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Abstract—In this paper, an algorithm for activity recognition is
proposed using inertial sensors worn on the ankle. This innovative
approach based on geometric patterns uses a stride detector that
can detect both normal walking strides and atypical strides such
as small steps, side steps and backward walking that existing
methods struggle to detect. It is also robust in critical situations,
when for example the wearer is sitting and moving the ankle,
while most algorithms in the literature would wrongly detect
strides. A technique inspired by Zero Velocity Update is used on
the stride detection to compute the trajectory of the device. It
allows to compute relevant features for the activity recognition
learning task. Compared to most algorithms in the literature,
this method does not use fixed-size sliding window that could be
too short to provide enough information or too long and leads to
overlapping issue when the window covers two different activities.

I. INTRODUCTION

In the last decade, human activity recognition (HAR) has
become an important field of research in a health-care context.
While vision-based techniques work with intrusive equipments
[1], inertial data analysis for activity recognition is one of the
most important challenge with the emergence of accelerome-
ters and gyrometers in daily life connected objects (wearable
sensors, smartphones).

In this context, Sysnav has developped an ankle worn
system based on magneto-inertial sensors [2], [3]. The device
was designed to evaluate the physical condition of subjects
suffering from pathologies associated with movement disor-
ders such as neuromuscular diseases. The system is used as
biomarker [4] for computing secondary outcome measures in
clinical trials [5]. Compared to classical outcome measures,
these relevant variables (stride length, stride speed) have the
advantage of being calculated in a home environment over
long periods. Indeed, classical tests for outcome measures are
performed at the hospital and can be biased by the controlled
environment aspect and the motivation of the patient. The
variables provided by the four stairs test (time for climbing
four stairs), ten meters run test (time for running ten meters)
and the six minutes walk test (distance covered in six minutes

by walking) can be impacted by the form of the day without
being correlated with patient’s condition.

In this work, we describe a method for activity recognition
(AR) in order to compute pertinent stride variables related
to the three previous tests (walking, stairs and running). It re-
quires to detect precisely when a stride occurs in the recordings
and its activity. Most of the papers in the literature use AR
algorithms based on fixed-size sliding window combined with
Hidden Markov Model [6] or machine learning [7], [8], [9].
In this case, errors appear at the beginning or at the end of the
activities, when the window overlaps the end of one activity
and the beginning of the next one. In other cases, the window
length may be too short to provide the best information for
the recognition process. Moreover this approach does not
allow to detect individual strides. A few methods of stance
detection (Figure 1) have been proposed in the literature by
tuning thresholds to determine the start and the end of the
walking phases [10], [11], [12], or using machine learning
techniques on the frequency characteristics of the signals [13],
[14]. These methods show good results when it is known that
the pedestrian is walking but fail in a lot of real life situations.
Indeed, several foot movements in sitting position for example
are wrongly detected as strides.

Fig. 1: Gait cycle (www.optogait.com).

In this paper we describe our step detector for AR which
is built on a machine learning algorithm and the innovative



modeling of the swing phase. It is combined with a technique
inspired by Zero Velocity Update (ZUPT) [15], [16], [17],
[18] which is an effective method to limit the accumulation
of integration errors for trajectory reconstruction. Indeed, The
strategy which consists in the integration of the accelerations
after removing the gravity and the speeds to compute a
trajectory rapidly cumulates large errors. The ZUPT technique
consists in correcting the speed drift by estimating the speed
of the ankle when the foot is on the ground during the walk
and then integrates the data only between two ZUPTs. As our
step detector provides the ground phases, we can reconstruct
the trajectory of the ankle during the stride which is a precious
information for AR.

II. STRIDE DETECTOR

The first step of the algorithm is to select intervals that
may correspond to strides in the inertial data (acceleration
and angular velocity in three dimensions). The system is worn
around the ankle as shown in the Figure 2.

Fig. 2: Body frame definition.

In the default placement the Z axis is aligned with the
leg and the X axis is aligned with the foot. However the
device may be upside down and may turn around the ankle.
Consequently, we do not use the three dimensions of the data
but the norms for the interval segmentation. A combination
of criteria on the accelerometer norm (close to one g, peak)
and gyrometer norm (local minimum) is used to define the
contact of the foot with the ground, the start and the end of
the stride. The threshold values have to be sufficiently wide
to detect all types of strides (small steps, running, stairs etc.).
However many intervals are wrongly selected when the wearer
is moving its ankle but not walking. The goal is now to select
among these intervals which ones are true strides. We adopt a
statistical learning approach to answer this problem.

A group of people of various ages and heights, were filmed
practicing several activities while wearing the system. From
the intervals selection above, a learning set is built using
video control. A binary label is affected to each interval
indicating if it is a stride (1) or not (0). Furthermore, if the
interval is the stride, an other variable k marking the activity
is added: "atypical step" that includes small step, side step,
backward walking etc., "walking", "running", "climbing stairs"
and "descending stairs".

Activity Label k
Atypical strides 1

Walking 2
Running 3

Climbing stairs 10
Descending stairs -10

TABLE I: Label definitions for activities.

Our database contains about 6000 positive intervals and also
about 6000 negative intervals. In the following, we aim to
compute relevant variables for a supervised machine learning
algorithm in this binary classification problem.

A. Sensors alignment

The previous interval segmentation uses norms only because
of the body frame orientation issue. To access to the informa-
tion held in the three dimensions, we have to compute the
rotation that aligns the sensors on the orientation defined in
Figure 2. Several strides were recorded for seven activities
(backward walking, left and right side stepping, walking,
running, climbing and descending stairs), ensuring that the
system was placed as defined in Figure 2. From these records,
the gyroscope data was used to define a reference pattern
(in three dimensions) for each activity. The goal is to fit the
gyroscope data of a new candidate stride, performed with any
orientation, to each reference pattern by allowing a rotation.

Since the calculation method is the same for the seven 3D
reference patterns, we will not indicate the activity in the
following section. Let Y = (Y1 . . . Yn) with Yi ∈ R3 the 3D
reference pattern data of size n on the three gyroscope axes
and (X1 . . . XN ) the gyroscope data of a new candidate stride.
First, it is necessary to bring the observed data to the same
number of samples as the reference pattern by a cubic spline
interpolation [19] on each axis. Let X = (X1 . . . Xn) be the
vector of the observations. We want to compute the rotation
R that minimizes

∑n
i=1 ωi||RXi − Yi||22. The coefficients

ω1, . . . , ωn are the weights given to the samples of the stride
(
∑n
i=1 ωi = 1). In this paper we set higher weight values to

the samples in the middle of the stride to avoid side effects.
Indeed, data in the end can be noisy by the contact of the foot
with the ground. Moreover, the foot movement on the ground
during the stance phase is less specific to the activity than
during the swing phase.

Property 1. — Given Xi ∈ R3 and Yi ∈ R3 for all i in
[[1, n]]. The solution of the problem

R∗ = argmin
RRt=I,det(R)=1

n∑
i=1

ωi||RXi − Yi||22,

is given by

R∗ = V U t, (1)

where V and U are the unitary matrices of the decomposition
into singular values of XWY t, and W = diag(ω1, . . . , ωn)
with

∑n
i=1 ωi = 1.



We compute this rotation matrix for the seven 3D reference
patterns to be sure that at least one good alignment has been
computed. Moreover, residuals of these seven calculations are
pertinent variables for AR. Indeed, the smaller are the residuals
for one pattern, the likelier the stride is performed with the
same activity. In the following section, we assume that the
rotated data of the stride are in the reference frame defined in
Figure 2.

B. Swing modelling

We saw (Figure 1) that the cycle of a stride is divided into
two phases: swing and stance. During the swing phase, moving
the foot forward creates a distinctive pattern in the Y axis of
the gyroscope (Figure 3). In this paper we call forward swing
the sequence where the values remain negative. The aim of this

Fig. 3: Forward swing.

section is to model the forward swing. We want to compute a
1D reference pattern that defines the gyroscope data on the Y
axis of the forward swing for five activities: atypical strides,
walking, running, climbing and descending stairs (Table I).

Let Nk the number of strides of each activity k. We note
fl,k the observed function associated to the gyroscope data on
the Y axis of the lth on Nk forward swing of the activity
k and fk the unknown function associated to the reference
pattern of the activity k, defined on the interval [0, 1] in R.
We assume that the 1D reference pattern we want to compute
can be approached with an error εl by all the fl,k functions of
the same activity by multiplying them with a real coefficient
al,k

fk = al,k × fl,k + εl,k. (2)

We assume that the functions belong to a function space E
with its norm ||.||. The observations are the functions fl,k and
we want to compute the estimators f̂k and âl,k which are

computed by least squares minimization under constraints (P)
for all k in {1, 2, 3, 4, 10,−10} and for all l in J1, NkK:

f̂k = argmin
fk∈E,||fk||=1

∑
l

||âl,kfl,k − fk||, (3)

âl,k = argmin
al,k∈R∗

+

||al,kfl,k − f̂k||. (4)

To solve the problem (P), we consider an orthonormal basis
(e1, . . . , ep) for the norm ||.||. In practice, we use Lagrange
polynomials [20] but other basis can be selected such as
Fourier basis. We note:

f̂k =

p∑
u=1

γ̂ueu, (5)

fl,k =

p∑
u=1

αl,ueu. (6)

Property 2. — Given Λl = (αl,1, . . . , αl,p)
tand the symet-

ric matrix A defined by Aij =
∑
l
αl,iαl,j

||Λl||22
, the solution of

the problem (P) is given by:

f̂k = ±
p∑

u=1

ωp,ueu, (7)

and

âl,k =

∑p
u=1 αl,uγ̂u∑p
u=1 α

2
l,u

, (8)

where ωp is the eigenvector of A associated to its greater
eigenvalue.

As the forward swing is defined by negative values, we
choose in practice the solution of Equation 7 that takes
negative values. The functions f̂k are computed once for all.
We can now extract the forward swing of a new stride (negative
values of the y axis gyroscope data), compute the multiplier
coefficient (Equation 8) using f̂k coefficients and compare
it to the 1D reference patterns. The residuals are relevant
information for AR as for the alignment step. The smaller are
the residuals for one pattern, the likelier the stride is performed
with the same activity.

C. Performances

The database contains 6213 intervals that do not correspond
to strides (label 0) and 5964 stride intervals (label 1) divided
into 5 different activities (Table I). For each element, 2695
features are computed:
• Frequency domain: from the norm of both accelerometer

and gyroscope, features were computed in the time and
frequency domains: maximum, mean, standard deviation,
root mean square, interquartile range, Fast Fourier Trans-
form...

• Alignment: using the alignment correction, the rotated
gyroscope data of the interval is compared to the 3D
reference pattern of each activity:

∑n
i=1 ωi||RXi−Yi||22.

Features are computed from the residuals during the
stance and swing phases.



• Swing: if the interval is a stride, at least one rotation
transforms the data so that the extracted forward swing
phase is visible on the Y axis of the gyroscope (Figure
3). This forward swing is compared to the five 1D
reference patterns f̂k (Equation 7) with the corresponding
coefficient âl,k (Equation 8): ||âl,kfl,k− f̂k|| for k taking
values in {1, 2, 3, 10,−10} (Table I). The residuals are
used as features.

We want to build a binary classifier that decides if one
interval is a stride. Several supervised statistical learning
algorithms have been tested, notably random forests which are
known to perform well in large dimensions, Support Vector
Machine (SVM), LASSO regression and boosting algorithms
such as Adaboost and GBT (Gradient Boosting Tree [21]). We
evaluated their performance using the cross-validation method
(10-fold cross-validation [22]). The chosen algorithm with the
best results is GBT.

The goal of boosting is to iteratively focus on observations
that are difficult to predict. For GBT, the general idea is to
compute a series of (very weak) decision trees [23] and to
aggregate the results to minimize a cost function. Let gn be
the prediction function at the iteration n. We compute a new
tree Treen+1 which estimates the value of the cost function
on gn. The new prediction function gn+1 is then defined by
gn+1 = gn +λrate Treen+1 where λrate is a real constant to
be tuned to avoid overfitting.

The cross-validation results using GBT are presented in the
following confusion matrix (Table II).

Predicted 0 Predicted 1
Actual 0 6195 18
Actual 1 19 5945

TABLE II: Confusion matrix for stride detection.

The global error is about 0.3%. The distribution of the false
negatives is presented in the Table III.

Atypical
step Walking Running Climbing

stairs
Descending

stairs
FN 19

1152
0

1206
0

1334
0

1100
0

1155

TABLE III: False negatives distribution.

Our algorithm made no mistake on the "walking", "running"
and "stairs" strides. On "atypical" strides, it achieved a detec-
tion error rate of 1.6% while most existing methods described
in the literature do not detect them.

III. ACTIVITY RECOGNITION

At this stage, we could build on the 5964 strides a function
for the activity label prediction (Table I) with the same features
above. It achieves good results but to improve them we
take advantage of Sysnav technology for dead reckoning that
enables trajectory reconstruction from a stride detection. The
technique is inspired by Zero Velocity Update (ZUPT) and has
shown good results on challenging situations [24]. On Figure
4, we can see that the sequence of three strides is correctly
detected. The red points are the segmentation given by the

stride detector algorithm and in blue the trajectory computed.
the trajectory is drawn in an arbitrary reference but we can

Fig. 4: Computed device trajectory.

extract information by considering the relative evolution. This
technique provides also the speeds in the three dimensions
and the angles evolution of the device that have characteristic
patterns according to the activity performed. In the end, we
compute 510 additional features used for the AR task.

The goal is then to build a classifier that recognizes the
activity of each detected stride. We have tested several super-
vised learning algorithms for multi-class classification (five
classes for five activities) on the database. Once again GBT
provides the best results using for the 10-fold cross-validation.
The confusion matrix is presented in the following Table IV.

Predicted 1 Predicted 2 Predicted 3 Predicted 10 Predicted -10

Actual 1 1138 14 0 0 0
Actual 2 17 1185 0 2 2
Actual 3 0 0 1334 0 0

Actual 10 0 2 0 1098 0
Actual -10 0 0 0 0 1155

TABLE IV: Confusion matrix for AR.

The global score is about 99.4%. The difference between
"atypical step" and "walking" is hard to define, especially for
a small forward step. As even the labelling decision by the
video viewer is difficult, it is not surprising to have most of
the errors in the Table IV between these two classes.

We can now compute the entire algorithm for AR on the
recordings of clinical studies. The overall algorithm (Algo-
rithm 1) is described in pseudocode. The goal is to com-
pute relevant variables on walking, running, and stairs daily
episodes related to the tests performed by the patients at the
hospital.



Algorithm 1: AR algorithm
Input : Recording of the system worn at the ankle
Output: Activity of each detected stride

1 Calibration of the data
2 Detection of the candidate step intervals
3 foreach interval do
4 Computation of the frequency domain features
5 Computation of the rotations
6 foreach activitiy rotation do
7 Comparison with the 3D reference pattern
8 if negative values on y gyroscope axis then
9 foreach 1D reference pattern do

10 Computation of the multiplying
coefficient (Equation 8)

11 Comparison with the reference pattern
12 end
13 end
14 end
15 GBT binary classification
16 if interval classified as a stride then
17 ZUPT on the start and the end of the interval
18 Data integration between the two ZUPTs
19 Computation of the trajectory features
20 GBT multi-class classification
21 end
22 end

IV. CONCLUSION AND FUTURE WORK

This paper describes an algorithm that allows to detect
when a stride occurs (start and end points) with its activity
from inertial sensors worn on the ankle. The stride detector is
divided in for main stages:
• The selection of candidate intervals that may correspond

to strides.
• The calculation of a rotation applied on the data in order

to work in the same frame for all records. This stage
is built on fitting the gyroscope data with 3D geometric
patterns.

• The extraction of the forward swing on the gyroscope axis
Y . These data are then fitted with 1D reference patterns.

• The binary classification of the intervals using the Gra-
dient Boosting Tree algorithm with features computed
along the previous points.

For normal walking, it has shown good results achievable with
existing algorithms. But the stride detector described in this
paper also has a good sensitivity for atypical strides such
as small steps, side steps and backward walking contrary to
most algorithms proposed in the literature. Moreover these
approaches are likely to produce detection errors when the
system wearer is moving his foot but not walking (e.g. sitting).
This is as problem as non walking motion would be considered
for the AR task.

The stride detector is used in combination with a ZUPT in-
spired method for the ankle trajectory reconstruction. It allows

the calculation of trajectory features such as the height and the
length of the stride. This technique provides also the speeds
and the angles evolution of the device in three dimensions that
are used to compute additional features for AR. We use the
Gradient Boosting Tree algorithm for this 5-class supervised
classification problem ("atypical step", "walking", "running",
"climbing stairs" and "descending stairs"), achieving a global
score about 99.4% for the 10-fold cross-validation. This
method has the advantage of not using fixed-sized sliding
window which is a hard parameter tuning problem as a too big
value leads to overlapping issue (2 different activities covered
by the window) and a too small one does not provide enough
information for AR.

In a future work, we could improve the trajectory recon-
struction by adjusting the estimation of the ankle speed when
the foot is on the ground. A better ankle trajectory will also
improve the AR task. Moreover, we could build a classifier
that uses the big amount of data provided by the clinical trials
for its learning. In our paper, we assume that the GBT function
behaves the same way on our database and on the home
recordings. However we could imagine that in home situation,
the wearer performs strides that are completely different to any
instance of the database. In this case, we have no guarantee
on the performance of the prediction function. There are
algorithms that take into account all non-labeled observations
in the learning process (transductive learning).
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