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École Centrale Nantes

Alessandro Rinaldo§

Carnegie Mellon University

Larry Wasserman
Carnegie Mellon University

Abstract

Various problems in manifold estimation make use of a quantity called
the reach, denoted by τM , which is a measure of the regularity of the
manifold. This paper is the first investigation into the problem of how to
estimate the reach. First, we study the geometry of the reach through an
approximation perspective. We derive new geometric results on the reach
for submanifolds without boundary. An estimator τ̂ of τM is proposed
in a framework where tangent spaces are known, and bounds assessing
its efficiency are derived. In the case of i.i.d. random point cloud Xn,
τ̂(Xn) is showed to achieve uniform expected loss bounds over a C3-like
model. Finally, we obtain upper and lower bounds on the minimax rate
for estimating the reach.

1 Introduction

1.1 Background and Related Work

Manifold estimation has become an increasingly important problem in statistics
and machine learning. There is now a large literature on methods and theory
for estimating manifolds. See, for example, [KZ15, GPPVW12, FMN16, BG14,
NSW08, BNS06, GK06].

Estimating a manifold, or functionals of a manifold, requires regularity con-
ditions. In nonparametric function estimation, regularity conditions often take
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the form of smoothness constraints. In manifold estimation problems, a common
assumption is that the reach τM of the manifold M is non-zero.

First introduced by Federer [Fed59], the reach τM of a set M ⊂ RD is
the largest number such that any point at distance less than τM from M has
a unique nearest point on M . If a set has its reach greater than τmin > 0,
then one can roll freely a ball of radius τmin around it [CFPL12]. The reach
is affected by two factors: the curvature of the manifold and the width of the
narrowest bottleneck-like structure of M , which quantifies how close M is from
being self-intersecting.

Positive reach is the minimal regularity assumption on sets in geometric
measure theory and integral geometry [Fed69, Thä08]. Sets with positive reach
exhibit a structure that is close to being differential — the so-called tangent and
normal cones. The value of the reach itself quantifies the degree of regularity of
a set, with larger values associated to more regular sets. The positive reach as-
sumption is routinely imposed in the statistical analysis of geometric structures
in order to ensure good statistical properties [CFPL12] and to derive theoretical
guarantees. For example, in manifold reconstruction, the reach helps formalize
minimax rates [GPPVW12, KZ15]. The optimal manifold estimators of [AL15]
implicitly use reach as a scale parameter in their construction. In homology
inference [NSW08, BRSW13], the reach drives the minimal sample size required
to consistently estimate topological invariants. The reach is used in [CFRC07]
as a regularity parameter in the estimation of the Minkowski boundary lengths
and surface areas. The reach has been explicitly used as a regularity parame-
ter in geometric inference, such as in volume estimation [APR16] and manifold
clustering [ALZ13]. The reach is also used as a scale parameter in dimension
reduction techniques such as vector diffusions maps [SW12]. Problems in com-
putational geometry such as manifold reconstruction also rely on assumptions
on the reach [BG14].

In this paper we study the problem of estimating reach. To do so, we first
provide new geometric results on the reach. We also give the first bounds on
the minimax rate for estimating reach.

There are very few papers on this problem. When the embedding dimension
is 3, the estimation of the local feature size (a localized version of the reach)
was tackled in a deterministic way in [DS06]. To some extent, the estimation of
the medial axis (the set of points that have strictly more than one nearest point
on M) and its generalizations [CLPL14, ABE09] can be viewed as an indirect
way to estimate the reach. A test procedure designed to validate whether data
actually comes from a smooth manifold satisfying a condition on the reach was
developed in [FMN16]. The authors derived a consistent test procedure, but
the results do not permit any inference bound on the reach.

1.2 Outline

In Section 2 we provide some differential geometric background and define the
statistical problem at hand. New geometric properties of the reach are derived in
Section 3, and their consequences for its inference follow Section 4 in a setting
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where tangent spaces are known. We study minimax rates in Section 5. An
extension to a model where tangent spaces are unknown is discussed Section 6,
and we conclude with some open questions in Section 7.

2 Framework

2.1 Notions of Differential Geometry

In what follows, D ≥ 2 and RD is endowed with the Euclidean scalar product
〈·, ·〉 and the associated norm ‖·‖. The associated closed ball of radius r and
center x is denoted by B(x, r). We will consider compact connected submanifolds
M of RD of fixed dimension 1 ≤ d < D and without boundary [dC92]. For
every point p in M , the tangent space of M at p is denoted by TpM . It is the
d-dimensional vector subspace of RD composed of the directions locally spanned
by M at p. Besides the Euclidean structure given by RD ⊃ M , a submanifold
is endowed with an intrinsic metric structure induced by the ambient Euclidean
one, called the geodesic distance. Given a smooth path c : [a, b] → M , the

length of c is defined as Length(c) =
∫ b
a
‖c′(t)‖ dt. One can show [dC92] that

there exists a path γ of minimal length joining p and q. Such an arc is called
geodesic, and the geodesic distance between p and q is given by dM (p, q) =
infc(0)=a,c(1)=b Length(c). We let BM (p, s) denote the closed geodesic ball of
center p ∈ M and of radius s. A geodesic γ such that ‖γ′(t)‖ = 1 for all t is
called arc-length parametrized. Unless stated otherwise, a geodesic will always
be considered in its arc-length version. For all p ∈ M and all unit vectors
v ∈ TpM , we denote by γp,v the unique arc-length parametrized geodesic of
M such that γp,v(0) = p and γ′p,v(0) = v. The exponential map is defined as
expp(vt) = γp,v(t). Note that from the compactness of M , expp : TpM → M

is defined globally on TpM . For any two nonzero vectors u, v ∈ RD, we let
∠(u, v) = dSD−1( u

‖u‖ ,
v
‖v‖ ) be the angle between u and v.

2.2 Reach

First introduced by Federer [Fed59], the reach regularity parameter is defined
as follows. Given a closed subset A ⊂ RD, the medial axis Med(A) of A is the
subset of RD consisting of the points that have at least two nearest neighbors
on A. Namely, denoting by d(z,A) = infp∈A ‖p− z‖ the distance function to
A,

Med(A) =
{
z ∈ RD|∃p 6= q ∈ A, ‖p− z‖ = ‖q − z‖ = d(z,A)

}
. (2.1)

The reach of A is then defined as the minimal distance from A to Med(A).

Definition 2.1. The reach of a closed subset A ⊂ RD is defined as

τA = inf
p∈A

d (p,Med(A)) = inf
z∈Med(A)

d (z,A) . (2.2)
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Some authors refer to τ−1
A as the condition number [NSW08, SW12]. From

the definition of the medial axis in (2.1), the projection πA(x) = arg minp∈A ‖p− x‖
onto A is well defined outside Med(A). The reach is the largest distance ρ ≥ 0
such that πA is well defined on the ρ-offset

{
x ∈ RD|d(x,A) ≤ ρ

}
. Hence, the

reach condition can be seen as a generalization of convexity, since a set A ⊂ RD
is convex if and only if τA =∞.

In the case of submanifolds, one can reformulate the definition of the reach
in the following manner.

Theorem 2.2 (Theorem 4.18 in [Fed59]). For all submanifolds M ⊂ RD,

τM = inf
q 6=p∈M

‖q − p‖2

2d(q − p, TpM)
. (2.3)

M

TpM

d (q − p, TpM)
‖q − p‖‖q−p‖2

2d(q−p,TpM)

C

q

p

Figure 1: Geometric interpretation of quantities involved in (2.3).

This formulation has the advantage of involving only points on M and its
tangents spaces, while (2.2) uses the distance to the medial axis Med(M), which
is a global quantity. The formula (2.3) will be the starting point of the estimator
proposed in this paper (see Section 4).

The ratio appearing in (2.3) can be interpreted geometrically, as suggested
in Figure 1. This ratio is the radius of an ambient ball, tangent to M at p and
passing through q. Hence, at a differential level, the reach gives a lower bound
on the radii of curvature of M . Equivalently, τ−1

M is an upper bound on the
curvature of M .

Proposition 2.3 (Proposition 6.1 in [NSW08]). Let M ⊂ RD be a submanifold,
and γp,v an arc-length parametrized geodesic of M . Then for all t,∥∥γ′′p,v(t)∥∥ ≤ 1/τM .

In analogy with function spaces, the class
{
M ⊂ RD|τM ≥ τmin > 0

}
can be

interpreted as the Hölder space C2(1/τmin). In addition, as illustrated in Figure
2, the condition τM ≥ τmin > 0 also prevents bottleneck structures where M is
nearly self-intersecting. This idea will be made rigorous in Section 3.
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τM

M

Med(M)

Figure 2: A narrow bottleneck structure yields a small reach τM .

2.3 Statistical Model and Loss

Let us now describe the regularity assumptions we will use throughout. To avoid
arbitrarily irregular shapes, we consider submanifolds M with their reach lower
bounded by τmin > 0. Since the parameter of interest τM is a C2-like quantity,
it is natural — and actually necessary from Proposition 2.9 — to require an
extra degree of smoothness. For example, by imposing an upper bound on the
third order derivatives of geodesics.

Definition 2.4. We letMd,D
τmin,L

be the set of compact connected d-dimensional

submanifolds M ⊂ RD without boundary such that τM ≥ τmin, and for which
every arc-length parametrized geodesic γp,v is C3 and satisfies∥∥γ′′′p,v(0)

∥∥ ≤ L.
Note that since the third order condition

∥∥γ′′′p,v(0)
∥∥ ≤ L needs to hold for all

(p, v), we have in particular that
∥∥γ′′′p,v(t)∥∥ ≤ L for all t ∈ R. To our knowledge,

such a C3 quantitative assumption on the geodesics has not been considered in
the computational geometry literature.

Any submanifold M ⊂ RD of dimension d inherits a natural measure volM
from the d-dimensional Hausdorff measure Hd on RD [Fed69, p. 171]. We
will consider distributions Q that have densities with respect to volM that are
bounded away from zero.

Definition 2.5. We let Qd,Dτmin,L,fmin
denote the set of distributions Q having

support M ∈ Md,D
τmin,L

and with a Hausdorff density f = dQ
dvolM

satisfying
infx∈M f(x) ≥ fmin > 0 on M .

In order to focus on the geometric aspects of the reach, we will first consider
the case where tangent spaces are observed at all the sample points. We let
Gd,D denote the Grassmanian of dimension d of RD, that is the set of all d-
dimensional vector subspaces of RD.

Definition 2.6. For any distribution Q ∈ Qd,Dτmin,L,fmin
with support M we

associate the distribution P of the random variable (X,TXM) on RD × Gd,D,

where X has distribution Q. We let Pd,Dτmin,L,fmin
denote the set of all such

distributions.
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Formally, one can write P (dx dT ) = δTxM (dT )Q(dx), where δ· denotes the
Dirac measure. An i.i.d. n-sample of P is of the form (X1, T1), . . . , (Xn, Tn) ∈
RD × Gd,D, where X1, . . . , Xn is an i.i.d. n-sample of Q and Ti = TXiM with
M = supp(Q). For a distribution Q with support M and associated distribution
P on RD ×Gd,D, we will write τP = τQ = τM , with a slight abuse of notation.

Note that the model does not explicitly impose an upper bound on τM . Such
an upper bound would be redundant, since the lower bound on fmin does impose
such an upper bound, as we now state in the following result. The proof relies
on a volumetric argument (Lemma A.2), leading to a bound on the diameter
of M , and on a topological argument (Lemma A.5) to link the reach and the
diameter.

Proposition 2.7. Let M ⊂ RD be a connected closed d-dimensional manifold,
and let Q be a probability distribution with support M . Assume that Q has a
density f with respect to the Hausdorff measure on M such that infx∈M f(x) ≥
fmin > 0. Then,

τdM ≤
Cd
fmin

,

for some constant Cd > 0 depending only on d.

To simplify the statements and the proofs, we focus on a loss involving the
condition number. Namely, we measure the error with the loss

`(τ, τ ′) =

∣∣∣∣1τ − 1

τ ′

∣∣∣∣p , p ≥ 1. (2.4)

In other words, we will consider the estimation of the condition number τ−1
M

instead of the reach τM .

Remark 2.8. For a distribution P ∈ Pd,Dτmin,L,fmin
, Proposition 2.7 asserts that

τmin ≤ τP ≤ τmax := (Cd/fmin)
1/d

. Therefore, in an inference set-up, we can
always restrict to estimators τ̂ within the bounds τmin ≤ τ̂ ≤ τmax. Conse-
quently,

1

τ2p
max

|τP − τ̂ |p ≤
∣∣∣∣ 1

τP
− 1

τ̂

∣∣∣∣p ≤ 1

τ2p
min

|τP − τ̂ |p ,

so that the estimation of the reach τP is equivalent to the estimation of the
condition number τ−1

P , up to constants.

With the statistical framework developed above, we can now see explicitly
why the third order condition ‖γ′′′‖ ≤ L < ∞ is necessary. Indeed, the next
result demonstrates how relaxing this constraint — i.e. setting L = ∞ —
renders the problem of reach estimation intractable. Below, σd stands for the
volume of the d-dimensional unit sphere Sd.

Proposition 2.9. For all τmin > 0, provided that fmin ≥ 1
2d+1τdminσd

, for all

n ≥ 1,

inf
τ̂n

sup
P∈Pd,Dτmin,L=∞,fmin

EPn
∣∣∣∣ 1

τP
− 1

τ̂n

∣∣∣∣p ≥ cp
τpmin

> 0,
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where the infimum is taken over the estimators τ̂n = τ̂n (X1, T1, . . . , Xn, Tn).

Thus, one cannot expect to derive uniformly good approximation bounds
solely under the condition τM ≥ τmin. This result is natural, since the problem
at stake is to estimate a differential quantity of order two. Therefore, some
notion of uniform C3 regularity is needed.

3 Geometry of the Reach

In this section, we give a precise geometric description of how the reach arises.
In particular, below we will show that the reach is determined either by a
bottleneck structure or an area of high curvature (Theorem 3.4). These two
cases are referred to as global reach and local reach, respectively.

Consider the formulation (2.2) of the reach as the infimum of the distance
between M and its medial axis Med(M). By definition of the medial axis (2.1),
if the infimum is attained it corresponds to a point z0 in Med(M) at distance
τM from M , which we call an axis point. Since z0 belongs to the medial axis
of M , it has at least two nearest neighbors q1, q2 on M , which we call a reach
attaining pair (see Figure 3(b)). By definition, q1 and q2 belong to B(z0, τM )
and cannot be farther than 2τM from each other. We say that (q1, q2) is a
bottleneck of M in the extremal case ‖q2 − q1‖ = 2τM of antipodal points of
B(z0, τM ) (see Figure 3(a)). Note that the ball B(z0, τM ) meets M only on its
boundary ∂B(z0, τM ).

Definition 3.1. Let M ⊂ RD be a submanifold with reach τM > 0.

• A pair of points (q1, q2) in M is called reach attaining if there exists
z0 ∈ Med(M) such that q1, q2 ∈ B(z0, τM ). We call z0 the axis point of
(q1, q2), and ‖q1 − q2‖ ∈ (0, 2τM ] its size.

• A reach attaining pair (q1, q2) ∈ M2 is said to be a bottleneck of M if its
size is 2τM , that is ‖q1 − q2‖ = 2τM .

As stated in the following Lemma 3.2, if a reach attaining pair is not a
bottleneck — that is ‖q1 − q2‖ < 2τM —, then M contains an arc of a circle
of radius τM . In this sense, this “semi-local” case — when ‖q1 − q2‖ can be
arbitrarily small — is not generic. Though, we do not exclude this case in the
analysis.

Lemma 3.2. Let M ⊂ RD be a compact submanifold with reach τM > 0.
Assume that M has a reach attaining pair (q1, q2) ∈ M2 with size ‖q1 − q2‖ <
2τM . Let z0 ∈ Med(M) be their associated axis point, and write cz0(q1, q2) for
the arc of the circle with center z0 and endpoints as q1 and q2.

Then cz0(q1, q2) ⊂ M , and this arc (which has constant curvature 1/τM ) is
the geodesic joining q1 and q2.

In particular, in this “semi-local” situation, since τ−1
M is the norm of the

second derivative of a geodesic of M (the exhibited arc of the circle of radius
τM ), the reach can be viewed as arising from directional curvature.

7



Now consider the case where the infimum (2.2) is not attained. In this case,
the following Lemma 3.3 asserts that τM is created by curvature.

Lemma 3.3. Let M ⊂ RD be a compact submanifold with reach τM > 0.
Assume that for all z ∈Med(M), d(z,M) > τM . Then there exists q0 ∈M and
a geodesic γ0 such that γ0(0) = q0 and ‖γ′′0 (0)‖ = 1

τM
.

To summarize, there are three distinct geometric instances in which the reach
may be realized:

• M has a bottleneck: by definition, τM originates from a structure having
scale 2τM (see Figure 3(a)).

• M has a reach attaining pair but no bottleneck: then M contains an arc
of a circle of radius τM (Lemma 3.2), so that M actually contains a zone
with radius of curvature τM (see Figure 3(b)).

• M does not have a reach attaining pair: then τM originates from curvature
(Lemma 3.3), also yielding a point with radius of curvature τM . (see Figure
3(c)).

From now on, we will treat the first case separately from the other two. We
are now in a position to state the main result of this section. It is a straightfor-
ward consequence of Lemma 3.2 and Lemma 3.3.

Theorem 3.4. Let M ⊂ RD be a compact submanifold with reach τM > 0. At
least one of the following two assertions holds.

• (Global case) M has a bottleneck (q1, q2) ∈ M2, that is, there exists z0 ∈
Med(M) such that q1, q2 ∈ ∂B(z0, τM ) and ‖q1 − q2‖ = 2τM .

• (Local case) There exists q0 ∈M and an arc-length parametrized geodesic
γ0 such that γ0(0) = q0 and ‖γ′′0 (0)‖ = 1

τM
.

Theorem 3.4 provides a description of the reach as arising from global and
local geometric structures that, to the best of our knowledge, is new. Such
a distinction is especially important in our problem. Indeed, the global and
local cases may yield different approximation properties and require different
statistical analyses. However, since one does not know a priori whether the
reach arises from a global or a local structure, an estimator of τM should be
able to handle both cases simultaneously.

4 Reach Estimator and its Analysis

In this section, we propose an estimator τ̂(·) for the reach and demonstrate
its properties and rate of consistency under the loss (2.4). We rely on the
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q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0

(a) A bottleneck.

q1 q2

z0

τM

B(z0, τM )

‖q1 − q2‖ < 2τM

Med(M)M

(b) A reach attaining pair but no bottleneck.

q0

z0

τM

B(z0, τM )

Med(M)M

(c) No reach attaining pair.

Figure 3: The different ways for the reach to be attained.
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formulation of the reach given in (2.3) (see also Figure 1), and define τ̂ as a
plugin estimator as follows. Given a point cloud X = {x1, . . . , xn} ⊂M , we let

τ̂(X) = inf
x 6=y∈X

‖y − x‖2

2d(y − x, TxM)
. (4.1)

In particular, we have τ̂(M) = τM . Since the infimum (4.1) is taken over a set
X smaller than M , τ̂(X) always overestimates τM . In fact, τ̂(X) is decreasing in
the number of distinct points in X, a useful property that we formalize in the
following result, whose proof is immediate.

Corollary 4.1. Let M be a submanifold with reach τM and Y ⊂ X ⊂M be two
nested subsets. Then τ̂(Y) ≥ τ̂(X) ≥ τM .

We now derive the rate of consistency of τ̂ . We analyze the global case
(Section 4.1) and the local case (Section 4.2) separately. In both cases, we first
determine the performance of the estimator in a deterministic framework, and
then derive an expected loss bounds when τ̂ is applied to a random sample.

4.1 Global Case

Consider the global case, that is, M has a bottleneck structure (Theorem 3.4).
Then the infimum (2.3) is achieved at a bottleneck pair (q1, q2) ∈ M2. When
X contains points that are close to q1 and q2, one may expect that the infimum
over the sample points should also be close to (2.3): that is, that τ̂(X) should
be close to τM .

Proposition 4.2. Let M ⊂ RD be a submanifold with reach τM > 0 that has
a bottleneck (q1, q2) ∈ M2 (Definition 3.1), and X ⊂ M . If there exist x, y ∈ X
with ‖q1 − x‖ < τM and ‖q2 − y‖ < τM , then

0 ≤ 1

τM
− 1

τ̂(X)
≤ 1

τM
− 1

τ̂({x, y})
≤ 9

2τ2
M

max {dM (q1, x), dM (q2, y)} .

The error made by τ̂(X) decreases linearly in the maximum of the distances
to the critical points q1 and q2. In other words, the radius of the tangent sphere
in Figure 1 grows at most linearly in t when we perturb by t < τM its basis
point p = q1 and the point q = q2 it passes through.

Based on the deterministic bound in Proposition 4.2, we can now give an
upper bound on the expected loss under the model Pd,Dτmin,L,fmin

. We recall that,
here and in what follows, Xn = {X1, . . . , Xn} is an i.i.d. sample with common
distribution Q associated to P (Definition 2.6).

Proposition 4.3. Let P ∈ Pd,Dτmin,L,fmin
and M = supp(P ). Assume that M has

a bottleneck (q1, q2) ∈M2 (see Definition 3.1). Then,

EPn
[∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣p] ≤ Cp,d,τM ,fmin
n−

p
d ,

where Cp,d,τmin,fmin
depends only on p,d,τM and fmin, and is a decreasing func-

tion of τM .
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Proposition 4.3 follows straightforwardly from Proposition 4.2 combined
with the fact that with high probability, the balls centered at the bottleneck
points q1 and q2 with radii O(n−1/d) both contain a sample point of Xn.

4.2 Local Case

Consider now the local case, that is, there exists q0 ∈ M and v0 ∈ Tq0M such
that the geodesic γ0 = γq0,v0 has second derivative ‖γ′′0 (0)‖ = 1/τM (Theorem
3.4). Estimating τM boils down to estimating the curvature of M at q0 in the
direction v0.

We first relate directional curvature to the increment ‖y−x‖2
2d(y−x,TxM) involved in

the estimator τ̂ (4.1). Indeed, since the latter quantity is the radius of a sphere
tangent at x and passing through y (Figure 1), it approximates the radius of
curvature in the direction y − x when x and y are close. For x, y ∈ M , we
let γx→y denote the arc-length parametrized geodesic joining x and y, with the
convention γx→y(0) = x.

Lemma 4.4. Let M ∈ Md,D
τmin,L

with reach τM and X ⊂ M be a subset. Let
x, y ∈ X with dM (x, y) < πτM . Then,

0 ≤ 1

τM
− 1

τ̂(X)
≤ 1

τM
− 1

τ̂({x, y})
≤ 1

τM
−
∥∥γ′′x→y(0)

∥∥+
2

3
LdM (x, y).

Let us now state how directional curvatures are stable with respect to per-
turbations of the base point and the direction. We let κp denote the maximal
directional curvature of M at p ∈M , that is,

κp = sup
v∈BTpM (0,1)

∥∥γ′′p,v(0)
∥∥ .

Lemma 4.5. Let M ∈ Md,D
τmin,L

with reach τM and q0, x, y ∈ M be such that

x, y ∈ BM
(
q0,

πτM
2

)
. Let γ0 be a geodesic such that γ0(0) = q0 and ‖γ′′0 (0)‖ =

κq0 . Write

θx := ∠(γ′0(0), γ′q0→x(0)), θy := ∠(γ′0(0), γ′q0→y(0)),

and suppose that |θx − θy| ≥ π
2 . Then,∥∥γ′′x→y(0)

∥∥
≥ κq0 −

1√
2− 1

(
κx − κq0 +

√
2(3κq0 + κx) sin2(|θx − θy|) +

√
2LdM (q0, x)

)
.

In particular, geodesics in a neighborhood of q0 with directions close to v0

have curvature close to 1
τM

. A point cloud X sampled densely enough in M
would contain points in this neighborhood. Hence combining Lemma 4.4 and
Lemma 4.5 yields the following deterministic bound in the local case.

11



Proposition 4.6. Let M ∈ Md,D
τmin,L

be such that there exist q0 ∈ M and a

geodesic γ0 such that γ0(0) = q0 and ‖γ′′0 (0)‖ = 1
τM

. Let X ⊂ M and x, y ∈ X
be such that x, y ∈ BM

(
q0,

πτM
2

)
. Let

θx := ∠(γ′0(0), γ′q0→x(0)), θy := ∠(γ′0(0), γ′q0→y(0)),

and suppose that |θx − θy| ≥ π
2 . Then,

0 ≤ 1

τM
− 1

τ̂(X)
≤ 1

τM
− 1

τ̂({x, y})

≤ 4
√

2 sin2(|θx − θy|)
(
√

2− 1)τM
+ L

(
2

3
dM (x, y) +

√
2√

2− 1
dM (q0, x)

)
.

In other words, since the reach boils down to directional curvature in the
local case, τ̂ performs well if it is given as input a pair of points x, y which are
close to the point q0 realizing the reach, and almost aligned with the direction
of interest v0.

Similarly to the analysis of the global case, the deterministic bound in Propo-
sition 4.6 yields a bound on the risk of τ̂(Xn) when Xn = {X1, . . . , Xn} is
random.

Proposition 4.7. Let P ∈ Pd,Dτmin,L,fmin
and M = supp(P ). Suppose there exists

q0 ∈M and a geodesic γ0 with γ0(0) = q0 and ‖γ′′0 (0)‖ = 1
τM

. Then,

EPn
[∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣p] ≤ Cτmin,d,L,fmin,pn
− 2p

3d−1 ,

where Cτmin,d,L,fmin,p depends only on τmin, d, L, fmin and p.

This statement follows from Proposition 4.6 together with the estimate of
the probability of two points being drawn in a neighborhood of q0 and subject
to an alignment constraint.

Proposition 4.3 and 4.7 yield a convergence rate of τ̂(Xn) which is slower in
the local case than in the global case. Recall that from Theorem 3.4, the reach
pertains to the size of a bottleneck structure in the global case, and to maxi-
mum directional curvature in the local case. To estimate the size of a bottleneck,
observing two points close to each point in the bottleneck gives a good approx-
imation. However, for approximating maximal directional curvature, observing
two points close to the curvature attaining point is not enough, but they should
also be aligned with the highly curved direction. Hence, estimating the reach
may be more difficult in the local case, and the difference in the convergence
rates of Proposition 4.3 and 4.7 matches this intuition.
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5 Minimax Estimates

In this section we derive bounds on the minimax risk Rn of the estimation of
the reach over the class Pd,Dτmin,L,fmin

, that is

Rn = inf
τ̂n

sup
P∈Pd,Dτmin,L,fmin

EPn
∣∣∣∣ 1

τP
− 1

τ̂n

∣∣∣∣p , (5.1)

where the infimum ranges over all estimators τ̂n
(
(X1, TX1), . . . , (Xn, TXn)

)
based

on an i.i.d. sample of size n with the knowledge of the tangent spaces at sample
points.

The rate of consistency of the plugin estimator τ̂(Xn) studied in the previous
section leads to an upper bound on Rn, which we state here for completeness.

Theorem 5.1. For all n ≥ 1,

Rn ≤ Cτmin,d,L,fmin,pn
− 2p

3d−1 ,

for some constant Cτmin,d,L,fmin,p depending only on τmin, d, L, fmin and p.

We now focus on deriving a lower bound on the minimax risk Rn. The
method relies on an application of Lecam’s Lemma [Yu97]. In what follows, let

TV (P, P ′) =
1

2

∫
|dP − dP ′|

denote the total variation distance between P and P ′, where dP, dP ′ denote
the respective densities of P, P ′ with respect to any dominating measure. Since
|x−z|p+ |z−y|p ≥ 21−p|x−y|p , the following version of Lecam’s lemma results
from Lemma 1 in [Yu97] and (1− TV (Pn, P ′n)) ≥ (1− TV (P, P ′))n.

Lemma 5.2 (Lecam’s Lemma). Let P, P ′ ∈ Pd,Dτmin,L,fmin
with respective supports

M and M ′. Then for all n ≥ 1,

Rn ≥
1

2p

∣∣∣∣ 1

τM
− 1

τM ′

∣∣∣∣p (1− TV (P, P ′))
n
.

Lemma 5.2 implies that in order to derive a lower bound on Rn one needs
to consider distributions (hypotheses) in the model that are stochastically close
to each other — i.e. with small total variation distance — but for which the
associated reaches are as different as possible. A lower bound on the minimax
risk over Pd,Dτmin,L,fmin requires the hypotheses to belong to the class. Luckily,
in our problem it will be enough to construct hypotheses from the simpler class
Qd,Dτmin,L,fmin

. Indeed, we have the following isometry result between Qd,Dτmin,L,fmin

and Pd,Dτmin,L,fmin for the total variation distance.

Lemma 5.3. In accordance with the notation of Definition 2.6, let Q,Q′ ∈
Qd,Dτmin,L,fmin

be distributions on RD with associated distributions P, P ′ ∈ Pd,Dτmin,L,fmin,

on RD ×Gd,D. Then,
TV (P, P ′) = TV (Q,Q′) .

13



M ′

M

Figure 4: Hypotheses of Proposition 5.5

In order to construct hypotheses in Qd,Dτmin,L,fmin
we take advantage of the fact

that the class Md,D
τmin,L

has good stability properties, which we now describe.
Here, since submanifolds do not have natural parametrizations, the notion of
perturbation can be well formalized using diffeomorphisms of the ambient space
RD ⊃M . Given a smooth map Φ : RD → RD, we denote by dixΦ its differential
of order i at x. Given a tensor field A between Euclidean spaces, let ‖A‖op =
supx ‖Ax‖op, where ‖Ax‖op is the operator norm induced by the Euclidean norm.
The next result states, informally, that the reach and geodesics third derivatives
of a submanifold that is perturbed by a diffeomorphism that is C3-close to the
identity map do not change much.

Proposition 5.4. Let M ∈Md,D
τminL

be fixed, and let Φ : RD → RD be a global

C3-diffeomorphism. If ‖ID − dΦ‖op,
∥∥d2Φ

∥∥
op

and
∥∥d3Φ

∥∥
op

are small enough,

then M ′ = Φ(M) ∈Md,D
τmin

2 ,2L
.

Now we construct the two hypotheses Q,Q′ as follows (see Figure 4). Take
M to be a d-dimensional sphere and Q to be the uniform distribution on it. Let
M ′ = Φ(M), where Φ is a bump-like diffeomorphism having the curvature of
M ′ to be different of that of M in some small neighborhood. Finally, let Q′ be
the uniform distribution on M ′.

Proposition 5.5. Assume that L ≥ 1
2τ2
min

and fmin ≥ 1
2d+1τdminσd

. Then for

` > 0 small enough, there exist Q,Q′ ∈ Qd,Dτmin,L,fmin
with respective supports M

and M ′ such that∣∣∣∣ 1

τM
− 1

τM ′

∣∣∣∣ ≥ cd `

τ2
min

and TV (Q,Q′) ≤ 12

(
`

2τmin

)d
.

Hence, applying Lemma 5.2 with the hypotheses P, P ′ associated to Q,Q′

of Proposition 5.5, and taking 12 (`/2τmin)
d

= 1/n, together with Lemma 5.3,
yields the following lower bound.

Proposition 5.6. Assume that L ≥ 1
2τ2
min

and fmin ≥ 1
2d+1τdminσd

. Then for n

large enough,

Rn ≥
cd,p
τpmin

n−p/d,

where cd,p depends only on d and p.
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Here, the assumptions on the parameters L and fmin are necessary for the
model to be rich enough. Roughly speaking, they ensure at least that a sphere of
radius 2τmin belongs to the model. From Proposition 5.6, the plugin estimation
τ̂(Xn) provably achieves the optimal rate in the global case (Theorem 4.3) up to
numerical constants. In the local case (Theorem 4.7) the rate obtained presents
a gap, yielding a gap in the overall rate.

6 Towards Unknown Tangent Spaces

So far, in our analysis we have used the key assumption that both the point
cloud and the tangent spaces were jointly observed. We now focus on the more
realistic framework where only points are observed. We once again rely on
the formulation of the reach given in Theorem 2.3 and consider a new plug-
in estimator in which the true tangent spaces are replaced by estimated ones.
Namely, given a point cloud X ⊂ RD and a family T = {Tx}x∈X of linear
subspaces of RD indexed by X, the estimator is defined as

τ̂(X, T ) = inf
x 6=y∈X

‖y − x‖2

2d(y − x, Tx)
. (6.1)

In particular, τ̂(X) = τ̂(X, TXM), where TXM = {TxM}x∈X. Adding uncer-
tainty on tangent spaces in (6.1) does not change drastically the estimator,
as the formula is stable with respect to T . In what follows, the distance be-
tween two vector subspaces U, V ∈ Gd,D is measured with their principal angle
‖πU − πV ‖op.

Proposition 6.1. Let X ⊂ RD and T = {Tx}x∈X, T̃ = {T̃x}x∈X be two families
of linear subspaces of RD indexed by X. Assume X to be δ-sparse, T and T̃ to
be θ-close, in the sense that

inf
x6=y∈X

‖y − x‖ ≥ δ and sup
x∈X
‖Tx − T̃x‖op ≤ sin θ.

Then, ∣∣∣∣ 1

τ̂(X, T )
− 1

τ̂(X, T̃ )

∣∣∣∣ ≤ 2 sin θ

δ
.

In other words, the map T 7→ τ̂(X, T )−1 is smooth, provided that the basis
point cloud X contains no zone of accumulation at a too small scale δ > 0.
As a consequence, under the assumptions of Proposition 6.1, the bounds on∣∣τ̂(X)

−1− τM−1
∣∣ of Proposition 4.2 and Proposition 4.6 still hold with an extra

error term 2 sin θ/δ if we replace τ̂(X) by τ̂(X, T ).
For an i.i.d. point cloud Xn asymptotic rates of tangent space estimation

derived in C3-like models can be found in [CC16, SW12], yielding bounds on
sin θ. In that case, the typical scale of minimum interpoint distance is δ � n−2/d,
as stated in the asymptotic result Theorem 2.1 in [KMT92] for the flat case of
Rd. However, the typical covering scale of M used in the global case (Theorem
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4.3) is ε � (1/n)1/d. It appears that we can sparsify the point cloud Xn — that
is, removing accumulation points — while preserving the covering property at

scale ε = 2δ � (log n/n)
1/d

. This can be performed using the farthest point
sampling algorithm [AL15, Section 3.3]. Such a sparsification pre-processing
allows to lessen the possible instability of τ̂(Xn, ·)−1. Though, whether the
alignment property used in the local case (Theorem 4.7) is preserved under
sparsification remains to be investigated.

7 Conclusion and Open Questions

In the present work, we gave new insights on the geometry of the reach. In-
ference results were derived in both deterministic and random frameworks. For
i.i.d. samples, non-asymptotic minimax upper and lower bounds were derived
under assumptions on the third order derivative of geodesic trajectories. Let us
conclude with some open questions.

• The minimax upper and lower bounds given in Theorem 5.1 and Theorem
5.6 do not match. They are yet to be sharpened.

• In practice, since large reach ensures regularity, one may be interested with
having a lower bound on the reach τM . Giving the limiting distribution of
the statistic τ̂(Xn) would allow to derive asymptotic confidence intervals
for τM .

• Other regularity parameters such as local feature size [BG14] and λ-reach
[CL05] could be relevant to estimate, as they are used as tuning parameters
in computational geometry techniques.
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Table of Notation

Cα,β , cα,β , C
′
α,β , c

′
α,β Constant depending on the parameters α, β

D Ambient dimension
d Manifold dimension
TxM Tangent space of M at x
τM , τQ, τP Reach of M = Supp(Q) = Supp(P )
τmin Prescribed lower bound on τM
L Prescribed third order derivative bound on geodesics
Hd d-dimensional Hausdorff measure on RD
volM Volume measure of M ⊂ RD
f Density with respect to the volume measure 1MHd
fmin Prescribed lower bound on f
λM Uniform probability distribution on M , i.e. f = Hd(M)−1

Md,D
τmin,L

Geometric model

Qd,Dτmin,L,fmin Statistical Model with unknown tangent spaces

Q,Q′ Element of Qd,Dτmin,L,fmin
Pd,Dτmin,L,fmin Statistical Model with known tangent spaces

P, P ′ Element of Pd,Dτmin,L,fmin
Supp(·) Support of a distribution
‖·‖ Euclidean norm
〈·, ·〉 Euclidean scalar product
B(x, r) Closed Euclidean ball
γp,v Geodesic passing through p with direction v
γx→y Geodesic joining x to y with γx→y(0) = x
dM (·, ·) Geodesic distance
BM (p, s) Closed Geodesic ball
d(·, A) Distance to a subset A ⊂ RD
πM Projection map onto M
Med(·) Medial axis
dxΦ · h Differential at x in the direction h
d2
xΦ, d3

xΦ Higher order differentials
‖·‖op Operator norm
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A Some Technical Results on the Model

A.1 Metric Properties

This section garners geometric lemmas on embedded manifolds in the Euclidean
space that are related to the reach, and that will be used several times in the
proofs.

Proposition A.1. Let M ⊂ RD be a submanifold with reach τM > 0.

(i) For all p ∈M , we let IIp denote the second fundamental form of M at x.
Then for all unit vector v ∈ TpM , ‖IIp(v, v)‖ ≤ 1

τM
.

(ii) The injectivity radius of M is at least πτM .

(iii) The sectional curvatures κ of M satisfy − 2
τ2
M
≤ κ ≤ 1

τ2
M

.

(iv) For all p ∈ M , the map expp :
◦
BTpM (0, πτM ) →

◦
BM (0, πτM ) is a diffeo-

morphism. Moreover, for all ‖v‖ < πτM
2
√

2
and w ∈ TpM ,(

1− ‖v‖
2

6τ2
M

)
‖w‖ ≤

∥∥dv expp ·w
∥∥ ≤ (1 +

‖v‖2

τ2
M

)
‖w‖

(v) For all p ∈M , r ≤ πτM
2
√

2
, and a Borel set A ⊂ BTqM (0, r) ⊂ TqM ,(

1− r2

6τ2
M

)d
Hd(A) ≤ Hd(expq(A)) ≤

(
1 +

r2

τ2
M

)d
Hd(A).

(vi) Let q ∈ M , γ be a geodesic at q, and denote by Pt the parallel transport
operator along γ. Then for all t < πτM and for all v ∈ TqM ,

∠(Pt(v), v) ≤ t

τM
.

Proof of Proposition A.1. (i) is stated in Proposition 2.1 in [NSW08], yielding
(ii) from Corollary 1.4 in [AB06]. (iii) follows using (i) again and the Gauss
equation [dC92, p. 130]. (iv) is derived from (iii) by a direct application of
Lemma 8 in [DVW15]. (v) follows from (iv) and Lemma 4 in [ALZ13]. All that
remain to be showed is (vi).

For this, assume without loss of generality that ‖v‖ = 1. Let g : [0, t]→ Sd−1

be defined by g(s) = Ps(v). Let u ∈ RD be a unit vector and denoting by ∇̄
the ambient derivative. We may write

〈g′(s), u〉 =
〈
∇̄γ′(s)Ps(w), u

〉
= 〈II(γ′(s), Ps(w)), u〉 .

Hence ‖g′(s)‖ ≤ 1
τM

for all s ∈ [0, t]. Since g is a curve on Sd−1, this implies

∠(Pt(v), v) = dSd−1(γ(t), γ(0)) ≤
∫ t

0

‖g′(s)‖ ds ≤ t

τM
.
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A.2 Comparing Reach and Diameter

Let us now prove Proposition 2.7. For this aim, we first state the following
analogous bound on the diameter.

Lemma A.2 (Lemma 2 in [AL15]). Let M ⊂ RD be a connected closed d-
dimensional manifold, and let Q be a probability distribution having support M
with a density f ≥ fmin with respect to the Hausdorff measure on M . Then,

diam(M) ≤ Cd

τd−1
M fmin

,

for some constant Cd > 0 depending only on d.

Proposition A.3. If K ⊂ RD is not homotopy equivalent to a point,

τK ≤

√
D

2(D + 1)
diam(K).

Proposition A.3 is a straightforward combination of Lemma A.4 and Lemma
A.5. We recall that for two compact subsets A,B ⊂ RD, the Hausdorff distance
[BBI01, p. 252] between them is defined by

dH(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
.

We denote by conv(·) the closed convex hull of a set.

Lemma A.4. For all K ⊂ RD, dH (K, conv(K)) ≤
√

D
2(D+1)diam(K).

Proof of Lemma A.4. It is a straightforward corollary of Jung’s Theorem 2.10.41
in [Fed69], which states that K is contained in a (unique) closed ball with (min-

imal) radius at most
√

D
2(D+1)diam(K).

Lemma A.5. If K ⊂ RD is not homotopy equivalent to a point, τK ≤ dH (K, conv(K)).

Proof of Lemma A.5. Let us prove the contrapositive. Assume that τK > dH (K, conv(K)).
Then,

conv(K) ⊂
⋃
x∈K
B (x, dH (K, conv(K))) ⊂

⋃
x∈K

◦
B (x, τK) ⊂ med(K)c.

Therefore, the map πK : conv(K) → K is well defined and continuous, so that
K is a retract of conv(K) (see Chapter 0 in [Hat02]). Therefore, K is homotopy
equivalent to a point, since the convex set conv(K) is.

We are now in position to prove Proposition 2.7.

Proof of Proposition 2.7. From Theorem 3.26 in [Hat02], M has a non trivial
homology group of dimension d over Z/2Z, so that it cannot be homotopy
equivalent to a point. Therefore, Proposition A.3 yields τM ≤ diam(M), and
we conclude by applying the bound diam(M) ≤ Cd/(τd−1

M fmin) given by Lemma
A.2.

22



B Geometry of the Reach

For M ⊂ RD, a ∈ M , and v ∈ RD a non-zero vector, we define the local
directional reach by

reach(M,a, v) = inf
{
d(x,M)|x ∈Med(M) with x = a+ tv for some t ≥ 0

}
,

with the convention reach(M,a, v) =∞ if Med(M) ∩ {a+ tv|t ≥ 0} = ∅.

Lemma B.1. (i) For x /∈Med(M)∪M , writing a = πM (x), we have reach(M,a, x−
a) > 0, and for all b ∈M ,

〈x− a, a− b〉 ≥ − ‖a− b‖2 ‖x− a‖
2reach(M,a, x− a)

.

(ii) Let 0 < r < q < ∞ be fixed. Let x, y /∈ Med(M) ∪ M be such that
d(x,M), d(y,M) ≤ r and

reach (M,πM (x), x− πM (x)) ≥ q , reach (M,πM (y), y − πM (y)) ≥ q.

Then,

‖πM (x)− πM (y)‖ ≤ q

q − r
‖x− y‖ .

Proof of Lemma B.1. (i) The proof follows that of Theorem 4.8 (7) in [Fed59].
Let v = x−a

‖x−a‖ and S = {t|πM (a+ tv) = a}. As ‖x− a‖ > 0 belongs to

S, supS > 0 and from [Fed59, Theorem 4.8 (6)] we get

supS ≥ reach(M,a, v).

Moreover, for 0 < t ∈ S,

‖a+ tv − b‖ ≥ d(a+ tv,M) = t.

Developing and rearranging the square of previous inequality yields

‖a− b‖2 + 2t 〈v, a− b〉+ t2 ≥ t2,

2t 〈v, a− b〉 ≥ −‖a− b‖2 ,

〈x− a, a− b〉 ≥ −‖a− b‖
2 ‖x− a‖
2t

.

(ii) The proof follows that of Theorem 4.8 (8) in [Fed59]. Writing a = πM (x)
and b = πM (y), the previous point yields,

〈x− a, a− b〉 ≥ −‖a− b‖
2
r

2q
and 〈y − b, b− a〉 ≥ ‖a− b‖

2
r

2q
.
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As a consequence,

‖x− y‖ ‖a− b‖ ≥ 〈x− y, a− b〉
= 〈(x− a) + (a− b) + (b− y), a− b〉

≥ ‖a− b‖2
(

1− r

q

)
,

hence the result.

Lemma B.2. Let M ⊂ RD be a submanifold with reach τM > 0 having a reach
attaining pair (q1, q2) ∈ M2 such that ‖q1 − q2‖ < 2τM . Write z0 ∈ Med(M)
for the associated axis point. Then there exists a sequence of curves {γn}n∈N of
M joining q1 and q2 with

lim
n
Length(γn) = τM∠(q1 − z0, q2 − z0).

q1 q2

z0

τM

< 2τM

cz0(q1, q2)

hn(t)

γn(t)

r0
n

γ̃(t)

Figure 5: Layout of Lemma B.2.

Proof of Lemma B.2. Without loss of generality, assume that z0 coincides with
the origin. Let cz0(q1, q2) be the circle arc of center z0 with endpoints q1 and q2,
and let γ : [−t0, t0]→ cz0(q1, q2) be its arc length parametrization with γ(−t0) =
q1 and γ(t0) = q2. Let θ := ∠(q1−z0, q2−z0). Since ‖q1 − z0‖ = ‖q2 − z0‖ = τM ,

we have t0 = 1
2τMθ. For all t ∈ [−t0, t0], let rt :=

√
τ2
M −

‖q1−q2‖2
4 csc

(
t
τM

)
,

and let γ̃ : [−t0, t0]→ RD be γ̃(t) = rt
τM
γ(t). Let us show that for all r ∈ (0, r0]

and t ∈ [−t0, t0], following holds:

◦
B
(
r

τM
γ(t), r

)
⊂
◦
B (γ̃(t), rt) ⊂

◦
B (q1, τM ) ∪

◦
B (q2, τM ) , (B.1)
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The left-hand side inclusion of (B.1) being trivial, we turn to the second inclu-
sion. First, note that by definition,

γ̃(t) =

1

2
−

tan
(

t
τM

)
2 tan

(
t0
τM

)
 q1 +

1

2
+

tan
(

t
τM

)
2 tan

(
t0
τM

)
 q2

for all t ∈ [−t0, t0]. Hence,

γ̃(t)− γ̃(0) =
tan

(
t
τM

)
2 tan

(
t0
τM

) (q2 − q1), (B.2)

and from tan
(
t0
τM

)
= ‖q1−q2‖

2r0
, we get ‖γ̃(t)− γ̃(0)‖ = r0 tan

(
t
τM

)
. Now sup-

pose x ∈
◦
B (γ̃(t), rt), then

‖x− γ̃(t)‖2 < r2
t . (B.3)

Then,

‖x− γ̃(t)‖2 = ‖x− γ̃(0)‖2 − 2 〈x− γ̃(0), γ̃(t)− γ̃(0)〉+ ‖γ̃(t)− γ̃(0)‖2 ,

and r2
t = r2

0 + r2
0 tan2

(
t
τM

)
= r2

0 + ‖γ̃(t)− γ̃(0)‖2, hence applying these and

(B.2) to (B.3) implies

‖x− γ̃(0)‖2 −
tan

(
t
τM

)
tan

(
t0
τM

) 〈x− γ̃(0), q2 − q1〉 < r2
0. (B.4)

Now applying γ̃(−t0) = q1 to (B.2) gives q1 − γ̃(0) = − 1
2 (q2 − q1), so

‖x− q1‖2 = ‖x− γ̃(0)‖2 + 2 〈x− γ̃(0), q1 − γ̃(0)〉+ ‖q1 − γ̃(0)‖2

= ‖x− γ̃(0)‖2 − 〈x− γ̃(0), q2 − q1〉+
1

4
‖q1 − q2‖2 .

Similarly,

‖x− q2‖2 = ‖x− γ̃(0)‖2 + 〈x− γ̃(0), q2 − q1〉+
1

4
‖q1 − q2‖2 ,

and hence

min
{
‖x− q1‖2 , ‖x− q2‖2

}
= ‖x− γ̃(0)‖2 − |〈x− γ̃(0), q2 − q1〉|+

1

4
‖q1 − q2‖2 . (B.5)
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Since
∣∣∣tan

(
t0
τM

)∣∣∣ ≤ ∣∣∣tan
(

t
τM

)∣∣∣, applying (B.4) to (B.5) gives

min
{
‖x− q1‖2 , ‖x− q2‖2

}
≤ ‖x− γ̃(0)‖2 −

tan
(

t
τM

)
tan

(
t0
τM

) 〈x− γ̃(0), q2 − q1〉+
1

4
‖q1 − q2‖2

< r2
0 +

1

4
‖q1 − q2‖2 = τ2

M ,

which asserts the second inclusion in (B.1).

Now, by definition of the reach in (2.2),
( ◦
B(q1, τM ) ∪

◦
B(q2, τM )

)
∩Med(M) =

∅, hence (B.1) implies

◦
B
(
r

τM
γ(t), r

)
∩Med(M) = ∅.

For all n ∈ N, let us now define hn, γn : [−t0, t0]→M by (See Figure 5),

hn(t) =
r0

nτM
γ (t) and γn(t) = πM (hn(t)) .

Then for any fixed n ∈ N and t1, t2 ∈ [−t0, t0] such that |t1 − t2| < τM , from
◦
B
(
hn(ti),

r0
n

)
∩Med(M) = ∅, we get

reach (M,γn(ti), hn(ti)− γn(ti)) ≥ d (hn(ti),M) +
r0

n

≥ d(hn(t1),M) ∧ d(hn(t2),M) +
r0

n
,

and since d(hn(ti),M) ≤ d(hn(t1),M) ∨ d(hn(t2),M), Lemma B.1 (ii) yields

‖γn(t1)− γn(t2)‖ = ‖πM (hn(t1))− πM (hn(t2))‖

≤
(
d (hn(t1),M) ∧ d (hn(t2),M) + r0

n

)
‖hn(t1)− hn(t2)‖

d (hn(t1),M) ∧ d (hn(t2),M) + r0
n − d (hn(t1),M) ∨ d (hn(t2),M)

=
d (hn(t1),M) ∧ d (hn(t2),M) + r0

n
r0
n − |d(hn(t1),M)− d(hn(t2),M)|

‖hn(t1)− hn(t2)‖ .

Noticing furthermore that

|d(hn(t1),M)− d(hn(t2),M)| ≤ ‖hn(t1)− hn(t2)‖ ≤ r0

nτM
|t1 − t2| ,

and
d(hn(ti),M) ≤ d(z0,M) + ‖hn(ti)− z0‖ ≤ τM +

r0

n
,

we get

‖γn(t1)− γn(t2)‖ ≤
τM + 2 r0n

r0
n −

r0
nτM
|t1 − t2|

r0

nτM
|t1 − t2|

=
τM + 2 r0n

τM − |t1 − t2|
|t1 − t2|.
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For any fixed k and 0 ≤ ∀j ≤ k, set tk,j = 2j−k
k t0. The inequality above yields,

k∑
j=1

‖γn(tk,j)− γn(tk,j−1)‖ ≤
τM + 2 r0n
τM − 2t0

k

2t0,

so

Length(γn) = lim sup
k

k∑
j=1

‖γn(tk,j)− γn(tk,j−1)‖ ≤
(

1 +
2r0

τMn

)
2t0.

Moreover, the γn’s are curves joining q1 to q2 with images γn([−t0, t0]) ⊂
RD \

◦
B(z0, τM ), so that their lengths are at most that of the arc of great circle

cz0(q1, q2):

Length (γn) ≥ Length (cz0(q1, q2)) = 2t0.

Hence,
lim
n→∞

Length(γn) = 2t0 = τMθ.

Lemma B.3. Let M be a compact manifold, and q1, q2 ∈M with q1 6= q2. Let
{γn}n∈N be a sequence of curves on M joining q1 and q2 such that supn Length(γn) <
∞ Then there exists a curve γ on M joining q1 and q2 such that

lim inf
n

Length(γn) ≤ Length(γ) ≤ lim sup
n

Length(γn).

Proof of Lemma B.3. Without loss of generality, take the γn’s to be arc length
parametrized. For all n ∈ N, we let gn : [0, 1] → M be the reparametrization
gn(t) = γn (Length(γn)t) . Notice that for all t ∈ [0, 1], the set {gn(t)}n∈N is
contained in the compact set M , so that it is bounded uniformly in t. Moreover,
writing K = supn Length(γn) <∞, we have that for all t1, t2 ∈ [0, 1],

‖gn(t1)− gn(t2)‖ = ‖γn (Length(γn)t1)− γn (Length(γn)t2)‖
≤ Length(γn)|t1 − t2|
≤ K|t1 − t2|.

Hence, the sequence {gn}n∈N is pointwise bounded and equicontinuous. From
Arzelà-Ascoli theorem [Mun75, Theorem 45.4], there exists a curve γ : [0, 1]→
M and subsequence {gni}i∈N converging uniformly to γ.

For any fixed k and 1 ≤ ∀j ≤ k, set tk,j = j
k t0. The uniform convergence

ensures that

k∑
j=0

‖γ(tk,j+1)− γ(tk,j)‖ = lim
i→∞

k∑
j=0

‖gni(tk,j+1)− gni(tk,j)‖ .
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As a consequence,

Length(γ) = lim
k→∞

k∑
j=0

‖γ(tk,j+1)− γ(tk,j)‖

= lim
k→∞

lim
i→∞

k∑
j=0

‖γni(tk,j+1)− γni(tk,j)‖

= lim
i→∞

Length(γni).

Hence the result.

Proof of Lemma 3.2. Combining Lemma B.2 and Lemma B.3 provides the exis-
tence of a curve γ ⊂M joining q1 and q2 such that Length(γ) = Length(cz0(q1, q2)).

But M ⊂ RD \
◦
B(z0, τM ), and since ‖q1 − q2‖ < 2τM , cz0(q1, q2) is the unique

minimizing geodesic of ∂B(z0, τM ) ⊂ RD \
◦
B(z0, τM ) joining q1 and q2. There-

fore, γ = cz0(q1, q2) ⊂M , hence the result.

Lemma B.4. Let M ∈ Md,D
τmin,L

be a submanifold with reach τM . For all
p ∈M , let us denote

Lp := sup
q∈BM (p,

τM
2 ),v∈BTpM (0,1)

∥∥γ′′′q,v(0)
∥∥ .

Then for all r ≤ τM/2,∣∣∣∣∣ sup
v∈TpM,‖v‖=1

∥∥γ′′p,v(0)
∥∥− sup

q∈B(p,r)∩M

2d(q − p, TpM)

‖q − p‖2

∣∣∣∣∣ ≤ 3

(
1

τ2
M

+ Lp

)
r.

To prove Lemma B.4 we need the following straightforward result.

Lemma B.5. Let U be a vector space and u ∈ U , n ∈ U⊥. If v = u + n + e,
then

|d(v, U)− ‖v − u‖ | ≤ ‖e‖ .

Proof of Lemma B.4. First note that for all unit vector v ∈ TpM , qv,r = γp,v(r)
belongs to B(p, r) ∩M , and r ≤ τM

2 with Proposition A.1 (ii) implies qv,r 6= p.
Therefore, it suffices to show that for all q ∈ B(p, r) ∩M , there exists v = vq ∈
TpM such that ∣∣∣∣∣∥∥γ′′p,v(0)

∥∥− 2d(q − p, TpM)

‖q − p‖2

∣∣∣∣∣ ≤ 3

(
1

τ2
M

+ Lp

)
r.

Let q ∈ B(p, r) ∩M be different from p. Denoting t = dM (p, q) > 0, we
call γ = γp,v the arc-length parametrized geodesic of minimal length such that
γ(0) = p and γ(t) = q. γ exists from Proposition A.1 (ii), since r ≤ τM

2 . A
Taylor expansion at zero of γ yields,∥∥∥∥q − pt − γ′(0)− t

2
γ′′(0)

∥∥∥∥ ≤ Lp t26 .
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Since γ′′(0) ∈ TpM⊥, Lemma B.5 shows that∣∣∣∣d(
q − p
t

, TpM)−
∥∥∥∥q − pt − γ′(0)

∥∥∥∥∣∣∣∣ ≤ Lp t26 .
Therefore,∣∣∣∣2t d(

q − p
t

, TpM)− ‖γ′′(0)‖
∣∣∣∣

≤ 2

t

(∣∣∣∣d(
q − p
t

, TpM)−
∥∥∥∥q − pt − γ′(0)

∥∥∥∥∣∣∣∣+

∥∥∥∥q − pt − γ′(0)− t

2
γ′′(0)

∥∥∥∥)
≤ 2

3
Lpt.

This yields,∣∣∣∣∣2d(q − p, TpM)

‖q − p‖2
− ‖γ′′(0)‖

∣∣∣∣∣ ≤ 2d(q − p, TpM)

∣∣∣∣∣ 1

dM (p, q)2
− 1

‖q − p‖2

∣∣∣∣∣+
2

3
Lpt.

Moreover, from ‖q − p‖ ≤ dM (p, q) and Proposition 6.3 in [NSW08], we derive

‖q − p‖2 ≤ dM (p, q)2 ≤ τ2
M

1−

√
1− 2 ‖q − p‖

τM

2

≤ τ2
M

(
‖q−p‖
τM

)2

(
1− 2‖q−p‖

τM

)3/2

≤ ‖q − p‖2

1− 3‖q−p‖τM

,

where the last two inequalities follow from elementary real analysis arguments.
Therefore, we get t ≤ 2 ‖q − p‖ and∣∣∣∣∣ 1

dM (p, q)2
− 1

‖q − p‖2

∣∣∣∣∣ ≤ 3

τM ‖q − p‖
.

Using moreover that 2d(q − p, TpM) ≤ ‖q − p‖2 /τM we derive,∣∣∣∣∣‖γ′′(0)‖ − 2d(q − p, TpM)

‖q − p‖2

∣∣∣∣∣ ≤ 2d(q − p, TpM)
3

τM ‖q − p‖
+

4

3
Lp ‖q − p‖

≤ 3

τ2
M

‖q − p‖+
4

3
Lp ‖q − p‖

≤ 3

(
1

τ2
M

+ Lp

)
r.
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Proof of Lemma 3.3. For r > 0, let ∆r :=
{

(p, q) ∈M2| ‖p− q‖ < r
}

, and ∆̄ =
∩r>0∆r denote the diagonal of M2. Consider the map ϕ : M2 \ ∆̄→ R defined

by ϕ(p, q) = ‖q−p‖2
2d(q−p,TpM) . From (2.3), if there exists p 6= q ∈ M such that

τM = ϕ(p, q), then there exists z ∈ Med(M) with d(z,M) = τM . Hence,
for all p 6= q ∈ TpM , ϕ(p, q) < τM , and by compactness of M2\∆r, we have
supM2\∆r

ϕ < τ−1
M . Since we have the decomposition

1

τM
= sup

(p,q)∈M2\∆̄
ϕ(p, q)

= sup
(p,q)∈M2\∆r

ϕ(p, q) ∨ sup
(p,q)∈∆r\∆̄

ϕ(p, q),

we get sup∆r\∆̄ ϕ = τ−1
M . Moreover, Lemma B.4 implies that∣∣∣∣∣ sup

p∈M,v∈BTpM (0,1)

∥∥γ′′p,v(0)
∥∥− sup

(p,q)∈∆r\∆̄
ϕ(p, q)

∣∣∣∣∣ ≤ 3

(
1

τ2
M

+ L

)
r

for r > 0 small enough. Letting r go to zero yields

sup
p∈M,v∈BTpM (0,1)

∥∥γ′′p,v(0)
∥∥ =

1

τM
.

Finally, the unit tangent bundle T≤1M =
{

(p, v), p ∈M,v ∈ BTpM (0, 1)
}

being

compact, there exists (q0, v0) such that γ0 = γp0,v0 satisfies ‖γ′′0 (0)‖ = τ−1
M ,

which concludes the proof.

C Analysis of the Estimator

C.1 Global Case

To show Proposition 4.2, we show a stronger result (Proposition C.1) that ap-
plies to a reach attaining pair with any size 2λ, meaning that it is not necessarily
a bottleneck. Proposition 4.2 follows straightforwardly by setting λ equal to τM .

Proposition C.1. Let M ⊂ RD be a submanifold, and 0 < λ ≤ τM . As-
sume that M has a reach attaining pair (q1, q2) ∈M2 (see Definition 3.1) with
‖q1 − q2‖ ≥ 2λ. Let X ⊂ M . If there exists x, y ∈ X with ‖q1 − x‖ < λ and
‖q2 − y‖ < λ, then

0 ≤ 1

τM
− 1

τ̂(X)
≤ 1

τM
− 1

τ̂({x, y})
≤ CτM ,λ max {dM (q1, x), dM (q2, y)} ,

where CτM ,λ =
2τ2
M+6τMλ+λ2

2τ2
Mλ

2 depends only on the parameters τM , λ, and is a

decreasing function of τM and λ when the other parameter is fixed.
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Proof of Proposition C.1. The two left hand inequalities are a direct conse-
quence of Corollary 4.1, let us then focus on the third one.

Without loss of generality, assume that ‖q1 − q2‖ = 2λ. We set t :=
max {dM (q1, x), dM (q2, y)} and z1 := x + (q2 − q1). We have ‖z1 − x‖ =
‖q2 − q1‖ = 2λ and ‖y − q2‖ , ‖q1 − x‖ ≤ t. Therefore, from the definition of τ̂
in (4.1) and the fact that the distance function to a linear space is 1-Lipschitz,
we get

1

τ̂({x, y})
≥ 2d(y − x, TxM)

‖y − x‖2

=
2d ((y − q2) + (z1 − x) + (q1 − x), TxM)

‖(y − q2) + (z1 − x) + (q1 − x)‖2

≥ d(z1 − x, TxM)− 2t

2(λ+ t)2
.

Let now θ := ∠(q2−q1, Tq1M) = minv∈Tq1M ∠(q2−q1, v). Since z0 ∈Med(M),
with q1, q2 ∈ B(z0, τM ) and ‖q1 − q2‖ = 2λ, for any v′ such that v′ ⊥ z0 − q1,
we have ∠(q2 − q1, v

′) ≥ π
2 − ∠(q2 − q1, z0 − q1). Hence, sin θ ≥ λ

τM
and

cos θ ≤
√
τ2
M−λ2

τM
. Let v1 ∈ Tq1M be any point in Tq1M realizing this angle, in

the sense that ∠(q2 − q1, v1) = ∠(q2 − q1, Tq1M). Then we have

∠(z1 − x, v1) = ∠(q2 − q1, v1) = θ.

Let v̄1 ∈ TxM be the parallel transport of v1 along the geodesic between q1 and
x. Since M has reach τM , Proposition A.1 (vi) gives

∠(v1, v̄1) ≤ dM (x, q1)

τM
≤ t

τM
.

Hence the angle ∠(z1 − x, TxM) can be lower bounded as

∠(z1 − x, TxM) ≥ ∠(z1 − x, v̄1)

≥ ∠(z1 − x, v)− ∠(v, v̄1)

≥ θ − t

τM
.

And 0 ≤ λ
τM
− t
τM
≤ θ− t

τM
≤ ∠(z1−x, TxM) ≤ π

2 , so the inequality is preserved
by the sine function, i.e.

d(z1 − x, TxM) = ‖z1 − x‖ sin(∠(z1 − x, TxM))

≥ 2λ sin

(
θ − t

τM

)
= 2λ

(
sin θ cos

t

τM
− cos θ sin

t

τM

)
=

2λ2

τM
cos

t

τM
−

2λ
√
τ2
M − λ2

τM
sin

t

τM
.
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Combining the previous bounds yields,

1

τM
− 1

τ̂({x, y})
≤ 1

τM
− d(z1 − x, TxM)− 2t

2(λ+ t)2

≤ 1

τM
−

1
τM

cos t
τM
−
√
τ2
M−λ2

τMλ
sin t

τM
− t

λ2(
1 + t

λ

)2 .

Using again that t < λ ≤ τM , the latter right-hand side term is itself upper
bounded by,

1

τM
−

(
1

τM

(
1− t2

2τ2
M

)
−
√
τ2
M − λ2

τMλ

t

τM
− t

λ2

)(
1− 2t

λ

)

≤

(
λ

2τ3
M

+

√
τ2
M − λ2

τ2
Mλ

+
1

λ2
+

2

λτM

)
t

=
2τ3
M + 2λτM

√
τ2
M − λ2 + 4τ2

Mλ+ λ3

2τ3
Mλ

2
t

≤ 2τ2
M + 6τMλ+ λ2

2τ2
Mλ

2
t := CτM ,λt,

which is the announced result.

As for Proposition 4.2, we tackle the proof of Proposition 4.3 by showing
the following stronger one, Proposition C.2. Proposition 4.3 follows straightfor-
wardly by setting λ equal to τM .

Proposition C.2. Let P ∈ Pd,Dτmin,L,fmin
, M = supp(P ) and 0 < λ ≤ τM .

Assume that M has a reach attaining pair (q1, q2) ∈ M2 (see Definition 3.1)
with ‖q1 − q2‖ ≥ 2λ. Then

EPn
[∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣p] ≤ CτM ,λ,fmin,d,pn− pd .
where CτM ,λ,fmin,d,p depends only on τM , λ, fmin d, p, and is a decreasing
function of τM and λ when other parameters are fixed.

Proof of Proposition C.2. Let Q be the distribution on RD associated to P .

Let s < 1
τM

, CτM ,λ =
2τ2
M+6τMλ+λ2

2τ2
Mλ

2 , and t = 1
CτM,λ

s ≤ 2τM/9. Let ωd :=

Hd(BRd(0, 1)) be the volume of the d-dimensional unit ball. Then note that
from Proposition A.1 (v), for all q ∈M ,

Q (BM (p, t)) ≥ fminHd (BM (p, t))

≥ ωdfmin

(
1−

(
t

6τM

)2
)d

td

≥ ωdfmin
(

728

729

)d
td.
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Moreover, Proposition 4.2 asserts that
∣∣∣ 1
τM
− 1

τ̂(Xn)

∣∣∣ > s implies that either

BM (q1, t) ∩ Xn = ∅ or BM (q2, t) ∩ Xn = ∅. Hence,

P
(∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣ > s

)
≤ P (BM (q1, t) ∩ Xn = ∅) + P (BM (q2, t) ∩ Xn = ∅)

≤ 2

(
1− ωdfmin

(
728

729

)d
td

)n

≤ 2 exp

(
−nωdfmin

(
728

729

)d
C−dτM ,λs

d

)
.

Letting Γ(·) denote the Gamma function, the integration of the above bound
gives

EPn
[∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣p] =

∫ 1

τ
p
M

0

P
(∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣p > s

)
ds

≤ 2

∫ ∞
0

exp

(
−nωdfmin

(
728

729

)d
C−dτM ,λs

d
p

)
ds

=
2
(

729
728

) p
d CpτM ,λ

(nωdfmin)
p
d

∫ ∞
0

x
p
d−1e−xdx

=
2
(

729
728

) p
d Γ
(
p
d

)
(ωdfmin)

p
d

CτM ,λn
− pd

:= CτM ,λ,fmin,d,pn
− pd .

where CτM ,λ,fmin,d,p depends only on τM , λ, fmin, d, p, and is a decreasing
function of τM and λ when other parameters are fixed.

C.2 Local Case

Lemma C.3. Let M be a submanifold and p ∈M . Let v0, v1 ∈ TpM be a unit
tangent vector, and let θ = ∠(v0, v1). Let γp,v be the arc length parametrized
geodesic starting from p with velocity v, and write γi = γp,vi for i = 0, 1. Let
κp = maxv∈BTpM (0,1)

∥∥γ′′q0,v(0)
∥∥. Then,

‖γ′′1 (0)‖ ≥ ‖γ′′0 (0)‖ −
√

2√
2− 1

sin2 θ (κp + ‖γ′′0 (0)‖)− 1√
2− 1

(κp − ‖γ′′0 (0)‖) .

(C.1)
and

‖γ′′1 (0)‖ ≥ ‖γ′′0 (0)‖ − sin2 θ (κp + ‖γ′′0 (0)‖)

−
|cos θ sin θ|κp

√
κp − ‖γ′′0 (0)‖

(
√

2− 1) ‖γ′′0 (0)‖

(
2κp
‖γ′′0 (0)‖

+ 1

)
. (C.2)
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Proof of Lemma C.3. Let w ∈ TpM be a unit vector satisfying w ⊥ v0 and
v1 = cos θv0 + sin θw. For t ∈ R, let v(t) := (cos t)v0 + (sin t)w ∈ TpM , so that
v1 = v(θ). Then∥∥d2

0 expp(v(t), v(t))
∥∥ =

∥∥cos2 td2
0 expp(v0, v0) + 2 cos t sin td2

0 expp(v0, w)

+ sin2 td2
0 expp(w,w)

∥∥
≥ |cos t|

∥∥cos td2
0 expp(v0, v0) + 2 sin td2

0 expp(v0, w)
∥∥

− sin2 t
∥∥d2

0 expp(w,w)
∥∥ . (C.3)

Now, note that when x ∈ [−1, 1],
√

1 + x ≥ 1+f(x), where f(x) = min{x, (
√

2−
1)x}. Hence for any v′, v′′ ∈ TpM ,

‖v′ + v′′‖ =

√
‖v′‖2 + ‖v′′‖2

√
1 +

2 〈v′, v′′〉
‖v′‖2 + ‖v′′‖2

≥
√
‖v′‖2 + ‖v′′‖2

(
1 + f

(
2 〈v′, v′′〉

‖v′‖2 + ‖v′′‖2

))

≥ ‖v′‖+ f

 2 〈v′, v′′〉√
‖v′‖2 + ‖v′′‖2

 .

Applying the latter inequality to (C.3) and using d2
0 expp(v0, v0) = γ′′0 (0) and

d2
0 expp(w,w) ≤ κp gives∥∥d2

0 expp(v(t), v(t))
∥∥

≥ cos2 t
∥∥d2

0 expp(v0, v0)
∥∥− sin2 t

∥∥d2
0 expp(w,w)

∥∥
+ | cos t|f

 4 cos t sin t
〈
d0 expp(v0, v0), d0 expp(v0, w)

〉√
cos2 t

∥∥d2
0 expp(v0, v0)

∥∥2
+ 4 sin2 t

∥∥d2
0 expp(v0, w)

∥∥2


≥ cos2 t ‖γ′′0 (0)‖ − κp sin2 t

+ | cos t|f

 4 cos t sin t
〈
γ′′0 (0), d0 expp(v0, w)

〉√
cos2 t ‖γ′′0 (0)‖2 + 4 sin2 t

∥∥d2
0 expp(v0, w)

∥∥2

 .

Now, note that f(x) ≥ −|x| for x ∈ [−1, 1], so applying this with t = θ gives

‖γ′′1 (0)‖ =
∥∥d2

0 expp(v1, v1)
∥∥

≥ cos2 θ ‖γ′′0 (0)‖ − sin2 θκp

−
4
∣∣cos2 θ sin θ

〈
γ′′0 (0), d0 expp(v0, w)

〉∣∣√
cos2 θ ‖γ′′0 (0)‖2 + 4 sin2 θ

∥∥d2
0 expp(v0, w)

∥∥2
. (C.4)

We now focus on the third term of the right-hand side. For this, note that either

t sin t〈γ′′0 (0), d0 expp(v0, w)〉 ≥ 0,
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or

cos(−t) sin(−t)〈γ′′0 (0), d0 expp(v0, w)〉 ≥ 0,

so that

κp ≥ max
{∥∥d2

0 expp(v(−t), v(−t))
∥∥ ,∥∥d2

0 expp(v(t), v(t))
∥∥}

≥ cos2 t ‖γ′′0 (0)‖+
4(
√

2− 1)
∣∣cos2 t sin t

〈
γ′′0 (0), d0 expp(v0, w)

〉∣∣√
cos2 t ‖γ′′0 (0)‖2 + 4 sin2 t

∥∥d2
0 expp(v0, w)

∥∥2

− sin2 tκp.

As a consequence, ∣∣cos2 t sin t
〈
γ′′0 (0), d0 expp(v0, w)

〉∣∣√
cos2 t ‖γ′′0 (0)‖2 + 4 sin2 t

∥∥d2
0 expp(v0, w)

∥∥2

≤ 1

4(
√

2− 1)

(
(1 + sin2 t)κp − cos2 t ‖γ′′0 (0)‖

)
=

1

4(
√

2− 1)

(
cos2 t (κp − ‖γ′′0 (0)‖) + 2 sin2 tκp

)
.

First, setting t = θ, we derive

‖γ′′1 (0)‖

≥ cos2 θ ‖γ′′0 (0)‖ −
(

1 +
2√

2− 1

)
sin2 θκp −

1√
2− 1

cos2 θ (κp − ‖γ′′0 (0)‖)

= ‖γ′′0 (0)‖ −
√

2√
2− 1

sin2 θ (κp + ‖γ′′0 (0)‖)− 1√
2− 1

(κp − ‖γ′′0 (0)‖) .

Furthermore, let t0 be defined by sin2 t0 = 1−‖γ
′′
0 (0)‖
κp

+ε for ε > 0 small enough.

Then
√

cos2 t0 ‖γ′′0 (0)‖2 + 4 sin2 t0
∥∥d2

0 expp(v0, w)
∥∥2 ≤ κp, yielding∣∣〈γ′′0 (0), d0 expp(v0, w)

〉∣∣
≤

√
κp

4(
√

2− 1) cos2 t0| sin t0|
(
cos2 t0 (κp − ‖γ′′0 (0)‖) + 2 sin2 t0κp

)

=
κ

3
2
p

4(
√

2− 1)

 1− ‖γ
′′
0 (0)‖
κp√

1− ‖γ
′′
0 (0)‖
κp

+ ε

+
2

√
1− ‖γ

′′
0 (0)‖
κp

+ ε

‖γ′′0 (0)‖
κp

− ε

 .

Sending ε→ 0, we obtain

∣∣〈γ′′0 (0), d0 expp(v0, w)
〉∣∣ ≤ κp

√
κp − ‖γ′′0 (0)‖

4(
√

2− 1)

(
2κp
‖γ′′0 (0)‖

+ 1

)
.
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Using the previous bound together with

cos2 θ ‖γ′′0 (0)‖2 + 4 sin2 θ
∥∥d2

0 expp(v0, w)
∥∥2 ≥ |cos θ| ‖γ′′0 (0)‖ ,

we finally obtain

‖γ′′1 (0)‖ ≥ ‖γ′′0 (0)‖ − sin2 θ (κp + ‖γ′′0 (0)‖)

−
|cos θ sin θ|κp

√
κp − ‖γ′′0 (0)‖

(
√

2− 1) ‖γ′′0 (0)‖

(
2κp
‖γ′′0 (0)‖

+ 1

)
.

Proof of Lemma 4.4. Note first from Proposition A.1 (ii), dM (x, y) < πτM en-
sures the existence and uniqueness of the geodesic γx→y. The two left hand
inequalities are a direct consequence of Corollary 4.1. Let us then focus on the
third one. Let t0 := dM (x, y), and write γ = γx→y for short. By definition of τ̂
in (4.1),

1

τ̂({x, y})
≥ 2d(y − x, TxM)

‖y − x‖2
≥ 2d(y − x, TxM)

t20
. (C.5)

Let Hγ′′(0) := {x + u ∈ RD|
〈
u, γ′′x→y(0)

〉
= 0} denote the affine hyperplane

passing though x with the normal vector γ′′(0). Since γ′′(0) ∈ TxM⊥, TxM ⊂
Hγ′′(0). As a consequence,

d (y − x, TxM) ≥ d
(
y − x,Hγ′′(0)

)
=
|〈γ′′(0), y − x〉|
‖γ′′(0)‖

. (C.6)

Using the Taylor expansion of γ at order two, we get

y − x = γ(t0)− γ(0) = t0γ
′(0) +

∫ t0

0

∫ t

0

γ′′(s)dsdt. (C.7)

Since γ is parametrized by arc length, 〈γ′(t), γ′(t)〉 = 1. Differentiating this

identity at 0 yields 〈γ′′(0), γ′(0)〉 = 0. In addition, by definition ofMd,D
τmin,L

3M
(Definition 2.4), the geodesic γ satisfies ‖γ′′(s)− γ′′(0)‖ ≤ L|s|. Therefore,

|〈γ′′(0), γ′′(s)〉| = |〈γ′′(0), γ′′(0)〉 − 〈γ′′(0), γ′′(s)− γ′′(0)〉|
≥ ||γ′′(0)||2 − L||γ′′(0)|||s|.

Combining the above bound together with (C.5), (C.6) and (C.7), we derive

1

τ̂({x, y})
≥ ‖γ′′(0)‖ − 2

3
Lt0,

which is the announced inequality.
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Proof of Lemma 4.5. For short, in what follows, we let tx := dM (q0, x), ty :=
dM (q0, y), and θ := ∠(γ′x→y(0), γ′q0→x(tx)). From Lemma C.3,

∥∥γ′′x→y(0)
∥∥ ≥ ∥∥γ′′q0→x(tx)

∥∥− √
2√

2− 1
sin2 θ

(
κx +

∥∥γ′′q0→x(tx)
∥∥)

− 1√
2− 1

(
κx −

∥∥γ′′q0→x(tx)
∥∥)

=

√
2√

2− 1
cos2 θ

∥∥γ′′q0→x(tx)
∥∥−( 1√

2− 1
+

√
2√

2− 1
sin2 θ

)
κx.

(C.8)

We now focus on the term
∥∥γ′′q0→x(tx)

∥∥. Applying again Lemma C.3 yields∥∥γ′′q0→x(0)
∥∥ ≥ (1− 2 sin2 θx)κq0 ,

and since γ′′q0→x is L-Lipschitz,∥∥γ′′q0→x(tx)
∥∥ ≥ ∥∥γ′′q0→x(0)

∥∥− ∥∥γ′′q0→x(tx)− γ′′q0→x(0)
∥∥

≥ (1− 2 sin2 θx)κq0 − Ltx. (C.9)

Now we focus on bounding the terms sin2 θ and cos2 θ. Let S2
τM be a d-

dimensional sphere of radius τM . In what follows, for short, ∠abc stands
for ∠(γ′b→a(0), γ′b→c(0)). First, let q̃0, x̃, ỹ ∈ S2

τM be such that dS2
τM

(q̃0, x̃) =

dM (q0, x), dS2
τM

(q̃0, ỹ) = dM (q0, y), and ∠x̃q̃0ỹ = ∠xq0y. Then from Topono-

gov’s comparison Theorem [Mey89], we have dS2
τM

(x̃, ỹ) ≤ dM (x, y). Moreover,

the spherical law of cosines [Tod79] writes as

cos

(
dS2

τM
(x̃, ỹ)

τM

)
= cos

(
tx
τM

)
cos

(
ty
τM

)
+ sin

(
tx
τM

)
sin

(
ty
τM

)
cos (∠x̃q̃0ỹ) ,

and since tx, ty ≤ π
2 and cos(·) is decreasing on [0, π], we get

ty ≤ dS2
τM

(x̃, ỹ) ≤ dM (x, y).

Now, let q̄0, x̄, ȳ ∈ S2
τM be such that dS2

τM
(q̄0, x̄) = dM (q0, x), dS2

τM
(q̄0, ȳ) =

dM (q0, y), and dS2
τM

(x̄, ȳ) = dM (x, y). Applying Toponogov’s comparison The-

orem [Mey89], we have ∠q0xy ≤ ∠q̄0x̄ȳ and ∠xq0y ≤ ∠x̄q̄0ȳ, and from the
spherical law of cosines [Tod79],

cos (∠q̄0x̄ȳ) =
cos
(
ty
τM

)
− cos

(
tx
τM

)
cos
(
dM (x,y)
τM

)
sin
(
tx
τM

)
sin
(
dM (x,y)
τM

) ≥ 0,
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so that ∠q0xy ≤ ∠q̄0x̄ȳ ≤ π
2 . Also, ∠xq0y ≥ |θx − θy| ≥ π

2 yields π
2 ≤ ∠xq0y ≤

∠x̄q̄0ȳ, and θ = ∠(γ′x→y(0), γ′q0→x(tx)) = π−∠q0xy. Hence applying the spher-
ical law of sines and cosines [Tod79] implies

sin θ = sin(∠q0xy) ≤ sin(∠q̄0x̄ȳ)

=
sin
(
ty
τM

)
sin(∠x̄q̄0ȳ)√

1−
(

cos
(
tx
τM

)
cos
(
ty
τM

)
+ sin

(
tx
τM

)
sin
(
ty
τM

)
cos(∠x̄q̄0ȳ)

)2

≤
sin
(
ty
τM

)
sin(∠x̄q̄0ȳ)√

1− cos2
(
tx
τM

)
cos2

(
ty
τM

)
=

sin
(
ty
τM

)
sin(∠x̄q̄0ȳ)√

sin2
(
ty
τM

)
+ sin2

(
tx
τM

)
cos2

(
ty
τM

)
≤ sin(∠x̄q̄0ȳ) ≤ sin(∠xq0y) ≤ sin(|θx − θy|). (C.10)

And accordingly,

| cos θ| =
√

1− sin2 θ ≥
√

1− sin2(|θx − θy|) = | cos(|θx − θy|)|. (C.11)

Hence applying (C.9), (C.10), and (C.11) to (C.8) gives∥∥γ′′x→y(0)
∥∥

≥
√

2√
2− 1

cos2(|θx − θy|)
(
(1− 2 sin2 θx)κq0 − Ltx

)
−

(
1√

2− 1
+

√
2√

2− 1
sin2(|θx − θy|)

)
κx

=
(
√

2κq0 − κx)√
2− 1

−
√

2√
2− 1

(
(κq0 + κx) sin2(|θx − θy|) + 2κq0 sin2 θx cos2(|θx − θy|)

)
−
√

2√
2− 1

Ltx cos2(θx + θy)

≥ κq0 −
1√

2− 1

(
κx − κq0 +

√
2(3κq0 + κx) sin2(|θx − θy|) +

√
2Ltx

)
.
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S1

exp−1q0 (B1)

γ′0(0)
√

t0
τmin

t0

exp−1q0 (B2)

v0

Figure 6: Layout of Proposition 4.7.

Proof of Proposition 4.7. In what follows, we let t0 ≤ τmin

10 ,

B1 := expq0

({
v ∈ Tq0M : ‖v‖ ≤ t0, ∠(γ′0(0), v) ≤

√
t0
τmin

})
,

B2 := expq0

({
v ∈ Tq0M : ‖v‖ ≤ t0, ∠(γ′0(0), v) ≥ π −

√
t0
τmin

})
,

and B0 := B1 ∪ B2, as in Figure 6. Let X ⊂ M , and x, y ∈ X be such that
x ∈ B1, y ∈ B2. Writing θx := ∠(γ′0(0), γ′q0→x(0)) and θy := ∠(γ′0(0), γ′q0→y(0)),

then θx ≤
√

t0
τmin

≤ π
4 and θy ≥ π −

√
t0
τmin

≥ 3π
4 . Also, dM (q0, x) ≤ t0 and

dM (x, y) ≤ 2t0, so that

0 ≤ 1

τM
− 1

τ̂(X)

≤ 4
√

2 sin2(|θx − θy|)
(
√

2− 1)τM
+ L

(
2

3
dM (x, y) +

√
2√

2− 1
dM (q0, x)

)

≤

(
16
√

2

(
√

2− 1)τminτM
+

(7
√

2− 4)L

3(
√

2− 1)

)
t0.

A symmetric argument also applies when x ∈ B2 and y ∈ B1. Now, for any s <

1
τM

, let t0(s) :=
(

16
√

2
(
√

2−1)τminτM
+ (7

√
2−4)L

3(
√

2−1)

)−1

s < τmin

10 . The above argument

implies that if 1
τ̂(X) <

1
τM
−s, then for any x, y ∈ X∩B0, one has either x, y ∈ B1
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or x, y ∈ B2. Hence

P
(

1

τM
− 1

τ̂(X)
> s

)
≤

n∑
m=0

(
n

m

)(
P (X1, . . . , Xm ∈M\B0, Xm+1, . . . , Xn ∈ B1)

+ P (X1, . . . , Xm ∈M\B0, Xm+1, . . . , Xn ∈ B2)
)

=

n∑
m=0

(
n

m

)(
(1− P (B0))mP (B1)n−m + (1− P (B0))mP (B2)n−m

)
= (1− P (B2))n + (1− P (B1))n. (C.12)

Now we consider lower bounds for P (B1) and P (B2). Let S1 := exp−1
q0 (B1)∩

∂BTq0M (0, t0), and as in Figure 6, exp−1
q0 (B1) ⊂ BTq0M (0, t0) is a cone satisfying

Hd
(
exp−1

q0 (B1)
)

Hd
(
BTq0M (0, t0)

) =
Hd−1 (S1)

Hd−1
(
∂BTq0M (0, t0)

) .
Let ωd := Hd(BRd(0, 1)) and σd := Hd(∂BRd+1(0, 1)) be the volumes of the d-
dimensional unit ball and the unit sphere respectively. Then by homogeneity,
Hd
(
BTq0M (0, t0)

)
= ωdt

d
0 and Hd−1

(
∂BTq0M (0, t0)

)
= σd−1t

d−1
0 . For lower

bounding Hd−1 (S1), let v0 :=
t0γ
′
0(0)

‖γ′0(0)‖ ∈ S1, and consider expv0 : Tv0S1 → S1.

Then τS1
= t0 and exp−1

v0 (S1) ⊂ BTv0S1

(
0, τ
− 1

2

mint
3
2
0

)
, hence applying Proposition

A.1 (v) yields

Hd−1 (S1) ≥
(

1− t0
6τmin

)d−1

Hd−1
(
BTv0S1

(
0, τ
− 1

2

mint
3
2
0

))
≥
(

59

60

)d−1

ωd−1τ
− d−1

2

min t
3d−3

2
0 ,

and hence

Hd−1
(
exp−1

q0 (B1)
)

=
Hd
(
BTq0M (0, t0)

)
Hd−1 (S1)

Hd−1
(
∂BTq0M (0, t0)

)
≥
(

59

60

)d−1
1ωd−1

d
τ
− d−1

2

min t
3d−1

2
0 .

Furthermore, since exp−1
q0 (B1) ⊂ BTq0M (q0,

τM
10 ), Proposition A.1 (v) yields

Hd (B1) ≥
(

599

600

)d
Hd
(
exp−1

q0 (B1)
)
≥
(

35341

36000

)d
1

d
τ
− d−1

2

min t
3d−1

2
0 ,

and hence,

P (B1) ≥
(

35341

36000

)d
fmin

d
τ
− d−1

2

min t
3d−1

2
0 ≥ Cτmin,d,L,fmin

s
3d−1

2 ,
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where Cτmin,d,L,fmin
=
(

35341
36000

)d fmin

d τ
− d−1

2

min

(
16
√

2
(
√

2−1)τ2
min

+ (7
√

2−4)L

3(
√

2−1)

)−1

. By sym-

metry, the same bound holds for P (B2). Hence applying these to (C.12) gives

P
(

1

τM
− 1

τ̂(X)
> s

)
≤ 2

(
1− Cτmin,d,L,fmins

3d−1
2

)n
≤ 2 exp

(
−Cτmin,d,L,fmin

ns
3d−1

2

)
.

As a consequence, by integration,

EPn
[∣∣∣∣ 1

τ̂(X)
− 1

τM

∣∣∣∣p] =

∫ 1

τ
p
M

0

P
(∣∣∣∣ 1

τ̂(X)
− 1

τM

∣∣∣∣p > s

)
ds

≤ 2

∫ ∞
0

exp
(
−Cτmin,d,L,fminns

3d−1
2p

)
ds

= 2 (Cτmin,d,L,fmin
n)
− 2p

3d−1

∫ ∞
0

x
2p

3d−1 e−xdx

= 2Γ

(
2p

3d− 1

)
C
− 2p

3d−1

τmin,d,L,fmin
n−

2p
3d−1

:= Cτmin,d,L,fmin,pn
− 2p

3d−1 ,

where Γ(·) is the Gamma function.

D Minimax Lower Bounds

D.1 Stability of the model with respect to diffeomorphism

To prove Proposition 5.4, we will use the following result stating that the reach
is a stable quantity with respect to C2-perturbations.

Lemma D.1 (Theorem 4.19 in [Fed59]). Let A ⊂ RD with τA ≥ τmin > 0 and
Φ : RD −→ RD is a C1-diffeomorphism such that Φ,Φ−1, and dΦ are Lipschitz
with Lipschitz constants K,N and R respectively, then

τΦ(A) ≥
τmin

(K +Rτmin)N2
.

Proof of Proposition 5.4. Let M ′ = Φ (M) be the image of M by the mapping
Φ. Since Φ is a global diffeomorphism, M ′ is a closed submanifold of dimension
one. Moreover, Φ is ‖dΦ‖op ≤ (1 + ‖dΦ− ID‖op)-Lipschitz, Φ−1 is

∥∥dΦ−1
∥∥
op
≤

(1− ‖dΦ− ID‖op)−1-Lipschitz, and dΦ is
∥∥d2Φ

∥∥
op

-Lipschitz. From Lemma D.1,

τM ′ ≥
τmin(1− ‖dΦ− ID‖op)2

‖d2Φ‖op τmin + (1 + ‖dΦ− ID‖op)
≥ τmin/2,

where we used that
∥∥d2Φ

∥∥
op
τmin ≤ 1/2 and ‖dΦ− ID‖op ≤ 0.1. All that

remains to be proved now is the bound on the third order derivative of the
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geodesics of M ′. We denote by γ and γ̃ the geodesics of M and M ′ respectively.

Let p′ = Φ(p) ∈M ′ and v′ = dpΦ.v ∈ Tp′M ′ be fixed. Since M ∈Md,D
τmin,L

is

a compact C3-submanifold with geodesics ‖γ′′′(0)‖ ≤ L, M can be parametrized
locally by a C3 bijective map Ψp : BRd(0, ε)→M with Ψp(0) = p. For a smooth
curve γ on M nearby p, we let c = (c1, . . . , cd)

t denote its lift in the coordinates
x = Ψ−1

p , that is γ(t) = Ψp ◦ c(t). γ = γp,v is the geodesic of M with initial
conditions p and v if and only if c satisfies the geodesic equations (see [dC92]
p.62). That is, the second order ordinary differential equation{

c′′` (t) +
〈
Γ` (c(t)) · c′(t), c′(t)

〉
= 0, (1 ≤ ` ≤ d)

c(0) = 0 and c′(0) = dpx.v,
(D.1)

where Γ` =
(
Γ`i,j
)

1≤i,j≤d are the Christoffel’s symbols of the C3 chart x, which

depends only on x and its differentials of order 1 and 2. By construction, M ′

is parametrized locally by Ψ′p′ = Φ ◦Ψp yielding local coordinates y = Ψ′
−1
p′ =

Ψ−1
p ◦ Φ−1 nearby p′ ∈ M ′. Writing Γ̃` for the Christoffel’s symbols of M ′, γ̃

is a geodesic of M ′ at p′ if its lift c̃ = Ψ′−1
p′ (γ̃) satisfies (D.1) with Γ` replaced

by Γ̃`, and initial conditions c̃(0) = c and c̃′(0) = dp′y.v
′ = dpx.v. From chain

rule, the Γ̃`’s depend on Γ, dΦ, and d2Φ.
Considering c′′′(0) − c̃′′′(0) by differentiating (D.1), since c(0) = c̃(0) = 0

and c′′(0) = c̃′′(0), we have that for ‖ID − dΦ‖op,
∥∥d2Φ

∥∥
op

and
∥∥d3Φ

∥∥
op

small

enough, this difference can be made arbitrarily small. In particular, γ̃′′′(0) is
arbitrarily close to γ′′′(0) so that ‖γ̃′′′(0)‖ ≤ ‖γ′′′(0)‖+L ≤ 2L, which concludes
the proof.

D.2 Some Lemmas on the Total Variation Distance

Prior to any actual construction, we show this straighforward lemma bounding
the total variation between uniform distribution on manifolds that are pertur-
bations of each other. For a d-submanifold M ⊂ RD, write λM = 1M

Hd(M)
Hd for

the uniform probability distribution on M .

Lemma D.2. Let M ⊂ RD be a d-dimensional submanifold and B ⊂ RD be a
Borel set. Let Φ : RD → RD be a global diffeomorphism such that Φ|Bc is the

identity map and ‖dΦ− ID‖op ≤ 21/d − 1. Then Hd(Φ(M)) ≤ 2Hd(M) and

TV
(
λM , λΦ(M)

)
≤ 12λM (B).

Proof of Lemma D.2. Since Φ is (1+‖dΦ− ID‖op)-Lipschitz, Lemma 4 of [ALZ13]
asserts that

Hd (Φ(M ∩B)) ≤ (1 + ‖dΦ− ID‖op)
dHd(M ∩B) ≤ 2Hd(M ∩B).

Therefore,

Hd (Φ(M))−Hd(M) = Hd (Φ(M ∩B))−Hd (M ∩B)

≤ Hd(M ∩B) ≤ Hd(M).
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Now, writing 4 for the symmetric difference of sets, we have M4Φ(M) =
(B ∩ M)4(B ∩ Φ(M)) ⊂ (B ∩ M) ∪ (B ∩ Φ(M)). Therefore, Lemma 5 in
[ALZ13] yields,

TV
(
λM , λΦ(M)

)
≤ 4
Hd (M4Φ(M))

Hd(M ∪ Φ(M))

≤ 4
Hd (M ∩B) +Hd (Φ(M) ∩B)

Hd(M)

= 4
Hd (M ∩B) +Hd (Φ(M ∩B))

Hd(M)

≤ 12
Hd(M ∩B)

Hd(M)
= 12λM (B).

Let us now tackle the proof of Lemma 5.3. For this, we will need the following
elementary differential geometry results Lemma D.3 and Corollary D.4.

Lemma D.3. Let g : Rd → Rk be C1 and x ∈ Rd be such that g(x) = 0 and
dxg 6= 0. Then there exists r > 0 such that Hd

(
g−1(0) ∩ B(x, r)

)
= 0.

Proof of Lemma D.3. Let us prove that for r > 0 small enough, the intersection
g−1(0)∩B(x, r) is contained in a submanifold of codimension one of Rd. Writing
g = (g1, . . . , gk), assume without loss of generality that ∂x1g1 6= 0. Since g1 :
Rd → R is nonsingular at x, the implicit function theorem asserts that g−1

1 (0) is
a submanifold of dimension d−1 of Rd in a neighborhood of x ∈ Rd. Therefore,
for r > 0 small enough, g−1

1 (0) ∩ B(x, r) has d-Hausdorff measure zero. The
result hence follows, noticing that g−1(0) ⊂ g−1

1 (0).

Corollary D.4. Let M,M ′ ⊂ RD be two compact d-dimensional submanifolds,
and x ∈M ∩M ′. If TxM 6= TxM

′, there exists r > 0 such that A = M ∩M ′ ∩
B(x, r) satisfies λM (A) = λM ′(A) = 0.

Proof of Corollary D.4. Writing k = D − d, we see that up to ambient diffeo-
morphism — which preserves the nullity of measure — we can assume that
locally around x, M ′ coincides with Rd × {0}k and that M is the graph of a
C∞ function g : BRd(0, r′) → Rk for r′ > 0 small enough. The assumption
TxM 6= TxM

′ translates to d0g 6= 0, and the previous transformation maps
smoothly M ∩M ′ ∩ B(x, r′′) to g−1(0) ∩ B(0, r′) for r′′ > 0 small enough. We
conclude by applying Lemma D.3.

We are now in position to prove Lemma 5.3.

Proof of Lemma 5.3. Notice that Q and Q′ are dominated by the measure µ =
1M∪M ′Hd, with dQ(x) = f(x)dµ(x) and dQ′(x) = f ′(x)dµ(x), where f, f ′ :
RD → R+ have support M and M ′ respectively. On the other hand, P and P ′

are dominated by ν(dx dT ) = δ{TxM,TxM ′} (dT )µ (dx) with respective densities
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f̄(x, T ) = 1T=TxMf(x) and f̄ ′(x, T ) = 1T=TxM ′f
′(x), where we set arbitrarily

TxM = T0 for x /∈ M , and TxM
′ = T0 for x /∈ M ′. Recalling that f vanishes

outside M , and f ′ outside M ′,

TV (P, P ′) =
1

2

∫
RD×Gd,D

|f̄ − f̄ ′|dν

=
1

2

∫
RD

1TxM=TxM ′ |f(x)− f ′(x)|+ 1TxM 6=TxM ′(f(x) + f ′(x))Hd(dx).

From Corollary D.4 and a straightforward compactness argument, we derive that
Hd (M ∩M ′ ∩ {x|TxM 6= TxM

′}) = 0. As a consequence, the above integral
expression becomes

TV (P, P ′) =
1

2

∫
RD
|f − f ′|dHd = TV (Q,Q′),

which concludes the proof.

D.3 Construction of the hypotheses

This section is devoted to the construction of hypotheses that will be used in
Lecam’s lemma (Lemma 5.2), to derive Theorem 2.9 and Theorem 5.6.

Lemma D.5. Let R, `, η > 0 be such that ` ≤ R
2 ∧

(
21/d − 1

)
and η ≤ `2

2R .
Then there exists a d-dimensional sphere of radius R that we call M , such that
M ∈Md,D

R, 1
R2

and a global C∞-diffeomorphism Φ : RD → RD such that,

‖dΦ− I2‖op ≤
3η

`
,
∥∥d2Φ

∥∥
op
≤ 23η

`2
,
∥∥d3Φ

∥∥
op
≤ 573η

`3
,

and so that writing M ′ = Φ(M), we have Hd(M ′) ≤ 2Hd(M) = 2σdR
d∣∣∣∣ 1

τM
− 1

τM ′

∣∣∣∣ ≥ η

`2
, and TV (λM , λM ′) ≤ 12

(
`

R

)d
.

Proof of Lemma 5.5. Let M ⊂ Rd+1 × {0}D−d−1 ⊂ RD be the sphere of radius
R with center (0,−R, 0, . . . , 0). The reach of M is τM = R, and its arc-length
parametrized geodesics are arcs of great circles, which have third derivatives
of constant norm ‖γ′′′(t)‖ = 1

R2 . Hence we see that M ∈ Md,D

R, 1
R2

. Let φ be

the map defined by φ(x) = exp
( ‖x‖2
‖x‖2−1

)
1‖x‖2<1. φ is a symmetric C∞ map

with support equal to B(0, 1) and elementary real analysis yields φ(0) = 1,
‖dφ‖op ≤ 3,

∥∥d2φ
∥∥
op
≤ 23 and

∥∥d3φ
∥∥
op
≤ 573. Let Φ : RD → RD be defined by

Φ(x) = x+ ηφ (x/`) · v,

where v = (0, 1, 0, . . . , 0) is the unit vertical vector. Φ is the identity map on
B (0, `)

c
, and in B (0, `), Φ translates points on the vertical axis with a magni-

tude modulated by the weight function φ(x/`). From chain rule, ‖dΦ− ID‖op =
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η ‖dφ‖∞ /` ≤ 3η/` < 1. Therefore, dxΦ is invertible for all x ∈ RD, so that Φ
is a local C∞-diffeomorphism according to the local inverse function theorem.
Moreover, ‖Φ(x)‖ → ∞ as ‖x‖ → ∞, so that Φ is a global C∞-diffeomorphism
by Hadamard-Cacciopoli theorem [DMGZ94]. Similarly, from bounds on differ-
entials of φ we get∥∥d2Φ

∥∥
op
≤ 23

η

`2
and

∥∥d3Φ
∥∥
op
≤ 573

η

`3
.

Let us now write M ′ = Φ (M) for the image of M by the map Φ. Denote
by (Oy) the vertical axis span(v), and notice that since φ is symmetric, M ′ is
symmetric with respect to the vertical axis (Oy). We now bound from above the

reach τM ′ of M ′ by showing that the point x0 =

(
0, R+η/2

1+ `2

2Rη

, 0, . . . , 0

)
belongs

to its medial axis Med(M ′) (see (2.1)). For this, write

η

R

` x

M ′

x0

O

b

b′

(Oy)

θ

Figure 7: The bumped sphere circle M ′.

b = (0, η, 0, . . . , 0), b′ = (0,−2R, 0, . . . , 0),

together with θ = arccos(1− `2/(2R2)), and

x = (R sin θ,R cos θ −R, 0, . . . , 0).

By construction, b, b′ and x belong to M ′. One easily checks that ‖x0 − x‖ <
‖x0 − b‖ and ‖x0 − x‖ < ‖x0 − b′‖, so that neither b nor b′ is the nearest neigh-
bor of x0 on M ′. But x0 ∈ (Oy) which is an axis of symmetry of M ′, and
(Oy) ∩M ′ = {b, b′}. As a consequence, x0 has strictly more than one near-
est neighbor on M ′. That is, x0 belongs to the medial axis Med(M ′) of M ′.

45



Therefore,

1

τM ′
≥ 1

d (x0,M ′)
≥ 1

‖x0 − x‖

≥ 1

R

∣∣∣∣1− `2

2R2 −
1+ η

2R

1+ `2

2Rη

∣∣∣∣
≥ 1

R

(
1− 1+ η

2R

1+ `2

2Rη

) ≥ 1

R

(
1 +

1 + η
2R

1 + `2

2Rη

)
≥ 1

R
+
η

`2
,

which yields the bound
∣∣∣ 1
τM
− 1

τM′

∣∣∣ ≥ η
`2 .

Finally, since M ′ = Φ(M) with ‖dΦ− ID‖op ≤ 21/d − 1 with Φ|B(0,`)c coin-

ciding with the identity map, Lemma D.2 yields Hd(M ′) ≤ 2Hd(M) = 2σdR
d

and

TV (λM , λM ′) ≤ 12λM (B(0, `))

= 12
Hd
(
BSd

(
0, 2 arcsin

(
`

2R

)))
Hd (Sd)

≤ 12

(
`

R

)d
,

which concludes the proof.

Proof of Proposition 5.5. Apply Lemma 5.5 with R = 2τmin. Then the sphere
M of radius 2τmin belongs to Md,D

2τmin,1/(4τ2
min)

. Furthermore, taking η =

cd`
3/τ2

min for cd > 0 and ` > 0 small enough, Proposition 5.4 (applied to
the unit sphere, yielding cd, and reasoning by homogeneity for the sphere of
radius 2τmin) asserts that M ′ = Φ(M) belongs to Md,D

τmin,1/(2τ2
min)

⊂ Md,D
τmin,L

,

since L ≥ 1/(2τ2
min). Moreover,

Hd(M ′)−1,Hd(M)−1 ≥
(
2d+1σdτ

d
min

)
≥ fmin,

so that λM , λM ′ ∈ Qd,Dτmin,L,fmin , which gives the result.

Let us now prove the minimax inconsistency of the reach estimation for
L =∞, using the same technique as above.

Proof of Proposition 2.9. Let M and M ′ be given by Lemma D.5 with ` ≤
R
2 ∧(21/d−1), η = `2/(23R) and R = 2τmin. We have ‖dΦ− ID‖op ≤ 3η/` ≤ 0.1

and
∥∥d2Φ

∥∥
op
≤ 23η/`2 ≤ 1/(2τmin). Since τM ≥ 2τmin, Lemma D.1 yields

τM ′ ≥
τM (1− ‖dΦ− ID‖op)2

‖d2Φ‖op τM + (1 + ‖dΦ− ID‖op)
≥ τmin.
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As a consequence, M and M ′ belong toMd,D
τmin,L=∞. Furthermore, from fmin ≥

1
2d+1τdminσd

≥Hd(M)−1,Hd(M ′)−1 we see that the uniform distributions λM , λM ′

belong toQd,Dτmin,L=∞,fmin . Let now P, P ′ denote the distributions of Pd,Dτmin,L=∞,fmin
associated to λM , λM ′ (Definition 2.6). Lemma 5.3 asserts that TV (P, P ′) =
TV (λM , λM ′). Applying Lemma 5.2 to P, P ′, we get that for all n ≥ 1, for `
small enough,

inf
τ̂n

sup
P∈Pd,Dτmin,L=∞,fmin

EPn
∣∣∣∣ 1

τP
− 1

τ̂n

∣∣∣∣p ≥ 1

2p

∣∣∣∣ 1

τM
− 1

τM ′

∣∣∣∣p (1− TV (P, P ′))
n

≥ 1

2p

( η
`2

)p(
1− 12

(
`

2τmin

)d)n

=
1

2p

(
1

46τmin

)p(
1− 12

(
`

2τmin

)d)n
.

Sending `→ 0 with n ≥ 1 fixed yields the announced result.

E Stability with Respect to Tangent Spaces

Proof of Proposition 6.1. To get the bound on the suprema, we show the (stronger)
pointwise bound. For all x, y ∈ X with x 6= y,∣∣∣∣∣2d(y − x, Tx)

‖y − x‖2
− 2d(y − x, T̃x)

‖y − x‖2

∣∣∣∣∣ ≤ 2

‖y − x‖2
‖πTx(y − x)− πT̃x(y − x)‖

≤
2‖πTx − πT̃x‖op

‖y − x‖
≤ 2 sin θ

δ
.
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