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What is topological structure of data?
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[Scanned 3D object] [3D images (porous rocks)] [Sensors (Sysnav courtesy)]

Modern data carry complex, but important, geometric/topological structure!



What is topological structure of data?
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A non obvious problem:

— no direct access to topological /geometric information: need of intermediate con-
structions (simplicial complexes);

— distinguish topological “signal” from noise; \/A

— topological information may be multiscale; AN
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— statistical analysis of topological information.

Topological Data Analysis (TDA)
Persistent homology!
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structions (simplicial complexes);

— distinguish topological “signal” from noise; \/A

— topological information may be multiscale; AN

4 .

L5 -

AT .. ". Ak 1~y

A ~ 1"""}"‘ vy "““d N
0 S

it il

— statistical analysis of topological information.

Topological Data Analysis (TDA)
Persistent homology!




What is Topological Data Analysis (TDA)?
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Topological Data Analysis (TDA) is a recent field whose aim is to:

e infer relevant topological and geometric features from complex data,

e take advantage of topological/geometric information for further Data
Analysis, Machine Learning and Al tasks.



For what kind of data is TDA useful?

e Complex data!



For what kind of data is TDA useful?

e Complex data!

e Examples (where TDA brings real added value):

Force fields in granular media

Nanomaterial design
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The classical TDA pipeline
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1. Build a multiscale topol. structure on top
of data: filtrations.

2. Compute multiscale topol. signatures:
persistent homology

3. Take advantage of the signature for further
Machine Learning and Al tasks: Statistical
aspects and representations of persistence

Representations of
persistence



Persistent homology



The theory of persistence

A recent theory that is subject to intense research activities:

- from the mathematical perspective:

e general algebraic framework (persistence modules) and general stability re-
sults.

e extensions and generalizations of persistence (zig-zag persistence, multi-
persistence, etc...)

e Statistical analysis of persistence.

- from the algorithmic and computational perspective:
o efficient algorithms to compute persistence and some of its variants.

o efficient software libraries (in particular, Gudhi: https://project.inria.fr/gudhi/ ).

- from the data science perspective:
e representations of persistence that are suitable for Machine Learning

e Topological/geometric information in combination with other features

A whole machinery at the crossing of mathematics and computer science!



Persistent homology for functions

0 ai d2d3

Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function



Persistent homology for functions

Tracking and encoding the evolution of the connected components (0O-dimensional
homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology: an algebraic way to rigorously formalize the notion of k-dimensional
cycles through a vector space (or a group), the homology group whose dimension is
the number of "independent” cycles (the Betti number).



Stability properties

What if f is slightly perturbed?
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Stability properties

What if f is slightly perturbed?

>
X

Theorem (Stability):
For any tame functions f,g: X = R, dg(Df,D,) < ||f — 9|lco-

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG
09], [C., de Silva, Glisse, Oudot 12]



Comparing persistence diagrams
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The bottleneck distance between two diagrams D and D5 is

dp(D1, D) = WirélfF Sup o — () ||oc
D 1

where I' is the set of all the bijections between D1 and D5 and ||p — ¢l =

max(|zp — Zql, [Yp — Yal)-



Some applications (illustrations

- Persistence-based clustering [C. Guibas, Oudot,Skraba - J. ACM 2013]
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Some applications (illustrations)

- Hand gesture recognition

222822 ).

3.5 35

3 1 r‘\ '\ 33 3r

25 - Qv v (.l 2_5 22: /

2 4
1.5r 1
.
15 r @ O o
15 0.5- ]
1 |
| |

0 05 1 1 0 1 2 3

M

- Persistence-based pooling for shape recognition




Persistent homology for point cloud data
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e Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

e Persistent homology: encode the evo-
lution of the topology across the scales
— multi-scale topological signatures.



Persistent homology for point cloud data
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Persistent homology for point cloud data
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e Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

e Persistent homology: encode the evo-
lution of the topology across the scales
— multi-scale topological signatures.



Persistent homology for point cloud data
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e Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

e Persistent homology: encode the evo-
lution of the topology across the scales
— multi-scale topological signatures.



Persistent homology for point cloud data
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Persistence barcode
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® : 3 scale parameter

e Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

e Persistent homology: encode the evo-
lution of the topology across the scales
— multi-scale topological signatures.

Persistence diagram
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Simplicial complexes

o
0-simplex: 1-simplex: 2-simplex: 3-simplex: etc
vertex edge triangle tetrahedron

Given a set P = {po,...,pr} C R® of k + 1 affinely independent points, the k-
dimensional simplex o, or k-simplex for short, spanned by P is the set of convex

combinations
k k
Z)\Z p;, with Z)\Z =1 and X; > 0.
i=0 i=0

The points pg, ..., pr are called the vertices of o.



Simplicial complexes

A (finite) simplicial complex K in R% is a (finite) collection of simplices such that:

1. any face of a simplex of K is a simplex of K,

2. the intersection of any two simplices of K is either empty or a common face
of both.

The underlying space of K, denoted by |K| C R is the union of the simplices of K.



Abstract simplicial complexes

Let P = {p1,---pn} be a (finite) set. An
abstract simplicial complex K with vertex set

P is a set of subsets of P satisfying the two
conditions :

1. The elements of P belong to K.
2. f e K and 0 C 7, then 0 € K.

The elements of K are the simplices.

Let {e1,---en} a basis of R". “The" geometric realization of K is the (geometric)
subcomplex |K | of the simplex spanned by e, - - - e, such that:

[e’io ezk] S ’K‘ i {p’ioa“‘ apik} c K

| K| is a topological space (subspace of an Euclidean space)!



Abstract simplicial complexes

Let P = {p1,---pn} be a (finite) set. An
abstract simplicial complex K with vertex set
P is a set of subsets of P satisfying the two

conditions :

1. The elements of P belong to K.
2. f e K and 0 C 7, then 0 € K.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces
(good for top./geom. inference) and as combinatorial objects (abstract simplicial

complexes, good for computations).
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Filtrations of simplicial complexes

MRS

.......
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e A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Se | @ € R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. 5S¢ €5y for any a < b.

e More generaly, filtration = nested family of spaces.



........

e A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Se | @ € R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. 5S¢ €5y for any a < b.

e More generaly, filtration = nested family of spaces.

Example: Let (X, dx) be a metric space.

e The Vietoris-Rips filtration is the filtered simplicial complexe defined by: for
a € R,

xo,x1, - ,xk] € Rips(X,a) & dx(xi,x;) < a, foralli,y.
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Filtrations of simplicial complexes

MRS
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e A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Se | @ € R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. 5S¢ €5y for any a < b.

e More generaly, filtration = nested family of spaces.

Many other examples and ways to design filtrations depending on the applica-
tion and targeted objectives : sublevel and upperlevel sets, Cech complex,...



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

ib(dgm(RipS(X)), dgm(Rips(Y))) < deu (X,Y).

Gromov-Hausdorff distance

dau(X,Y) := , ,iyfllfm dr (71(X), v2(X))

Z, metric space, v1 : X — Zand y2 : Y — Z
Isometric embeddings.

Bottleneck distance

Rem: This result also holds for other families of filtrations (particular case of a more general
thm).



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

ib(dgm(RipS(X)), dgm(Rips(Y))) < deu (X,Y).

Gromov-Hausdorff distance

dau(X,Y) := , ,iyfllfm dr (71(X), v2(X))

Z, metric space, v1 : X — Zand y2 : Y — Z
Isometric embeddings.

Bottleneck distance

Rem: This result also holds for other families of filtrations (particular case of a more general
thm).

From a statistical perspective, when X is a random point cloud, such result links the
study of statistical properties of persistence diagrams to support estimation problems.



Hausdortf distance

AR
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dau(A, B)

Let A, B C M be two compact subsets of a metric space (M, d)

d(A,B) = max{supd(b, A),supd(a,B)}
beB acA

where d(b, A) = sup,c 4 d(b,a).



Application: non rigid shape classification
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e Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

e Compare diagrams of sampled shapes instead of shapes themselves.



Persistent homology with the GUDHI Iibrary

srér GUDHI ey diszns™

.\ http://gudhi.gforge.inria.fr/

GUDHI

e a C++/Python open source software library for TDA,

e a developers team, an editorial board, open to external contributions,

e provides state-of-the-art TDA data structures and algorithms : design

of filtrations, computation of pre-defined filtrations, persistence dia-
grams, ...

e part of GUDHI is interfaced to R through the TDA package.



TDA and Machine Learning:
some Illustrative examples on real applications



TDA and Machine Learning for sensor data
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(Multivariate) time-dependent data can be converted into point clouds:
sliding window, time-delay embedding,...



TDA and Machine Learning for sensor data
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Feature engineering /
Representations of persistence (Iinearization):/

ML/AI

Features extraction
Random forests
Deep learning

- EtCl ]
Persistent silhouette Persistent surface

combined with other features!




With landscapes: patient monitoring

A joint industrial research project between

sSysnayv and -

NAVIGATION TECHNOLOGIES

informatics / mathematics

A French SME with innovating technology to aga/.

reconstruct pedestrian trajectories from
inertial sensors (ActiMyo)

“Chaotic” time-dependent data

Objective: precise analysis of movements and activities of pedestrians.

Applications: personal healthcare; medical studies; defense.



Example: Dyskinesia crisis detection and activity recognition:

With landscapes: patient monitoring
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Naive
97.6
97.2
99.6
87.1
87.0
92.4
90.8
100.
87.1
81.4
74.2
80.4

Multi
98.4
99.8
99.7
93.1
97.7
100.
95.6
99.9
81.1
81.8
87.6
72.1

FEA
99.3
97.8
99.0
89.7
97.2
99.8
89.1
100.
84.2
85.9
86.5
83.2

QUA
99.0
98.0
98.4
91.8
97.2
99.9
91.3
100.
90.0
91.8
87.4
77.7

TDA
99.5
97.7
98.3
96.5
98.1
100.
93.4
100.
95.1
87.9
81.5
83.2

Results on publicly available

—I— TDA neural network

state-of-the-art.

- Events of interest are often rare and difficult to characterize.

SyS

nav

NAVIGATION TECHNOLOGIES

- Data collected in non controlled environments (home) are very chaotic.
- Data registration (uncertainty in sensors orientation /position).
- Reliable and robust information is mandatory.

data set (HAPT) - improve the

informatics / mathematics
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TDA-DL pipeline for arrhythmia detection

Objective: Arrythmia detection from ECG data.
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- Improvement over state-of-the-art.
- Better generalization.

Accuracy[%]
UCLA (2018) 93.4
Li et al. (2016) 94.6
nria-Fujitsu (2018)* 98.6




Thank you for your attention!
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