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What is topological structure of data?

Modern data carry complex, but important, geometric/topological structure!
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What is topological structure of data?

A non obvious problem:

→ no direct access to topological/geometric information: need of intermediate con-
structions (simplicial complexes);

→ distinguish topological “signal” from noise;

→ topological information may be multiscale;

→ statistical analysis of topological information.

Topological Data Analysis (TDA)
Persistent homology!

?
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What is Topological Data Analysis (TDA)?

[Sensors (Sysnav courtesy)][3D images (porous rocks)]

Topological Data Analysis (TDA) is a recent field whose aim is to:

• infer relevant topological and geometric features from complex data,

• take advantage of topological/geometric information for further Data
Analysis, Machine Learning and AI tasks.

[Scanned 3D object]



For what kind of data is TDA useful?

• Complex data!



For what kind of data is TDA useful?

• Complex data!

Force fields in granular media

Nanomaterial design

(Chaotic) time-dependent data - see
later in the talk

• Examples (where TDA brings real added value):



The classical TDA pipeline
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1. Build a multiscale topol. structure on top
of data: filtrations.

2. Compute multiscale topol. signatures:
persistent homology

3. Take advantage of the signature for further
Machine Learning and AI tasks: Statistical
aspects and representations of persistence

Representations of
persistence

Machine
Learning / AI



Persistent homology



The theory of persistence
A recent theory that is subject to intense research activities:

- from the mathematical perspective:

• general algebraic framework (persistence modules) and general stability re-
sults.

• extensions and generalizations of persistence (zig-zag persistence, multi-
persistence, etc...)

• Statistical analysis of persistence.

- from the algorithmic and computational perspective:

• efficient algorithms to compute persistence and some of its variants.

• efficient software libraries (in particular, Gudhi: https://project.inria.fr/gudhi/ ).

A whole machinery at the crossing of mathematics and computer science!

- from the data science perspective:

• representations of persistence that are suitable for Machine Learning

• Topological/geometric information in combination with other features



Persistent homology for functions
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Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function



Persistent homology for functions
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Tracking and encoding the evolution of the connected components (0-dimensional
homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology: an algebraic way to rigorously formalize the notion of k-dimensional
cycles through a vector space (or a group), the homology group whose dimension is
the number of ”independent” cycles (the Betti number).
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What if f is slightly perturbed?

Stability properties
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What if f is slightly perturbed?

Theorem (Stability):
For any tame functions f, g : X→ R, dB(Df ,Dg) ≤ ‖f − g‖∞.

Stability properties

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG
09], [C., de Silva, Glisse, Oudot 12]



The bottleneck distance between two diagrams D1 and D2 is

dB(D1, D2) = inf
γ∈Γ

sup
p∈D1

‖p− γ(p)‖∞

where Γ is the set of all the bijections between D1 and D2 and ‖p − q‖∞ =
max(|xp − xq|, |yp − yq|).

Comparing persistence diagrams

birth

death

∞

0

Multiplicity: 2

Add the diagonal
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D2



Some applications (illustrations)

- Persistence-based clustering [C.,Guibas,Oudot,Skraba - J. ACM 2013]

τ
τ = 0

- Analysis of force fields in granular media [Kramar, Mischaikow et al ]



Some applications (illustrations)

- Hand gesture recognition

- Persistence-based pooling for shape recognition [Bonis, Ovsjanikov, Oudot, C. 2016]

[Li, Ovsjanikov, C. - CVPR’14]



• Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

• Persistent homology: encode the evo-
lution of the topology across the scales
→ multi-scale topological signatures.

Persistent homology for point cloud data
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• Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

• Persistent homology: encode the evo-
lution of the topology across the scales
→ multi-scale topological signatures.

Persistent homology for point cloud data

Persistence barcode

scale parameter

Persistence diagram



Simplicial complexes

Given a set P = {p0, . . . , pk} ⊂ Rd of k + 1 affinely independent points, the k-
dimensional simplex σ, or k-simplex for short, spanned by P is the set of convex
combinations

k∑
i=0

λi pi, with

k∑
i=0

λi = 1 and λi ≥ 0.

The points p0, . . . , pk are called the vertices of σ.

0-simplex:
vertex

1-simplex:
edge

2-simplex:
triangle

3-simplex:
tetrahedron

etc...



Simplicial complexes

A (finite) simplicial complex K in Rd is a (finite) collection of simplices such that:

1. any face of a simplex of K is a simplex of K,

2. the intersection of any two simplices of K is either empty or a common face
of both.

The underlying space of K, denoted by |K| ⊂ Rd is the union of the simplices of K.



Abstract simplicial complexes

Let P = {p1, · · · pn} be a (finite) set. An
abstract simplicial complex K with vertex set
P is a set of subsets of P satisfying the two
conditions :

1. The elements of P belong to K.

2. If τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

Let {e1, · · · en} a basis of Rn. “The” geometric realization of K is the (geometric)
subcomplex |K| of the simplex spanned by e1, · · · en such that:

[ei0 · · · eik ] ∈ |K| iff {pi0 , · · · , pik} ∈ K

|K| is a topological space (subspace of an Euclidean space)!



Abstract simplicial complexes

Let P = {p1, · · · pn} be a (finite) set. An
abstract simplicial complex K with vertex set
P is a set of subsets of P satisfying the two
conditions :

1. The elements of P belong to K.

2. If τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces
(good for top./geom. inference) and as combinatorial objects (abstract simplicial
complexes, good for computations).



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Sa | a ∈ R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. Sa ⊆ Sb for any a ≤ b.

• More generaly, filtration = nested family of spaces.



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Sa | a ∈ R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. Sa ⊆ Sb for any a ≤ b.

• More generaly, filtration = nested family of spaces.

Example: Let (X, dX) be a metric space.

• The Vietoris-Rips filtration is the filtered simplicial complexe defined by: for
a ∈ R,

[x0, x1, · · · , xk] ∈ Rips(X, a)⇔ dX(xi, xj) ≤ a, for all i, j.



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Sa | a ∈ R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. Sa ⊆ Sb for any a ≤ b.

• More generaly, filtration = nested family of spaces.

Many other examples and ways to design filtrations depending on the applica-
tion and targeted objectives : sublevel and upperlevel sets, Čech complex,...



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ dGH(X,Y).

Bottleneck distance Gromov-Hausdorff distance

Rem: This result also holds for other families of filtrations (particular case of a more general
thm).

[C., de Silva, Oudot - Geom. Dedicata 2013].

dGH(X,Y) := inf
Z,γ1,γ2

dH(γ1(X), γ2(X))

Z metric space, γ1 : X → Z and γ2 : Y → Z
isometric embeddings.
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“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ dGH(X,Y).

Bottleneck distance Gromov-Hausdorff distance

Rem: This result also holds for other families of filtrations (particular case of a more general
thm).

[C., de Silva, Oudot - Geom. Dedicata 2013].

dGH(X,Y) := inf
Z,γ1,γ2

dH(γ1(X), γ2(X))

Z metric space, γ1 : X → Z and γ2 : Y → Z
isometric embeddings.

From a statistical perspective, when X is a random point cloud, such result links the
study of statistical properties of persistence diagrams to support estimation problems.



Hausdorff distance

Let A,B ⊂M be two compact subsets of a metric space (M,d)

dH(A,B) = max{sup
b∈B

d(b, A), sup
a∈A

d(a,B)}

where d(b, A) = supa∈A d(b, a).



Application: non rigid shape classification
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MDS using bottleneck distance.

[C., Cohen-Steiner, Guibas, Mémoli, Oudot - SGP ’09]

• Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

• Compare diagrams of sampled shapes instead of shapes themselves.



Persistent homology with the GUDHI library

GUDHI :

• a C++/Python open source software library for TDA,

• a developers team, an editorial board, open to external contributions,

• provides state-of-the-art TDA data structures and algorithms : design
of filtrations, computation of pre-defined filtrations, persistence dia-
grams,...

• part of GUDHI is interfaced to R through the TDA package.

http://gudhi.gforge.inria.fr/



TDA and Machine Learning:
some illustrative examples on real applications



TDA and Machine Learning for sensor data

(Multivariate) time-dependent data can be converted into point clouds:
sliding window, time-delay embedding,...



TDA and Machine Learning for sensor data

TDA pipeline

Topol. signatures

Features extraction
Random forests
Deep learning

Etc...

combined with other features!

GUDHI
software

ML/AI

Feature engineering

Representations of persistence (linearization):

Persistent silhouette
[Chazal & al, 2013]

Persistent surface
[Adams & al, 2016]



With landscapes: patient monitoring
A joint industrial research project between

Objective: precise analysis of movements and activities of pedestrians.

A French SME with innovating technology to
reconstruct pedestrian trajectories from

inertial sensors (ActiMyo)

“Chaotic” time-dependent data

Applications: personal healthcare; medical studies; defense.

and



With landscapes: patient monitoring

- Data collected in non controlled environments (home) are very chaotic.
- Data registration (uncertainty in sensors orientation/position).
- Reliable and robust information is mandatory.
- Events of interest are often rare and difficult to characterize.

Example: Dyskinesia crisis detection and activity recognition:

Results on publicly available
data set (HAPT) - improve the

state-of-the-art.
Multi-channels CNN TDA neural network+



TDA-DL pipeline for arrhythmia detection
Objective: Arrythmia detection from ECG data.

Betti curves pro-
cessed as 1D signal

- Improvement over state-of-the-art.
- Better generalization.



Thank you for your attention!
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