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ABSTRACT

Many real-world data sets can be viewed of as noisy samples of special types of metric
spaces called metric graphs.19 Building on the notions of correspondence and Gromov-
Hausdorff distance in metric geometry, we describe a model for such data sets as an
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approximation of an underlying metric graph. We present a novel algorithm that takes
as an input such a data set, and outputs a metric graph that is homeomorphic to the

underlying metric graph and has bounded distortion of distances. We also implement

the algorithm, and evaluate its performance on a variety of real world data sets.

Keywords: Reconstruction; metric graph; noise; inference.

1. Introduction

Motivation. Large-scale geometric data sets are becoming widely available,

whether from high-bandwidth sensors or from massive simulations of physical pro-

cesses. All across science, engineering, and medicine, there is a real need to analyze,

understand, and extract useful information out of such massive geometric data.

Much of this data is noisy, contains outliers, has missing parts, and does not have

a manifold structure or even a consistent dimension — raising many difficult sta-

tistical, geometric, and algorithmic problems in its analysis. In this paper, we focus

on a simple, but important setting of mixed-dimension geometric data, namely a

setting where the underlying space of the data can be viewed of as a metric graph,19

which is a 1-D stratified space consisting of just 0-D strata (vertices) and 1-D strata

(edges or loops), glued together in some fashion, see Fig. 1(a).

Branching filamentary structures, which can be naturally viewed of as metric

graphs, appear in a wide variety of real-world data sets, both in settings where

the data arises embedded in Euclidean space, as well as in situations where the

host space is less intuitive and only local metric information may be available.

For example large-scale collections of GPS traces for vehicles or pedestrians are

becoming widely available (see e.g., Ref. 2) and can be used to provide a variety

of location-aware services. Their movement patterns tend to follow a branching

structure which can be modeled as a metric graph. Earthquake faults are intimately

connected with plate tectonics and tend to follow filamentary structures as they

arise along the boundaries of such plates (see e.g., Ref. 1). In nuclear physics, high-

energy particles move along filamentary trajectories and there is often the need to

track their motion.3 In materials science, stresses can cause material cracks that

propagate along branching structures formed by linear paths; their detection is an

important research problem.20 Many military applications require the extraction

of road networks from synthetic aperture radar (SAR) images.22 In astronomy,

filamentary structures in galaxies are of great interest (e.g., Ref. 11) for cosmological

studies. This is not to mention networks formed by blood vessels in the body for

anatomy, river systems in geography, and many other examples.

Branching structures are also quite common in more abstract settings, though

sometimes one has to look at such data with a coarser lens before it becomes appar-

ent. For instance, communication networks can be regarded as large graphs in which

certain dominant pathways define the major arteries connecting network hubs. Re-

cently, Heath et al.18 built large graphs from image collections, by linking together

images with partial shared content. Data sets of interest here include collections of

images acquired by a mobile agent along its path, as in Google Streetview. In such
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cases, at a coarse scale, the connectivity among the images reflects the mobility

of the capturing agent, naturally giving rise to branching filamentary structures.

Extraction of this underlying structure can provide a useful map for understanding

the image data, navigating through it, or for answering certain queries.

Reconstruction Problem. While there has been a great deal of prior work on

both topological and geometric reconstruction of geometric data sets under varying

sampling conditions, our emphasis is on an intermediate level of reconstruction,

what we term metric reconstruction — a largely unexplored domain. The input to

our algorithm is a metric space (Y, dY) that is close to a much simpler metric graph

(X, dX) in a sense that we make precise in the Section 3. (Y, dY) can be constructed

from raw data in various ways: in some cases, we construct a neighborhood graph

on the raw data, and use the shortest path as the distance; in other cases, the

metric is given to us directly. Note that this implies that our reconstruction is

aimed at capturing the intrinsic structure of the data and is somewhat oblivious to

its extrinsic embedding, wherever that is available. Our goal is then to extract a

metric graph (X̂, dX̂) that has the same topology as (X, dX), and a map φ : Y→ X̂
that approximately preserves distances.

Experiments. In addition to theoretical reconstruction results with performance

guarantees, we study experimentally the performance of our algorithm on a variety

of data sets from different applications, including data in which an embedding is

given (GPS traces, earthquake data, astronomical data), as well as data in which

only metric information is available (Image Webs). In all these cases our compact

metric approximation provides a much more manageable representation of the struc-

ture of the original data — far easier to visualize, navigate, and manipulate than

the original. Our metric guarantees allow us to further exploit this representation

by running graph algorithms in this compact representation in lieu of the original

graph. As an example, we used the compressed graph to perform shortest path

queries, resulting in significant speedups on some data sets.

Related Work. Our work is related to contributions by several different commu-

nities. On the one side, the statistics community has investigated the problem of

extracting filamentary structures from point cloud data, starting with the seminal

work of Arias-Castro et al.5 based on counting membership in multiscale anisotropic

strips. Subsequent approaches exploit gradient descent or medial axis ideas.15,16 All

these, however, aim mostly at the extraction of isolated filaments, focus on how

to deal with outlier data, and do not pay serious attention to the global branch-

ing structures the filaments form. Also, they all assume an extrinsic embedding of

the data. On the other side, there has been extensive work in the computational

geometry community on curve reconstruction, which is the problem of computing

a polygonal curve that approximates well a curve sampled by a given point set —

several algorithms have been proposed for this problem.4,12,13 Unfortunately, it is
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hard to extend these methods to our setting, since they also view 0-dimensional

strata, which exhibit non-manifold behavior, as singularities and try to avoid them

as much as possible. While geometric reconstruction is not our goal, as in that work,

we aim to be able to prove certain quality guarantees on the metric reconstruction

we attain, under appropriate sampling conditions. Finally, Chen et al.9 recently con-

sidered a related problem of reconstructing a road network from a given collection

of path traces. They designed an algorithm with guarantees without making heavy

assumptions on the distribution of input paths. However, the assumptions they use

are stronger than desired in many practical applications. In particular, their method

depends on an embedding of the data and sequential path information.

We end by remarking that dimension reduction has been a topic of much study

in the machine learning and data analysis communities. When data is given in para-

metric form, i.e., as points in a (possibly high dimensional) Euclidean space and the

goal of dimension reduction is distance preservation, many well-known methods ex-

ist based on random projections as suggested by the Johnson-Lindenstrauss lemma,

or by locality sensitive hashing (LSH). This paper addresses “dimension reduction”

for distance preservation in the case where the metric is given by the shortest path

distance on a large but special type of graph — one that contains few but large

linear structures.

2. Preliminaries

Recall that a metric space is a pair (X, d) where X is a set and d : X × X → R+

is a symmetric function satisfying (1): d(x, x′) = 0 if and only if x = x′ and

(2): d(x, x′′) ≤ d(x, x′) + d(x′, x′′). Two spaces (X, dX) and (Y, dY) are isomet-

ric if there exists a bijection φ : X → Y that preserves the distances, namely:

dY(φ(x), φ(x′)) = dX(x, x′) for all x, x′ ∈ X. The space of isometry classes of metric

spaces is endowed with the Gromov-Hausdorff distance17 whose definition can be

given using the notion of ε-correspondences (7 Thms 7.3.25 and 7.3.30).

Definition 1. A correspondence between (X, dX) and (Y, dY) is a set C ⊂ X × Y
such that for any x ∈ X (resp. y ∈ Y), there exists at least one y ∈ Y (resp. x ∈ X)

such that (x, y) ∈ C. When x, y are such that (x, y) ∈ C, we say that x and y are

paired in C. Given ε > 0, C is an ε-correspondence if for any (x, y), (x′, y′) ∈ C,

|dX(x, x′)−dY(y, y′)| ≤ ε. The Gromov-Hausdorff distance dGH(X,Y) is the infimum

of the ε ≥ 0 such that there exists an ε-correspondence between (X, dX) and (Y, dY).

An ε-correspondence between X and Y can be seen as an ε-approximation of X
by Y (and reciprocally). However, in many applications, data only comes with lo-

cally correct approximate metric information. For example, for a data set sampling

a road network the Euclidean distance between data points usually provides a suit-

able approximation of the metric of the underlying network locally, while distances

between points that are far away are highly distorted. So in this paper, we use a

more local and weaker notion of correspondence: given positive numbers ε,R, we
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say that (Y, dY) is an (ε,R)-approximation of a metric space (X, dX) if there exists

a correspondence C ⊂ X× Y such that

(x, y), (x′, y′) ∈ C, min(dX(x, x′), dY(y, y′)) ≤ R

=⇒ |dX(x, x′)− dY(y, y′)| ≤ ε.

Notice that this latter notion is strictly weaker than the notion of ε-correspondence.

In particular, the existence of an (ε,R)-correspondence between X and Y does not

bound dGH(X,Y), as shown in the following example: let X ⊂ R2 be the half-

circle {x2 + y2 = 1, y ≤ 0} endowed with the geodesic distance and let Y = X be

endowed with the restriction of the Euclidean distance. For any ε > 0, the diagonal

C = {(x, x) : x ∈ X} ⊂ X× Y is an (ε,O(ε1/3))-correspondence, but the diameters

of X and Y are respectively equal to π and 2, showing that dGH(X,Y) ≥ π− 2 > 0.

Nevertheless, we can have global approximations with respect to dGH when the

approximated space is a path metric space and the (ε,R)-approximation is dense,

defined as follows:

Definition 2. A metric space (X, dX) is a path metric space if the distance be-

tween any pair of points is equal to the infimum of the lengths of the continu-

ous curves joining them.a Equivalently (X, dX) is a path metric space if and only

if for any x, y ∈ X and any ε > 0 there exists z ∈ X such that max(dX(x, z),

dX(y, z)) ≤ 1
2dX(x, y) + ε.17

Definition 3. An (ε,R)-approximation (Y, dY) of a path metric space is dense if

for any y, y′ ∈ Y there exists a sequence y0 = y, y1, . . . yn−1, yn = y′ such that for

all i = 0, . . . , n− 1, dY(yi, yi+1) ≤ R and dY(y, y′) =
∑n−1
i=0 dY(yi, yi+1).

Then, we can obtain the following bound on the Gromov-Hausdorff distance:

Lemma 1. Let (X, dX) be a path metric space, (Y, dY) be a dense (ε,R)-

approximation of X.

If C ⊂ X × Y is an (ε,R)-correspondence, then for any (x, y), (x′, y′) ∈ C we

have

|dY(y, y′)− dX(x, x′)| ≤
(

min(dX(x, x′), dY(y, y′))

R/2
+ 1

)
ε.

In particular, dGH((X, dX), (Y, dY)) ≤
(

diam(X)

R/2
+ 1

)
ε where diam(X) is the

diameter of X.

Proof. (x, y) and (x′, y′) ∈ C are given. By hypothesis, there exists a sequence

y0 = y, y1, . . . yn−1, yn = y′ such that for all i = 0, . . . , n − 1, dY(yi, yi+1) ≤ R and

dY(y, y′) =
∑n−1
i=0 dY(yi, yi+1).

aSee Ref. 17 Chap. 1 for the definition of the length of a continuous curve in a general metric
space.
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As a first remark, notice that in this sequence, if i < j,

dY(yi, yj) =

j−1∑
k=i

dY(yk, yk+1).

Indeed, using the triangle inequality: dY(y, y′) ≤
∑i−1
k=0 dY(yk, yk+1) + dY(yi, yj) +∑n−1

k=j dY(yk, yk+1) ≤
∑n−1
k=0 dY(yk, yk+1) = dY(y, y′).

By the density of (Y, dY), we can further assume that dY(yi, yi+2) > R. If

dY(yi, yi+2) ≤ R, we can remove yi+1 from the sequence, and the previous re-

mark shows that the properties are still satisfied. In particular, this implies that

dY(y, y′) > n−1
2 R.

Because each yi has a corresponding (non-unique) xi ∈ X in C, we have:

dX(x, x′) ≤
n−1∑
i=0

dX(xk, xk+1) ≤
n−1∑
i=0

dY(yk, yk+1) + nε

≤ dY(y, y′) +

(
dY(y, y′)

R/2
+ 1

)
ε.

A simple computation shows that this implies:

dX(x, x′) < dY(y, y′) +

(
dX(x, x′)

R/2
+ 1

)
ε.

Now X almost satisfies the denseness property as well. Indeed, by recursively

splitting the intervals of length more that R, for any ε′ > 0, we construct a sequence

x0 = x, x1, . . . , xn = x′ such that dX(xi, xi+1) ≤ R, dX(xi, xi+2) ≥ R − ε′ and∑n−1
i=0 dX(xi, xi+1) ≤ dY(y, y′) + ε′. We derive as before:

dY(y, y′) ≤ dX(x, x′) +

(
dX(x, x′) + ε′

R/2− ε′
+ 1

)
ε

and since it is true for all ε′ > 0:

dY(y, y′) ≤ dX(x, x′) +

(
dX(x, x′)

R/2
+ 1

)
ε

which again implies:

dY(y, y′) < dX(x, x′) +

(
dY(y, y′)

R/2
+ 1

)
ε

and finally:

|dY(y, y′)− dX(x, x′)| ≤
(

min(dX(x, x′), dY(y, y′))

R/2
+ 1

)
ε.

In this paper, we assume that our input is an (ε,R)-approximation of a specific

type of path metric space, known as a metric graph19:

Definition 4. A metric graph is a path metric space (X, dX) that is homeomorphic

to a 1-dimensional stratified space, which is a topological space consisting of 0-D
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and 1-D pieces, glued together in the manner as illustrated in Fig. 1(a). A vertex

of X is a 0-dimensional stratum of X and an edge of X is a 1-dimensional stratum

of X.b

It is useful to note that edges are isometric to finite length intervals in the real

line.

3. Assumptions and Problem Definition

Let (X, dX) be a metric graph with a shortest edge length of b and let (Y, dY) be

an (ε,R)-approximation of (X, dX). Without loss of generality, we will assume that

X is connected. Note that our definition of (ε,R)-approximation is essentially a

worst-case noise model for the data that does not rely on further distributional

assumptions. In practice, such a (Y, dY) is often obtained by building a (weighted)

neighborhood graph on a raw data set Y, and defining dY(y1, y2) to be the length

of the shortest path joining y1 and y2 on the graph ∀y1, y2 ∈ Y.

In addition to the input metric (Y, dY), which is an (ε,R)-approximation of

an underlying metric graph (X, dX), our algorithm also takes a parameter r that

roughly corresponds to the scale at which we look at the data. For noisier data, we

would generally use a larger r, while to capture smaller features, we would choose

a smaller r. Our analysis will exhibit a range of values for r that result in a correct

reconstruction depending on both ε and R, as well as on b, the length of the shortest

edge in X. In practice, we do not know these values, but our implementation always

outputs a metric graph (X̂, dX̂) for which we can check the distortion of the metric

from (Y, dY). Hence, we are able to try values of r until we obtain 0 a simple

approximation of (Y, dY).

We have several additional assumptions that facilitate the analysis of theoretical

guarantees. First, we assume that (Y, dY) is dense, and if this property is not satis-

fied, we can instead consider the so-called Rips-Vietoris graph RR(Y) with vertex

set Y and edges connecting all the pairs of vertices at distance less than R from each

other in Y. The metric d̃Y induced by this graph coincides with dY for the pairs of

points at distance less than R and therefore (Y, d̃Y) is still an (ε,R)-approximation

of (X, dX). Note that d̃Y can be very different from dY for points that are far away,

but now we make the assumption that d̃Y is a dense (ε,R)-approximation of some

underlying metric graph (X, dX). Second, we assume that the length b of the short-

est edge of X is larger than 16r and 15ε/2 < r < min(R/4, 3(b − 2ε)/5). This

assumption gives a range of values for the scale parameter where we can guaran-

tee reconstruction. The scale that we look at the data must be large enough when

compared to the sampling error, while it also must be small enough to capture the

shortest edge in the metric graph. The constants in this assumption are somewhat

optimistic, and are not satisfied by metric graphs of practical interest. However,

bWe also include in our definition the 1-dimensional manifold isometric to a circle (one edge and
no vertex).
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(a)

r 5r/3

(b)

Fig. 1. (a) A metric graph (in black) and 2 intrinsic balls (in blue and red). (b) Using a spherical
shell to infer the degree of a vertex (color online).

as demonstrated in Section 6, our algorithm produces reasonable results for inputs

that do not satisfy these assumptions.

Our goal is to design an algorithm to reconstruct from (Y, dY) a space (X̂, dX̂)

that is homeomorphic to (X, dX). Furthermore, we assign distances on (X̂, dX̂) that

approximate those of (X, dX) and return a map φ : Y → X̂ that approximately

preserves distances. Although we frame this objective as a reconstruction problem,

in practice, our algorithm can be used to find a much simpler metric graph (X̂, dX̂)

approximating the input space (Y, dY), and achieving guarantees when (Y, dY) is

an approximation of a suitable metric graph (X, dX).

4. Overview of Algorithm and Guarantees

Recall that there is an (ε,R)-correspondence between our input metric (Y, dY) and

its underlying metric graph (X, dX). The algorithm proceeds in two steps. First it

begins by labeling as “branch points” the points of Y paired under this correspon-

dence to a point in X that is close to a vertex and labeling the rest of the points

of Y as “edge points”. Then, the algorithm uses these labels to reconstruct a new

metric graph X̂ that is homeomorphic to X and estimates distance preserving maps

from Y to X̂. For ease of reference, the pseudocode of our algorithm is given in

Algorithm 1.

The following results show that if (Y, dY) is a sufficiently good approximation of

(X, dX) then the reconstructed graph (X̂, dX̂) is homeomorphic and almost isometric

to (X, dX).

Theorem 1 (Topological Reconstruction).

If the length b of the shortest edge of X is larger than 16r and 15ε/2 < r <

min(R/4, 3(b− 2ε)/5) then the reconstructed graph X̂ is homeomorphic to X.

Theorem 2 (Metric Reconstruction).

Under the assumptions of Theorem 1 there exists a homeomorphism φ : X → X̂
such that for any x, x′ ∈ X, (1 − κ)dX(x, x′) ≤ dX̂(φ(x), φ(x′)) ≤ (1 + κ′)dX(x, x′)

with κ = 10r
3b + ( 5

b + 2
R )ε and κ′ = ( 3

b + 2
R )ε.
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Algorithm 1 Metric Graph Reconstruction

Require: Metric space (Y, dY) approximating metric graph (X, dX) and parameter r > 0.
Ensure: Metric graph (X̂, dX̂)
1: Labeling points as edge or branch
2: for all y ∈ Y do
3: Sy ← BY(y, 5r/3) \ BY(y, r)
4: degr(y)← Number of connected components of Rips-Vietoris graph R4r/3(Sy)
5: if degr(y) = 2 then
6: Label y as a edge point.
7: else
8: Label y as a preliminary branch point.
9: end if

10: end for
11: Label all points within distance 2r from a preliminary branch point as branch points.
12: Let E be the points of Y labeled as edge points.
13: Let V be the points of Y labeled as branch points.
14: Reconstructing the Graph Structure
15: Compute the connected components of the Rips-Vietoris graphs R2r(E) and R2r(V).
16: Let the connected components of R2r(V) be the vertices of the reconstructed graph

X̂.
17: Let there be an edge between vertices of X̂ if their corresponding connected components

in R2r(V) contain points at distance less than 2r from the same connected component
of R2r(E).

18: Reconstructing the Metric
19: To each edge ê of X̂ assign a length equal to the diameter of the corresponding con-

nected component of R2r(E) plus 4r.

The proofs of these results, as well as a more detailed discussion of the algo-

rithm, are given in the next section where an easy to compute map with low-metric

distortion between (Y, dY) and (X̂, dX̂) is also provided.

5. Analysis and Proofs

In this section we assume that the assumptions of Theorems 1 and 2 are satisfied.

5.1. Labeling points as edge or branch

First notice that the classification of a point x ∈ X as a vertex or a point on an edge

is determined by the number of connected components of a small intrinsic sphere

centered at x (see Fig. 1(b)). To label a point y ∈ Y as either a branch point or

an edge point, our algorithm considers the intrinsic spherical shells BY(y, 5r/3) \
BY(y, r) around y and constructs a Rips-Vietoris graph with parameter 4r/3 on

the points of Y inside the spherical shell. Then, it records the number of connected

components of this graph as the r-degree degr(y).

Intuitively, it is easy to imagine that if degr(y) 6= 2, then y corresponds to a

point on X close to a vertex, whereas if degr(y) = 2, y corresponds to a point on X
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far from a vertex. To make this intuition formal, we first introduce a more general

version of degr(y):

Definition 5. Let (Y, dY) be an (ε,R)-approximation of X. Given 0 < r < R/2

and 0 ≤ α < 1, the (r, α)-degree degr,α(y) of a point y ∈ Y is the number of

connected components of the Rips-Vietoris graph with parameter 2αr and vertex

set BY(y, (1 +α)r) \BY(y, r) where BY(y, r) denotes the intrinsic (closed) ball in Y

with center y and radius r.

Then, we have the following theorem:

Theorem 3 (Degree Inference Theorem).

Let (Y, dY) be an (ε,R)-approximation of X. Let C ⊂ X × Y be an (ε,R)-

correspondence between X and Y , let (x, y) ∈ C and let 0 < α < 1.

(i) If the distance d0 from x to any vertex of X is larger than (3 max( 1+α
α , 1+α

2(1−α) )+1)ε

then for 3 max( 1
α ,

1
2(1−α) )ε < r < min(R2 ,

d0−ε
1+α ), degr,α(y) is equal to the degree of

x in X (i.e. 2). Moreover the pairwise distances between the connected components

of the Rips-Vietoris graph are lower bounded by 2r − 3ε.

(ii) If x is at distance less than ε from a vertex x0 of X and if the length l0 of

the shortest edge adjacent to x0 is larger than (max( 3(1+α)
α , 5(1+α)2(1−α) ) + 1)ε then for

max( 3
α ,

5
2(1−α) )ε < r < min(R2 ,

l0−2ε
1+α ), dr,α(y) is equal to the degree of x0 in X.

Moreover the pairwise distances between the connected components of the Rips-

Vietoris graph are lower bounded by 2r − 5ε.

Proof. First remark that if (x′, y′) ∈ C is such that y′ ∈ BY(y, (1 + α)r) \BY(y, r)

then x′ ∈ BX(x, (1 + α)r + ε) \ BX(x, r − ε).
(i) Since r > ε and (1 + α)r + ε < d0, BX(x, (1 + α)r + ε)\ BX(x, r − ε) is included

in the edge containing x and has exactly 2 connected components. Moreover, these

two connected components are at distance 2(r − ε).
Now, if (x′, y′), (x′′, y′′) ∈ C are such that y′, y′′ ∈ BY(y, (1 +α)r) \BY(y, r) and

dY(y′, y′′) < 2αr then dX(x′, x′′) < 2αr + ε and, since r > 3ε
2(1−α) , it follows that x′

and x′′ are in the same connected component of BX(x, (1 + α)r + ε) \ BX(x, r − ε).
Reciprocally, if (x′, y′), (x′′, y′′) ∈ C are such that x′, x′′ are in the same con-

nected component of BX(x, (1 + α)r + ε) \ BX(x, r − ε), then dX(x′, x′′) ≤ αr + 2ε

and dY(y′, y′′) ≤ αr + 3ε < 2αr since αr > 3ε.

As a consequence, the Rips-Vietoris graph with parameter 2αr and vertex set

BY(y, (1 + α)r) \BY(y, r) has at most two connected components. To prove that it

has exactly two connected components one just needs to check that each connected

component K of BX(x, (1 + α)r + ε) \ BX(x, r − ε) contains a point x′ such that

there exists y′ ∈ BY(y, (1 +α)r) \BY(y, r) satisfying (x′, y′) ∈ C: let x′ be the point

of K such that dX(x, x′) = (1 + α/2)r and let (x′, y′) ∈ C. Then, since αr > 2ε,

dY(y, y′) ≤ (1 + α/2)r + ε < (1 + α)r and dY(y, y′) ≥ (1 + α/2)r − ε > r.

(ii) This is almost the same proof as for (i) except that since x is not a vertex, but

at distance at most ε from a vertex we have to slightly change the constraint on r.
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Let y0 ∈ Y be such that (x0, y0) ∈ C. From the definition of (ε, 0)-approximation

we have dY(y, y0) < 2ε.

Since r > 2ε and (1+α)r+2ε < l0, BX(x, (1+α)r+ε)\BX(x, r−ε) has exactly

d connected components, each included in different edges adjacent to x0, where d

is the degree of x0. Moreover these connected components are at distance a least

2(r − 2ε) from each other.

Now, if (x′, y′), (x′′, y′′) ∈ C are such that y′, y′′ ∈ BY(y, (1 + α)r) \ BY(y, r)

and dY(y′, y′′) < 2αr then dX(x′, x′′) < 2αr + ε and, since r > 5ε
2(1−α) , it

follows from claim 1 that x′ and x′′ are in the same connected component of

BX(x, (1 + α)r + ε) \ BX(x, r − ε).
Reciprocally, if (x′, y′), (x′′, y′′) ∈ C are such that x′, x′′ are in the same con-

nected component of BX(x, (1 + α)r + ε) \ BX(x, r − ε), then dX(x′, x′′) ≤ αr + 2ε

and dY(y′, y′′) ≤ αr + 3ε < 2αr since αr > 3ε.

As a consequence, the Rips-Vietoris graph with parameter 2αr and vertex set

BY(y, (1 + α)r) \ BY(y, r) has at most d connected components. To prove that it

has exactly d connected components one just needs to check that each connected

component K of BX(x, (1 + α)r + ε) \ BX(x, r − ε) contains a point x′ such that

there exists y′ ∈ BY(y, (1 +α)r) \BY(y, r) satisfying (x′, y′) ∈ C: let x′ be the point

of K such that dX(x, x′) = (1 + α/2)r and let (x′, y′) ∈ C. Then, since αr > 2ε,

dY(y, y′) ≤ (1 + α/2)r + ε < (1 + α)r and dY(y, y′) ≥ (1 + α/2)r − ε > r.

To minimize the bound (3 max( 1+α
α , 1+α

2(1−α) ) + 1)ε in (i) that controls the size

of the expansion procedure in Section 5.2, we set α = 2/3,. This results in the

following corollary, which explains the value degr(y) set by our algorithm:

Corollary 1 (Degree Inference Corollary).

Let (Y, dY) be an (ε,R)-approximation of X. Let C ⊂ X × Y be an (ε,R)-

correspondence between X and Y, let (x, y) ∈ C.

(i) If the distance d0 from x to any vertex of X is larger than 17
2 ε, then for

9
2ε < r < min(R2 ,

3(d0−ε)
5 ), degr(y) is equal to the degree of x in X (i.e. 2). Moreover

the pairwise distances between the connected components of the Rips-Vietoris graph

are lower bounded by 2r − 3ε.

(ii) If x is at distance less than ε from a vertex x0 of X and if the length l0 of the

shortest edge adjacent to x0 is larger than 27
2 ε then for 15

2 ε < r < min(R2 ,
3(l0−2ε)

5 ),

degr(y) is equal to the degree of x0 in X. Moreover the pairwise distances between

the connected components of the Rips-Vietoris graph are lower bounded by 2r− 5ε.

5.2. Reconstructing the graph structure

We now describe the reconstruction procedure. Given 15ε/2 < r < min(R/4, 3(b−
2ε)/5), recall that we first label the points y ∈ Y as branch or edge depending on

degr(y): y is labelled as an edge point if degr(y) = 2, and labelled as a branch point

otherwise. The following result is an immediate consequence of Theorem 1.

Lemma 2. If y ∈ Y is paired in C to a point x at distance at most ε from a vertex

of X then y is labeled as a branch point by the procedure above. If y ∈ Y is paired in
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C to a point x at distance at least 5r/3 + ε from any vertex of X then y is labeled

as an edge point.

The points of Y paired to points in X that are at distance between ε and 5r/3+ε

from a vertex of X can be “incorrectly” labeled as branch points. It is not possible to

distinguish these fuzzy points from the data Y only, so we force them to be branch

points using the following expansion procedure: all points y ∈ Y that are at distance

at most 2r from a point labeled as branch are promoted to branch points.

To prove that after this expansion all the fuzzy points are labeled as branch,

notice that if y ∈ Y is now labeled as an edge then it is at distance at least 2r

from any point y′ ∈ Y labeled as branch before the expansion procedure. It follows

that for any pair (x, y) ∈ C, x is at distance more than 2r − ε > 5r/3 + ε (since

r > 15ε/2) from a vertex of X.

Corollary 2. Let (x, y) be a pair in C. If x is at distance at least 11r/3 + 2ε

from any vertex of X, then after the expansion procedure, y is labeled as an edge.

Reciprocally, if y is labeled as an edge after the expansion procedure, then x is at

distance at least 2r − ε from a vertex of X.

Now to recover the connectivity of X, we group the branch points (resp. the edge

points) in clusters, each corresponding to a vertex (resp. an edge) of X. For that,

we consider the Rips-Vietoris graph R2r(V) (resp. R2r(E)) of parameter 2r built

on top of the set V ⊂ Y of branch points (resp. the set E ⊂ Y of edge points).

Lemma 3. If the length b of the shortest edge of X is larger than 16r then the

connected components of R2r(V) are in one-to-one correspondence with the vertices

of X and the connected components of R2r(E) are in one-to-one correspondence

with the edges of X.

Proof. If y ∈ Y is a branch point and (x, y) ∈ C, then there exist (x′, y′), (x0, y0) ∈
X such that x0 is a vertex in X, dX(x0, x

′) ≤ 5r/3 + ε and dX(y′, y) ≤ 2r. It follows

that dY(y0, y
′) ≤ 5r/3+2ε ≤ 2r. So y and y0 are in the same connected component of

R2r(V) and dY(y, y0) ≤ 4r. As a consequence, any connected component of R2r(V)

contains at least one point paired with a vertex of X.

Now if (x1, y1) ∈ C is such that x1 is another vertex of X, then Lemma 1 implies

that

dY(y0, y1) ≥ dX(x0, x1)−
(

2dX(x0, x1)

R
+ 1

)
ε ≥ 4

5
b

where to get the last inequality we used that dX(x0, x1) ≥ b, R > 15ε and b > 15ε.

Assume that y0 and y1 are in the same connected component of R2r(V). Then there

exists a path joining y0 to y1 in this component and since x0 6= x1, there exists a

branch point y′ ∈ Y along this path such that b/2 − r ≤ dY(y′, y0) ≤ b/2 + r.

According to Lemma 1 for any x′ ∈ X such that (x′, y′) ∈ C, we have

dY(y′, y0)

(
1− 2ε

R

)
− ε ≤ dX(x′, x0) ≤ dY(y′, y0)

(
1 +

2ε

R

)
+ ε.
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Using again that ε/R < 1/15 and ε < b/15 we get 11
30b −

13
15r ≤ dX(x′, x0) ≤

19
30b+ 17

15r and since b is the length of the shortest edge of X, the distance between

x′ and any vertex of X is at least min( 11
30b−

13
15r, b− ( 19

30b+ 17
15r)) = 11

30b−
17
15r. Since

b > 16r, one deduces from the corollary 2 that x′ is an edge point: a contradiction.

As a consequence, the points of any connected component of R2r(V) can be paired

with at most one vertex of X. This proves that the connected components of R2r(V)

are in one-to-one correspondence with the vertices of X.

To prove the second part of the lemma, first notice that since b > 16r for

any edge of X there exists a point at distance at least 8r from any vertex of X.

As a consequence, any y ∈ Y such that (x, y) ∈ C is labeled as an edge point

showing that E contains points from all the edges of X. Now if (x, y), (x′, y′) ∈ C
are such that y, y′ ∈ E and x, x′ are not in the same edge of X, then any shortest

path joining x to x′ has to meet a vertex x′′ of X. So for any sequence (x0, y0) =

(x, y), (x1, y1), · · · (xn, yn) = (x′, y′) ∈ C such that y0 = y, y1 . . . , yn = y′ is joining

y to y′ in R2r(Y) there exists i ∈ {1, · · · , n − 1} such that dX(x′′, xi) ≤ 1
2 (2r + ε).

It follows that yi is a branch point and y and y′ cannot be in the same connected

component of R2r(E). Reciprocally, if x, x′ are in the same edge e of X, they both

are at distance at least 2r − ε from the end points of e and from any point paired

to a point labeled as branch before the expansion procedure. So, if (x′′, y′′) ∈ C is

such that x′′ ∈ e is contained in the interval defined by x and x′ and is at distance

larger than 2r − ε from x and x′, then the distance from x′′ to any point paired

to a branch point before the expansion procedure is at least 4r − 2ε > 11r/3 + 2ε

(since r > 15ε/2). Therefore, y′′ is an edge point. As a consequence, there exists a

sequence y0 = y, y1 . . . , yn = y′ of edge points that are all paired to points in the

edge e such that dY(yi, yi+1) ≤ 2r for i = 0, . . . n−1, proving that y and y′ are in the

same connected component of R2r(E). It follows that the connected components of

R2r(E) are in one-to-one correspondence with the edges of X.

Now recall that X̂ is built as follows: we create a vertex for each connected

component of R2r(V); we create an edge between two vertices if each of the two

corresponding components contains at least one point at distance less than 2r from

the same connected components of R2r(E). From Lemma 3 we then deduce the

Topological Reconstruction Theorem 1.

5.3. Reconstructing the metric

We begin with the proof of Theorem 2:

Proof of Theorem 2.

The proof consists of showing the existence of a (1 + κ′)-Lipschitz homeomorphism

φ : X→ X̂ with inverse (1−κ)−1-Lipschitz. To this end, we proceed with each edge

separately. Let ê be an edge of X̂, and let y0, y1 be two points in the corresponding

connected component in R2r(E) such that dY(y0, y1) is equal to the diameter of
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this component. Denoting e the edge of X corresponding to ê, Corollary 2 implies

that y0 and y1 are paired in C to points in e that are located at distance at least

2r−ε from the extremities of e. As a consequence of Lemma 1 we have dY(y0, y1) ≤
(1 + 2ε/R)l(e) − 4r + 3ε. Now, let (x, y), (x′, y′) ∈ C such that x, x′ ∈ e are two

points at distance 11r/3 + 2ε from each endpoint of e. We deduce from Corollary 2

that y, y′ are edge points, so dY(y, y′) ≤ dY(y0, y1) and from Lemma 1 that

dY(y, y′) ≥ dX(x, x′)− (2dX(x, x′)/R+ 1)ε

≥ l(e)
(

1− 2ε

R

)
− 22r

3
− 5ε

where for the last inequality we have used that l(e) = dX(x, x′) + 22r/3 + 4ε ≥
dX(x, x′). Putting all the above inequalities together we finally get

1− κ(e) ≤ l(ê)

l(e)
≤ 1 + κ′(e)

with κ(e) =
10r

3l(e)
+

(
5

l(e)
+

2

R

)
ε, κ′(e) =

(
3

l(e)
+

2

R

)
ε.

Using that l(e) ≥ b, we obtain that κ(e) ≤ κ = 10r
3b + ( 5

b + 2
R )ε and κ′(e) ≤

( 3
b + 2

R )ε. As a consequence, since e and ê are isometric to intervals, there exists a

homeomorphism φe : e→ ê such that φe is (1 + κ′)-Lipschitz and φ−1 is (1− κ)−1-

Lipschitz. Since X and X̂ are graphs, the homeomorphisms φe can be glued all

together to obtain a global homeomorphism φ : X → X̂ such that φ is (1 + κ′)-

Lipschitz and φ−1 is (1− κ)−1-Lipschitz.

Recall that to each edge ê of X̂ we assign a length equal to the diameter of the

corresponding connected component in R2r(E) plus 4r and we denote by dX̂ the

metric induced on X̂. To conclude the metric reconstruction part, we finally relate

the metrics on Y and X̂.

Theorem 4. There exists a map ψ : Y→ X̂ such that for any y, y′ ∈ Y

(1− κ)

(
(1− 2ε

R
)dY(y, y′)− ε

)
≤ dX̂(ψ(y), ψ(y′))

≤ (1 + κ′)

(
(1 +

2ε

R
)dY(y, y′) + ε

)
with κ and κ′ as in the Metric Reconstruction Theorem 2.

Proof. Let C be an (ε,R)-correspondence between Y and X. From the definition of

correspondence, there exists a map (not necessarily continuous) f : Y→ X such that

for any y ∈ Y, (f(y), y) ∈ C. It immediately follows from Lemma 1 and Theorem 2

that ψ = φ ◦ f verifies the desired inequalities.
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Although the above result does not provide an explicit map, we provide an easy

to compute map ψ : Y→ X̂ that satisfies similar inequalities when restricted to edge

components. First we define ψ on the branch points: each branch point is mapped to

the vertex of X̂ corresponding to the connected component of R2r(V) that contains

it. We then define ψ on each connected component of R2r(E). Let ê be an edge of

X̂ and let y0, y1 be two points in the corresponding connected component in R2r(E)

such that dY(y0, y1) is equal to the diameter of this component. We parametrize

isometrically ê by the interval [0, l(ê)]. Recall that l(ê) = dY(y0, y1) + 4r, we let

ψ(y0) = 2r and ψ(y1) = l(ê)−2r. Now if y ∈ Y is in the same connected component

of R2r(E) as y0 and y1 we define ψ(y) = 2r + dY(y, y0) dY(y0,y1)
dY(y,y0)+dY(y,y1)

.

Lemma 4. For i = 0, 1 (1 − εM)dY(y, yi) ≤ ψ(y) − ψ(yi) ≤ dY(y, yi) where

M = 6/R+ 1/b.

Proof. The proof of the case i = 0 and i = 1 being similar we give it for i = 0. Re-

mark that ψ(y)−ψ(y0) = dY(y, y0) dY(y0,y1)
dY(y,y0)+dY(y,y1)

and the second inequality is just

the triangle inequality. Let x, x0, x1 ∈ X be such that (x, y), (x0, y0), (x1, y1) ∈ C.

Note that x, x0 and x1 are in the same edge of X so that dX(x0, x1) can be expressed

either as a sum or as a difference of dX(x0, x) and dX(x, x1). Applying Lemma 1

three times and using that dY(y0, y) ≤ dY(y0, y1) and dY(y, y1) ≤ dY(y0, y1) we

obtain

dY(y, y0) + dY(y, y1) ≤ dY(y0, y1)

(
1 +

6ε

R

)
+ ε.

Using that b ≤ dY(y0, y1) we finally get dY(y,y0)+dY(y,y1)
dY(y0,y1)

≤ 1 + ( 6
R + 1

b )ε.

From Lemma 4, we easily get the following corollary controlling the distortion on

the metric induced by the restriction of ψ to the vertices of a connected component

of R2r(E).

Corollary 3.

If y, y′ are in the same connected component of R2r(E) corresponding to an edge ê

in X̂ then dY(y, y′)− εMl(ê) ≤ ψ(y)− ψ(y′) ≤ dY(y, y′) + εMl(ê).

6. Experiments

We implemented our algorithm in C++ using the Boost Graph Library.21 Experi-

ments were conducted on a 2.33GHz Macbook Pro with 3GB of RAM. To assess the

generality of our algorithm, we used four very different real world data sets: earth-

quake data, GPS traces, astronomical data and Image Webs. Table 1 summarizes

our results, and a detailed discussion follows in this section.

Data Sets. We used four different data sets for which we expect there to be an

underlying metric graph approximation. The first data set is that of earthquake lo-

cations through which we wish to learn topological and geometric information about
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Table 1. Our algorithm was used on several data sets to reconstruct a simpler metric graph
approximating the distances in the original graph. We randomly selected a sample of 100 points

and computed all pairwise distances between points in the same connected components. The

graph computation time is the total time of estimating degrees of nodes and reconstructing the
graph. The original computation time shows the total time of computing these distances using

the original graph. The approximate computation time is the total time it took to compute

approximate distances with the help of the reconstructed graph. All times are in seconds.

Earthquake GPS Traces Astronomical Image Webs

Number of Original Vertices 1600 28434 9276 530

Number of Reconstructed Vertices 18 497 3651 112
Number of Original Edges 3983 41669 34890 1711

Number of Reconstructed Edges 9 5402 14808 409

Graph Reconstruction Time 5.2846 43.2249 14.0829 0.729667
Original Dist Comp Time 0.016386 0.777398 0.60322 0.021817

Approx Dist Comp Time 0.004696 0.029821 0.29148 0.013379

Dist Comp Time Speedup 249% 2507% 107% 63%
Mean Distortion 6.4% 2.4% 22% 27%

Median Distortion 8.8% 2.0% 19% 17%

earthquake faults. The raw data was obtained from USGS Earthquake Search1 and

consists of earthquakes between 01/01/1970 and 01/01/2010, of magnitude greater

than 5.0, and of location in the rectangular area between latitudes -75 degrees and

75 degrees and longitude between -170 degrees and 10 degrees. The underlying

metric graph for this data set is the network of fault lines. The second data set is

that of 500 GPS traces tagged “Moscow” from OpenStreetMap.2 Since cars move

on roads, we expect the locations of cars to provide information about the metric

graph structure of the Moscow road network. The third data set consists of locations

of galaxies in a portion of 3D space and there have been recent studies on the ex-

istence of filamentary structure in the distribution of galaxies.11 Lastly, we include

an Image Web18 data set which is a collection of images, with similar regions linked

together to form a graph structure. Dense image collections are often acquired by

mobile entities, and thus naturally contain long linear and circular parts, joined

together at branch points. Note that there may be portions of the data sets that

do not correspond to metric graphs and we can see this being reflected in less than

ideal performance on some data sets.

Preprocessing and Parameter Selection. We performed some preprocessing

to transform the raw data into a metric space (Y, dY) on which we could use our al-

gorithm to discover a much simpler metric graph (X, dX) approximating this space.

Since real world data sets vary widely in both noise and scale, the specific pre-

processing steps differ across the data sets. However, in most of our examples, we

first construct a neighborhood graph on the data, and then used the shortest path

metric space on the neighborhood graph as the input to our algorithm. The raw

earthquake data set contains the coordinates of the epicenters of 12790 earthquakes
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in the latitude/longitude rectangle [−75, 75] × [−170, 10]. As it contains outliers,

which are not taken into account by our noise model, we first preprocessed the

data by removing points located in low density areas using the distance-to-measure

function8: points with average squared distance to their 30 nearest neighbors larger

than 4.72 = 22.09 were discarded, resulting in the elimination of 284 points. Among

the remaining data, points with average squared distance to their 50 nearest neigh-

bors larger than 81 were also discarded to get a cleaner data set (eliminating 41 more

points). Then, we randomly sampled 1600 landmarks among the points with aver-

age squared distance to their 50 nearest neighbors in the cleaned data set smaller

than 1.5. Finally, we computed an α-complex14 with α = 4 on these landmarks, and

used the shortest path metric on this complex as the input to our algorithm. For the

road network data set, we first selected a metric ε-net10 on the raw GPS locations

with ε = 5 using furthest point sampling. Then, we computed an α-complex on the

ε-net as the neighborhood graph, but with α = 50. The astronomical data is similar

to the earthquake data in the sense that it contains a lot of noise, which hides the

filament structure. We built the input neighborhood graph on a set of landmarks

selected in a similar fashion as that for the earthquake data set. The Image Web

data set differs from the rest in that the raw data is a neighborhood graph, so no

preprocessing was done.

Our algorithm is parameterized by the spherical shell inner radius r, which in

the analysis is allowed to be in a range of values that depends on a constant b

that is the property of the underlying metric graph and the level of approximation

attained by the data. In practice, however, we do not have an oracle for these con-

stants. However, regardless of whether the assumptions in the analysis are satisfied,

our implementation outputs a metric graph (X̂, dX̂) and a map φ from the raw data

to the metric graph. Using random sampling, we can estimate the level of metric

distortion using X̂ and φ. Thus, we are able to select the parameter by running

our algorithm using various values of r, and checking for a balance between metric

distortion and reduction of graph size. We note that even though the assumptions

in the analysis may not be satisfied, our algorithm returns a metric graph approx-

imation that is in some cases dramatically smaller than the original data, while

approximately preserving distances. In addition, we also varied the outer radius

(5r/3 in the analysis) and the Rips-Vietoris parameter (4r/3 in the analysis) us-

ing the same process. Indeed, the constants 4r/3 and 5r/3 were chosen for ease of

analysis. In particular, they ensured that in the proof of Theorem 1, all connected

components were cliques, but in practice they may not be the best constants to use.

Implementation and Results. Real world data sets often do not satisfy the

assumptions we require for complete reconstruction, so we only replace connected

components of R2r(E) with edges of X̂ if they are adjacent to exactly one (in the

case of a self-loop) or two connected components of R2r(V). Note that this process

is local and hence it is possible to iterate this process in order to discover stratified

structure at multiple scales. We also computed a map ψ from the original points to
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Fig. 2. Earthquake data: the input neigh-

borhood graph is shown in cyan, the points
marked as belonging to a branch are shown

in red, and the points marked as belonging to

an edge are shown in blue. The reconstructed
graph is shown in dark blue (color online).

Fig. 3. GPS traces: the input neighborhood

graph is shown in cyan, the points marked as
belonging to a branch are shown in red, and

the points marked as belonging to an edge

are shown in blue. The reconstructed graph
is shown in dark blue (color online).

the reconstructed space X̂ as described in Lemma 4. To evaluate the quality of the

reconstructed graph for each data set, we randomly selected 100 points from the

data set, and computed both original pairwise distances, and pairwise distances on

X̂ using ψ. We also evaluated the use of X̂ to speed up distance computations by

showing reductions in computation time. Statistics for the size of the reconstructed

graph, error of approximate distances, and reduction in computation time are given

in Table 1. Only pairs of vertices in the same connected component are included

because we obtain zero error for the pairs of vertices that are not. We used these

statistics to select the parameter r, as well as the outer radius of the spherical shell,

and the Rips-Vietoris parameter.

The result of our algorithm on the earthquake data set is shown in Fig. 2.

We observe two spurious branch points being detected on the component to the

right as a result of the small stub sticking out between them. Nevertheless, our

algorithm is able to replace the data by a much smaller graph, while maintaining

small distortion of distance. Note that a trivial postprocessing step that removes all

vertices of degree 2 could take care of the two spurious branch points. The GPS trace

data set, shown in Fig. 3, provides the best results of all four data sets, showing a

dramatic reduction in graph size along with a very small distortion of distance. This

is expected considering that cars in most cities necessarily follow a road network,

which fits the model of a metric graph very well. The metric graph structure in

the astronomical data set, shown in Fig. 4, is much less apparent than that of the

previous examples, and hence we were only able to reduce the graph size by one

half. However, by doing so, we still approximately preserved distances and reduced

distance computation time by more than 51%. The Image Web, shown in Fig. 5, was

a very small example, and therefore suffers from metric distortion problems as noise
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Fig. 4. Astronomical data: the input neighbor-
hood graph is shown in green and the recon-

structed graph is shown in dark blue (color

online).

Fig. 5. Image Web: the input neighborhood

graph is shown in cyan, the points marked as

belonging to a branch are shown in red, and
the points marked as belonging to an edge

are shown in blue. The reconstructed graph

is shown in dark blue (color online).

levels are relatively large when compared to the size of the branching structures,

but our algorithm was still able to reduce the already small graph size by 79% while

keeping the median distance distortion below 18%.

7. Conclusion and Future Work

In this paper, we presented a first attempt at reconstructing a metric space of

mixed dimension. We presented an algorithm with guarantees for the case of a

metric graph, or equivalently, a 1-D stratified space. The same algorithm can be

used to simplify the representation of a metric space that might possibly have an

underlying metric graph structure. We also showed that, on real world data that

doesn’t perfectly satisfy the hypotheses, our algorithm still gives sensible and useful

results.

A natural extension of this work would be to consider stratified spaces of higher

dimension. Shortly after our result, Bendich et al.6 considered this problem, al-

though their work was more theoretical and their algorithm requires an embedding

of the space. Another direction for future work is to consider the data at multi-

ple scales. Currently, we rely on the fact that our algorithm is relatively fast, and

thus trying various scale parameters and checking for small reconstructed metric

graph with small distortion is feasible. However, it is also interesting to consider

the automatic selection of scales for which the data can be viewed as a reasonable

approximation of a metric graph. We have also begun preliminary experiments for

a multiscale version of our algorithm, which follows naturally from our implementa-

tion. It would be of interest to consider models of data where such a reconstruction

gives theoretical guarantees. Other directions for further research include investigat-

ing the possibility of improving the distortion of the metric by allowing the addition

of branch points to split edges that have too much distortion or to contract large

regions of branch points into several points instead of just one. Having these options
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not only gives the user some choice on the trade-off between the size of the graph

and the distortion, but also fits well with a multiscale approach.
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