across scales
- global/local = attached to the whole shape / to a (set of) base point(s)

- stable = variations with GH-distance and base point location are controlled



Why Compare Shapes

Comparisons between shapes occur in various contexts, including:

e shape classification (organizing large databases of shapes)
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Why Compare Shapes

Comparisons between shapes occur in various contexts, including:
e shape classification (organizing large databases of shapes)

e shape retrieval (searching in databases of shapes)

source: SHREC (Shape Retrieval Contest) 2011




Why Compare Shapes

Comparisons between shapes occur in various contexts, including:
e shape classification (organizing large databases of shapes)

e shape retrieval (searching in databases of shapes)

e partial/global shape matching (finding the best mapping between shapes)

source: Image Processing and Analysing With Graphs: Theory and Practice, CRC Press, 2011 3



Why Compare Shapes

Comparisons between shapes occur in various contexts, including:
e shape classification (organizing large databases of shapes)

e shape retrieval (searching in databases of shapes)

e partial /global shape matching (finding the best mapping between shapes)

shape comparison iIs but one piece of the
whole process, yet It Is a crucial piece
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Why use Signatures
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Rips-Based Signatures

Input: a compact metric space (X, dx)

Signature: DgR(X,dx), where R(X,dx) is the Rips filtration of (X,dx)



Rips-Based Signatures

Input: a compact metric space (X, dx)

Signature: DgR(X,dx), where R(X,dx) is the Rips filtration of (X,dx)

O-dimensional homology generators

1-dimensional homology generators

5




Rips-Based Signatures (continued)

Theorem (Stability): For any compact metric spaces (X,dx) and (Y,dy),
dg’(DgR(X,dx), DgR(Y,dy)) < 2dcu(X,Y) (plus diags are well-defined).
Variants [Chazal, de Silva, Oudot '12/'13/'147]:
- Cech complexe/ extrinsic Cech complex filtrations
- Witness complex filtrations (landmarks fixed)
- precompact metric spaces

- (dis-)similarity measures



Rips-Based Signatures (continued)

finite
Theorem (Stability): For any compact metric spaces (X,dx) and (Y,dy),
dg’(DgR(X,dx), DgR(Y,dy)) < 2dcu(X,Y) (plus diags are well-defined).

Proof:



Rips-Based Signatures (continued)

finite
Theorem (Stability): For any compact metric spaces (X,dx) and (Y,dy),
dg’(DgR(X,dx), DgR(Y,dy)) < 2dcu(X,Y) (plus diags are well-defined).

Proof: Take any ¢ > dgu(X,Y).

(X’dX)

(Ya dY)
dGH(X, Y) < €

dp” (Dg R(X,dx), DgR(Y,dy))



Rips-Based Signatures (continued)

finite
Theorem (Stability): For any compact metric spaces (X,dx) and (Y,dy),
dg’(DgR(X,dx), DgR(Y,dy)) < 2dcu(X,Y) (plus diags are well-defined).

Proof: Take any ¢ > dgu(X,Y).

(ZadZ)
(X’dX)
° . f
e o . 9
(Y’dY)
dgu(X,Y) <« dy (f(X),g(Y)) < ¢

d]%O(DgR(X,dx), DgR(Y, dY)>:d]%O(DgR(f(X)7dZ)a DgR(Q(Y)7dZ)>
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Rips-Based Signatures (continued)

finite
Theorem (Stability): For any compact metric spaces (X,dx) and (Y,dy),
dg’(DgR(X,dx), DgR(Y,dy)) < 2dcu(X,Y) (plus diags are well-defined).

Proof: Take any ¢ > dgu(X,Y).

(Z,dy) ®RIXIHIYT 20
(X’dX)
.. f "
h
>
[ ) o ° g ¢ ¢ o
(Y’dY)
dgu(X,Y) < e d (f(X),g9(Y)) < e dpg(ho f(X),hog(Y)) <e¢

d]%O(DgR(X,dx), DgR(Y, dY)>:d]%O(DgR(f(X)7dZ)a DgR(Q(Y)7dZ)>

=dg (Dg R(h o f(X),2Loo), DgR(h o g(Y), £oo))



Rips-Based Signatures (continued)

finite
Theorem (Stability): For any compact metric spaces (X,dx) and (Y,dy),
dg’(DgR(X,dx), DgR(Y,dy)) < 2dcu(X,Y) (plus diags are well-defined).

Proof: Take any ¢ > dgu(X,Y).

(Z,dz) ®IXTHIYT o0
(X’dX>
° . f 6,
h
|
° ° g ¢ ®loe
(Y’ dY)
dgu(X,Y) <« dpp (F(X), g(¥)) < e dpg(h o F(X), hog(Y)) < e

d]%O(DgR(X,dx), DgR(Y, dY)>:d]%O(DgR(f(X)7dZ)a DgR(g(Y)7dZ)>
:d]%O(DgR(hOf(X),EOO), DgR(hog<Y)7€OO>)

=2dp°(DgC(h o f(X), DgC(h o g(Y))



Rips-Based Signatures (continued)

finite
Theorem (Stability): For any compact metric spaces (X,dx) and (Y,dy),
dg’(DgR(X,dx), DgR(Y,dy)) < 2dcu(X,Y) (plus diags are well-defined).

Proof: Take any ¢ > dgu(X,Y).

(Z,dz) ®IXTHIYT o0
(X’dX>
° . f 6,
h
|
° ° g ¢ ®loe
(Y’ dY)
dgu(X,Y) <« dpp (F(X), g(¥)) < e dpg(h o F(X), hog(Y)) < e

d]%O(DgR(X,dx), DgR(Y, dY)>:d]%O(DgR(f(X)7dZ)a DgR(g(Y)7dZ)>
:d]%O(DgR(hOf(X),EOO), DgR(hog<Y)7€OO>)
=2dp°(DgC(h o f(X), DgC(h o g(Y))

=2dR’° (Dgdooc (-, h o f(X)), Dgdoc(-s hog(Y))) < 2e.  []



Rips-Based Signatures (continued)

finite
Theorem (Stability): For any compact metric spaces (X,dx) and (Y,dy),
dg’(DgR(X,dx), DgR(Y,dy)) < 2dcu(X,Y) (plus diags are well-defined).

The bound is worst-case tight...

A = Il deu(X,Y) =«

DgR(Xa dX) — {(Oa OO)? (07 1)}
DeR(Y,dy) = {(0,00), (0,1 + 2¢)}

1 4 2¢

= d®° (DgR(X,dx), DgR(Y,dy)) = 2¢
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Rips-Based Signatures (continued)

finite
Theorem (Stability): For any compact metric spaces (X,dx) and (Y,dy),
dg’(DgR(X,dx), DgR(Y,dy)) < 2dcu(X,Y) (plus diags are well-defined).

The bound is worst-case tight... but it is still only an upper bound

o
. 1 1
.41—>.

DgR(Xa dX) — {(0,00), (071)7 (O°1)}

DgR(Ya dY) — {(07 OO)) (07 1)7 (07 1)}
Y = ewipoewire
\2/‘ — d]ogo(DgR(Xa dx), DgR(Y,dy)) =0
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Rips-Based Signatures (continued)

Signatures of some elementary shapes (approximated from finite samples):
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Rips-Based Signatures (continued)

Signatures of some elementary shapes (approximated from finite samples):
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Rips-Based Signatures (continued)

Signatures of some elementary shapes (approximated from finite samples):
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Rips-Based Signatures (continued)

Experimental results:
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Rips-Based Signatures (continued)

Experimental results:
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Rips-Based Signatures (continued)

Experimental results:
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Function-Based Signatures

Input: a compact metric space (X,dx) and a Lipschitz function f: X — R

Signature: Dg f



Function-Based Signatures

Input: a compact metric space (X,dx) and a Lipschitz function f: X — R
Signature: Dg f

Examples:

e distance to a base point zg € X: fy,(x) = dx(x,z0) is 1-Lipschitz

L0




Function-Based Signatures

Input: a compact metric space (X,dx) and a Lipschitz function f: X — R
Signature: Dg f

Examples:

e fuzzy geodesic [SCF'10] of a pair of base points xg,x1 € X:

Feo.z1 (T) = exp (_ dx (z,z09)+d x (z,z1)—dx (ato,atl)|> o %—Lipschitz,

o)

L0

0 1

L1



Function-Based Signatures

Input: a compact metric space (X,dx) and a Lipschitz function f: X — R
Signature: Dg f

Examples:

e intersection configuration [SCF'10] of a quadruple of base points:

f$0,$1,$2,$3 (33) — fa:o,acl (33) : fo,a;?) (ZIZ‘) IS %—LipSChitZ.

L0




Function-Based Signatures (continued)

Desired stability result:

Theorem (Stability): Let (X,dx) and (Y, dy ) be two compact metric spaces
equipped with c-Lipschitz functions f : X — R and g : Y — R. Then, for any

correspondence C' € C(X,Y),
dg (Dg f,Dg g) € O(cdist,, (C) + dist¢(C)).

10



Function-Based Signatures (continued)

Desired stability result:

Theorem (Stability): Let (X,dx) and (Y, dy ) be two compact metric spaces
equipped with c-Lipschitz functions f : X — R and g : Y — R. Then, for any

correspondence C' € C(X,Y),
dg (Dg f,Dg g) € O(cdist,, (C) + dist¢(C)).

Definitions: YA
- correspondence (
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Function-Based Signatures (continued)

Desired stability result:

Theorem (Stability): Let (X,dx) and (Y, dy ) be two compact metric spaces
equipped with c-Lipschitz functions f : X — R and g : Y — R. Then, for any

correspondence C' € C(X,Y),
dg (Dg f,Dg g) € O(cdist,, (C) + dist¢(C)).

Definitions:
- correspondence

- distortion dist, (C) = sup, 4).(2' yyec [dx (z,2") — dy (y,9")]

distf(C) = sup(, yec |f(@) — g(¥)]

10



Function-Based Signatures (continued)

Desired stability result:

Theorem (Stability): Let (X,dx) and (Y, dy ) be two compact metric spaces
equipped with c-Lipschitz functions f : X — R and g : Y — R. Then, for any

correspondence C' € C(X,Y),
dg (Dg f,Dg g) € O(cdist,, (C) + dist¢(C)).

Definitions:
- correspondence

- distortion

- Gromov-Hausdorff distance deu(X,Y) = 2 infoce(x,y) distm (C)

10



Function-Based Signatures (continued)

Desired stability result:

Theorem (Stability): Let (X,dx) and (Y, dy ) be two compact metric spaces
equipped with c-Lipschitz functions f : X — R and g : Y — R. Then, for any

correspondence C' € C(X,Y),
dg (Dg f,Dg g) € O(cdist,, (C) + dist¢(C)).

Note: this is a stability theorem for persistence diagrams
- improves over [CEH’05] (functions have different domains)
- improves over [dAFL’08] (domains are in different homeomorphism classes)

- relies on and is more specific than [CCGGO'09]

10



Function-Based Signatures (continued)

Desired stability result:

Theorem (Stability): Let (X,dx) and (Y, dy ) be two compact metric spaces
equipped with c-Lipschitz functions f : X — R and g : Y — R. Then, for any

correspondence C' € C(X,Y),
dg (Dg f,Dg g) € O(cdist,, (C) + dist¢(C)).

Note: this is a stability theorem for persistence diagrams

But it is not true in such generality:
-d¥(Dg f,Dgg) < o0 = (X,dx) and (Y, dy) are homologically equivalent
- dist,, (C') and dist¢(C') are finite regardless of homological types of X, Y

10



Function-Based Signatures (continued)

Desired stability result:

Theorem (Stability): Let (X,dx) and (Y, dy ) be two compact metric spaces
equipped with c-Lipschitz functions f : X — R and g : Y — R. Then, for any

correspondence C' € C(X,Y),
dg (Dg f,Dg g) € O(cdist,, (C) + dist¢(C)).

Note: this is a stability theorem for persistence diagrams

But it is not true in such generality:
-d¥(Dg f,Dgg) < o0 = (X,dx) and (Y, dy) are homologically equivalent
- dist,, (C') and dist¢(C') are finite regardless of homological types of X, Y

— Restrict the focus to a class of sufficiently regular metric spaces

10



Function-Based Signatures (continued)

Obtained stability result:
Y length spaces of curvature bounded above

Theorem (Stability): Let (X,dx) and (Y, dy ) be two compact metric-spaces
equipped with c-Lipschitz functions f : X — R and g : Y — R. Then, for any
correspondence C' € C(X,Y) such that dist,, (C) < 15 min{o(X), o(Y)},

dg'(Dg f, Dg g) E-Btedistm{&)—distrt&)).
< 19c¢dist, (C) + dist ¢ (C')

10



Function-Based Signatures (continued)

Obtained stability result:
Y length spaces of curvature bounded above

Theorem (Stability): Let (X,dx) and (Y, dy ) be two compact metric-spaces
equipped with c-Lipschitz functions f : X — R and g : Y — R. Then, for any
correspondence C' € C(X,Y) such that dist,, (C) < 15 min{o(X), o(Y)},

dg'(Dg f, Dg g) E-Btedistm{&)—distrt&)).
< 19c¢dist, (C) + dist ¢ (C')

Prerequisite: dgu(X,Y) < 5 min{o(X), o(Y)}

X = O dau(X,Y) < 0o = o(Y)

v dg’(Dg f, Dgyg) = oo

L

r
L

10



Function-Based Signatures (continued)

Theorem (Stability): Let (X,dx) and (Y,dy) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X — R and g :

Y — R. Then, for any correspondence C' € C(X,Y) such that dist,,,(C) <
1

L min{o(X), o(Y)}, d¥ (Dg f,Dgg) < 19cdist,, (C) + dist;(C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS'09]:

11



Function-Based Signatures (continued)

Theorem (Stability): Let (X,dx) and (Y,dy) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X — R and g :

Y — R. Then, for any correspondence C' € C(X,Y) such that dist,,,(C) <
1

L min{o(X), o(Y)}, d¥ (Dg f,Dgg) < 19cdist,, (C) + dist;(C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS'09]:
Given any positive ¢ < 1—10 min{o(X), o(Y)} — dist,, (C),

e take a finite e-sample P of X (P C X)

e equip it with the induced metricdp =dx|pxp

e equip it with the restriction h = f|p

11



Function-Based Signatures (continued)

Theorem (Stability): Let (X,dx) and (Y,dy) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X — R and g :

Y — R. Then, for any correspondence C' € C(X,Y) such that dist,,,(C) <
1

L min{o(X), o(Y)}, d¥ (Dg f,Dgg) < 19cdist,, (C) + dist;(C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS'09]:
Given any positive ¢ < 1—10 min{o(X), o(Y)} — dist,, (C),

e take a finite e-sample P of X (P C X)

e equip it with the induced metric dp = dx|pxp
e equip it with the restriction h = f|p
Cpx ={(p,x) € Px X :dx(z,p) = mingep dx(x,q9)}

Cpy ={(p,y) € PxY :3zx € X s.t. (p,z) € Cpx and (z,q) € C}

11



Function-Based Signatures (continued)

Theorem (Stability): Let (X,dx) and (Y,dy) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X — R and g :
Y — R. Then, for any correspondence C' € C(X,Y) such that dist,,,(C) <
~ min{o(X), o(Y)}, d¥ (Dg f,Dg g) < 19cdist, (C) + dist s (C).

10

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS'09]:
Given any positive ¢ < 1—10 min{o(X), o(Y)} — dist,, (C),
e take a finite e-sample P of X (P C X)

e equip it with the induced metricdp =dx|pxp
e equip it with the restriction h = f|p
Cpx ={(p,z) € Px X :dx(z,p) = mingepdx(x,q9)}
Cpy ={(p,y) e PXY :dx € X s.t. (p,x) € Cpx and (x,q) € C}

— diStm(Cpx) < 2¢ and diStf(Cpx) — CE
disty, (Cpy) < 2e 4 disty, (C) and dist ¢ (Cpy ) < ce 4 dist¢(C)

— goal: approximate persistence diagram from GH-close finite metric space 11



Function-Based Signatures (continued)

Theorem (Stability): Let (X,dx) and (Y,dy) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X — R and g :

Y — R. Then, for any correspondence C' € C(X,Y) such that dist,,,(C) <
1

L min{o(X), o(Y)}, d¥ (Dg f,Dgg) < 19cdist,, (C) + dist;(C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS'09]:

Cpx
° 4 — X,dX,f

11



Function-Based Signatures (continued)

Theorem (Stability): Let (X,dx) and (Y,dy) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X — R and g :

Y — R. Then, for any correspondence C' € C(X,Y) such that dist,,,(C) <
1

L min{o(X), o(Y)}, d¥ (Dg f,Dgg) < 19cdist,, (C) + dist;(C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS'09]:

Cpx
° 4 — X,dX,f
o

o
P,dp,h . ¢ >

Let ¢ : P — X be such that (p,¢(p)) € Cpx Vp € P

11



Function-Based Signatures (continued)

Theorem (Stability): Let (X,dx) and (Y,dy) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X — R and g :

Y — R. Then, for any correspondence C' € C(X,Y) such that dist,,,(C) <
1

L min{o(X), o(Y)}, d¥ (Dg f,Dgg) < 19cdist,, (C) + dist;(C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS'09]:

Cpx
° 4 — X,dX,f
o
o
P,dp,h . ¢ >
® -
o Y

°
Let ¢ : P — X be such that (p,¢(p)) € Cpx Vp € P

Assume wlog that ¢ is injective and let ¢ : X — P be a left inverse

11



Function-Based Signatures (continued)

Theorem (Stability): Let (X,dx) and (Y,dy) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X — R and g :

Y — R. Then, for any correspondence C' € C(X,Y) such that dist,,,(C) <
1

L min{o(X), o(Y)}, d¥ (Dg f,Dgg) < 19cdist,, (C) + dist;(C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS'09]:

Cpx
° 4 — X,dX,f
o
o
P,dp,h . ¢ >
® -
o Y

°
Let ¢ : P — X be such that (p,¢(p)) € Cpx Vp € P

Assume wlog that ¢ is injective and let ¢ : X — P be a left inverse
Equip P’ = ¢(P) with dps =dp(¥(-),%¥(:)) and b/ = h o

Hh, — flP’”OO S diStf(C) and ||dp/ — dX‘P’XP’HOO S diStm(C)
11



Function-Based Signatures (continued)

Theorem (Stability): Let (X,dx) and (Y,dy) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X — R and g :

Y — R. Then, for any correspondence C' € C(X,Y) such that dist,,,(C) <
1

L min{o(X), o(Y)}, d¥ (Dg f,Dgg) < 19cdist,, (C) + dist;(C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS'09]:

Cpx
° 4 — X,dX,f
o
o
P,dp,h . ¢ >
® -
o Y

°
Let ¢ : P — X be such that (p,¢(p)) € Cpx Vp € P

Assume wlog that ¢ is injective and let ¢ : X — P be a left inverse

Equip P’ = ¢(P) with dpr = dp(¥(-),(-)) and h/ = h o1

GdH(P/’X) < disty, (C) \ g—— scenario considered in [CGOS'09]
|

B — flprlloe < distf(C) and [[dpr — dx|prx prlloc < distm(C)

11



Function-Based Signatures (continued)

Theorem (Stability): Let (X,dx) and (Y,dy) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X — R and g :

Y — R. Then, for any correspondence C' € C(X,Y) such that dist,,,(C) <
1

L min{o(X), o(Y)}, d¥ (Dg f,Dgg) < 19cdist,, (C) + dist;(C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS'09]:

Cpx
o - — X,dx, f
o
P, dp,h * ¢ >
° -
Y

Let 6 = 3distm(27) °
Build {Rs(h' ™" ((—00,a]))}acr and {Ras(h' ™" ((—o0,a])) }ackr

GdH(P/’X) < disty, (C) \ g—— scenario considered in [CGOS'09]
|

B — flprlloe < distf(C) and [[dpr — dx|prx prlloc < distm(C)

11



Function-Based Signatures (continued)

Theorem (Stability): Let (X,dx) and (Y,dy) be two compact Rieman-
nian manifolds equipped with c-Lipschitz functions f : X — R and g :

Y — R. Then, for any correspondence C' € C(X,Y) such that dist,,,(C) <
1

s min{o(X), o(Y)}, dg’(Dg f,Dgg) < 19cdist,, (C) + distf(C).

Proof: reduction to Scalar Fields Analysis from Point Cloud Data [CGOS'09]:

Cpx
o - — X,dx, f
o
P, dp,h * ¢ >
° -
Y

Let 6 = 3distm(27) °
Build {Rs(h' ™" ((—00,a]))}acr and {Ras(h' ™" ((—o0,a])) }ackr

Thm: d (Dg /, Dg {Im He(Rs (/=" ((~00, 0]))) = Ha(Rag(h'~*((—00,a]))) Jacn)

< 10cdisty, (C) 4 dist £ (C)

@(P’ X)) < dlStm(CL scenario considered in [CGOS'09]
|

B — flprlloe < distf(C) and [[dpr — dx|prx prlloc < distm(C)
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Function-Based Signatures (continued)

Computing (approximating) the signatures in practice:

® when a triangulation of the manifold X is given:

- replace f by its PL interpolation fover the triangulation
- compute Dgf
- d¥(Dg f, Dg f) is controlled by the stability theorem for PDs [CEH’05]
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Function-Based Signatures (continued)

Computing (approximating) the signatures in practice:

® when a triangulation of the manifold X is given:

- replace f by its PL interpolation fover the triangulation
- compute Dgf
- d¥(Dg f, Dg f) is controlled by the stability theorem for PDs [CEH’05]

® when a finite approximation (P,dp, g) of (X,dx, f) is given:

- choose a neighborhood parameter § > 0
- build the filtrations {Rs(g~ ' ((—00, @])}aecr and {R3s(g ' ((—o0, a]) }acr
- compute the PD of the image persistence module induced by inclusions:

{Im H.(Rs(g™" ((—00,0])) = Hu(Ras(9™ " ((—00, a])) }aer

- bottleneck distance to Dg f is controlled by the results of [CGOS’09]
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Function-Based Signatures (continued)

Experimental results:

- input: shapes from the TOSCA database, in mesh form
- select a few base points by hand on each shape
- approximate geodesic distances to base points using the 1-skeleton graph

- use the PDs of the PL interpolations over the meshes as signatures

\
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Function-Based Signatures (continued)

n o ®
Experimental results:
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Function-Based Signatures (continued)

Experimental results:

oo

oo
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Function-Based Signatures (continued)

Experimental results:

mapping to R3 via MDS

k-means in R3
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Function-Based Signatures (continued)

Experimental results:

mapping to R3 via MDS

k-means in R3
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Conclusion

e Two families of signatures: Rips-based and function-based

e Flexibility via choice of metric and/or function

2-parameters filtration — relate the 2 parameters by a linear relation, e.g. «
— 2-parameter family of filtrations

Q Consider bi-filtration directly?
A A

filtrations

L -

/0 A parameter space
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