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1 Introduction

In many practical situations, geometric objects are only known through a finite
set of possibly noisy sample points. A natural question is then to recover the
geometry and the topology of the unknown object from this information. The
most classical example is probably surface reconstruction, where the points
are measured on the surface of a real world object. A perhaps more surprising
example is the study of the large scale structure formed by the galaxies, which
cosmologists believe to be an interconnected network of walls and filaments
[35]. In other applications, the shape of interest may be a low dimensional
object embedded in a higher-dimensional space, which is the basic assumption
in manifold learning. This is for example the case in time series analysis,
when the shape of study is the attractor of a dynamical system sampled by a
sequence of observations [33].

A lot of research was done in this direction, which makes it difficult to
give a comprehensive treatment of the problem. We may for example mention
the celebrated correlation dimension [27], which is widely used as an estimate
of the intrinsic dimension of data sets. Other contributions come from the
field of computational geometry, where much effort was done to elaborate
provably correct surface reconstruction algorithms, under a suitable sampling
condition. We refer to [18] for a thorough review of this approach. However
most of this research focused on the case of sampled smooth surfaces in R

3,
which is by now fairly well covered. Notable exceptions are [32, 19], which
deal with inference of local dimension and topology for higher-dimensional,
but still smooth, objects.

The goal of this chapter is to describe particular frameworks that allow to
handle more general shapes, i.e. (almost) general compact sets in Euclidean
space. The first section reviews recent work on the subject based on distance
functions, and related concepts such as critical points and medial axes. The
second one describes an algebraic-topological tool, persistent homology, which
is also highly relevant to geometric inference problems.
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2 Distance functions

Topological and geometric features of a shape cannot be directly extracted
from an approximating data: for example, the number of connected compo-
nents of a shape is obviously not the same as the one of a point cloud approx-
imating it. Worse, the occurrence of some features may depend on a “scale”
at which both the data and the shape are viewed: for example, viewed with
human eyes, the surface of a real world object may look very regular but at a
microscopic scale it appears as a much more complicated surface with many
holes, tunnels, etc. . . It has been recently shown that the framework of dis-
tance functions allows to investigate these problems in a fairly general setting,
assuming a very simple reconstruction process [11, 8].

In the following, all the considered shapes and their approximations (usu-
ally point clouds) are represented by compact subsets of Euclidean space R

n,
n ≥ 1. In particular, in the following, the word ‘shape’ has to be understood
as ‘compact set’. Given a compact set K ⊂ R

n, the distance function dK to
K is the non-negative function defined by

dK(x) = inf
y∈K

d(x, y) for all x ∈ R
n

where d(x, y) denotes the usual Euclidean distance. The offsets Kr of K are
the sublevel sets of the distance function: Kr = d−1

K ([0, r]). To quantify the
notion of approximation it is necessary to introduce a distance measuring the
closeness between shapes. The Hausdorff distance dH(K,K ′) between two
compact sets K and K ′ in R

n is the minimum number r such that K ⊂ K ′r

and K ′ ⊂ Kr. The Hausdorff distance defines a distance on the space of
compact subsets of R

n related to distance functions by the following equality:

dH(K,K ′) = ‖dK − dK′‖∞ := sup
x∈Rn

|dK(x) − dK′(x)|

Fig. 1. Three different offsets of a set of points sampled around a torus. The middle
one carries the topology of the torus.

The distance function approach for topological and geometric inference
aims at comparing the offsets of shapes that are close for the Hausdorff dis-
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tance. The underlying intuition is that “at some scales” (i.e. for some range
values of the offsets) two close shapes should have the same offsets topology
(see Figure 1). Making such an intuition into a formal statement requires to
proceed in several steps. First, it is necessary to understand how the topology
of the offsets Kr of a single compact K evolves with the offset parameter r.
This can be achieved using a critical point theory for distance functions that
has been developped in Riemannian geometry [13, 28] (Section 2.1). Second, it
is necessary to compare the topology of the offsets of two close compact sets.
This leads to stability results and sampling conditions providing theoretical
guarantees for a simple reconstruction process (Section 2.2).

2.1 Critical points and offset topology

Although distance functions are continuous and even 1-Lipschitz 3, they are
usually not differentiable everywhere. Nevertheless, distance functions have
been studied and used for a long time in Riemannian geometry [13, 29, 28] and
non-smooth analysis [14] where it has been proved that they behave almost
like differentiable functions. In particular, the topology of their level sets can
only change at some well-defined critical points. Moreover, it is possible to
define a generalized gradient vector field ∇K : R

n 7→ R
n of the distance

function dK [31] in the following way.

The gradient of the distance function

Intuitively, the direction of the gradient of dK at a point x has to be the one
along which the directional derivative of dK at x is the biggest or equivalently
the direction in which the “slope”’ of the graph {(y, dK(y)) : y ∈ R

n} of dK is
the biggest at (x, dK(x)) (see Figure 2). The norm of the gradient has then to
be the directional derivative of dK (or equivalently the “slope” of the graph
of dK) in this direction.

More formally, for any point x ∈ R
n, we denote by ΓK(x) the set of points

in K closest to x (Figure 3):

ΓK(x) = {y ∈ K | d(x, y) = d(x,K)}

Note that ΓK(x) is a non-empty compact set. There is a unique smallest closed
ball σK(x) enclosing ΓK(x) (cf. Figure 3). We denote by θK(x) the center of
σK(x) 4 and by FK(x) its radius. For x ∈ R

n \ K, the generalized gradient
∇K(x) is defined by:

∇K(x) =
x − θK(x)

dK(x)

3 that is |dK(x) − dK(y)| ≤ d(x, y) for all x, y ∈ R
n

4 Equivalently, one can prove that θK(x) is the projection of x on the convex hull
of ΓK(x).
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Fig. 2. The graph of the distance function to the boundary of a square in the plane.

It is natural to set ∇K(x) = 0 for x ∈ K. The norm of ∇K(x) is given by

‖∇K(x)‖2 = 1 − FK(x)2

dK(x)2

Equivalently, ||∇K(x)|| is the cosine of the (half) angle of the smallest cone
with apex x that contains ΓK(x), which is intuitively the value of the direc-
tional derivative of dK in the direction of ∇K(x).

x

K

ΓK(x)

σK(x)

θK(x)

FK(x)
RK(x)

∇K(x)

1

FK (x)

Fig. 3. Definition of the gradient of dK .

The vector field ∇K is obviously not continuous as shown on Figure 4 but
it can be shown [31] that Euler schemes using ∇K converge uniformly when
the integration step decreases, toward a continuous flow C : R

+ × R
n → R

n.
The curves t 7→ C(t, x) are the trajectories of the gradient vector field and
two such trajectories can merge but one trajectory cannot “fork” (see Figure
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4). It is proven in [31] that the functions FK and dK are increasing along
the trajectories of the flow. As we will see in the following, this flow plays
a fundamental role in the study of the topological stability properties of the
offsets of close shapes. In the particular case where K is a finite set, various
notions of flows related to this one have been independently introduced by
H. Edelsbrunner [21], J. Giesen and al. [26] and R. Chaine [7] using Voronoi
diagrams and Delaunay triangulations.

K

Fig. 4. The gradient vector field of the distance function to a square K in the plane:
outside of the diagonals, the norm of ∇K is equal to 1. On the diagonal it is equal
to 1√

2
except at the center where it is equal to 0 (critical point).

Critical points of dK and topology of the offsets

The critical points of dK are defined as the points x for which ∇K(x) = 0.
Equivalently, a point x is a critical point if and only if it lies in the convex
hull of ΓK(x). When K is a finite point cloud, this last definition means
that critical points are precisely the intersections of Delaunay k-dimensional
simplices with their dual (n−k)-dimensional Voronoi facets [26]. A real c > 0
is said to be a critical value of dK is there exists a critical point x ∈ R

n such
that dK(x) = c. A non critical value of dK is called a regular value. Note that
this notion of critical point is the same as the one considered in the setting of
non-smooth analysis [14] and Riemannian geometry [13, 28].

The topology of the offsets Kα of a compact set K is closely related to the
critical values of dK .

Theorem 1 (Isotopy lemma [28]). If 0 < r1 < r2 are such that Kr2 \
int(Kr1) does not contain any critical point of dK , then all the level sets
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d−1
K (r), r ∈ [r1, r2], are homeomorphic and even isotopic 5 topological mani-

folds and
Kr2 \ int(Kr1) = {x ∈ R

n : r1 ≤ dK(x) ≤ r2}
is homeomorphic to d−1

K (r1) × [r1, r2]. As a consequence, Kr1 and Kr2 are
isotopic.

In other words, the topology of the offsets of K can only change at critical
values. The weak feature size of K, or wfs(K), is defined as the infimum of
the positive critical values of dK . Equivalently it is the minimum distance
between K and the set of critical points of dK . Notice that wfs (K) may be
equal to 0. Nevertheless, wfs (K) is non zero for a large class of compact sets
including polyhedra and piecewise analytic sets [10, 11]. It follows from the
Isotopy Lemma that that wfs (K) may be viewed as the “minimum size of
the topological features” of the set K: if 0 < r, s < wfs (K) then Kr and Ks

are homeomorphic and even isotopic. The same holds for the complements
of Kr and Ks and for the boundaries ∂Kr and ∂Ks that are topological
(n − 1)-dimensional manifolds.

Topological stability properties of compact sets with positive wfs

Once we know that the topology of the offsets of a given compact can only
change at critical values, it is appealing to compare the topology of two close
compact sets with positive weak feature size. Using the flow of the gradient
of the distance function, it appears that the homotopy types of two such
compacts are the same. Recall that given two topological spaces X and Y ,
two maps f : X → Y and g : X → Y are said homotopic if there is a
continuous map H : [0, 1] × X → Y , such that ∀x ∈ X,H(0, x) = f(x) and
H(1, x) = g(x). X and Y are said homotopy equivalent if there are continuous
maps f : X → Y and g : Y → X such that g ◦ f is homotopic to the identity
map of X and f ◦g is homotopic to the identity map of Y . An equivalence class
for homotopy equivalence is called a homotopy type. If two spaces X and Y are
homeomorphic then they are homotopy equivalent. In general, the converse is
not true. However, homotopy equivalence between topological spaces implies
a one-to-one correspondance between connected components, cycles, holes,
tunnels, cavities, or higher-dimensional topological features of the two sets.
More precisely, if X and Y have same homotopy type, then their homotopy
and homology groups are isomorphic.

Theorem 2 ([11]). Let K and K ′ be compact subsets of R
n and ε such that

wfs(K) > 2ε, wfs(K ′) > 2ε and dH(K,K ′) < ε. One has:

(i) R
n \ K and R

n \ K ′ have the same homotopy type.

5 Roughly speaking, two subspaces of R
n are isotopic if they can be deformed one

into each other without tearing or self-intersection. For example, a circle and a
trefoil knot are homeomorphic but not isotopic.
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(ii) If 0 < α ≤ 2ε then Kα and K ′α have the same homotopy type.

Note that this theorem does not relate the homotopy types of K and K ′.
Indeed it is possible to construct an example of two non homotopy equivalent
compact sets K and K ′ satisfying the hypothesis of the theorem. Such a
construction, out of the scope of this paper, is not provided here but can be
easily derived from the example in Section 4.3 of [11].

Theorem 2 provides us with a first stability result but, from a practical
point of view, it presents a strong drawback: it may happen that, even if
wfs (K) is big enough, the quantity wfs (K ′) goes to 0 as dH(K,K ′) → 0 in
such a way that the hypothesis of the theorem is never fulfilled. In particular,
this usually happens when K ′ is a finite set of point approximating K. For
example, if K ⊂ R is the unit length segment [0, 1] approximated by a finite
set of n equally spaced points K ′, then dH(K,K ′) = 1/(2n − 2) = wfs (K ′).
It is thus necessary to improve and to extend Theorem 2. One way to extend
it is to try to understand what topological properties of K can be recovered
from K ′ when we only assume that K has a positive weak feature size. This
approach has been adopted in [11, 15] where it is proven that most of the
topological invariants of a compact set K with positive wfs can be recovered

from the knowledge of an approximation K ′ such that dH(K,K ′) < wfs (K)
4 .

In particular, when K ′ is a finite set of points, a simple algorithm allows to
recover the Betti numbers of K. This approach is developed in Section 3.
The interested reader may refer to [11, 15] for further details. Another way
to improve Theorem 2 is to analyze the behavior of the critical points of the
distance functions under perturbations of the compact sets. This approach
leads to surprisingly strong stability results that are presented in the next
section.

2.2 Sampling theory

It appears that the critical points of the distance function to a given compact
set K ⊂ R

n are not stable under perturbations of K as shown on Figure 5,
so that there is no hope to approximate the critical values (and thus the wfs)
of a compact set K from an approximation K ′. To overcome this unstability
problem we introduce the following “parametrized” notion of critical point.
Given 0 ≤ µ ≤ 1, a µ-critical point of the compact set K is a point at which
the norm of the gradient ∇K does not exceed µ. Notice that the 0-critical
points are exactly the critical point of dK . Unlike the 0-critical points alone,
the family of µ-critical points satisfy a stability property.

Theorem 3 (critical point stability theorem [8]). Let K and K ′ be two
compact subsets of R

n and dH(K,K ′) ≤ ε. For any µ-critical point x of K,
there is a (2

√

ε/dK(x)+µ)-critical point of K ′ at distance at most 2
√

εdK(x)
from x.
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K K′

Fig. 5. When K is a rectangle, there is a segment of critical points of dK along
one of the axes of symmetry of K (the bold segment). This segment collapses to
one point as soon as one stretches the bottom side of K to obtain K′. Nevertheless,
along the previously critical segment, the norm of the gradient of dK′ remains small.

Roughly speaking, this theorem states that in a neighborhood of size
O(

√
ε) of a given µ-critical point for K, there is a (µ + O(

√
ε))-critical point

of K ′ for any ε-approximation K ′ of K. In particular, any ε-approximation
K ′ of K has (at least) one O(

√
ε)-critical point in a O(

√
ε)-neighborhood of

each critical point of K.
The stability of µ-critical points allows to introduce a general framework

for inferring the topology and the geometry of a large class of non-smooth
shapes. First, it is possible to “encode” all the µ-critical values of dK in a
real-valued one variable function. Given a compact set K ⊂ R

n, its critical
function χK : (0,+∞) → R+ is the real function defined by:

χK(d) = inf
d
−1
K

(d)
||∇K ||

Notice that from Lemma 1, the zeros of the critical function correspond to
the changes in the topology of the offsets of K. As we will see later, whether
a compact set is a Hausdorff approximation of a “simple” compact set or not
can be directly read from its critical function, which is the main motivation for
introducing this concept. Another way to interpret the critical point stability
theorem is to notice that if the critical function of K ′ is greater than some
value µ′ on a sufficiently large interval of length O(

√
ε), then the critical

function of K in the “middle” of this interval cannot be smaller than some
value µ = µ′ − O(

√
ε). More precisely, an easy computation leads to the

following statement.

Theorem 4 (critical function stability theorem [8]). Let K and K ′ be
two compact subsets of R

n and dH(K,K ′) ≤ ε. For all d ≥ 0 , we have:

inf{χK′(u) |u ∈ I(d, ε)} ≤ χK(d) + 2

√

ε

d

where I(d, ε) = [d − ε, d + 2χK(d)
√

εd + 3ε]
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Fig. 6. A 4000 points set (left) sampled around a torus shape in R
3 (which is not

a torus of revolution) and its critical function (the upper curve). The lowest curve
represents the lower bound for the critical function of any shape K at distance less
than some fixed threshold (here 0.001, the diameter of the torus being 10) from
the point cloud. We distinguish three intervals with stable topology for K: the first
one corresponds to offsets having the topology of a torus (bottom left), the second
one corresponds to solid torus with a hole homeomorphic to a ball inside (bottom
middle - not visible from outside) and the third one is unbounded and correspond
to offsets that have the topology of a ball (bottom right).

Knowing only the critical function of K ′ and its Hausdorff distance to
K, it is thus possible to locate intervals on which the critical function of K
does not vanish and the topology of the corresponding offsets of K does not
change. Figure 6 illustrates this in the case of a point cloud sampled around a
torus shape in R

3. Although we are able to detect, from the critical function,
common intervals of stable topology for all the shapes K located at some given
distance from K ′, it remains to relate the topology of the offsets of K ′ to the
ones of K. Fortunately, it happens that if the length of an interval where the
critical function of K ′ does not vanish is sufficiently large with respect to the
infimum of χK′ then the offsets (in this interval) of K and the offsets of K ′

are homemorphic and even isotopic.

Theorem 5 (Level sets isotopy theorem [9]). Let K,K ′ ⊂ R
n be two

compact sets such that dH(K,K ′) < ε for some ε > 0. If a > 0 is such that

χK′ > 2
√

2ε
a−ε

on the interval [a − ε − 2
√

2ε(a + ε), a + ε + 2
√

2ε(a + ε)]
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then d−1
K (a) and d−1

K′ (a) are isotopic hypersurfaces and Ka and K ′a are also
isotopic.

This result has first appeared in a weaker form in [8] where only the ho-
motopy equivalence between the offsets was proven. This weaker form follows
directly from the critical point stability theorem and Theorem 2. The iso-
topy has been proven in [9] and needs a more detailed study of the stability
properties of the gradient vector field ∇K . The isotopy is then obtained by
“pushing” the offsets of K ′ onto the offsets of K using the flow of the vector
field ∇K .

It is important to notice that the previous theorem does not require any
knowledge on K (except an upperbound on its distance to K ′). This is partic-
ularly useful in practical applications where the approximation K ′ is usually
the only information we know about K. In particular, from K ′ we are able
to decide if there exists at some given distance ε some shape with given “in-
tervals of topological stability” for its offsets. From this it is then possible
to exhibit sampling conditions insuring that the topology of the offsets of K
can be reliably recovered from the offsets of K ′. They involve the so-called
µ-reach of the considered shape K which is the length of the longest interval
starting from 0 on which χK is greater than µ. Equivalently, given µ ∈ (0, 1],
the µ-reach rµ(K) of K is the infimum of the values d such that χK(d) < µ.
Note that µ → rµ(K) is a non increasing fonction. For µ = 1, the 1-reach is
known as the reach and has been introduced by H. Federer [24] in the set-
ting of Geometric Measure Theory. It is well-known that the reach of smooth
submanifolds 6 is positive. It has been widely used in smooth surface recon-
struction, where it is also known as the minimum feature size, to provide
sampling conditions insuring geometrically correct reconstruction (see [1] for
example). These conditions require the sampling density to be proportional
to the value of the reach. Non-smooth shapes usually having their reach equal
to zero, such conditions cannot be fulfilled. So, by introducing the µ-reach
it is possible to introduce new sampling conditions that remain relevant for
a large class of non-smooth shapes (including smooth shapes, piecewise lin-
ear shapes and more generally any small offsets of shapes with positive wfs).
Given two non-negative real numbers κ and µ, we say that K ′ ⊂ R

n is a
(κ, µ)-approximation of K ⊂ R

n if the Hausdorff distance between K and
K ′ does not exceed κ times the µ-reach of K [8]. Combining the level sets
isotopy theorem with this these sampling conditions leads to the following
reconstruction theorem:

Theorem 6 (Isotopic reconstruction theorem). Let K ⊂ R
n be a com-

pact set such that rµ(K) > 0 for some µ > 0. Let K ′ be a (κ, µ)-approximation
of K where

κ < min

(

4
√

2 − 5

14
,

µ2

16 + 2µ2

)

6 i.e. differentiable submanifolds of class at least C1,1



Geometric Inference 11

and let d, d′ be such that 0 < d < wfs (K) and
4κrµ(K)

µ2 ≤ d′ < (1− 3κ)rµ(K)

Then the level set R−1
K′ (d′) is isotopic to the level set R−1

K (d) (the same holds

for K ′d′

and Kd).

Note that this theorem, unlike the previous one, provides an explicit inter-
val of values close to 0 for which the level set isotopy theorem can be applied.
Also, it can be shown that homotopy equivalence of the offsets holds under
slightly weaker constraints on κ and µ [8, 9].

2.3 Stable medial axes

Closely related to distance functions is the so-called medial axis which appears
to be the set of points where dK is not differentiable. This subset of R

n finds
applications in various domains such as image analysis and mathematical
morphology, Solid Modeling, or domain decomposition for CAD (computer
aided design) model generation. Intuitively, the medial axis of a shape K is
the locus where a wave front starting from K and propagating at constant
speed self-intersects. Mathematically, the medial axis M(K) of a compact
subset K of R

n is defined as the set of points x that have at least two nearest
neighbors on K (see Figure 7). Equivalently the medial axis can also be defined
as the set of points where the gradient of the distance function to K has norm
smaller than 1

M(K) = {x ∈ R
n : ‖∇K(x)‖ < 1}.

It is classically known that M(K) is exactly the set of points where the
distance function to K is not differentiable. The medial axis of a finite set of
points is the well-known Voronoi diagram (see Figure 7).

From a topological point of view, the main interest of the medial axis
is that it carries topological informations about the topology of the shape.
Indeed, using the gradient of the distance function, it has been proven in
[31] that the medial axis of a compact shape is homotopy equivalent to its
complement 7.

Unfortunately but not surprisingly, the medial axis of a given compact
K appears to be very unstable under perturbation or approximation of K
as illustrated on Figure 8 where a small perturbation of a circle causes the
apparition of a long spike in the medial axis. Avoiding such huge variations of
the medial axis under perturbation requires to restrict to perturbations that
are not only small in Hausdorff distance but that also have small first and
second order derivatives (see [12] for precise statements and details). Unfortu-
nately such restrictions usually do not comply with the constraints of practical
applications where Hausdorff closeness is often the only realistic assumption
that can be made. Computing and approximating the medial axis of a shape

7 strictly speaking, for compactness reasons, this is in fact the medial axis of the
union of K with a large sphere enclosing it which is homotopy equivalent to the
complement of this union (restricted to the ball bounded by the sphere).
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S

Fig. 7. The medial axis of a closed curve in the plane and of a finite set of points
(Voronoi diagram). On the right, the bold part of the Voronoi diagram is a λ-medial
axis of the point cloud.

has been a long standing problem that has been adressed in different settings
(see [3] for a recent survey). Some of them based upon an exact computation
paradigm ensure correctness of the approximation but in practice are subject
to efficiency and robustness problems due to the need of an exact knowledge
of the input shape [17, 23]. Others are based on heuristics that do not allow
to certify the quality of the approximation [1, 20]. More recently, the distance
function approach has proposed a solution to overcome the unstability of the
medial axis.

K K′

M(K)
M(K′)

Fig. 8. Unstability of the medial axis.

The λ-medial axis

The idea is to replace the medial axis by one of its subsets that could be proven
to be stable. Indeed, looking at the example of Figure 8, one can notice that
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along the spike, the function FK
8 remains very small, its magnitude being

approximatively equal to the “size” of the perturbation. It is thus appealing
to remove the part of the medial axis where the function FK is smaller than
some user-defined threshold. This has been done in [10] by defining the λ-
medial axis of a compact K as the set of points where FK is not smaller than
λ:

Mλ(K) = {x ∈ R
n : FK(x) ≥ λ}

From a topological point of view, the λ-medial axis still carries the topology
of the medial axis: if K is a compact set with positive weak feature size then
for any λ < wfs (K), Mλ(K) and M(K) are homotopy equivalent [10]. From
a computational point of view, as in the case of µ-critical points, introducing
a parametrized notion of medial axis leads to stability properties for the λ-
medial axes: if K and K ′ are two close shapes, then Mλ(K) and Mλ′(K ′) are
close to each other for some close values of λ and λ′. The precise statement
of this stability result being rather technical the reader is referred to [10] for
details. Its proof makes an important use of the properties of the gradient
of the distance function. An important consequence of the stability of the
λ-medial axis is to make possible to reliably approximate the λ-medial axis
of a shape from an approximation by a finite set of points. Noticing that
when K is a point cloud the function FK is constant on the Voronoi facets,
one easily deduces an explicit algorithm to compute the λ-medial axes of K
from its Voronoi diagram (see Figure 9). Indeed, one only has to compute
for each Voronoi facet the radius of the smallest ball containing its Delaunay
dual simplex. In particular, the complexity of the computation of all the λ-
medial axes of a point cloud is the same as the one of the Voronoi diagram.
Nevertheless notice that when λ is not too small, the size of the λ-medial
axes may be much smaller than the size of the Voronoi diagram. It is an open
question of practical importance to know, given a point cloud and one value
λ > 0, if it is possible to compute the λ-medial axis without computing the
whole Voronoi diagram.

The µ-medial axis

To conclude this section, let us quickly mention another construction that
leads to stable medial axes. Another way to “filter” the medial axis of a shape
K is to remove the parts where the norm of the gradient ∇K is bigger than
some threshold µ > 0 defining a µ-medial axis of K:

Mµ(K) = {x ∈ R
n : ‖∇K(x)‖ ≤ µ}.

One thus obtain another filtration of the medial axis which is different from the
λ-medial axis. Using the critical point stability theorem for distance functions

8 recall that for any x, FK(x) is defined as the radius of the smallest ball containing
ΓK(x), the set of points of K nearest to x.
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Fig. 9. The λ-medial axis of a set of points sampled around two enclosed cubes.

it is still possible to prove stability properties of this filtration [8]. Nevertheless,
the topology of the µ-medial axis is not clearly related to the one of the
medial axis. From a computational point of view, the computation of Mµ(K)
is slightly more awkward than for the computation of the λ-medial axis when
K is a point cloud, since ‖∇K‖ is not constant on the cells of the Voronoi
diagram of K.

3 Persistent homology

The previous section showed that it is possible to accurately reconstruct fairly
general shapes from samples: under a certain sampling condition, an appro-
priate offset of the samples provides a topologically correct, and geometrically
close approximation of the unknown shape. Now suppose that we are not in-
terested in actually reconstructing a topologically correct approximation of
the shape, but just in estimating its topological invariants, knowing only the
sample points. Obviously, a valid approach for solving this problem would be
to build a topologically accurate reconstruction and compute its topological
invariants. The purpose of this section is to show that for this easier problem,
a better solution may actually be found, using the concept of persistent homol-
ogy. This concept, introduced independently by several groups [22, 33, 25], is
a rather general tool, which can be applied to other problems than topological
inference from samples.

Topological noise

In many practical situations, the object of interest, K, is defined as a particular
sublevel set of some “ideal” real function g defined over some topological
space. That is, we have K = g−1(−∞, x] for some number x, where g may
be a grey level in a two or three-dimensional image, or a density estimate for
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example. Now, if the data is incomplete or corrupted by noise, we may only
have access to a noisy approximation f of g. A natural question is then whether
the topology of the object of interest K can be recovered knowing only the
noisy implicit function f . Perhaps the simplest idea would be to estimate the
topology of K by the one of the corresponding sublevel set f−1(−∞, x] of f .
Unfortunately, this naive approach tends to produce topological noise, which
takes the form of spurious topological features, such as additional connected
components as in Figure 10, or additional loops and tunnels as in Figure 11.
Persistent homology is the natural way of dealing with this problem.

g

x

f

x

Fig. 10. The x sublevel set of g (left) has two connected components, but the one
of its approximation f has four additional components (right).

Fig. 11. Estimated interface between grey matter and white matter in the brain
contains spurious loops.
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3.1 Homology

Homology (see [30] for instance) is a mathematical formulation of the intuitive
notions of connected components, loops and voids mentioned in the previous
paragraph. Though it can be defined for general topological spaces, we focus
in what follows on the simpler case of simplicial complexes, which is also the
most relevant from a computational point of view.

Complexes, chains and boundaries

A simplicial complex is a space made out of vertices, edges, triangles, tetra-
hedra, and their higher-dimensional counterparts. More formally, a k-simplex
σ in R

d is the convex hull of k + 1 points of R
d in general position, which are

called the vertices of σ. A face of simplex σ is a simplex whose vertices form
a subset of the vertices of σ. A simplicial complex X is a union of simplices
such that any two simplices intersect along a common face, or are disjoint.
The simplices X is made of, together with their faces, will be referred to as
the simplices of X.

A k-chain of a simplicial complex X is an assignment of either 0 or 1 to
each k-simplex of X. It is convenient to think of a chain as the collection of
k-simplices with assignment 1. The sum of two chains is the chain defined
by the modulo 2 sum of the two corresponding assignments. Equivalently, it
is the symmetric difference of the two chains. This operation endows the set
Ck(X) of k-chains with a structure of a vector space over the field with two
elements, Z2.

Fig. 12. A 1-chain (in bold on the right) and a 2-chain (the dark quadrilateral
on the left) and their respective boundaries (the bold vertices on the right and the
edges bounding the quadrilateral on the left).

The boundary operator ∂k : Ck(X) → Ck−1(X) is the (unique) linear map
that maps each k-simplex (viewed as a chain consisting of a single simplex)
to the sum of its (k − 1)-dimensional faces. Equivalently, the boundary of
a k-chain consists of the (k − 1)-simplices incident to an odd number of k-
simplices in the chain (see Figure 12). The kernel of operator ∂k, that is, the
set of chains with an empty boundary, is traditionally denoted by Zk(X). It
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is a subspace of Ck(X), whose elements are called cycles. The image of ∂k+1,
that is, the set of boundaries, is also a subspace of Ck(X), denoted by Bk(X).

Homology groups

It can be easily checked that Bk(X) ⊆ Zk(X), meaning that boundaries have
empty boundary. Indeed, the boundary of a single simplex clearly has an
empty boundary, and the general case follows by linearity. Now homology
measures by how much the converse inclusion fails to hold. Formally, the kth

homology group of X is defined as the quotient Zk(X)/Bk(X), and denoted
by Hk(X). Elements of Hk(X) are called k-dimensional homology classes. The
dimension of Hk(X), denoted by βk(X), is called the kth Betti number of
X. Intuitively, Betti numbers count the number of k-dimensional topological
features in K. For example, β0(X) is the number of connected components
of X. Indeed, any two vertices a and b lying in the same component can be
joined by a 1-chain c, implying that a − b = ∂1(c), hence a and b represent
the same homology class in H0(X) = Z0(X)/B0(X). On the other hand, no
such construction is possible for vertices lying in different components. Hence
vertices belonging to different components are linearly independent. Choosing
one vertex in each component thus gives a basis of H0(X).

Fig. 13. A simplicial complex with first Betti number equal to 1.

Similarly, β1(X) counts the number of independent loops in X. For example
in Figure 13, 1-cycles that do not go around the hole (such as the bold one
on the left) are the boundaries of some 2-chain, hence correspond to the
zero homology class. On the other hand, any 1-cycle that goes around the
hole is not the boundary of any 2-chain, hence corresponds to a non-zero
homology class. However, any two such 1-cycles (such as the bold and dashed-
bold ones on the right of figure 13) differ by the boundary of some 2-chain,
hence correspond to the same homology class. We thus have exactly one non
trivial homology class, hence a first Betti number of 1. For a space with several
loops, we would get a larger homology group, with one basis element for each
loop. For example, the six edges of a tetrahedron form a simplicial complex
with first Betti number equal to 3. Indeed, the space of 1-cycles is spanned by
the four cycles corresponding to each face of the tetrahedron, however the sum
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of these four cycles cancels, implying that there are only three independent
classes. Higher-dimensional Betti numbers behave pretty much the same way:
β2(X) counts the number of voids, and so on, though common language lacks
words for describing higher-dimensional situations.

3.2 Persistence

Topological persistence studies the evolution of the homology of an increasing
sequence of spaces. More formally, a filtration of a simplicial complex X is a
nested sequence of subcomplexes of X, ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X, such
that Xi differs from Xi−1 by a single simplex: Xi = Xi−1 ∪ σi. An important
concept for studying the evolution of homology groups in a filtration is the
one of inclusion maps, which relate homology groups of different levels in the
filtration. Let α be a homology class in Hk(Xi), represented by some k-cycle
a. Cycle a is obviously also a cycle in subsequent levels of the filtration. Given
j ≥ i, the inclusion map from Hk(Xi) to Hk(Xj) is defined as the (linear) map
that sends α ∈ Hk(Xi) to the homology class of Hk(Xj) represented by cycle
a. This map is well-defined because Bk(Xi) is included in Bk(Xj). Inclusion
maps allow to associate to each filtration ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X a
directed system of vector spaces [6]:

{0} = Hk(X0) −→ . . . −→ Hk(Xi) −→ Hk(Xi+1) −→ . . . −→ Hk(Xi) = Hk(X)

which is an algebraic counterpart consisting of the homology groups of
different levels of the filtration, joined by inclusion maps. We now describe
inclusion maps between consecutive levels.

Birth and death

In a filtration, adding simplex σi to Xi−1 can have two different effects at the
homology level. Let k be the dimension of σi. The boundary ∂kσi is always a
cycle in Xi−1. The two cases depend on whether it is also a boundary or not.

If ∂kσi is not a boundary in Xi−1, then by definition ∂kσi corresponds to a
non-zero homology class in Hk−1(Xi−1). However, considered as a chain in Xi,
it is clearly a boundary (namely the one of σi), hence it corresponds to the zero
homology class in Hk−1(Xi). As a consequence, the result of adding simplex σi

is to destroy the homology class of Hk−1(Xi−1) represented by ∂kσi. Simplex
σi is then said to be a destructor (see Figure 14, left). From an algebraic
point of view, we have that the inclusion map Hk−1(Xi−1) → Hk−1(Xi) is
surjective, and has a 1-dimensional kernel, spanned by the homology class
represented by ∂kσi. The inclusion maps Hl(Xi−1) → Hl(Xi) for l 6= k − 1
all are isomorphisms, since the adjunction of σi does not have any impact on
homology groups other than the (k − 1)th.
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σi σi

c

Fig. 14. Edge σi is a destructor on the left, and a creator on the right.

Now if ∂kσi is a boundary in Xi−1, for example ∂kσi = ∂kc, where c is
a chain in Xi−1, the effect of adding σi is to create a new homology class in
Hk(Xi). Indeed, the chain c − σi is a cycle by definition of c. Now c being
the last simplex added, it has no coface, implying that the homology class of
c − σi cannot be represented by cycles not containing σi. That is, the class
of c − σi does not belong to the image of the inclusion map Hk(Xi−1) →
Hk(Xi). In this case, we say that σi is a creator (see figure 14, right). This
time, the algebraic situation is that the inclusion map Hk(Xi−1) → Hk(Xi)
is injective, and its image has codimension 1 in Hk(Xi), the quotient space
Hk(Xi)/im(Hk(Xi−1) → Hk(Xi)) being spanned by the class of c−σi. Again,
inclusion maps between other homology groups are isomorphisms.

Pairing

The idea of persistence is to pair destructors with creators. The precise rule
is as follows. Let σj be a k-dimensional destructor. We know that σj destroys
the homology class of ∂kσj in Hk−1(Xi−1), which we call α. Now we pair j
with the first level in the filtration where α was created. Formally, this is
the smallest integer i such that α is in the image of the inclusion map from
Hk−1(Xi) to Hk−1(Xj), or, equivalently, such that α can be represented by
a cycle in Xi. We will sometimes abuse the terminology and say that the
simplices σi and σj are paired. The interval [i, j] is called a k-dimensional
persistence interval. Intuitively, it represents the life span in the filtration of
the k-dimensional feature created by σi and destroyed by σj . Note that some
simplices may remain unpaired by this process. The indices corresponding to
such simplices are paired with infinity by convention.

Figure 15 shows an example. First, vertices a, c and b are successively
added in the filtration, which creates one new component each time. Then
edge ab is added, which destroys the 0-cycle a− b. We thus pair edge ab with
vertex b, since a−b first appears when b is added. Next we add edge bc, which
destroys b − c. Now, the homology class of b − c is also represented by the
cycle a − c, since the difference between the two equals the boundary of the
already added edge ab. Hence, the class of b− c was actually born when c was
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added, so we pair bc with c. Then, vertex d creates a new component, which is
destroyed by edge cd, so we pair cd with d. Finally, the only unpaired creator,
a, leads to a half-infinite interval.
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Fig. 15. A filtration of a complex and the associated pairing.

It turns out that the persistence pairing can be computed by a very elegant
algorithm in the general case. The first version of this algorithm appears in
[22], and was later generalized to arbitrary coefficient fields [6]. The version
we present is described in [16]. We define the depth of a column vector as the
index of the non-zero coefficient of column j that is closest to the bottom of
the column. If the column is identically zero, its depth is undefined.

1. Form the n × n matrix D with Z2 coefficients defined by Dij = 1 if and
only if σi is a codimension 1 face of σj .

2. As long as two columns in D have the same depth, substract the leftmost
to the rightmost. Call R the matrix obtained when the reduction process
stops.

3. For all j, pair j with the depth of the jth column of R, whenever this
column is non-zero.

This algorithm takes cubic time in the number of simplices in the worst
case. However, sparse matrix implementations prove to be very effective in
practice. The reason why this algorithm works is as follows. First, note that
for all j, the space spanned the first j columns of the matrix remains invariant
during the reduction process, since we always substract columns from subse-
quent columns in the filtration. Hence, if the jth column of R is zero, then
∂σj must be a linear combination of boundaries of simplices in Xj−1. That
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is, σj is a creator. Assume now that the jth column of R is non-zero and let
τj be the cycle it represents. Calling i the depth of this column, we see that
∂σj lies in τj + Bk(Xj−1) ⊂ Ck(Xi) + Bk(Xj−1). We claim that for i′ < i,
∂σj cannot lie in Ck(Xi′) + Bk(Xj−1). Indeed, if it were the case, τj would lie
in Ck(Xi′) + Bk(Xj−1). This would imply that Ck(Xi′) contains the sum of
τj and a linear combination of τj′ for j′ < j. But since no two columns in R
share the same depth, the depth of a linear combination of columns of R is
the maximum depth of the columns involved in the combination. This shows
that the latter sum has depth at least i, hence it cannot belong to Ck(Xi′),
a contradiction. As a consequence, the class of ∂σj in Hk(Xj−1) may be rep-
resented by cycles in Xi but not by cycles in Xi′ for i′ < i. Hence, σj is a
destructor and is paired with i.

Persistent Betti numbers

It was shown in [6] that persistence intervals give a complete description
of the directed systems of vector spaces associated with a filtration. More
precisely, two filtrations have isomorphic directed systems of vector spaces if
and only if they have the same persistence intervals. In particular, persistence
intervals completely encode an important set of invariants of such systems,
called persistent Betti numbers. Given two indices i and j in the filtration
0 ≤ i ≤ j ≤ n, the kth persistent Betti number βi,j

k is defined as the rank of

the inclusion map Hk(Xi) → Hk(Xj). For i = j, persistent Betti numbers βj,j
k

are just the usual Betti numbers of Xj . For i < j, persistent Betti numbers
only take into account the homology classes of Xj that can be represented by
cycles in Xi. The connection between persistent Betti numbers and persistence
intervals is expressed by the following lemma, which follows easily from the
previous discussions:

Theorem 7 (k-triangle lemma[22]). The persistent Betti number βi,j
k equals

the number of k-dimensional persistence intervals that contain interval [i, j].

The intuition behind this lemma is that βi,j
k is the number of k-dimensional

features that were already born at stage i and not yet destroyed by stage j.
It should be noted that conversely, persistence intervals can be deduced from
persistent Betti numbers by an inclusion-exclusion formula, as explained in
[15, 25]. Hence persistent Betti numbers also describe completely the directed
systems of vector spaces associated with a filtration. However, they provide
a less compact representation than persistence intervals, since there are n2

persistent Betti numbers, and only n/2 persistence intervals, at most.

3.3 Stability of persistence and geometric inference

The main motivation for persistent homology is that it allows, loosely speak-
ing, to distinguish signal from noise. The goal of this section is make this
statement more precise.
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Persistence diagrams

Let us first extend persistence from the simplicial framework to the continuous
one [15]. Instead of considering filtrations of simplicial complexes, we now
assume that X is a general topological space with the continuous filtration
given by the sublevel sets of a given real function f defined on X. We denote
the x sublevel set f−1(−∞, x] by Xx. Such sublevel sets are not simplicial
complexes in general, but the concepts of homology groups and inclusion maps
can be generalized to handle such sets. This generalization, called singular
homology, is technically different from the simplicial version described above,
but the intuition is the same.

For extending persistence to the continuous case, we need some regular-
ity assumptions on function f . We say that x ∈ R is an index k homological
critical value of f if one can find arbitrarily small values of ε such that the
inclusion map Hk(Xx−ε) → Hk(Xx+ε) is not an isomorphism. Intuitively, ho-
mological critical values are threshold values at which the topology of sublevel
sets change. Now function f is called tame if it has finitely many homologi-
cal critical values, and if all its sublevel sets have finite dimensional homol-
ogy groups. The class of tame functions includes for example piecewise-linear
functions defined over simplicial complexes, as well as Morse functions over
smooth manifolds. Filtrations of spaces by sublevel sets of tame functions
behave pretty much like filtrations of simplicial complexes. One difference is
that homological critical values may induce more complex changes in the ho-
mology groups: a single critical value may for example destroy several classes
and create other classes at the same time. However, it is not difficult to see
that there still is a unique set of persistence intervals such that the k-triangle
lemma is satisfied. Because several classes may be created by the same value
and also killed by the same (different) value, persistence intervals should be
counted with a multiplicity possibly higher than 1 in this framework.

∞

Fig. 16. A function on the line, its 0-dimensional persistence intervals and persis-
tence diagram.

We now introduce a different representation of persistence intervals. To
each k-dimensional persistence intervals [x, y] of f , we associate the point with
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coordinates (x, y) in the extended plane [−∞,+∞], with the same multiplicity
as the interval. Also, we include the diagonal {(x, x) |x ∈ [−∞,+∞]} with
infinite multiplicity, for reasons that will become clear in the next paragraph.
An example of persistence diagram is shown in Figure 16. The shading in
the persistence diagram indicates the values of persistence Betti numbers.
Indeed, in this representation, the k-triangle lemma states that βx,y

k is the
total multiplicity of the k-dimensional persistence diagram falling in the upper
left quadrant with corner (x, y), hence we get 3, 2, and 1 as we go from the
darkest shaded area to the lightest one.

Stability

Persistence diagrams are a compact encoding of the evolution of the topology
of the sublevel sets of a function as the threshold increases. It turns out that
they are also stable with respect to perturbation of the function, which is a key
property in the context of unprecise data. To make this statement precise, we
use the bottleneck distance between two multisets in the extended plane. The
l∞ distance between two points (x, y) and (x′, y′) in the extended plane is the
maximum difference between their coordinates, that is, max(|x−x′|, |y− y′|).
Now we say that two multisets have bottleneck distance at most d if there is
a one-to-one matching between them such that paired points are at most d
away in the l∞ metric.

Theorem 8 (Stability of persistence diagrams [15, 2]). Given two con-
tinuous tame functions f and g on a triangulable topological space, the bot-
tleneck distance between their k-dimensional persistence diagrams does not
exceed sup |f − g|.
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Fig. 17. A real function g, a noisy approximation f , and an optimal matching
between their persistence diagrams.

Figure 17 gives an illustration of this theorem. The two points in the
persistence diagram of function g are matched with nearby points also present
in the diagram of the noisy approximation f . Additional spurious critical
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values of f give rise to small intervals, hence points close to the diagonal,
which are matched with it. An interpretation of this theorem is that points
away from the diagonal (i.e. long intervals) correspond to signal, whereas
points close to the diagonal (i.e. short intervals) correspond to noise, since
they can be created or removed by small perturbations of the function.

One consequence of the stability of persistence diagrams is that Betti num-
bers of sublevel sets of function g can be inferred from those of a possibly noisy
approximation f . The precise statement is as follows:

Theorem 9 (sublevel-set homology inference). Let f and g two tame
functions on a triangulable topological space X, such that sup |f − g| < ε. If
x, y ∈ R are such that |x−y| ≥ 2ε, and if [x−ε, y+ε] contains no homological
critical values of g, then with obvious notations:

βx,y
k (f) = βx,y

k (g) = βz,z
k (g)

for any z ∈ [x, y].

The idea behind this theorem is schematically illustrated in Figure 18,
which shows a noisy approximation f of an unknown function g with two
basins. The persistent Betti number βx,y

0 (f) is the number of points of the
persistence diagram of f contained in the shaded quadrant. Because |x−y| ≥
2ε, the quadrant is at least ε away from the diagonal in the l∞ metric, hence it
cannot contain any spurious point of the persistence diagram. The assumption
that [x, y] is far away from the homological critical values of ideal function g
implies that the ε-neighborhood of the boundary of the quadrant is void from
points. Hence no point in the diagram of g can leave or enter the quadrant
during the matching with the diagram of f , which implies that the total
number of points within the quadrant is the same for the two functions, that
is, 2 in this case.

f

x

y

∞

Fig. 18. Persistent Betti numbers allow to recover Betti numbers of the sublevel
sets of an “ideal” unknown function.
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Homology inference from samples

Let us go back to the problem we started this section with: we want to estimate
the Betti numbers of a compact subset, knowing only a possibly noisy point
sample. The above theorem directly gives a solution when applied to the
distance functions of two nearby compact sets:

Theorem 10 (adapted from [11, 15, 4]). Let K and K ′ be two compact
subsets of R

n at Hausdorff distance at most ε. Then if ε < wfs (K)/4, for all
x such that ε < x < wfs (K)/4 we have:

βx,3x
k (dK′) = βk(Kη)

for arbitrarily small η > 0.

Indeed we just have to notice that the maximum difference between the dis-
tance functions to K and K ′ is bounded by ε, and that the interval (0,wfs (K))
does not contain any critical value of the distance function to K, by defini-
tion. One advantage of this result over the ones stated in the first part of this
chapter is that makes much weaker assumptions about the unknown compact
K. Indeed, the sampling condition only depends on the weak feature size, as
opposed to the µ-reach. For example, Figure 19 shows a sampling of a triangle
with a very small angle. Such a triangle has positive µ-reach only for a small
value of µ, hence offset based reconstruction is guaranteed to work only for
very dense samples, due to the 1/µ2 dependency in the sampling condition
(see Theorem 6). However, it is not difficult to find parameters which give a
correct estimate of the first Betti number, namely 1. Indeed, there is only one
loop in the larger offset that already exists in the smaller one, hence a correct
persistent first Betti number. A major drawback of this approach, however, is
that it does not say how to reconstruct a topologically correct approximation
of the unknown shape from the samples.
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Fig. 19. Persistent Betti numbers allow correct homology inference even on difficult
examples.

Persistence diagrams of the distance function to the set of sample points
can be computed by applying the persistence algorithm to the α-shape filtra-
tion of the Delaunay triangulation of the sample points. However, the cost
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of this approach becomes prohibitive in high dimensions, because the size of
the Delaunay triangulation grows exponentially with the ambient dimension.
An interesting alternative, the witness complex, was proposed in [34] to solve
this problem. Using this technique, Carlsson et al were able to determine the
topology of the set of 3×3 patches in natural images, after suitable normaliza-
tion. It turns out that this space seems to have the topology of a Klein bottle,
that is, a genus 1 non orientable surface. We refer to [5] for an interpretation
of this surprising fact.
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