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Introduction

Geometric inference deals with the problem of recovering the geometry and topol-
ogy of a compact subset K of Rd from an approximation by a finite set P. This
problem has seen several important developments in the previous decade. Many of
the proposed constructions share a common feature: they estimate the geometry of
the underlying compact set K using offsets of P,

Pr :=
⋃
p∈P

B(p,r), (1)

which can also be seen as the r-sublevel set of the distance function to P. These
offset correspond to what is called tubular neighborhoods in differential geometry.
First and second-order geometric quantities are encoded in the tube Kr around a
manifold. For instance, the classical tube formula asserts that it is possible to es-
timate the curvature of a compact smooth submanifold K from the volume of its
offsets. One can hope that if the finite set P is close to K in the Hausdorff sense,
some of this geometric information remains in the offsets of P. In this chapter, we
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will see how this idea can be used to infer generalized notions of curvature such as
Federer’s curvature measures.

Notation. The space Rd is equipped with the canonical dot product 〈.|.〉 and the
induced norm ‖.‖

1 Distance function and sets with positive reach

Throughout this chapter, K will denote a compact set in the Euclidean d-space Rd ,
usually with no additional regularity assumption. The distance function to K, de-
noted dK , is defined by

dK : x ∈ Rd 7→min
p∈K
‖x− p‖ (2)

In this short section, we review some regularity properties of the distance function to
a compact set, which we will use to establish stability results for generalized notions
of curvature. We also introduce the class of sets with positive reach and sets with
positive µ-reach, for which it is possible to define and infer generalized notions of
curvature.

Definition 1 (Offset). The r-offset of K, also called tubular neighborhood in geom-
etry, is the set Kr of points at distance at most r of K, or equivalently the sublevel
set Kr := {x ∈ Rd ;dK(x)≤ r}.
Definition 2 (Hausdorff distance). The Hausdorff distance between two compact
subsets K and P of Rd can be defined in term of offsets:

dH(K,P) := min{r ≥ 0 s.t. K ⊆ Pr and P⊆ Kr} (3)

Loosely speaking, a finite set P is within Hausdorff distance r from a compact set
K if it is sampled close to K (P ⊆ Kr) and densely in K (K ⊆ Pr). An alternative
characterization of the Hausdorff distance is given by the following equality, where
‖ f‖

∞
= supx∈Rd | f (x)|.

dH(K,K′) := ‖dK−dK′‖∞
(4)

1.1 Gradient of the distance and sets with positive reach

1.1.1 Projection function, medial axis and gradient

The semi-concavity of the squared distance function to a compact set has been re-
marked and used in different contexts [14, 22, 3, 18]. We will use the fact that for any
compact subset K ⊆ Rd , the square of the distance function to K is 1-semiconcave.

Definition 3. A function φ defined on a subset Ω of Rd is λ -concave if and only if
the function φ −λ ‖.‖2 is concave.
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It is easy to see that the distance function to a compact set is 1-Lipschitz. By
Rademacher’s theorem, this implies that this function is differentiable almost every-
where. The next proposition shows that the squared distance function to a compact
set has the same regularity as a concave (or convex) function. In particular, Alexan-
drov’s theorem implies that distance functions to compact set are twice differen-
tiable almost everywhere.

Definition 4 (Projection function and medial axis). A point p of K that realizes
the minimum in the definition (2) of the distance function dK(x) is called a pro-
jection of x on K. The set of such projections is denoted projK(x), and is always
non-empty by compactness of K. The medial axis of K, denoted Med(K) is the set
of points x in Rd that have more than one projection on K. On the complement of
the medial axis, points have a single projection on K, allowing one to define a map
pK : Rd \Med(K)→ K called the projection function on K.

Proposition 1. The squared distance function to a compact subset K of Rd is 1-
semiconcave and differentiable on Rd \Med(K). For every x /∈ Med(K)∪K, one
has

∇xd2
K = 2(x−pK(x)) ∇xdK =

x−pK(x)
‖x−pK(x)‖

(5)

Proof. The function dK(.)
2−‖.‖2 is a minimum of linear functions:

dK(x)2−‖x‖2 = min
p∈P
‖x− p‖2−‖x‖2

= min
p∈P
‖p‖2−2〈x|p〉

and is therefore concave. A concave function is differentiable almost everywhere,
and one has ∇x[dK(.)

2−‖.‖2] =−2pK(x) at points of differentiability. This implies
the desired formulas.

1.1.2 Sets with positive reach

In his seminal article on curvature measures [12], Federer introduced the class of
sets with positive reach, a class which generalizes both convex subsets and compact
smooth submanifolds of Rd .

Definition 5 (Reach). The reach of a compact set K, denoted by reach(K) is the
minimum distance between K and its medial axis.

Example 1. It is well known that the projection to a closed convex set K ⊆ Rd is
uniquely defined on the whole space, so that reach(K) = +∞. The reciprocal of this
statement is a theorem of Motzkin [21]: if reach(K) = +∞, then K is convex.
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Example 2. The tubular neighborhood theorem implies that a smooth compact sub-
manifold of Rd always has positive reach. In the case of a smooth compact hy-
persurface, this follows from the proof of Proposition 3. In addition, the reach of
submanifold M is always less than the minimum radius of curvature of M.

Example 3. Note however, that the reach is a global quantity, and cannot be lower
bounded by any function of the minimum curvature radius. For instance, consider
a compact set consisting of two spheres of radius R at distance ε . Then, the reach
of the union of those two sphere is ε

2 while the minimum curvature radius remains
constant and equal to R. It is also possible to construct similar examples involving
connected manifolds.

The definition of curvature measures of sets with positive reach relies on the fact
that the boundary of small tubular neighborhoods around those sets are hypersurface
of class C 1,1, that is C 1 hypersurface with a Lipschitz normal vector field (see [12,
Theorem 4.8]).

Proposition 2 ([12]). Let K ⊆ Rd be a set with positive reach. Then, for any r in
(0, reach(K)) the restriction of the projection function to Kr is Lipschitz. In particu-
lar, the level set ∂Kr = d−1

K ({r}) is a C 1,1 hypersurface.

1.2 Generalized gradient and sets with positive µ-reach

The reach of a compact set a very unstable quantity. For instance, the reach of a
triangulation is always zero, whereas smooth surfaces, which have positive reach,
can be approximated arbitrarily well by triangulations. In this section, we will see
how to define a relaxed notion of reach using a generalized gradient of the distance
function.

1.2.1 Generalized gradient

The distance function to a compact set is differentiable everywhere but on the me-
dial axis. However, the semiconcavity property allows one to define a generalized
gradient of the distance function everywhere. This generalized gradient coincides
with the usual gradient of the distance function when it is differentiable.1

Definition 6. Let K be a compact subset of Rd and let x be a point in Rd \K. We
define the generalized gradient of the distance function to K at x by:

∇dK(x) =
x− p̃K(x)

dK(x)
, (6)

1 This generalized gradient coincides with the orthogonal projection of the origin on the supdiffer-
ential of the distance function [4, Lemma 5.2].
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where p̃K(x) is the center of the (uniquely defined) smallest ball containing the set
of projections projK(x).

In particular, the norm ‖∇dK(x)‖ equals one if and only if projK(x) is contained
in a ball with zero radius, i.e. if it is a singleton. In other words,

Med(K) = {x ∈ Rd \K;‖∇dK(x)‖< 1}. (7)

1.2.2 Sets with positive µ-reach.

The µ-reach is a relaxed version of the reach, which had originally been introduced
because of its better stability properties with respect to perturbations of the compact
set [5]. By Equation (7), the reach of a compact set K is equal to the maximal radius
r such that ‖∇dK(x)‖= 1 on the offset Kr:

reach(K) = sup{r ≥ 0;∀x ∈ Kr,‖∇dK(x)‖= 1} . (8)

This remark suggests a parameterized notion of reach, called the µ-reach.

Definition 7 (µ-Reach). Let µ ∈ (0,1). The µ-reach of a compact set K is the max-
imal radius r such that ‖∇dK(x)‖ ≥ µ on the offset Kr:

reachµ(K) = sup{r ≥ 0; ∀x ∈ Kr, ‖∇dK(x)‖ ≥ µ} . (9)

With µ = 1, we recover the notion of reach introduced earlier.

In addition to smooth manifolds and convex sets, the class of compact sets with
positive µ-reach also contains triangulations and non-convex polyhedra. Offsets of
sets with positive µ-reach are not smooth in the sense of Proposition 2, but they still
possess some regularity properties.

1.2.3 Offsets of compact sets with positive µ-reach

Let K ⊂Rd be a compact set with positive µ-reach. A theorem of Fu [15, Corollary
3.4] implies that for any radius r in (0, reachµ(K)), the closure of the complement
of the tubular neighborhood Kr has positive reach. This lower bound was made
quantitative in [6].

Theorem 1 ([6]). Let K ⊆ Rd be a set with positive µ-reach. Then, for any radius r
in (0, reachµ(K)), one has

reach
(
Rd \Kr

)
≥ µr. (10)

From Proposition 2, this implies that offsets of Rd \Kr are of class C 1,1. These so-
called double offsets are used in computer aided design to smoothen a surface. The
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(r, t)-double offset of K is the set of points that are at distance t of the complementary
of Kr:

Kr,t := Rd \Krt
=
{

x ∈ Rd ; d
(

x,Rd \Kr
)
≤ t
}

(11)

The following theorem is thus a direct consequence [6].

Theorem 2 (Double offset theorem). Let K ⊆ Rd be a set with positive µ-reach.
Then, for any radius r in (0, reachµ(K)) and every t < µr the hypersurface ∂Kr,t is
C1,1-smooth. In addition,

reach(∂Kr,t)≥min(t,µr− t). (12)

This implies in particular that the smallest of the principal radii of curvature at any
point of ∂Kr,t is at least min(t,µr− t).

2 Boundary measures and Federer’s curvature measures

In this section, we introduce Federer’s curvature measures, which apply to a large
class of compact subsets embedded in the Euclidean space. The main objective here
is to prove a stability theorem for these curvature measures which implies that it
is possible to estimate them from point cloud data. As a first step, we consider a a
simpler notion called boundary measures and introduced in [8] for the purpose of
geometric inference.

2.1 Boundary measures

Loosely speaking, the boundary measure associated to a surface encodes the distri-
bution of normals to the surface at a certain scale, and can be used to detect sharp
edges, or highly curved areas, where the concentration of normals is much higher.

Definition 8 (Boundary measures). If K is a compact subset and E a domain of Rd ,
the boundary measure µK,E is defined as follows: for any subset B⊆Rd , µK,E(B) is
the d-volume of the set of points of E whose projection on K is in B, i.e.

µK,E(B) = H d(p−1
K (B∩K)∩E). (13)

Here and in the following, H d denotes the d-dimensional Hausdorff measure. By
construction, the total mass of this measure is equal to H d(E).

Example 4. Let S be a unit-length segment in the plane with endpoints a and b. The
set Sr is the union of a rectangle of dimension 1× 2r whose points project on the
segment and two half-disks of radius r whose points are projected on a and b. It
follows that

µS,Sr = 2r H 1∣∣
S +

π

2
r2

δa +
π

2
r2

δb (14)
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x

Kr

K

B

pK(x)

p−1
K (B)

M(K)

Fig. 1 Boundary measure of K ⊂ Rd . The medial axis Med(K) of K is the dashed line. Remark
that the boundary of the offset ∂Kr is smooth everywhere but at its point of intersection with the
medial axis.

Example 5. If P is a convex solid polyhedron of R3, F its faces, E its edges and V
its vertices, then one can see that:

µP,Pr = H 3∣∣
P + r ∑

f∈F
H 2∣∣

f + r2
∑
e∈E

H(e) H 1∣∣
e + r3

∑
v∈V

K(v)δv (15)

where H(e) is the angle between the normals of the faces adjacent to the edge e and
K(v) the solid angle formed by the normals of the faces adjacent to v. As shown by
Steiner and Minkowski, for general convex polyhedra the measure µK,Kr is a sum
of weighted Hausdorff measures supported on the i-skeleton of K, and whose local
density is the local external dihedral angle.

2.2 Stability of boundary measures

In this section, we suppose that E is a fixed open set with rectifiable boundary, and
we obtain a quantitative stability theorem for the map K 7→ µK,E . What we mean by
stable is that if the Hausdorff distance between two compact sets K and P is small,
then the bounded-Lipschitz distance between the boundary measures µK,E and µP,E
is also small.

Definition 9 (bounded-Lipschitz distance). The bounded-Lipschitz distance be-
tween two signed measures µ,ν with finite total mass is

dbL(µ,ν) = sup
f

∣∣∣∣∫ f dµ−
∫

f dν

∣∣∣∣ , (16)
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where the supremum is over all 1-Lipschitz function in Rd s.t. ‖ f‖
∞
≤ 1.

Theorem 3. If E is a fixed open subset of Rd with rectifiable boundary, for each
compact K ⊆ Rd , then

dbL(µK,E ,µK′,E)≤ const(E,K,d)dH(K,K′)1/2 (17)

Moreover the constant only depends on the diameter of K.

Before proving this theorem, we will first show that the exponent 1/2 in the
right-hand side of Equation (17) is optimal.

Lemma 1. There exists a sequence of compact subsets Kn of Rd converging to a
compact set K and a domain E, such that

dbL(µK,E ,µKn,E)≥ const ·dH(K,Kn)
1/2 (18)

Proof. Let K be the closed unit disk in the plane, Kn be the regular polygon with
n edges inscribed in K, and let E be the annulus B(0,2) \B(0,1). Denote ` the
edgelength of Kn. Pythagoras theorem can be used to bound the Hausdorff distance
between K and Kn in term of `n: dH(K,Kn) ≤ const ·`2

n. The measure µ = µK,E is
proportional to the uniform (lineic) measure on the unit circle. On the other hand,
the map pKn projects a constant fraction of the mass of E onto the vertices Vn of Kn.
The cost of spreading out the mass concentrated on these vertices to get a uniform
measure on the circle is proportional to the distance between consecutive vertices,
so that dbL(µD,E ,µP̀ ,E)≥ const ·`n.

The next lemma shows that Theorem 3 can be deduced from a L1 stability result
for projection functions.

Lemma 2. dbL(µK,E ,µL,E)≤ ‖pK−pL‖L1(E)

Proof. Consider a 1-Lipschitz function f on Rd . Then, by the change of variable
formula, and using the Lipschitz property,∫

Rd
f (p)d(µK,E(p)−µL,E(p)) =

∫
E

f (pK(x))− f (pL(x))dH d(x)

≤
∫

E
‖pK(x)−pL(x)‖dH d(x) = ‖pK−pK‖L1(E)

Taking the maximum over 1-Lipschitz functions bounded by 1 gives the desired
bound.

Proposition 1 allows us to rewrite the projection function pK as the gradient of
a convex function: setting ψK(x) := 1

2 (‖x‖
2 − dK(x)2), one has pK = ∇ψK . This

rewriting recasts a difficult geometric question into a seemingly easier analytical
question, namely a L1-stability of gradients of convex functions. This is the object
of the next theorem. The proof presented here is different from the original proof in
[8] and gives a slightly better constant.
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Theorem 4 ([8]). Let φ ,ψ : Rd → R be two convex functions and E be a bounded
domain with rectifiable boundary. Then,

‖∇φ −∇ψ‖2
L2(E) ≤ 2‖φ −ψ‖L∞(E) (‖∇φ‖L∞(E)+‖∇ψ‖L∞(E))H

d−1(∂E) (19)

Proof. Note that if the inequality (19) holds for smooth convex functions, then it
also holds for any convex function. Indeed, it suffices to remark that any convex
function φ can be approximated by a sequence of smooth convex functions (φn)
such that ∇φn converges uniformly to ∇φ on any compact domain. By another ap-
proximation argument, it is possible to replace E by a domain with smooth bound-
ary. From now on, we will assume that φ ,ψ and ∂E are smooth. We use Stokes
theorem to get:∫

E
‖∇φ −∇ψ‖2 =

∫
∂E

(φ −ψ)〈∇φ −∇ψ|nE〉−
∫

E
(φ −ψ)∆(φ −ψ) (20)

The first term of this sum is easily bounded, using the fact that an integral is bounded
by the maximum of the integrand multiplied by the measure of the domain, and the
Cauchy-Schwartz inequality:∣∣∣∣∫

∂E
(φ −ψ)〈∇φ −∇ψ|nE〉

∣∣∣∣≤‖φ −ψ‖L∞(E) (‖∇φ‖L∞(E)+‖∇ψ‖L∞(E))H
d−1(∂E)

(21)
We can bound the second term similarly:∣∣∣∣∫E

(φ −ψ)∆(φ −ψ)

∣∣∣∣≤ ‖φ −ψ‖L∞(E)

∫
E
(|∆φ |+ |∆ψ|) (22)

We now use the convexity hypothesis, which implies that ∆φ is non-negative, which
allows us to apply Stokes theorem again:∫

E
|∆φ |=

∫
E

∆φ =
∫

∂E
〈∇φ |nE〉 ≤ ‖∇φ‖L∞(E)H

d−1(∂E) (23)

Combining Equations (22)–(23), we get∣∣∣∣∫E
(φ −ψ)∆(φ −ψ)

∣∣∣∣≤ ‖φ −ψ‖L∞(E) (‖∇φ‖L∞(E)+‖∇ψ‖L∞(E))H
d−1(∂E)

(24)
Finally, Equations (20), (21) and (24) give the desired inequality (19).

Proof (Proof of Theorem 3). We introduce the functions ψK(x) := 1
2 (‖x‖

2−dK(x)2),
which is convex, and we define ψK′ similarly. Now, thanks to Lemma 2 and using
the Cauchy-Schwarz inequality, we have

dbL(µK,E ,µK′,E)≤ ‖pK−pK′‖L1(E) ≤H d(E)‖pK−pK′‖L2(E) . (25)

We are now ready to apply Theorem 4. Without loss of generality, we assume that
the Hausdorff distance between K and K′ is bounded by diam(K) and that K contains
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the origin. Using ‖pK‖∞
= maxp∈K ‖p‖ ≤ diam(K),

‖∇ψK‖L∞(E)+‖∇ψK′‖L∞(E) ≤ ‖pK‖∞
+‖pK′‖∞

≤ 3diam(K). (26)

Finally, we need to control the quantity ‖φ −ψ‖L∞(E). For this purpose, we use the
relation ‖dK−dK′‖∞

= dH(K,K′):

‖φ −ψ‖L∞(E) =
∥∥d2

K−d2
K′
∥∥

L∞(E)

≤ (‖dK‖L∞(E)+‖dK′‖L∞(E))dH(K,K′)

≤ const(K,E)dH(K,K′), (27)

where the last inequality follows from the assumption that dH(K,K′) ≤ diam(K),
which implies that ‖dK′‖L∞(E) ≤ ‖dK‖L∞(E)+diam(K). The stability inequality (17)
then follows from (25), Theorem 4 and Equations (26)–(27).

2.3 Tube formulas and Federer’s curvature measures

We start with the tube formulas of Steiner, Minkowski and Weyl, before turning to
the more precise tube formula of Federer, which is then used to define the curvature
measures of a large class of compact sets.

2.3.1 Tube formulas

A tube formula for a compact set K in Euclidean space asserts that the Lebesgue
volume of the tubular neighborhoods Kr is a degree d polynomial in r on a certain
interval. The first tube formula is due to Steiner and shows that if K is a convex
polygon in the Euclidean plane, the function r 7→H d(Kr) is a polynomial of degree
two, and more precisely,

H d(Kr) = H 2(K)+ rH 1(∂K)+πr2 (28)

The proof of this fact is (almost) contained in Figure 2: every vertex with exterior
angle αi contributes a volume of αir2 to Kr, while every segment contributes r×
` j. Summing these up on every segment and vertex yields the 2D Steiner formula.
Minkowski proved a similar polynomial behaviour for the volume of the offsets of
any compact convex set in Rd .

Weyl [25] proved that the polynomial behavior for r 7→H d(Kr) also holds for
small values of r when K is a compact smooth submanifold of Rd . He also proved
that the coefficients of this polynomial can be computed from the second funda-
mental form of K. The following proposition deals with the (simple) case of an
hypersurface bounding a compact domain.
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r
K

Kr

αi

`j

Fig. 2 Offset of a polygon in the Euclidean plane

Proposition 3. Let K be a bounded domain of Rd with smooth boundary M. Then,
for sufficiently small values of r > 0,

H d(Kr) = H d(K)+
d−1

∑
k=1

const(d,k)rk+1
∫

M

[
∑

i1<···<ik

κi1 . . .κik(p)

]
dp (29)

where κ1(p), . . . ,κd(p) are the principal curvatures at point p of ∂K = M.

Proof. Let n be an oriented normal field on M. The map Φ : M×R→Rd , (p, t) 7→
p+ tn is locally injective; by compactness of M, it is also injective on M× [0,r]
for r small enough. One has d(p,t)Φ = idTpM + tdpn + n, i.e.

∣∣det(d(p,t)Φ)
∣∣ =∣∣det(id+ tdpn)

∣∣. For t = 0, det(d(p,t)Φ) = 1 > 0 at any point p ∈ M; as a conse-
quence, and by compactness of M again, this determinant remains positive for small
enough values of t. This allows us to apply a following change-of-variable formula
for small valus of r:

H d(Kr) = H d(K)+
∫

Kr\K
1dx

= H d(K)+
∫

M

∫ r

0
det(id+ tdpn)dtdn

(30)

The eigenvalues of the map dpn are the d principal curvatures of M at p, which
means:

det(id+ tdpn) =
d−1

∏
i=1

(1+ tκi(p)) =
d

∑
k=1

tk

[
∑

i1<···<ik

κi1(p) . . .κik(p)

]
(31)

We conclude the proof by putting Equation (31) in Equation (30).
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2.3.2 Federer’s curvature measures

The contribution of Federer to the theory of tube formulas is twofolds. First, Federer
defines the class of compact sets with positive reach, which includes both compact
convex sets and compact smooth submanifolds of Rd . The reach of a compact subset
of Rd is an interesting quantity, because it gives a lower bound on the largest R such
that the map r 7→H d(Kr) is a polynomial of degree d on [0,R]. Second, Federer
associates to any set with positive reach a family of d+1 curvature measures, which
allow one to recover local curvature information. The construction of these curvature
measures rely on a local version of the tube formula [12].

As mentioned in Section 1.1.1, sets with positive reach generalize both convex
sets and compact smooth submanifolds. In order to introduce the curvature mea-
sures of a set K with positive reach, Federer first proves that for any positive r in
(0, reach(K)], the boundary of the offset ∂Kr is a hypersurface of class C 1,1, i.e.
∂Kr is a C 1 hypersurface with a Lipschitz normal field. Federer’s then extends the
tube formula presented in Proposition 3 to this less smooth setting. Finally, the ex-
istence of curvature measures for K, as well as the polynomial behaviour for the
volume of the offsets is obtained by approximation, by letting r go to zero. We will
not prove these facts, but only quote Federer’s existence result. As usual, ωk denotes
the volume of the k-dimensional sphere in Rk+1.

Theorem 5 (Federer). For any compact set K ⊆Rd with positive reach, there exists
d +1 signed measures ΦK,0, . . . ,Φ

d
K,d such that for r ≤ reach(K),

µK,Kr =
d

∑
i=0

ωd−iΦK,iri. (32)

Definition 10. The measures ΦK,0, . . . ,ΦK,d introduced in Theorem 5 are called
Federer’s curvature measures of K.

2.4 Stability of Federer’s curvature measures

The purpose of this section is to show that Federer’s curvature measures of a com-
pact set with positive reach can be estimated from a Hausdorff approximation of
this set, without any regularity hypothesis on the approximating set. In order to do
so, we explain how to associate an ersatz of Federer’s curvature measures to any
compact set, which coincide with the original curvature measures when the set has
a sufficiently large reach.

Definition 11 (Approximate curvature measures). Let R > 0 and r be a family of
numbers (ri)0≤i≤d such that 0 < r0 < .. . < rd . Given any compact set K in Rd and
any Borel set B, we define the approximate curvatures (Φ (r)

K,i(B))0≤i≤d as the set of
coefficients which satisfy the interpolation equations:
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∀0≤ i≤ d−1, µK,Kri (B) =
d

∑
j=0

ωd− jΦ
(r)
K, j(B)r

j
i (33)

Since the numbers (ri) are distinct, this define the approximate curvature measures
uniquely. More precisely, by Lagrange interpolation, there exist real coefficients
(Li j) such that

∀0≤ i≤ d−1, Φ
(r)
K, j = ∑

0≤i≤d
Li jµK,Kri . (34)

This shows that the approximate curvature measure Φ
(r)
K, j is a signed measure. More-

over, one recovers Federer’s curvature measures when the reach of K is sufficiently
large. More precisely, if rd ≤ reach(K), then Φ

(r)
K, j = ΦK, j.

We are now able to state the following stability theorem from [8].

Theorem 6. Given any compact set K ⊆ Rd and (r) as in Definition 11, there exist
a constant C = const(K,r,d) such that for any compact set K′ sufficiently close to
K,

dbL

(
Φ

(r)
K, j,Φ

(r)
K′, j

)
≤CdH(K,K′)1/2

Moreover, if rd ≤ reach(K) then one can estimate Federer’s curvature measures of
K from K′:

dbL

(
Φ

(r)
K, j,ΦK′, j

)
≤CdH(K,K′)1/2.

We will see first how Theorem 6 can be deduced from the following stability
result for boundary measures.

Theorem 7. Given any compact set K ⊆ Rd and r a positive number, there exist a
constant C = const(K,r,d) such that for any compact set K′ sufficiently close to K,

dbL
(
µK,Kr ,µK′,K′r

)
≤CdH(K,K′)1/2.

Proof (Proof of Theorem 7). Let E be the symmetric difference between Kr and K′r.
Then, by the triangle inequality for the bounded-Lipschitz distance,

dbL
(
µK,Kr ,µK′,K′r

)
≤ dbL

(
µK,E ,µK′,E

)
+dbL (µK,Kr ,µK,E)+dbL

(
µK′,K′r ,µK′,E

)
Theorem 3 implies that the first term of the right-hand side is of order O(d1/2

H (K,K′)).
We only need to deal with the two last terms. Given any 1-Lipschitz function f with
‖ f‖

∞
≤ 1, the change-of-variable formula implies∫
Rd

f (x)d(µK,Kr −µK,E)≤
∫

Kr
f (pK(x))dH d(x)−

∫
E

f (pK(x))dH d(x)

≤H d(Kr \E)

Taking the maximum over such functions gives a bound on the bounded-Lipschitz
distance between these measures. Overall, we have
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dbL
(
µK,Kr ,µK′,K′r

)
≤Cd1/2

H (K,K′)+H d(Kr \E)+H d(K′r \E).

Defining ε = dH(K,K′), one has the inclusion Kr \E ⊆ Kr \Kr−ε . This term can be
shown to be of order O(dH(K,K′)) using Proposition 4.2 from [8] and the coarea
formula.

Proof (Proof of Theorem 6). Thanks to Equation (34), one has for any 1-Lipschitz
function f such that ‖ f‖

∞
≤ 1,∣∣∣∣∫Rd

f d(Φ (r)
K, j−Φ

(r)
K′, j)

∣∣∣∣≤ ∑
0≤i≤d

∣∣Li j
∣∣ ∣∣∣∣∫Rd

f d(µK,Kri −µK,Kri )

∣∣∣∣
≤ ∑

0≤i≤d

∣∣Li j
∣∣dbL(µK,Kri ,µK,Kri )

≤ const(K,(r),d)dH(K,K′)1/2,

where the second inequality follows from the definition of the bounded-Lipschitz
distance, and the third inequality comes from Theorem 7. To conclude, it suffices to
apply the definition of the bounded-Lipschitz distance once again.

(a) Fandisk (b) Sharp sphere

Fig. 3 Convolved boundary measures of 100k point clouds sampled from point clouds sampled
from the fandisk and sharp sphere models and rescaled so as to have unit diameter. The offset
radius is set to r = 0.05 and r = 0.1 respectively and the convolution radius is given by ε = 0.02
and ε = 0.03.

2.5 Computation of boundary measures and visualization

We explain briefly how to compute the boundary measure of a point cloud, that is
a finite subset P of Rd . The Federer’s curvature measures can be recovered from
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the boundary measures through polynomial fitting. The computation relies on the
Voronoi diagram of P, which is a practical way of encoding the distance function to
P in low dimension.

Definition 12 (Voronoi diagram). Let P be a point cloud of Rd . The Voronoi di-
agram of P is a decomposition of the space into convex polyhedra called Voronoi
cells. The Voronoi cell of the point p in P is defined by:

VorP(p) = {x ∈ Rd ;∀q ∈ P, ‖x− p‖ ≤ ‖x−q‖}. (35)

Lemma 3. Let P be a point cloud of Rd . The boundary measure of P with respect to
a domain E is given by

µP,E = ∑
p∈P

H d(VorP(p)∩E)δp. (36)

In addition, when E = Pr is an offset of P, one has

µP,Pr = ∑
p∈P

H d(VorP(p)∩B(p,r)). (37)

Proof. Equation (36) follows from the fact that a point x belongs to the Voronoi cell
of p in P if and only if dP(x) = p and iff pP(x) = p. To prove the second equation,
we only need to remark that

VorP(p)∩Pr = {x ∈ Rd ;dP(x) = ‖x− p‖ and dP(x)≤ r}
= {x ∈ Rd ;dP(x) = ‖x− p‖ and ‖x− p‖ ≤ r}
= VorP(p)∩B(p,r)

Thanks to this lemma, computing boundary measures amounts to evaluating the
volume of intersections of Voronoi cells with balls. This leads to a practical algo-
rithm in dimension 2 and 3 [20]. This approach becomes too costly in higher dimen-
sions due to the exponential complexity of the Voronoi diagram, but it is possible to
resort to a Monte-Carlo method [8].

Visualization

It is not trivial how to visualize a finitely supported measure µP,Pr on Rd , even
when the ambient dimension is d = 2,3. The obvious idea is to display a ball whose
volume is proportional to the mass of the Dirac at each point in the support of
the measure. This is however not satisfactory as two measures which are close for
the bounded-Lipschitz distance could lead to very different visualizations. Indeed,
consider µ = δx and µη = (δx + δy)/2 where ‖x− y‖ ≤ η : µ would be displayed
as a single ball B(x,r) while the nearby measure µη would be displayed as two
overlapping balls of smaller radius B(x,αr)∪B(x,αr) with α = 2−1/d .
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Fig. 4 Feature points extracted from a point cloud sampling of a CSG model by thresholding low
values of the convolved boundary measure.

In order to construct a visualization which is stable with respect to the bounded-
Lipschitz distance, we therefore convolve each boundary measure with a fixed
bounded-Lipschitz function χ .

Definition 13 (Convolution). The convolution of a finite measure µ on Rd with a
bounded measurable function χ is the function µ ∗χ : Rd → R defined by

[µ ∗χ](x) :=
∫
Rd

χ(y− x)dµ(y) (38)

The convolved measure µ ∗ χ is stable with respect to the bounded-Lipschitz dis-
tance, by its very definition. More precisely,

Lemma 4. Let χ be a function on Rd such that Lipχ ≤ 1 and ‖χ‖
∞
≤ 1. Then for

finite measures µ,ν ,
‖µ ∗χ−ν ∗χ‖

∞
≤ dbL(µ,ν) (39)

In practice, we choose the convolution kernel to be the “hat function” χε(y) =
max(ε−‖x− y‖ ,0), and we display at each point in P a ball whose volume is pro-
portional to the value of the function µP,Pr ∗χε . Figure 3 shows the convolved bound-
ary measures of point clouds sampling piecewise-smooth surfaces in R3.

Sharp features extraction

Extracting the set of sharp features of a compact sets known through a finite point
cloud sampling is of interest in many geometry processing applications. Figure 3
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Fig. 5 The Voronoi cell of a point x on a cube is pencil, triangle or cone-shaped depending on the
dimension of the normal cone.

suggests that the sharp corners carry more mass than the points on the sharp edges,
which again carry more mass than the smooth points. This observation can be turned
into more quantitative estimations, see e.g. [19, Chapter 3]. In Figure 4 we display
points whose boundary measures carries more mass than some threshold, or more
precisely (for the same reasons as in the previous paragraph), where the values of
the function µK,Kr ∗χε are higher than some threshold.

3 Voronoi covariance measures and local Minkowski tensors

In some applications, such as feature-aware surface reconstruction, scalar quantities
such as those encoded in Federer’s curvature measures are not sufficient, and one
also wishes to recover directional information such as principal curvature directions
or the direction of a sharp edge in a piecewise smooth surface.

3.1 Covariance matrices of Voronoi cells

Voronoi-based normal estimation [2, 1] rely on the intuition that for a noiseless
sampling of a smooth surface the Voronoi cells are elongated in the direction of the
normal to the surface. For instance, in Figure 5, the Voronoi cell of the red point on
upper face is an elongated cylinder, and it is possible to estimate the normal to that
face by analyzing the shape of this Voronoi cell. A practical tool for estimating the
direction in which a domain is elongated is the notion of covariance matrix.

Definition 14 (Covariance matrix). The covariance matrix of a bounded domain
V ⊆ Rd is the symmetric matrix, or tensor, defined by:
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cov(V, p) =
∫

V
(x− p)⊗ (x− p)dx

where v⊗w denotes the n×n matrix defined by [v⊗w]i, j = wiv j.

The covariance matrix of a domain is also known as the inertia matrix in solid
mechanics and its eigenvectors capture the principal axes of the domain V with re-
spect to the base point p. In the case of a noiseless sampling of a smooth surface, one
can approximate the normal direction at each sample by the eigenvector correspond-
ing to the largest eigenvalue of the covariance matrix of the corresponding Voronoi
cell intersected with a bounding box of the point set [1]. Under strong noise, individ-
ual Voronoi cells can become ill shaped, but it is possible to average the covariance
matrices of nearby Voronoi cells to recover the correct normal directions.

Note, however, that the shapes of Voronoi cells provide more information than
just the normal direction. When the underlying surface is not smooth, some of its
points will have normal cones rather than single normal directions. Nevertheless,
even in this case, the shapes of Voronoi cells accurately reflect the shapes of the
underlying normal cones. Some geometric properties of these normal cones can
then be estimated using the covariance matrices of the Voronoi cells.

3.2 Voronoi covariance measure

It is possible to mimick the definition of the boundary measure to construct a tensor-
valued measure which summarizes and extends the covariance matrices of Voronoi
cells.

Definition 15. The Voronoi covariance measure (also called VCM) of a compact
subset K of Rd with respect to a bounded domain E a tensor-valued measure denoted
by VK,R. This measure maps every (Borel) subset B of Rd to the symmetric matrix
defined by:

VK,E(B) :=
∫

E∩p−1
K (B∩K)

(x−pK(x))⊗ (x−pK(x))dx (40)

Example 6. The Voronoi covariance measure of a point cloud P ⊆ Rd summarizes
the covariance matrices of Voronoi cells. More precisely, the Voronoi covariance
measure of P with respect to a bounded domain E is a sum of Dirac masses. The
weight in front of each Dirac is the covariance matrix of the corresponding Voronoi
cell. More precisely,

VK,E = ∑
p∈P

cov(VorP(p), p)δp. (41)

These quantities can be computed efficiently, provided that one is able to compute
(or approximate) the intersection between the Voronoi cell and E.
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Definition 16. The bounded-Lipschitz distance between two measures µ,ν taking
values in a normed vector space (X ,‖.‖) is defined by

dbL(µ,ν) = sup
f

∥∥∥∥∫ f dµ−
∫

f dν

∥∥∥∥ . (42)

For tensor-valued measure, the vector space is the space of symmetric matrices and
‖.‖ is the operator norm.

The Hausdorff stability result for boundary measures (Theorems 3 and 7) can
be generalized to Voronoi covariance measures. The VCM can be used for the es-
timation of the location and direction of sharp features, leading to a practical and
efficient algorithm [20].

Theorem 8. Given any compact set K ⊆ Rd and r a positive number, there exist a
constant C = const(K,r,d) such that for any compact set K′ sufficiently close to K,

dbL
(
VK,Kr ,VK′,K′r

)
≤CdH(K,K′)1/2.

3.2.1 Extensions

The Voronoi covariance measure is closely related to the notion of local Minkowski
tensor, which was recently introduced by Hug and Schneider [17]. Theorems 8 and
6 have been extended to this setting by Hug, Kiderlen and Svane [16]. A robust
variant of the Voronoi covariance measure is introduced and studied in the PhD
thesis of Cuel [10].

4 Stability of anisotropic curvature measures

In this last section, we consider the question of approximating anisotropic curvature
measures of a compact set from a Hausdorff-approximation. Here, we assume that
the unknown compact set K has positive µ-reach: this include smooth manifolds,
convex domains and triangulations (see §1.2). We show that it is possible to approx-
imate the anisotropic curvature measures of Kr from those of K′r, where K′ is a
Hausdorff approximation of K and where r lies in some range. In practical applica-
tions, the second set K′ is a point cloud and its offset K′r is a finite union of balls,
whose anisotropic curvature measures can be computed.

4.1 Anisotropic curvature measures of sets with positive reach

Let V be a compact set with positive reach and let t in (0, reach(V )). Since the
hyper-surface ∂V t is of class C1,1, the second fundamental form and the princi-
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pal curvatures of ∂V t are defined almost everywhere. One can therefore define the
anisotropic curvature measure introduced in [9].

Definition 17. Let V be a compact set with positive reach. The anisotropic curvature
measure of V associates to any Borel set B the matrix

HV (B) = lim
t→0

∫
∂V t∩p−1

V (B)
H∂V t (p)d p,

where H∂V t is a matrix-valued function defined on Rd that coincides with the sec-
ond fundamental form of ∂V t on the tangent space, and vanishes on the orthogonal
component.

Remark that this definition is coherent with the Federer curvature measures. In-
deed, the kth Federer curvature measures satisfies for every Borel subset B of Rd :

ΦV,k(B) = lim
t→0

∫
∂V t∩p−1

V (B)
sk(p)d p,

where pV is the projection onto V and sk is the k-th elementary symmetric polyno-
mial of the principal curvatures λ1,...,λd−1 of ∂V t .

Now, let K be a compact set whose µ-reach is greater than r > 0. Then V =

Rd \Kr has a reach greater than µr. It is then possible to define the curvature mea-
sures of Kr [23, 24] by:

Φ
k
Kr(B) = (−1)k

Φ
k
V (B) and HKr(B) =−HV (B).

4.2 Stability of the curvature measures of the offsets

The following theorem states that if a compact set K is close in the Hausdorff sense
to a compact set K′ with positive µ-reach, then the Federer curvature measures and
anisotropic curvature measure of the offsets Kr and K′r are close for the bounded-
Lipschitz distance. This result is similar but not equivalent to Theorem 6. The re-
sult in Theorem 6 is limited to the Federer curvature measures but it derives from
Theorem 7, which holds without any assumptions on the underlying compact set,
whereas Theorem 9 requires to assume a lower bound on the µ-reach. We recall that
the bounded-lipschitz distance is given in Definition 16.

Theorem 9. Let r > 0, K and K′ be two compact subsets of Rd such that reachµ(K′)>
r. We suppose that the Hausdorff distance ε = dH(K,K′) between K and K′ is such

that ε < µ2

60+9µ2 r. Then one has

dbL(ΦKr ,k,ΦK′r ,k)≤ const(r,µ,d,K)
√

ε

and
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dbL(HKr ,HK′r)≤ const(r,µ,d,K)
√

ε,

where const(r,µ,d,K) depends on r, µ , d and the diameter of K.

ǫ

p q

θ

K ′r

r
s

r

a b

Fig. 6 Tightness of the bound of Theorem 9. We consider compact sets K = [p,q] and K′ = [p,q]∪
{s}, where s is at a distance ε from K. We have dH(K,K′) = ε and the total curvature θ of K′r
between a and b satisfies θ = 2arccos

( r−ε

r

)
= O

(√
ε
)
.

This theorem implies that one can estimate locally the curvature measures of a
compact set K′ with positive µ-reach from an Hausdorff approximation. If f : Rd→
R is measurable function, the previous theorem implies that∣∣∣∣∫ f dΦKr ,k−

∫
f dΦK′r ,k

∣∣∣∣≤ const(r,µ,d,K) ‖ f‖BL
√

ε, (43)

where ‖ f‖BL = Lip( f ) + ‖ f‖∞‖ is the bounded-lipschitz norm of f . The similar
inequality holds for the anisotropic curvature measure. In practice, we take the hat
function f (x) = max(1−‖x− c‖/r,0) equal to 1 at a point c ∈ ∂K′r. Then we can
retrieve local information about the curvature of K′r from the curvature of Kr in the
neighborhood of c.

As illustrated in Figure 6, the upper bound of Theorem 9 is tight. However the
constant const(r,µ,d,K) in Equation (43) can be localized. It does not have to de-
pend on the whole compact set K, but can only depend on the diameter of the support
spt f = {x ∈ Rd , f (x) 6= 0} of f . See [7] for more details.

4.3 Computation of the curvature measures of 3D point clouds

When the compact set K is a finite point set in R3 it is possible to provide explicit
formula for the curvature measures. The boundary of Kr is a spherical polyhedron:
its faces are spherical polygons; its edges are circle arcs contained in the intersection
of pairs of spheres of radius r with centers in K; its vertices belong to the intersection
of three spheres of radius r with centers in K. One has explicit integral formula
for the curvature measures for each vertex/edge/face of the spherical polygon [7].
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Moreover, the combinatorial structure of ∂Kr is in one-to-one correspondence with
the boundary of the α-shape of K [11].

In Figures 7 and 8 below, the curvatures are represented on the boundary of the
α-shape (for α = r) of the point clouds where each triangle is colored according
to the curvature value of its corresponding vertex in ∂Kr and to the colorbar on the
right of Figure 7. Note that the color values are different for the different examples
(since the extrema values are different). This algorithm can be easily adapted to
calculate the anisotropic curvature measures for a finite set of points. In particular,
this allows to estimate the principal curvatures and principal directions from a point
set.

Fig. 7 The Gauss (left) and mean (right) curvatures computed on the offset of a point set sampled
around a smooth surface. The colors are related to the values of the curvature according to the
colorbar on the right, the blue color corresponding to the lowest values.

Fig. 8 The Gauss (first and second image) and mean (third and fourth image) curvatures computed
on the offset of a point cloud sampled around a non-manifold set union of a cube with a disc and a
circle. As expected, the vertices and the boundary of the disc have a large Gaussian curvature.

4.4 Sketch of proof of Theorem 9

We first need to introduce the notion of normal cycle for sets with positive reach.
Let V be a set with positive reach. We define the set:
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S(V ) = {(p,n) ∈ Rd×Sd−1, p ∈ ∂V and n ∈ NorV (p)},

where NorV (p) := {v ∈ Rd ;∃t > 0,pV (p+ tv) = p} is the normal cone of V at p.
One can show that S(V ) is a Lipschitz (d-1)-manifold. The normal cycle N(V ) of V
is then by definition the (d-1)-current on Rd×Rd defined for every (d-1)-differential
form ω by:

N(V )(ω) =
∫

S(V )
ω.

The normal cycle contains in fact all the curvature information and allows to define
the curvature measures [9]. For every k, the curvature measure ΦV,k(B) is given by
N(V )( f̄ ωk) where f̄ (p,n) = 1B(p) and ωk is a d− 1-differential form on Rd ×Rd

that does not depend on V . Similarly, the anisotropic curvature curvature measure
HV (X ,Y ) applied in the directions X and Y is given by N(V )( f̄ ω

X ,Y
H ), where ω

X ,Y
H

is a d−1-differential form that depends on X and Y .
The proof can now be divided into three steps: in the first step, we show that the

problem can be carried onto the double offsets (that are smooth); in a second step, we
compare the normal cycles of the double offsets; in the last step, we combine Step
1 and Step 2 to show that the curvature measures of the two offsets are close. Let K
and K′ be two compact sets with positive µ-reach that satisfy all the assumptions of
Theorem 9.

Step 1: Carrying the problem into the double offsets
First note that Rd \Kr and Rd \K′r have positive reach. We introduce the map:

F−t : Rd×Rd → Rd×Rd

(p,n) 7→ (p− tn,n)
.

If V is any compact set with positive reach, the map F−t induces naturally a one-
to-one correspondence between the support of the normal cycle of the offset V t

and the support of the normal cycle of V . In particular, this map allows to send
simultaneously the normal cycles of Kr,t and K′r,t to respectively the normal cycles
of Kr and K′r. More precisely, one has:

N(Rd \Kr)−N(Rd \K′r) = F−t](N(Kr,t)−N(Kr,t)),

where F−t] denotes the push-forward for currents. Therefore, in order to compare
the normal cycles of Rd \Kr and Rd \K′r, it is sufficient to compare the normal
cycles of the double offsets Kr,t and K′r,t .

Step 2: Comparison of the normal cycles of the double offsets
In order to compare the normal cycles of Kr,t and K′r,t , we first need to compare
their (geometrical) supports in Rd×Rd . One first shows that the Hausdorff distance
between ∂Kr,t and ∂K′r,t is less than ε/µ . Using a result of [4] one also shows that
the difference between the normals of ∂Kr,t and ∂K′r,t is bounded by 30

√
ε/(µt).

Hence the (geometrical) supports of N(Kr,t) and N(K′r,t) are close to each other. Let
us take t = µr/2. Since the reach of ∂Kr,t is larger than t, the projection map p∂Kr,t
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onto ∂Kr,t is then defined on the offset Ut := (∂Kr,t)t . Since ∂K′r,t ⊂Ut , the map
p∂Kr,t induces a one-to-one map between ∂K′r,t and ∂Kr,t . We now define

ψ : Ut ×Rd → spt(N (Kr,t))
(x,n) 7→ (p∂Kr,t (x),np

∂Kr,t (x))
.

Using the affine homotopy between ψ and the identity, the homotopy Lemma [13,
4.1.9 page 363-364] allows to show that N(Kr,t) and N(K′r,t) are close. More pre-
cisely

N(Kr,t)−N(K′r,t) = ∂R, (44)

where ∂R is the boundary of a particular d-rectifiable R current whose support
spt(R) has a d-volume bounded by H d(spt(R))≤ k(r,µ,d)H d−1(∂K′r,t)

√
ε , where

H k denotes the k-dimensional Hausdorff measure and k(r,µ,d) is a constant that
only depends on r, µ and d.

Step 3
Here, instead of applying the measures to a Borel set, we apply them to a function
f : Rd → R (that can be for example indicatrix of Borel sets). Let us take an differ-
ential form ωk associated to a given curvature measure. We could also consider the
form ω

X ,Y
H associated to the anisotropic curvature measure. By combining previous

equations, one has:

ΦRd\Kr ,k( f )−ΦRd\K′r ,k( f )=N(Rd \Kr)( f̄ ωk)−N(Rd \K′r)( f̄ ωk)=F−t]∂R( f̄ ωk).

We show that F−t is
√

1+ t2-Lipschitz. Since ωk and dωk are uniformly bounded
by a constant depending on the dimension, Lip( f̄ ) = Lip( f ), one gets by Stokes
theorem:

|ΦRd\Kr ,k( f )−ΦRd\K′r ,k( f )| ≤ k(r,µ,d) ‖ f‖BL H d−1(∂K′r,t)
√

ε,

The previous inequality still holds for Kr and K′r. To conclude the proof, we use the
bound on H d−1(∂K′r,t) [8] and also use the critical function stability result to get
rid of the assumption on the µ-reach of K.
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