An introduction to
Topological Data Analysis

Frédéric Chazal and Bertrand Michel
Data often come as (sampling of) metric spaces or sets/spaces endowed with a similarity measure with, possibly complex, topological/geometric structure.

Data carrying geometric information are becoming high dimensional.

Topological Data Analysis (TDA):
- infer relevant topological and geometric features of these spaces.
- take advantage of topol./geom. information for further processing of data (classification, recognition, learning, clustering, parametrization...).
Why is topology interesting for data analysis?

- **Coordinate invariance:** topological features/invariants do not rely on any coordinate system. ⇒ no need to have data with coordinate or to embed data in spaces with coordinates... But the metric (distance/similarity between data points) is important.

- **Deformation invariance:** topological features are invariant under homeomorphism.

- **Compressed representation:** Topology offer a set of tools to summarize and represent the data in compact ways while preserving its global topological structure.
Challenges and goals

Problem(s):
- how to visualize the topological structure of data?
- how to compare topological properties (invariants) of close shapes/data sets?

• Challenges and goals:
 → no direct access to topological/geometric information: need of intermediate constructions (simplicial complexes);
 → distinguish topological “signal” from noise;
 → topological information may be multiscale;
 → statistical analysis of topological information.