Covers and nerves: union of balls, geometric inference and Mapper

Frédéric Chazal
INRIA Saclay - Ile-de-France
frederic.chazal@inria.fr
Highlighting and inferring the topological structure of data

Idea:
Highlighting and inferring the topological structure of data

Idea:
- Group data points in "local clusters"
Highlighting and inferring the topological structure of data

Idea:
- Group data points in “local clusters”
- Summarize the data through the combinatorial/topological structure of intersection patterns of “clusters”
Highlighting and inferring the topological structure of data

Idea:
- Group data points in “local clusters”
- Summarize the data through the combinatorial/topological structure of intersection patterns of “clusters”

Goal: Do it in a way that preserves (some of) the topological features of the data.
A topology on a set X is a family \mathcal{O} of subsets of X that satisfies the three following conditions:

i) the empty set \emptyset and X are elements of \mathcal{O},

ii) any union of elements of \mathcal{O} is an element of \mathcal{O},

iii) any finite intersection of elements of \mathcal{O} is an element of \mathcal{O}.

The set X together with the family \mathcal{O}, whose elements are called open sets, is a topological space. A subset C of X is closed if its complement is an open set.

A map $f : X \to X'$ between two topological spaces X and X' is continuous if and only if the pre-image $f^{-1}(O') = \{x \in X : f(x) \in O'\}$ of any open set $O' \subset X'$ is an open set of X. Equivalently, f is continuous if and only if the pre-image of any closed set in X' is a closed set in X (exercise).

A topological space X is a compact space if any open cover of X admits a finite subcover, i.e. for any family $\{U_i\}_{i \in I}$ of open sets such that $X = \bigcup_{i \in I} U_i$ there exists a finite subset $J \subseteq I$ of the index set I such that $X = \bigcup_{j \in J} U_j$.
Background mathematical notions

Metric space

A metric (or distance) on X is a map $d : X \times X \rightarrow [0, +\infty)$ such that:

i) for any $x, y \in X$, $d(x, y) = d(y, x)$,

ii) for any $x, y \in X$, $d(x, y) = 0$ if and only if $x = y$,

iii) for any $x, y, z \in X$, $d(x, z) \leq d(x, y) + d(y, z)$.

The set X together with d is a metric space.

The smallest topology containing all the open balls $B(x, r) = \{y \in X : d(x, y) < r\}$ is called the metric topology on X induced by d.

Example: the standard topology in an Euclidean space is the one induced by the metric defined by the norm: $d(x, y) = \| x - y \|$.

Compacity: a metric space X is compact if and only if any sequence in X has a convergent subsequence. In the Euclidean case, a subset $K \subset \mathbb{R}^d$ (endowed with the topology induced from the Euclidean one) is compact if and only if it is closed and bounded (Heine-Borel theorem).
Comparing topological spaces

Homeomorphy and isotopy

- X and Y are **homeomorphic** if there exists a bijection $h : X \rightarrow Y$ s. t. h and h^{-1} are continuous.

- $X, Y \subset \mathbb{R}^d$ are **ambient isotopic** if there exists a continuous map $F : \mathbb{R}^d \times [0, 1] \rightarrow \mathbb{R}^d$ s. t. $F(., 0) = Id_{\mathbb{R}^d}$, $F(X, 1) = Y$ and $\forall t \in [0, 1]$, $F(., t)$ is an homeomorphism of \mathbb{R}^d.
Comparing topological spaces

Homotopy, homotopy type

- Two maps $f_0 : X \to Y$ and $f_1 : X \to Y$ are **homotopic** if there exists a continuous map $H : [0, 1] \times X \to Y$ s. t. $\forall x \in X$, $H(0, x) = f_0(x)$ and $H(1, x) = f_1(x)$.

- X and Y have the same **homotopy type** (or are **homotopy equivalent**) if there exists continuous maps $f : X \to Y$ and $g : Y \to X$ s. t. $g \circ f$ is homotopic to Id_X and $f \circ g$ is homotopic to Id_Y.

\[f_0(x) = x \]
\[f_t(x) = (1 - t)x \]
\[f_1(x) = 0 \]
Comparing topological spaces

Homotopy, homotopy type

If $X \subset Y$ and if there exists a continuous map $H : [0, 1] \times X \to X$ s.t.:

1) $\forall x \in X$, $H(0, x) = x$,
2) $\forall x \in X$, $H(1, x) \in Y$
3) $\forall y \in Y$, $\forall t \in [0, 1]$, $H(t, y) \in Y$,

then X and Y are homotopy equivalent. If one replaces condition 3) by $\forall y \in Y$, $\forall t \in [0, 1]$, $H(t, y) = y$ then H is a deformation retract of X onto Y.
Simplicial complexes

Given a set $P = \{p_0, \ldots, p_k\} \subset \mathbb{R}^d$ of $k+1$ affinely independent points, the k-dimensional simplex σ, or k-simplex for short, spanned by P is the set of convex combinations

$$\sum_{i=0}^{k} \lambda_i p_i, \quad \text{with} \quad \sum_{i=0}^{k} \lambda_i = 1 \quad \text{and} \quad \lambda_i \geq 0.$$

The points p_0, \ldots, p_k are called the vertices of σ.

0-simplex: vertex
1-simplex: edge
2-simplex: triangle
3-simplex: tetrahedron

e tc...
A (finite) simplicial complex K in \mathbb{R}^d is a (finite) collection of simplices such that:

1. any face of a simplex of K is a simplex of K,
2. the intersection of any two simplices of K is either empty or a common face of both.

The underlying space of K, denoted by $|K| \subset \mathbb{R}^d$ is the union of the simplices of K.
Abstract simplicial complexes

Let $P = \{p_1, \cdots p_n\}$ be a (finite) set. An abstract simplicial complex K with vertex set P is a set of subsets of P satisfying the two conditions:

1. The elements of P belong to K.
2. If $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K$.

The elements of K are the simplices.

Let $\{e_1, \cdots e_n\}$ a basis of \mathbb{R}^n. “The” geometric realization of K is the (geometric) subcomplex $|K|$ of the simplex spanned by $e_1, \cdots e_n$ such that:

$$[e_{i_0} \cdots e_{i_k}] \in |K| \text{ iff } \{p_{i_0}, \cdots , p_{i_k}\} \in K$$

$|K|$ is a topological space (subspace of an Euclidean space)!
Abstract simplicial complexes

Let \(P = \{p_1, \cdots p_n\} \) be a (finite) set. An abstract simplicial complex \(K \) with vertex set \(P \) is a set of subsets of \(P \) satisfying the two conditions:

1. The elements of \(P \) belong to \(K \).
2. If \(\tau \in K \) and \(\sigma \subseteq \tau \), then \(\sigma \in K \).

The elements of \(K \) are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces (good for top./geom. inference) and as combinatorial objects (abstract simplicial complexes, good for computations).
An open cover of a topological space X is a collection $\mathcal{U} = (U_i)_{i \in I}$ of open subsets $U_i \subseteq X$, $i \in I$ where I is a set, such that $X = \bigcup_{i \in I} U_i$.

Given a cover of a topological space X, $\mathcal{U} = (U_i)_{i \in I}$, its nerve is the abstract simplicial complex $C(\mathcal{U})$ whose vertex set is \mathcal{U} and such that

$$\sigma = [U_{i_0}, U_{i_1}, \cdots, U_{i_k}] \in C(\mathcal{U}) \text{ if and only if } \bigcap_{j=0}^{k} U_{i_j} \neq \emptyset.$$
The Nerve Theorem:
Let $\mathcal{U} = (U_i)_{i \in I}$ be a finite open cover of a subset X of \mathbb{R}^d such that any intersection of the U_i’s is either empty or contractible. Then X and $C(\mathcal{U})$ are homotopy equivalent.

For non-experts, you can replace:
- “contractible” by “convex”,
- “are homotopy equivalent” by ”have many topological invariants in common”.

Building interesting covers and nerves

Two directions:

1. Covering data by balls:
 → distance functions frameworks,
 persistence-based signatures,...
 → geometric inference, provide a framework to establish various theoretical results in TDA.

2. Using a function defined on the data:
 → the Mapper algorithm
 → exploratory data analysis and visualization
Covers and nerves for exploratory data analysis.
Let $f : X \to \mathbb{R}$ (or \mathbb{R}^d) a continuous function where X is a topological space and let $\mathcal{U} = (U_i)_{i \in I}$ be a cover of \mathbb{R} (or \mathbb{R}^d).

The collection of open sets $(f^{-1}(U_i))_{i \in I}$ is the pull back cover of X induced by (f, \mathcal{U}).
Pull back of a cover

Take the connected components of the $f^{-1}(U_i), i \in I \rightarrow$ the refined pull back cover.

Take the nerve of the refined cover.

Warning: The nerve theorem does not apply in general!
The Mapper algorithm

Input:
- a data set \(X \) with a metric or a dissimilarity measure,
- a function \(f : X \rightarrow \mathbb{R} \) or \(\mathbb{R}^d \),
- a cover \(\mathcal{U} \) of \(f(X) \).

1. for each \(U \in \mathcal{U} \), decompose \(f^{-1}(U) \) into clusters \(C_{U,1}, \ldots, C_{U,k_U} \).
2. Compute the nerve of the cover of \(X \) defined by the \(C_{U,1}, \ldots, C_{U,k_U}, U \in \mathcal{U} \).

Output: a simplicial complex, the nerve (often a graph for well-chosen covers → easy to visualize):
- a vertex \(v_{U,i} \) for each cluster \(C_{U,i} \),
- an edge between \(v_{U,i} \) and \(v_{U',j} \) iff \(C_{U,i} \cap C_{U',j} \neq \emptyset \).
The Mapper algorithm

Input:
- a data set X with a metric or a dissimilarity measure,
- a function $f : X \to \mathbb{R}$ or \mathbb{R}^d,
- a cover \mathcal{U} of $f(X)$.

1. for each $U \in \mathcal{U}$, decompose $f^{-1}(U)$ into clusters $C_{U,1}, \ldots, C_{U,k_U}$.
2. Compute the nerve of the cover of X defined by the $C_{U,1}, \ldots, C_{U,k_U}, U \in \mathcal{U}$.

Output: a simplicial complex, the nerve (often a graph for well-chosen covers \rightarrow easy to visualize):
- a vertex $v_{U,i}$ for each cluster $C_{U,i}$,
- an edge between $v_{U,i}$ and $v_{U',j}$ iff $C_{U,i} \cap C_{U',j} \neq \emptyset$.
Choice of lens/filter

$f : X \rightarrow \mathbb{R}$ is often called a lens or a filter.

Classical choices:

- density estimates
- centrality $f(x) = \sum_{y \in X} d(x, y)$
- excentricity $f(x) = \max_{y \in X} d(x, y)$
- PCA coordinates, NLDR coordinates, ...
- Eigenfunctions of graph laplacians.
- Functions detecting anomalous behavior or outliers.
- Distance to a root point (filamentary structures reconstruction).
- Etc ...
Choice of lens/filter

\[f : X \rightarrow \mathbb{R} \] is often called a **lens** or a **filter**.

Classical choices:

- **density estimates**
- centrality \(f(x) = \sum_{y \in X} d(x, y) \)
- excentricity \(f(x) = \max_{y \in X} d(x, y) \)
- PCA coordinates, NLDR coordinates,…
- Eigenfunctions of graph laplacians.
- Functions detecting anomalous behavior or outliers.
- Distance to a root point (filamentary structures reconstruction).
- Etc …
Choice of lens/filter

\[f : X \rightarrow \mathbb{R} \] is often called a lens or a filter.

May reveal some ambiguity in the use of non linear dimensionality reduction (NLDR) methods.

Classical choices:

- density estimates
- centrality \(f(x) = \sum_{y \in X} d(x, y) \)
- excentricity \(f(x) = \max_{y \in X} d(x, y) \)
- PCA coordinates, NLDR coordinates,...
- Eigenfunctions of graph laplacians.
- Functions detecting anomalous behavior or outliers.
- Distance to a root point (filamentary structures reconstruction).
- Etc ...
Choice of covers (case of \mathbb{R})

The **resolution** r is the maximum diameter of an interval in \mathcal{U}. The resolution may also be replaced by a number N of intervals in the cover. The **gain** g is the percentage of overlap between intervals (when they overlap).

Intuition:
- small r (large N) \rightarrow finer resolution, more nodes.
- large r (small N) \rightarrow rougher resolution, less nodes.
- small g \rightarrow less connectivity.
- large g \rightarrow more connectivity (the dimensionality of the nerve increases).

\[r \quad \downarrow \quad g = 0.25 \]
Choice of covers (case of \mathbb{R})

The resolution r is the maximum diameter of an interval in \mathcal{U}. The resolution may also be replaced by a number N of intervals in the cover. The gain g is the percentage of overlap between intervals (when they overlap).

Intuition:
- small r (large N) → finer resolution, more nodes.
- large r (small N) → rougher resolution, less nodes.
- small g → less connectivity.
- large g → more connectivity (the dimensionality of the nerve increases).

Major warning: the output of Mapper is very sensitive to the choice of the parameters (see practical classes).

Not a well-understood phenomenon
Choice of clusters

2 strategies:
Choice of clusters

2 strategies:

1. Build a neighboring graph (kNN, Rips,...)

2. Take the connected components of the subgraph spanned by the vertices in the bin $f^{-1}(U)$.

In general, need to select a global parameter, such as number of neighbors for kNN, radius for Rips, to build the graph: not adaptative.
Choice of clusters

2 strategies:

- Clustering of each bin $f^{-1}(U)$ (using your favorite clustering algorithm)
- More adaptative: the clustering parameters (or even the clustering algorithm) can be adapted to each bin.
Two “classical” applications of Mapper: clustering and feature selection

Clustering:

1. Build a Mapper graph/complex from the data,
2. Find interesting structures (loops, flares),
3. Use these structures to exhibit interesting clusters.
Two “classical” applications of Mapper: clustering and feature selection

Clustering:

Some difficulties:

Choice of the parameters?

Done by hand...

1. Build a Mapper graph/complex from the data,
2. Find interesting structures (loops, flares),
3. Use these structures to exhibit interesting clusters.

Statistical relevance?
Two “classical” applications of Mapper: clustering and feature selection

Clustering:

Example:
Data: conformations of molecules
Goal: detect different folding pathways

\[f: \text{distance to folded/unfolded states} \]
\[N = 8, \ g = 0.25 \]

Idea: 1 loop = 2 different pathways

Topological Methods for Exploring Low-density States in Biomolecular Folding Pathways, Yao et al., J. Chemical Physics, 2009
Two “classical” applications of Mapper: clustering and feature selection

Feature selection:

1. Build a Mapper graph/complex from the data,
2. Find interesting structures (loops, flares),
3. Select the features/variables that best discriminate the data in these structures.
Two “classical” applications of Mapper: clustering and feature selection

Feature selection:

1. Build a Mapper graph/complex from the data,
2. Find interesting structures (loops, flares),
3. Select the features/variables that best discriminate the data in these structures.

Some difficulties:

Choice of the parameters?

Done by hand...
Two “classical” applications of Mapper: clustering and feature selection

Feature selection:

Example:

Data: breast cancer patients that went through specific therapy.

Extracting insights from the shape of complex data using topology, Lum et al., Nature, 2013

\[f : \text{eccentricity}, \ N = 30, \ g = 0.33 \]

Goal: detect variables that influence survival after therapy in breast cancer patients
Reeb graph and Mapper

The output of the Mapper algorithm can be seen as a discretized version of the Reeb graph.

Equivalence relation:
\[x \sim x' \text{ iff } x \text{ and } x' \text{ are in the same connected comp. of } f^{-1}(f(x)). \]

Reeb “graph”:
\[G_f := X/ \sim \]

Warning:
- \(G_f \) is not always a graph (very specific conditions on \(X \) and \(f \)),
- No clear connection or convergence result relating the Mapper graph and the Reeb graph.
Exercise: What is the Mapper/Reeb graph of the height function on the trefoil knot?
Take-home messages

The Mapper algorithm:
1. local clustering guided by a function,
2. global connectivity relationships between clusters (covers and nerves).
→ other ways to combine local clustering, covers and nerves can be imagined!

The Mapper methods is an exploratory data analysis tool:
+ it has been shown to be very powerfull in various applications,
- but it usually does not come with theoretical guarantees.

Covers and nerves:
+ very interesting, simple and fruitfull ideas for topological data analysis,
+ many ideas and open questions to explore (in a statistical and data analysis perspective) from the theoretical point of view.
A few basic ideas about geometric inference:
union of balls and distance functions
Union of balls and distance functions

Data set: a point cloud \(P \) embedded in \(\mathbb{R}^d \), sampled around a compact set \(M \).

General idea:

1. Cover the data with union of balls of fixed radius centered on the data points.

2. Infer topological information about \(M \) from (the nerve of) the union of balls centered on \(P \).
Union of balls and distance functions

Data set: a point cloud P embedded in \mathbb{R}^d, sampled around a compact set M.

General idea:

1. Cover the data with union of balls of fixed radius centered on the data points.

2. Infer topological information about M from (the nerve of) the union of balls centered on P.

Nerve theorem

Bridge the gap between continuous approximations of K and combinatorial descriptions required by algorithms.
Union of balls and distance functions

Data set: a point cloud P embedded in \mathbb{R}^d, sampled around a compact set M.

General idea:

1. Cover the data with union of balls of fixed radius centered on the data points.

2. Infer topological information about M from (the nerve of) the union of balls centered on P.

Sublevel set of the distance function $d_P : \mathbb{R}^d \rightarrow \mathbb{R}_+$ is defined by

$$d_P(x) = \inf_{p \in P} \|x - p\|$$

→ Compare the topology/geometry of the offsets

$$M^r = d_M^{-1}([0, r]) \text{ and } P^r = d_P^{-1}([0, r])$$
Union of balls and distance functions

Data set: a point cloud P embedded in \mathbb{R}^d, sampled around a compact set M.

General idea:

1. Cover the data with union of balls of fixed radius centered on the data points.

2. Infer topological information about M from (the nerve of) the union of balls centered on P.

Sublevel set of the distance function $d_P : \mathbb{R}^d \rightarrow \mathbb{R}_+$ is defined by

$$d_P(x) = \inf_{p \in P} \|x - p\|$$

→ Compare the topology/geometry of the offsets

$$M^r = d_M^{-1}([0, r]) \text{ and } P^r = d_P^{-1}([0, r])$$

Regularity conditions? Sampling conditions?
The Hausdorff distance

The distance function to a compact \(M \subset \mathbb{R}^d \), \(d_M : \mathbb{R}^d \to \mathbb{R}_+ \) is defined by

\[
d_M(x) = \inf_{p \in M} \|x - p\|
\]

The Hausdorff distance between two compact sets \(M, M' \subset \mathbb{R}^d \):

\[
d_H(M, M') = \sup_{x \in \mathbb{R}^d} |d_M(x) - d_{M'}(x)|
\]
Medial axis and critical points

\[\Gamma_M(x) = \{ y \in M : d_M(x) = \| x - y \| \} \]

The Medial axis of \(M \):

\[\mathcal{M}(M) = \{ x \in \mathbb{R}^d : |\Gamma_M(x)| \geq 2 \} \]

\(x \in \mathbb{R}^d \) is a critical point of \(d_M \) iff \(x \) is contained in the convex hull of \(\Gamma_M(x) \).

Theorem: [Grove, Cheeger,...] Let \(M \subset \mathbb{R}^d \) be a compact set.

- if \(r \) is a regular value of \(d_M \), then \(d_M^{-1}(r) \) is a topological submanifold of \(\mathbb{R}^d \) of codim 1.

- Let \(0 < r_1 < r_2 \) be such that \([r_1, r_2]\) does not contain any critical value of \(d_M \). Then all the level sets \(d_M^{-1}(r) \), \(r \in [r_1, r_2] \) are isotopic and

\[M^{r_2} \setminus M^{r_1} = \{ x \in \mathbb{R}^d : r_1 < d_M(x) \leq r_2 \} \]

is homeomorphic to \(d_M^{-1}(r_1) \times (r_1, r_2] \).
The **reach** of M, $\tau(M)$, is the smallest distance from $\mathcal{M}(M)$ to M:

$$\tau(M) = \inf_{y \in \mathcal{M}(M)} d_M(y)$$

The **weak feature size** of M, $\text{wfs}(M)$, is the smallest distance from the set of critical points of d_M to M:

$$\text{wfs}(M) = \inf\{d_M(y) : y \in \mathbb{R}^d \setminus M \text{ and } y \text{ crit. point of } d_M\}$$
Reach, μ-reach and geometric inference
(Not developed in this course - just an example of result)

“\textbf{Theorem:}” Let $M \subset \mathbb{R}^d$ be such that $\tau = \tau(M) > 0$ and let $P \subset \mathbb{R}^d$ be such that $d_H(M, P) < c\tau$ for some (explicit) constant c. Then, for well-chosen (and explicit) r, P^r, and thus its nerve, is homotopy equivalent to M.

More generally, for compact sets with positive μ-reach ($\text{wfs}(M) \leq r_\mu(M) \leq \tau(M)$):

\textit{Topological/geometric properties of the offsets of }K\textit{ are stable with respect to Hausdorff approximation:}

1. Topological stability of the offsets (CCSL’06, NSW’06).
2. Approximate normal cones (CCSL’08).
3. Boundary measures (CCSM’07), curvature measures (CCSLT’09), Voronoi covariance measures (GMO’09).
Let $M \subset \mathbb{R}^d$ be a k-dim compact submanifold with positive reach $r_1(M) \geq \tau > 0$.

Let μ be a probability measure such that $\text{Supp}(\mu) = M$ which is (a, k)-standard: there exists $r_0 \geq \tau/8 > 0$ such that for any $x \in M$, $\mu(B(x, r)) \geq ar^k$.

Let $X = \{x_1, \cdots, x_n\} \subset \mathbb{R}^d$ be n points i.i.d. sampled according to μ.

Goal: Upper bound $P(X^r \not\cong M)$ where \cong denotes the homotopy equivalence.

Connection to support estimation problems: it is enough to bound $P(d_H(X, M) > \varepsilon)$.

The probabilistic setting
Minimax risk

Let $Q = Q(d, k, \tau, a)$ be the family of probability measures on \mathbb{R}^d such that for any $\mu \in Q$:
- $\text{Supp}(\mu)$ is a compact k-dimensional manifold with positive reach larger than τ;
- μ is (a, k)-standard.

Given $\mu \in Q$, $\text{Supp}(\mu) = M$, denote by \hat{M} any homotopy type estimator of M that takes as input n-uples of points from M and outputs a set whose homotopy type “estimates” the homotopy type of M (e.g. a union of balls).

$$ R_n = \inf_{\hat{M}} \sup_{Q \in Q} Q^n(\hat{M} \not\cong M) $$

Theorem: There exist constants $C_a, C'_a, C''_a > 0$ such that

$$ \frac{1}{8} \exp(-nC_a \tau^k) \leq R_n \leq C'_a \frac{1}{\tau^k} \exp(-nC''_a \tau^k) $$
Minimax risk

Let $Q = Q(d, k, \tau, a)$ be the family of probability measures on \mathbb{R}^d such that for any $\mu \in Q$:
- $\text{Supp}(\mu)$ is a compact k-dimensional manifold with positive reach larger than τ;
- μ is (a, k)-standard.

Given $\mu \in Q$, $\text{Supp}(\mu) = M$, denote by \hat{M} any homotopy type estimator of M that takes as input n-uples of points from M and outputs a set whose homotopy type "estimates" the homotopy type of M (e.g. a union of balls).

\[
R_n = \inf_{\hat{M}} \sup_{Q \in Q} Q^n(\hat{M} \not\sim M)
\]

Theorem: There exist constants $C_a, C'_a, C''_a > 0$ such that

\[
\frac{1}{8} \exp(-nC_a \tau^k) \leq R_n \leq C'_a \frac{1}{\tau^k} \exp(-nC''_a \tau^k)
\]