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Abstract1

Despite strong stability properties, the persistent homology of filtrations classically used in Topological2

Data Analysis, such as, e.g. the Čech or Vietoris-Rips filtrations, are very sensitive to the presence3

of outliers in the data from which they are computed. In this paper, we introduce and study a4

new family of filtrations, the DTM-filtrations, built on top of point clouds in the Euclidean space5

which are more robust to noise and outliers. The approach adopted in this work relies on the notion6

of distance-to-measure functions and extends some previous work on the approximation of such7

functions.8
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1 Introduction9

The inference of relevant topological properties of data represented as point clouds in10

Euclidean spaces is a central challenge in Topological Data Analysis (TDA).11

Given a (finite) set of points X in Rd, persistent homology provides a now classical12

and powerful tool to construct persistence diagrams whose points can be interpreted as13
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0:2 DTM-based filtrations

homological features of X at different scales. These persistence diagrams are obtained from14

filtrations, i.e. nested families of subspaces or simplicial complexes, built on top of X. Among15

the many filtrations available to the user, unions of growing balls ∪x∈XB(x, t) (sublevel16

sets of distance functions), t ∈ R+, and their nerves, the Čech complex filtration, or its17

usually easier to compute variation, the Vietoris-Rips filtration, are widely used. The main18

theoretical advantage of these filtrations is that they have been shown to produce persistence19

diagrams that are stable with respect to perturbations of X in the Hausdorff metric [6].20

Unfortunately, the Hausdorff distance turns out to be very sensitive to noise and outliers,21

preventing the direct use of distance functions and classical Čech or Vietoris-Rips filtrations22

to infer relevant topological properties from real noisy data. Several attempts have been23

made in the recent years to overcome this issue. Among them, the filtration defined by the24

sublevel sets of the distance-to-measure (DTM) function introduced in [4], and some of its25

variants [10], have been proven to provide relevant information about the geometric structure26

underlying the data. Unfortunately, from a practical perspective, the exact computation27

of the sublevel sets filtration of the DTM, that boils down to the computation of a k-th28

order Voronoï diagram, and its persistent homology turn out to be far too expensive in most29

cases. To address this problem, [8] introduces a variant of the DTM function, the witnessed30

k-distance, whose persistence is easier to compute and proves that the witnessed k-distance31

approximates the DTM persistence up to a fixed additive constant. In [3, 2], a weighted32

version of the Vietoris-Rips complex filtration is introduced to approximate the persistence of33

the DTM function, and several stability and approximation results, comparable to the ones34

of [8], are established. Another kind of weighted Vietoris-Rips complex is presented in [1].35

Contributions. In this paper, we introduce and study a new family of filtrations based on36

the notion of DTM. Our contributions are the following:37

Given a set X ⊂ Rd, a weight function f defined on Rd and a real number p ≥ 1, we38

introduce the weighted Čech and Rips filtrations that extend the notion of sublevel set39

filtration of power distances of [3]. Using classical results, we show that these filtrations40

are stable with respect to perturbations of X in the Hausdorff metric and perturbations41

of f with respect to the sup norm (Propositions 3 and 4).42

For a general function f , the stability results of the weighted Čech and Rips filtrations are43

not suited to deal with noisy data or data containing outliers. We consider the case where44

f is the empirical DTM-function associated to the input point cloud. In this case, we45

show an outliers-robust stability result: given two point clouds X,Y ⊆ Rd, the closeness46

between the persistence diagrams of the resulting filtrations relies on the existence of a47

subset of X which is both close to X and Y in the Wasserstein metric (Theorems 15 and48

20).49

Practical motivations. Even though this aspect is not considered in this paper, it is50

interesting to mention that the DTM filtration was first experimented in the setting of51

an industrial research project whose goal was to address an anomaly detection problem52

from inertial sensor data in bridge and building monitoring [9]. In this problem, the input53

data comes as time series measuring the acceleration of devices attached to the monitored54

bridge/building. Using sliding windows and time-delay embedding, these times series are55

converted into a series of fixed size point clouds in Rd. Filtrations are then built on top56

of these point clouds and their persistence is computed, giving rise to a time-dependent57

sequence of persistence diagrams that are then used to detect anomalies or specific features58

occurring along the time [11, 13]. In this practical setting it turned out that the DTM59
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filtrations reveal to be not only more resilient to noise but also able to better highlight60

topological features in the data than the standard Vietoris-Rips filtrations, as illustrated on61

a basic synthetic example on Figure 1. One of the goals of the present work is to provide62

theoretical foundations to these promising experimental results by studying the stability63

properties of the DTM filtrations.64

Figure 1 A synthetic example comparing Vietoris-Rips filtration to DTM filtration. The first row
represents two time series with very different behavior and their embedding into R3 (here a series
(x1, x2, . . . , xn) is converted in the 3D point cloud {(x1, x2, x3), (x2, x3, x4), . . . , (xn−2, xn−1, xn)}).
The second row shows the persistence diagrams of the Vietoris-Rips filtration built on top of the two
point clouds (red and green points represent respectively the 0-dimensional 1-dimensional diagrams);
one observes that the diagrams do not clearly ‘detect’ the different behavior of the time series. The
third row shows the persistence diagrams of the DTM filtration built on top of the two point clouds;
a red point clearly appears away from the diagonal in the second diagram that highlights the rapid
shift occurring in the second time series.
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Organisation of the paper. Preliminary definitions, notations, and basic notions on filtra-74

tions and persistence modules are recalled in Section 2. The weighted Čech and Vietoris-Rips75

filtrations are introduced in Section 3 where their stability properties are established. The76

DTM-filtrations are introduced in Section 4. Their main stability properties are established in77

Theorems 15 and 20, and their relation with the sublevel set filtration of the DTM-functions78

is established in Proposition 16. For the clarity of the paper, the proof of several lemmas79

have been postponed to the appendices.80

For the complete version of this paper, including proofs and additional comments, see81

the online version at https://arxiv.org/abs/1811.04757.82

2 Filtrations and interleaving distance83

In the sequel, we consider interleavings of filtrations, interleavings of persistence modules and84

their associated pseudo-distances. Their definitions, restricted to the setting of the paper,85

are briefly recalled in this section.86

Let T = R+ and E = Rd endowed with the standard Euclidean norm.87
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0:4 DTM-based filtrations

Filtrations of sets and simplicial complexes. A family of subsets (V t)t∈T of E = Rd is a
filtration if it is non-decreasing for the inclusion, i.e. for any s, t ∈ T , if s ≤ t then V s ⊆ V t.
Given ε ≥ 0, two filtrations (V t)t∈T and (W t)t∈T of E are ε-interleaved if, for every t ∈ T ,
V t ⊆W t+ε and W t ⊆ V t+ε. The interleaving pseudo-distance between (V t)t∈T and (W t)t∈T
is defined as the infimum of such ε:

di((V t)t∈T , (W t)t∈T ) = inf{ε : (V t) and (W t) are ε-interleaved}.

Filtrations of simplicial complexes and their interleaving distance are similarly defined:88

given a set X and S an abstract simplex with vertex set X, a filtration of S is a non-decreasing89

family (St)t∈T of subcomplexes of S. The interleaving pseudo-distance between two filtrations90

(St1)t∈T and (St2)t∈T of S is the infimum of the ε ≥ 0 such that they are ε-interleaved, i.e. for91

any t ∈ T , St1 ⊆ St+ε2 and St2 ⊆ St+ε1 .92

Notice that the interleaving distance is only a pseudo-distance, as two distinct filtrations93

may have zero interleaving distance.94

Persistence modules. Let k be a field. A persistence module V over T = R+ is a pair V =95

((Vt)t∈T , (vts)s≤t∈T ) where (Vt)t∈T is a family of k-vector spaces, and (vts : Vs → Vt)s≤t∈T a96

family of linear maps such that:97

for every t ∈ T , vtt : V t → V t is the identity map,98

for every r, s, t ∈ T such that r ≤ s ≤ t, vts ◦ vsr = vtr.99

Given ε ≥ 0, an ε-morphism between two persistence modules V and W is a family of linear100

maps (φt : Vt →Wt+ε)t∈T such that the following diagrams commute for every s ≤ t ∈ T101

Vs Vt

Ws+ε Wt+ε

φs

vts

φt

wt+εs+ε

102

If ε = 0 and each φt is an isomorphism, the family (φt)t∈T is said to be an isomorphism of103

persistence modules.104

An ε-interleaving between two persistence modules V and W is a pair of ε-morphisms105

(φt : Vt → Wt+ε)t∈T and (ψt : Wt → Vt+ε)t∈T such that the following diagrams commute106

for every t ∈ T :107

Vt Vt+2ε

Wt+ε

φt

vt+2ε
t

ψt+ε

Vt+ε

Wt Wt+2ε

φt+εψt

wt+2ε
t

108

The interleaving pseudo-distance between V and W is defined as

di(V,W) = inf{ε ≥ 0,V and W are ε-interleaved}.

In some cases, the proximity between persistence modules is expressed with a function.109

Let η : T → T be a non-decreasing function such that for any t ∈ T , η(t) ≥ t. A η-110

interleaving between two persistence modules V and W is a pair of families of linear maps111

(φt : Vt →Wη(t))t∈T and (ψt : Wt → Vη(t))t∈T such that the following diagrams commute112

for every t ∈ T :113

Vt Vη(η(t))

Wη(t)

φt

v
η(η(t))
t

ψη(t)

Vη(t)

Wt Wη(η(t))

φη(t)ψt

v
η(η(t))
t

114
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When η is t 7→ t+ c for some c ≥ 0, it is called an additive c-interleaving and corresponds115

with the previous definition. When η is t 7→ ct for some c ≥ 1, it is called a multiplicative116

c-interleaving.117

A persistent module V is said to be q-tame if for every s, t ∈ T such that s < t, the118

map vts is of finite rank. The q-tameness of a persistence module ensures that we can119

define a notion of persistence diagram—see [5]. Moreover, given two q-tame persistence120

modules V,W with persistence diagrams D(V), D(W), the so-called isometry theorem states121

that db(D(V), D(W)) = di(V,W) ([5, Theorem 4.11]) where db(·, ·) denotes the bottleneck122

distance between diagrams.123

Relation between filtrations and persistence modules. Applying the homology functor to124

a filtration gives rise to a persistence module where the linear maps between homology groups125

are induced by the inclusion maps between sets (or simplicial complexes). As a consequence,126

if two filtrations are ε-interleaved then their associated homology persistence modules are also127

ε-interleaved, the interleaving homomorphisms being induced by the interleaving inclusion128

maps. Moreover, if the considered modules are q-tame, then the bottleneck distance between129

their persistence diagrams is upperbounded by ε.130

The filtrations considered in this paper are obtained as union of growing balls. Their131

associated persistence module is the same as the persistence module of a filtered simplicial132

complex via the persistent nerve lemma ([7], Lemma 3.4). Indeed, consider a filtration133

(V t)t∈T of E and assume that there exists a family of points (xi)I ∈ EI and a family of134

non-decreasing functions ri : T → R+ ∪ {−∞} such that, for every t ∈ T , V t is equal to the135

union of closed balls
⋃
I B(xi, ri(t)), with the convention B(xi,−∞) = ∅. For every t ∈ T , let136

Vt denote the cover {B(xi, ri(t)), i ∈ I} of V t, and St be its nerve. Let V be the persistence137

module associated with the filtration (V t)t∈T , and VN the one associated with the simplicial138

filtration (St)t∈T . Then V and VN are isomorphic persistence modules. In particular, if V is139

q-tame, V and VN have the same persistence diagrams.140

3 Weighted Čech filtrations141

In order to define the DTM-filtrations, we go through an intermediate and more general142

construction, namely the weighted Čech filtrations. It generalizes the usual notion of Čech143

filtration of a subset of Rd, and shares comparable regularity properties.144

3.1 Definition145

In the sequel of the paper, the Euclidean space E = Rd, the index set T = R+ and a real146

number p ≥ 1 are fixed. Consider X ⊆ E and f : X → R+. For every x ∈ X and t ∈ T , we147

define148

rx(t) =
{
−∞ if t < f(x),(
tp − f(x)p

) 1
p otherwise.

149

We denote by Bf (x, t) = B(x, rx(t)) the closed Euclidean ball of center x and radius rx(t).150

By convention, a Euclidean ball of radius −∞ is the empty set. For p =∞, we also define151

rx(t) =
{
−∞ if t < f(x),
t otherwise,

152

SoCG 2019



0:6 DTM-based filtrations

and the balls Bf (x, t) = B(x, rx(t)). Some of these radius functions are represented in Figure153

2.154

Figure 2 Graph of t 7→ rx(t) for f(x) = 1 and several values of p.155

I Definition 1. Let X ⊆ E and f : X → R+. For every t ∈ T , we define the following set:156

V t[X, f ] =
⋃
x∈X

Bf (x, t).157

The family V [X, f ] = (V t[X, f ])t≥0 is a filtration of E. It is called the weighted Čech158

filtration with parameters (X, f, p). We denote by V[X, f ] its persistent (singular) homology159

module.160

Note that V [X, f ] and V[X, f ] depend on fixed parameter p, that is not made explicit in161

the notation.162

Introduce Vt[X, f ] = {Bf (x, t)}x∈X . It is a cover of V t[X, f ] by closed Euclidean balls.163

Let N (Vt[X, f ]) be the nerve of the cover Vt[X, f ]. It is a simplicial complex over the vertex164

set X. The family N (V [X, f ]) = (N (Vt[X, f ]))t≥0 is a filtered simplicial complex. We denote165

by VN [X, f ] its persistent (simplicial) homology module. As a consequence of the persistent166

nerve theorem [7, Lemma 3.4], V[X, f ] and VN [X, f ] are isomorphic persistent modules.167

When f = 0, V [X, f ] does not depend on p ≥ 1, and it is the filtration of E by the168

sublevel sets of the distance function to X. In the sequel, we denote it by V [X, 0]. The169

corresponding filtered simplicial complex, N (V[X, 0]), is known as the usual Čech complex170

of X.171

When p = 2, the filtration value of y ∈ E, i.e. the infimum of the t such that y ∈ V t[X, f ],172

is called the power distance of y associated to the weighted set (X, f) in [3, Definition 4.1].173

The filtration V [X, f ] is called the weighted Čech filtration ([3, Definition 5.1]).174

Example. Consider the point cloud X drawn on the left of Figure 3 (black). It is a 200-175

sample of the uniform distribution on [−1, 1]2 ⊆ R2. We choose f to be the distance function176

to the lemniscate of Bernoulli (magenta). Let t = 0.2. Figure 3 represents the sets V t[X, f ]177

for several values of p.178
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179

180 X p = 1 p = 2 p = 3 p = ∞

Figure 3 The set X and the sets V t[X, f ] for t = 0.2 and several values of p.181

The following proposition states the regularity of the persistent module V[X, f ].182

I Proposition 2. If X ⊆ E is finite and f is any function, then V[X, f ] is a pointwise183

finite-dimensional persistence module.184

More generally, if X is a bounded subset of E and f is any function, then V[X, f ] is185

q-tame.186

3.2 Stability187

We still consider a subset X ⊆ E and a function f : X → R+. Using the fact that two188

ε-interleaved filtrations induce ε-interleaved persistence modules, the stability results for189

the filtration V [X, f ] of this subsection immediately translate as stability results for the190

persistence module V[X, f ].191

The following proposition relates the stability of the filtration V [X, f ] with respect to f .192

I Proposition 3. Let g : X → R+ be a function such that supx∈E |f(x)− g(x)| ≤ ε. Then193

the filtrations V [X, f ] and V [X, g] are ε-interleaved.194

The following proposition states the stability of V [X, f ] with respect to X. It generalizes195

[3, Proposition 4.3] (case p = 2).196

I Proposition 4. Let Y ⊆ E and suppose that f : X ∪ Y → R+ is c-Lipschitz, c ≥ 0.197

Suppose that X and Y are compact and that the Hausdorff distance dH(X,Y ) ≤ ε. Then the198

filtrations V [X, f ] and V [Y, f ] are k-interleaved with k = ε(1 + cp)
1
p .199

One can show that the bounds in Proposition 3 and 4 are tight.200

When considering data with outliers, the observed set X may be very distant from the201

underlying signal Y in Hausdorff distance. Therefore, the tight bound in Proposition 4 may202

be unsatisfactory. Moreover, a usual choice of f would be dX , the distance function to X. But203

the bound in Proposition 3 then becomes ‖dX − dY ‖∞ = dH(X,Y ). We address this issue204

in Section 4 by considering an outliers-robust function f , the so-called distance-to-measure205

function (DTM).206

3.3 Weighted Vietoris-Rips filtrations207

Rather than computing the persistence of the Čech filtration of a point cloud X ⊆ E, one208

sometimes consider the corresponding Vietoris-Rips filtration, which is usually easier to209

compute.210

SoCG 2019



0:8 DTM-based filtrations

If G is a graph with vertex set X, its corresponding clique complex is the simplicial211

complex over X consisting of the sets of vertices of cliques of G. If S is a simplicial complex,212

its corresponding flag complex is the clique complex of its 1-skeleton. We denote it Rips(S).213

Recall that N (Vt[X, f ]) denotes the nerve of Vt[X, f ], where Vt[X, f ] is the cover214

{Bf (x, t)}x∈X of V t[X, f ].215

I Definition 5. We denote by Rips(Vt[X, f ]) the flag complex of N (Vt[X, f ]), and by216

Rips(V[X, f ]) the corresponding filtered simplicial complex. It is called the weighted Rips217

complex with parameters (X, f, p).218

The following proposition states that the filtered simplicial complexes N (V[X, f ]) and219

Rips(V[X, f ]) are 2-interleaved multiplicatively, generalizing the classical case of the Čech220

and Vietoris-Rips filtrations (case f = 0).221

I Proposition 6. For every t ≥ 0,222

N (Vt[X, f ]) ⊆ Rips(Vt[X, f ]) ⊆ N (V2t[X, f ])223

Using Theorem 3.1 of [1], the multiplicative interleaving Rips(Vt[X, f ]) ⊆ N (V2t[X, f ])224

can be improved to Rips(Vt[X, f ]) ⊆ N (Vct[X, f ]), where c =
√

2d
d+1 and d is the dimension225

of the ambient space E = Rd.226

Note that weighted Rips filtration shares the same stability properties as the weighted227

Čech filtration. Indeed, the proofs of Proposition 3 and 4 immediately extend to this case.228

In order to compute the flag complex Rips(Vt[X, f ]), it is enough to know the filtration229

values of its 0- and 1-simplices. The following proposition describes these values.230

I Proposition 7. Let p < +∞. The filtration value of a vertex x ∈ X is given by tX({x}) =231

f(x).232

The filtration value of an edge {x, y} ⊆ E is given by233

tX({x, y}) =
{

max{f(x), f(y)} if ‖x− y‖ ≤ |f(x)p − f(y)p|
1
p ,

t otherwise,
234

where t is the only positive root of235

‖x− y‖ = (tp − f(x)p)
1
p + (tp − f(y)p)

1
p (1)236

237

When ‖x − y‖ ≥ |f(x)p − f(y)p|
1
p , the positive root of Equation (1) does not always238

admit a closed form. We give some particular cases for which it can be computed.239

For p = 1, the root is tX({x, y}) = f(x)+f(y)+‖x−y‖
2 ,240

for p = 2, it is tX({x, y}) =

√(
(f(x)+f(y))2+‖x−y‖2

)(
(f(x)−f(y))2+‖x−y‖2

)
2‖x−y‖ ,241

for p =∞, the condition reads ‖x− y‖ ≥ max{f(x), f(y)}, and the root is tX({x, y}) =242
‖x−y‖

2 . In either case, tX({x, y}) = max{f(x), f(y), ‖x−y‖2 }.243

We close this subsection by discussing the influence of p on the weighted Čech and244

Rips filtrations. Let D0(N (V[X, f, p])) be the persistence diagram of the 0th-homology245

of N (V[X, f, p]). We say that a point (b, d) of D0(V[X, f, p]) is non-trivial if b 6= d. Let246

D0(Rips(V[X, f, p])) be the persistence diagram of the 0th-homology of Rips(V[X, f, p]).247

Note that D0(N (V [X, f, p])) = D0(Rips(V [X, f, p])) since the corresponding filtrations share248

the same 1-skeleton.249
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I Proposition 8. The number of non-trivial points in D0(Rips(V [X, f, p])) is non-increasing250

with respect to p ∈ [1,+∞). Consequently same holds for D0(N (V[X, f, p])).251

Figure 7 in Subsection 4.4 illustrates the previous proposition in the case of the DTM-252

filtrations. Greater values of p lead to sparser 0th-homology diagrams.253

Now, consider k > 0, and let Dk(N (V[X, f, p])) be the persistence diagram of the kth-254

homology of N (V[X, f, p]). In this case, one can easily build examples showing that the255

number of non-trivial points of Dk(N (V[X, f, p])) does not have to be non-increasing with256

respect to p. The same holds for Dk(Rips(V[X, f, p])).257

4 DTM-filtrations258

The results of previous section suggest that in order to construct a weighted Čech filtration259

V [X, f ] that is robust to outliers, it is necessary to choose a function f that depends on260

X and that is itself robust to outliers. The so-called distance-to-measure function (DTM)261

satisfies such properties, motivating the introduction of the DTM-filtrations in this section.262

4.1 The distance to measure (DTM)263

Let µ be a probability measure over E = Rd, and m ∈ [0, 1) a parameter. For every x ∈ Rd,264

let δµ,m be the function defined on E by δµ,m(x) = inf{r ≥ 0, µ(B(x, r)) > m}.265

I Definition 9. Let m ∈ [0, 1[. The DTM µ of parameter m is the function:266

dµ,m : E −→ R
x 7−→

√
1
m

∫m
0 δ2

µ,t(x)dt
267

When m is fixed—which is the case in the following subsections—and when there is no risk268

of confusion, we write dµ instead of dµ,m.269

Notice that when m = 0, dµ,m is the distance function to supp(µ), the support of µ.270

I Proposition 10 ([4], Corollary 3.7). For every probability measure µ and m ∈ [0, 1), dµ,m271

is 1-Lipschitz.272

A fundamental property of the DTM is its stability with respect to the probability273

measure µ in the Wasserstein metric. Recall that given two probability measures µ and ν274

over E, a transport plan between µ and ν is a probability measure π over E × E whose275

marginals are µ and ν. The Wasserstein distance with quadratic cost between µ and ν is276

defined as W2(µ, ν) =
(

infπ
∫
E×E ‖x− y‖

2dπ(x, y)
) 1

2 , where the infimum is taken over all277

the transport plans. When µ = µX and ν = µY are the empirical measures of the finite point278

clouds X and Y , i.e the normalized sums of the Dirac measures on the points of X and Y279

respectively, we write W2(X,Y ) instead of W2(µX , µY ).280

I Proposition 11 ([4], Theorem 3.5). Let µ, ν be two probability measures, and m ∈ (0, 1).281

Then282

‖dµ,m − dν,m‖∞ ≤ m−
1
2W2(µ, ν).283

Notice that for every x ∈ E, dµ(x) is not lower than the distance from x to supp(µ), the284

support of µ. This remark, along with the propositions 10 and 11, are the only properties of285

the DTM that will be used to prove the results in the sequel of the paper.286
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In practice, the DTM can be computed. If X is a finite subset of E of cardinal n, we287

denote by µX its empirical measure. Assume that m = k0
n , with k0 an integer. In this case,288

dµX ,m reformulates as follows: for every x ∈ E,289

d2
µX ,m(x) = 1

k0

k0∑
k=1
‖x− pk(x)‖2,290

where p1(x), ..., pk0(x) are a choice of k0-nearest neighbors of x in X.291

4.2 DTM-filtrations292

In the following, the two parameters p ∈ [1,+∞] and m ∈ (0, 1) are fixed.293

I Definition 12. Let X ⊆ E be a finite point cloud, µX the empirical measure of X, and294

dµX the corresponding DTM of parameter m. The weighted Čech filtration V [X, dµX ], as295

defined in Definition 1, is called the DTM-filtration associated with the parameters (X,m, p).296

It is denoted by W [X]. The corresponding persistence module is denoted by W[X].297

Let Wt[X] = Vt[X, dµX ] denote the cover of W t[X] as defined in section 3, and let298

N (Wt[X]) be its nerve. The family N (W[X])) = (N (Wt[X]))t≥0 is a filtered simplicial299

complex, and its persistent (simplicial) homology module is denoted by WN [X]. By the300

persistent nerve lemma, the persistence modules W[X] and WN [X] are isomorphic.301

As in Definition 5, Rips(Wt[X]) denotes the flag complex of N (Wt[X]), and Rips(W [X])302

the corresponding filtered simplicial complex.303

Example. Consider the point cloud X drawn on the left of Figure 4. It is the union of304

X̃ and Γ, where X̃ is a 50-sample of the uniform distribution on [−1, 1]2 ⊆ R2, and Γ is a305

300-sample of the uniform distribution on the unit circle. We consider the weighted Čech306

filtrations V [Γ, 0] and V [X, 0] for p = 1, and the DTM-filtration W [X] for p = 1 and m = 0.1.307

They are represented in Figure 4 for the value t = 0.3.308

309

310 X V t[Γ, 0] V t[X, 0] W t[X]

Figure 4 The set X and the sets V t[Γ, 0], V t[X, 0] and W t[X] for p = 1, m = 0.1 and t = 0.3.311

Because of the outliers X̃, the value of t from which the sets V t[X, 0] are contractible is312

small. On the other hand, we observe that the set W t[X] does not suffer too much from the313

presence of outliers.314

We plot in Figure 5 the persistence diagrams of the persistence modules associated to315

Rips(V[Γ, 0]), Rips(V[X, 0]) and Rips(W[X]) (p = 1, m = 0.1).316
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317

318 D(Rips(V[Γ, 0])) D(Rips(V[X, 0])) D(Rips(W[X]))

Figure 5 Persistence diagrams of some simplicial filtrations. Points in red (resp. green) represent
the persistent homology in dimension 0 (resp. 1).

319

320

Observe that the diagrams D(Rips(V[Γ, 0])) and D(Rips(W[X])) appear to be close to321

each other, while D(Rips(V[X, 0])) does not.322

Applying the results of Section 3, we immediately obtain the following proposition.323

I Proposition 13. Let X and Y be two finite subsets of E. Consider the DTM-filtrations324

W [X] and W [Y ]. Then325

di(W [X],W [Y ]) ≤ m− 1
2W2(X,Y ) + 2

1
p dH(X,Y ).326

Note that this stability result is worse than the stability of the usual Čech filtrations,327

which only involves the Hausdorff distance. However, the term W2(X,Y ) is inevitable, as328

shown in the following example.329

Let E = R, Z = {0, 1}, and ε > 0. Pick two finite subsets X and Y of E close to Z330

in Hausdorff distance, and such that µX is close to εδ0 + (1− ε)δ1 in Wasserstein distance,331

and µY close to (1− ε)δ0 + εδ1. If m ≥ ε, then dµY (0) is close to 0, while dµX (0) is close to332 √
1− ε

m . If p = 1, the interleaving distance di(W [X],W [Y ]) is then close to
√

1− ε
m (as in333

Proposition 3).334

In comparison, the interleaving distance between the usual Čech filtrations is close to 0.335

In this case, it would be more robust to consider these usual Čech filtrations. However, in336

the case where the Hausdorff distance dH(X,Y ) is large, the usual Čech filtrations may be337

very distant. On the other hand, the DTM-filtrations may still be close, as we discuss in the338

next subsection.339

4.3 Stability when p = 1340

We first consider the case p = 1, for which the proofs are simpler and results are stronger.341

We fix m ∈ (0, 1). If µ is a probability measure on E with compact support supp(µ), we342

define343

c(µ,m) = sup
supp(µ)

(dµ,m).344

If µ = µΓ is the empirical measure of a finite set Γ ⊆ E, we denote it c(Γ,m).345

I Proposition 14. Let µ be a probability measure on E with compact support Γ. Let dµ346

be the corresponding DTM. Consider a set X ⊆ E such that Γ ⊆ X. The weighted Čech347

filtrations V [Γ, dµ] and V [X, dµ] are c(µ,m)-interleaved.348
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Moreover, if Y ⊆ E is another set such that Γ ⊆ Y , V [X, dµ] and V [Y, dµ] are c(µ,m)-349

interleaved.350

In particular, if Γ is a finite set and µ = µΓ its empirical measure, W [Γ] and V [X, dµΓ ]351

are c(Γ,m)-interleaved.352

I Theorem 15. Consider two measures µ, ν on E with supports X and Y . Let µ′, ν′ be two353

measures with compact supports Γ and Ω such that Γ ⊆ X and Ω ⊆ Y . We have354

di(V [X, dµ], V [Y, dν ]) ≤ m− 1
2W2(µ, µ′)+m− 1

2W2(µ′, ν′)+m− 1
2W2(ν′, ν)+c(µ′,m)+c(ν′,m).355

In particular, if X and Y are finite, we have356

di(W [X],W [Y ]) ≤ m− 1
2W2(X,Γ) +m−

1
2W2(Γ,Ω) +m−

1
2W2(Ω, Y ) + c(Γ,m) + c(Ω,m).357

Moreover, with Ω = Y , we obtain358

di(W [X],W [Ω]) ≤ m− 1
2W2(X,Γ) +m−

1
2W2(Γ,Ω) + c(Γ,m) + c(Ω,m).359

The last inequality of Theorem 15 can be seen as an approximation result. Indeed,360

suppose that Ω is some underlying set of interest, and X is a sample of it with, possibly, noise361

or outliers. If one can find a subset Γ of X such that X and Γ are close to each other—in362

the Wasserstein metric—and such that Γ and Ω are also close, then the filtrations W [X]363

and W [Ω] are close. Their closeness depends on the constants c(Γ,m) and c(Ω,m). More364

generally, if X is finite and µ′ is a measure with compact support Ω ⊂ X not necessarily365

finite, note that the first inequality gives366

di(W [X], V [Ω, dµ′ ]) ≤ m− 1
2W2(X,Γ) +m−

1
2W2(µΓ, µ

′) + c(Γ,m) + c(µ′,m).367

For any probability measure µ of support Γ ⊆ E, the constant c(µ,m) might be seen as a368

bias term, expressing the behaviour of the DTM over Γ. It relates to the concentration of µ369

on its support. Recall that a measure µ with support Γ is said to be (a, b)-standard, with370

a, b ≥ 0, if for all x ∈ Γ and r ≥ 0, µ(B(x, r)) ≥ min{arb, 1}. For example, the Hausdorff371

measure associated to a compact b-dimensional submanifold of E is (a, b)-standard for some372

a > 0. In this case, a simple computation shows that there exists a constant C, depending373

only on a and b, such that for all x ∈ Γ, dµ,m(x) ≤ Cm 1
b . Therefore, c(µ,m) ≤ Cm 1

b .374

Regarding the second inequality of Theorem 15, suppose for the sake of simplicity that375

one can choose Γ = Ω. The bound of Theorem 15 then reads376

di(W [X],W [Y ]) ≤ m− 1
2W2(X,Γ) +m−

1
2W2(Γ, Y ) + 2c(Γ,m).377

Therefore, the DTM-filtrations W [X] and W [Y ] are close to each other if µX and µY are378

both close to a common measure µΓ. This would be the case if X and Y are noisy samples379

of Γ. This bound, expressed in terms of Wasserstein distance rather than Hausdorff distance,380

shows the robustness of the DTM-filtration to outliers.381

Notice that, in practice, for finite data sets X,Y and for given Γ and Ω, the constants382

c(Γ,m) and c(Ω,m) can be explicitly computed, as it amounts to evaluating the DTM on Γ383

and Ω. This remark holds for the bounds of Theorem 15.384

Example. Consider the set X = X̃ ∪Γ as defined in the example page 10. Figure 6 displays385

the sets W t[X], V t[X, dµΓ ] and W t[Γ] for the values p = 1, m = 0.1 and t = 0.4 and the386



H.Anai and F. Chazal and M. Glisse and Y. Ike and H. Inakoshi and R. Tinarrage and Y. Umeda 0:13

persistence diagrams of the corresponding weighted Rips filtrations, illustrating the stability387

properties of Proposition 14 and Theorem 15.388

389

390 W t[X] V t[X, dµΓ ] W t[Γ]

391

392 D(Rips(W[X])) D(Rips(V[X, dµΓ ])) D(Rips(W[Γ]))

Figure 6 Filtrations for t = 0.4, and their corresponding persistence diagrams.393

The following proposition relates the DTM-filtration to the filtration of E by the sublevels394

sets of the DTM.395

I Proposition 16. Let µ be a probability measure on E with compact support K. Let396

m ∈ [0, 1) and denote by V the sublevel sets filtration of dµ. Consider a finite set X ⊆ E.397

Then398

di(V,W [X]) ≤ m− 1
2W2(µ, µX) + 2ε+ c(µ,m),399

with ε = dH(K ∪X,X).400

As a consequence, one can use the DTM-filtration to approximate the persistent homology401

of the sublevel sets filtration of the DTM, which is expensive to compute in practice.402

We close this subsection by noting that a natural strengthening of Theorem 15 does not403

hold: let m ∈ (0, 1) and E = Rn with n ≥ 1. There is no constant C such that, for every404

probability measure µ, ν on E with supports X and Y , we have:405

di(V [X, dµ,m], V [Y, dν,m]) ≤ CW2(µ, ν).406

The same goes for the weaker statement407

di(V[X, dµ,m],V[Y, dν,m]) ≤ CW2(µ, ν).408

4.4 Stability when p > 1409

Now assume that p > 1, m ∈ (0, 1) being still fixed. In this case, stability properties turn out410

to be more difficult to establish. For small values of t, Lemma 18 gives a tight non-additive411
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interleaving between the filtrations. However, for large values of t, the filtrations are poorly412

interleaved. To overcome this issue we consider stability at the homological level, i.e. between413

the persistence modules associated to the DTM filtrations.414

If µ is a probability measure on E with compact support Γ, we define415

c(µ,m, p) = sup
Γ

(dµ,m) + κ(p)tµ(Γ),416

where κ(p) = 1 − 1
p , and tµ(Γ) is the filtration value of the simplex Γ in N (V[Γ, dµ]), the417

(simplicial) weighted Čech filtration. Equivalently, tµ(Γ) is the value t from which all the418

balls Bdµ(γ, t), γ ∈ Γ, share a common point.419

If µ = µΓ is the empirical measure of a finite set Γ ⊆ E, we denote it c(Γ,m, p).420

Note the we have that inequality 1
2diam(Γ) ≤ tµ(Γ) ≤ 2diam(Γ).421

I Proposition 17. Let µ be a measure on E with compact support Γ, and dµ be the corres-422

ponding DTM of parameter m. Consider a set X ⊆ E such that Γ ⊆ X. The persistence423

modules V[Γ, dµ] and V[X, dµ] are c(µ,m, p)-interleaved.424

Moreover, if Y ⊆ E is another set such that Γ ⊆ Y , V[X, dµ] and V[Y, dµ] are c(µ,m, p)-425

interleaved.426

In particular, if Γ is a finite set and µ = µΓ its empirical measure, W[Γ] and V[X, dµΓ ]427

are c(Γ,m, p)-interleaved.428

The proof involves the two following ingredients. The first lemma gives a (non-additive)429

interleaving between the filtrations W [Γ] and V [X, dµΓ ], relevant for low values of t, while430

the second proposition gives a result for large values of t.431

I Lemma 18. Let µ,Γ and X be as defined in Proposition 17. Let φ : t 7→ 21− 1
p t+ supΓ dµ.432

Then for every t ≥ 0,433

V t[Γ, dµ] ⊆ V t[X, dµ] ⊆ V φ(t)[Γ, dµ].434

I Proposition 19. Let µ,Γ and X be as defined in Proposition 17. Consider the map vt∗ :435

Vt[X, dµ]→ Vt+c[X, dµ] induced in homology by the inclusion vt : V t[X, dµ]→ V t+c[X, dµ].436

If t ≥ tµ(Γ), then vt is trivial.437

I Theorem 20. Consider two measures µ, ν on E with supports X and Y . Let µ′, ν′ be two438

measures with compact supports Γ and Ω such that Γ ⊆ X and Ω ⊆ Y . We have439

di(V[X, dµ],V[Y, dν ]) ≤ m− 1
2W2(µ, µ′)+m− 1

2W2(µ′, ν′)+m− 1
2W2(ν′, ν)+c(µ′,m, p)+c(ν′,m, p).440

In particular, if X and Y are finite, we have441

di(W[X],W[Y ]) ≤ m− 1
2W2(X,Γ)+m− 1

2W2(Γ,Ω)+m− 1
2W2(Ω, Y )+c(Γ,m, p)+c(Ω,m, p).442

Moreover, with Ω = Y , we obtain443

di(W[X],W[Γ]) ≤ m− 1
2W2(X,Γ) +m−

1
2W2(Γ,Ω) + c(Γ,m, p) + c(Ω,m, p).444

Notice that when p = 1, the constant c(Γ,m, p) is equal to the constant c(Γ,m) defined445

in Subsection 4.3, and we recover Theorem 15 in homology.446
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As an illustration of these results, we represent in Figure 7 the persistence diagrams450

associated to the filtration Rips(W [X]) for several values of p. The point cloud X is the one451

defined in the example page 10. Observe that, as stated in Proposition 8, the number of red452

points (homology in dimension 0) is non-increasing with respect to p.453

447

448 p = 1 p = 2 p = ∞

Figure 7 Persistence diagrams of the simplicial filtrations Rips(W[X]) for several values of p.449

5 Conclusion454

In this paper we have introduced the DTM-filtrations that depend on a parameter p ≥ 1.455

This new family of filtrations extends the filtration introduced in [3] that corresponds to the456

case p = 2.457

The established stability properties are, as far as we know, of a new type: the closeness458

of two DTM-filtrations associated to two data sets relies on the existence of a well-sampled459

underlying object that approximates both data sets in the Wasserstein metric. This makes460

the DTM filtrations robust to outliers. Even though large values of p lead to persistence461

diagrams with less points in the 0th homology, the choice of p = 1 gives the strongest stability462

results. When p > 1, the interleaving bound is less significant since it involves the diameter463

of the underlying object, but the obtained bound is consistent with the case p = 1 as it464

converges to the bound for p = 1 as p goes to 1.465

It is interesting to notice that the proofs rely on only a few properties of the DTM. As a466

consequence, the results should extend to other weight functions, such that the DTM with467

a parameter different from 2, or kernel density estimators. Some variants concerning the468

radius functions in the weighted Čech filtration, are also worth considering. The analysis469

shows that one should choose radius functions whose asymptotic behaviour look like the one470

of the case p = 1. In the same spirit as in [12, 3] where sparse-weighted Rips filtrations were471

considered, it would also be interesting to consider sparse versions of the DTM-filtrations472

and to study their stability properties.473

Last, the obtained stability results, depending on the choice of underlying sets, open the474

way to the statistical analysis of the persistence diagrams of the DTM-filtrations, a problem475

that will be addressed in a further work.476
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