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Abstract

We address the problem of curvature estimation from samgmetpact sets. The main contribution is a stability

result: we show that the Gaussian, mean or anisotropic durrgameasures of the offset of a compact set K with
positive p-reach can be estimated by the same curvatureure=aef the offset of a compact set K’ close to K

in the Hausdorff sense. We show how these curvature measamese computed for finite unions of balls. The

curvature measures of the offset of a compact set with pegitireach can thus be approximated by the curvature
measures of the offset of a point-cloud sample.

Categories and Subject Descript@ascording to ACM CCS) |.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—

1. Introduction tions, to infer the usual pointwise curvature quantitieshen
physical object.

1.1. Motivation ) - . .
Indeed, a first difficulty is that the geometrical and topo-

We present in this work atable notion of curvature. A logical properties of a physical object have to be considlere

common definition of curvature considers quantities defined at S0me scale: for example, if one is interested in the shape

pointwisely on a twice differentiable manifold. Howevdret ~ ©f @ ship hull, it may méalke sense to see it as a smooth sur-
objects we have to deal with in practice are not twice dif- [@C€ ata large scale (10 meters). However, at a finer scale

ferentiable: consider the situation where a physical dbjec (10~ meters) this same object may appear with many sharp
is known through a sufficiently dense point cloud measured féatures near the rivets and small gaps between assembled
on the object boundary. Intuitively, it seems feasible ferin s_heets of metals. At a still finer scale, one could even con-
some meaningful information on the curvature of the phys- SIder each atom as a separate connected component of the
ical object itself. Let us assume that we know both ice same physical object.

curacyof the measure, which is an upper bound on the dis- A second difficulty is related to the “pointwise” nature of
tances between the measured points and their closest points g 5| curvature definition. If the physical object is known
on the physical object boundary, and tsampling density ;¢4 ¢ in Hausdorff distance, it seems impossible to distin-
which is an upper bound on the distance between the points g ,ish petween the pointwise curvature at two points whose
on the object boundary and their closest measured sample gistance is of the order af Without very strong assumptions
points. The fact that the measure accuracy and sampling den-g, the regularity of the unknown object, it is again meaning-

sity are below a known small valuecan be expressed by a5 t0 evaluate a pointwise curvature quantity.
saying that the Hausdorff distance (see the definition in Sec

tion 2) between the assumed physical object and the mea- In this work, we overcome the first difficulty by consid-
sured point cloud is less than Even with the guarantee of  ering a scale dependent notion of curvature which consists
a small Hausdorff distance, the knowledge of the measured merely, for a compact sé€, in looking at the curvature of
point cloud allows many possible shapes for the physical ob- ther-offsets ofK (i.e. the set of points at distance less than
ject boundary and it is hopeless, without additional assump or equal tor from K). This offset, which can be seen as a
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kind of convolution, in the same spirit of similar operators
in mathematical morphology or image processing, filters out
high frequencies features of the object’'s boundary.

We overcome the second difficulty by considering curva-

ture measures instead of pointwise curvature. In the case of
smooths manifolds, curvature measures associate to asubse

of the manifold the integral of pointwise curvatures over th

subset. However the curvature measures are still defined on
non smooth objects such as convex sets or more generally

sets with positive reactiFpd59.

In practice, in order to state our stability theorem, one has

to make some assumption on the unknown physical object,

namely thepositive p-reactproperty defined below. To be
more precise, our stability theorem still applies to olgect
whose offsets have positiyereaches.

positive p-reach, or at least if it has offsets with positine
reach, it is possible to retrieve the topology of its offseni

the topology of some offsets of a Hausdorff close point sam-
ple. A stable notion of normal cone has also been defined on
this class of setsGCLO7]. More recently, the authors have
proved [CCLT07] that the complement of offsets of sets with
positivep-reach have positive reach. Since the normal cycle
and the associated curvature measures are defined for sets
with positive reachfed59Fu89 we may consider normal
cycles of offsets of sets with positigereach. This paper de-
velops this idea and gives a stability result whose proo$ use
the fact that the boundary of the double offsets of sets with
positive-reach are smooth surfaces.

1.3. Contributions.

Some other approaches assume stronger properties sucHoUr main result states thaF if the. .Hausdorf.f distance be-
as smoothness or positive reach. But s it legitimate to make tWeen two compact sets with positiyereach is less than
such assumptions on an unknown object? In practice, the & then the curvature measures of their offsets differs by les

only available informations about the physical object ap-
pears through the physical measures. A distinctive charact
of our assumption on thereach of offsets of physical object
is that, thanks to the so-called critical values separdtien-
rem [CCLO€, it can be reliably checked from the measured
point sample. In this situation our curvature estimatiaas r
flect reliably the intrinsic properties of the physical atije

1.2. Related previous work.

Due to its applications in geometry processing, many meth-

thatO(y/€), using an appropriate notion of distance between
measures. This is then extended throughdtiical values
separation theoreno the case where only one set has posi-
tive p-reach, which allows to evaluate the curvature measure
of an object from a noisy point cloud sample. These results
improve on the stability results inrvfor08, Coh04 CMO03,
CMO7], which were only limited to the approximation of
smooth hypersurfaces by homeomorphic triangulated mani-
folds. In order to provide a concrete algorithm we give the
formulas that express these curvatures measures on a union
of balls (.e. on an offset of the point cloud). Our experimen-

ods have been suggested that, given a triangulated surface @l results are preliminary and the evaluation on grounthtru
are able to estimate the curvature of an assumed underlying Surfaces under varying conditions of noise and sampling and

smooth surface (sed’gt03 for a survey). Several authors
(for example £CP03) compute the curvature of a smooth
polynomial surface approximating locally the trianguthte
surface. Other authordHpa06 PWY*07, PWHY09 con-
sider integral invariants that allow to estimate curvasure
of underlying smooth objects. Other authors use finite el-
ement based methods or laplaciabziB8, HPW06 LP0Y,
statistical approacheKENSO07 or tensor-fitting approaches

the comparison to other methods are still left open.

Closest to our work isQCMO07], which also gives a sta-
bility result for curvature measures. The main differences
are that our result also applies to anisotropic curvatura-me
sures, wherea<l[CM07] is only limited to the usual curva-
ture measures. On the other hand, the stability result fier cu
vature measures irCICMO07] derives from a stability result
for so-called boundary measures, which holds without any

[Rus04. Cheeger and his coauthors also showed results of assumptions on the underlying compact set, whereas ours

convergence for the Lipschitz-Killing curvatureSyMS84.
Closely related to our work isfor08,Coh04CM03,CM07],
which study a general definition of curvature measure that
applies to both smooth surfaces and their approximation

by triangulated surfaces, based on the so-called normal cy-

cle (defined below). The proximity of curvature measure
is proved using the powerful notion dé&at norm[Mor87]

between the corresponding normal cycles. These ideas are

thoroughly reused in the present work.

In [CCLOg, in order to address the question of topology
determination through Hausdorff approximation, the argho
have introduced the class of sets with positiveach, which
can be regarded as a mild regularity condition. In partigula

requires to assume a lower bound on fieach. While the
two results seem related at first sight, the proof techniques
are drastically different.

1.4. Ouitline.

The paper first recalls definitions and properties related to
the distance function to a compact set and its gradient, the
critical function and theu-reach. Then, we introduce the
curvature measures without using the notion of normal cy-
cle, whose formal definition is somewhat lengthy. In Sec-
tion 3, we state the stability theorem for sets with positive
p-reaches. We then extend this theorem to the case where

this condition does not require smoothness. If a set has a only one set has positiyereach. In Sectiod, we give the
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expressions of curvature measures for unions of balls. The pointx € R%\ K, we denote by (x) the set of points i

last sections gives the proof.

2. Definitions and background on distance functions

We are using the following notations in the sequel of this
paper. GivenX C RY, one denotes bX® the complement
of X, by X its closure and byX the boundary oK. Given

A C RY, ch(A) denotes the convex hull &

Thedistance function g of a compact subs& of RY asso-
ciates to each pointe RY its distance t&K:

X dk (X) = )r%i&ld(x,y)

whered(x,y) denotes the Euclidean distance betwremd

y. Conversely, this function characterizes completely the
compact seK sinceK = {x € RY|dk (x) = 0}. Note that

dk is 1-Lipschitz. For a positive number we denote by

Kr ther-offset of K, defined byKy = {x|dk(x) <r}. The
Hausdorff distance igl(K,K’) between two compact seis
andk’ in RY is the minimum number such thak c K/ and

K’ C K. The triangular inequality implies that the following
formulae:

dr (K,K") = sup|dk (x) — dk (X)]
XERN

Given a compact substt of RY, the medial axisM (K) of

K is the set of points ifR¢ \ K that have at least two closest
points onK. The infimum distance betwe&and M (K) is
called, according to Federer, theachof K and is denoted
reach{K). The reach oK vanishes ifK has concave sharp
edges or corners. The projection mapthat associates to a
point x its closest poinpk (x) onK is thus defined oY \
M(K).

A %! function is aC* function whose first differential is
Lipschitz. ACY* hypersurfaceSis a (d — 1)-manifold em-
bedded inR? such that each point @& has a neighborhood
which is the regular image (that is the image by a function
whose differential has maximal rank) by an injectiv&!
function of a neighborhood of 0 id—1, Informally, one
can say that &% surface is a surface with bounded curva-
ture, which is strictly stronger tha@® and strictly weaker
thanC?. An embedded’* compact manifold i€*? if and
only if it has positive reachHed59. Note that a non pla-
nar polyedral surface is not of clag$, thus does not have
positive reach.

2.1. The gradient

The distance functiomlk is not differentiable onM(K).
However, it is possiblelfie04] to define ageneralized gra-
dientfunction Vg : RY — RY that coincides with the usual
gradient ofdk at points wherelk is differentiable. For any

(© 2009 The Author(s)
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closest tox (Figurel):

M () ={yeKld(xy) =dc(X)}

Note thatl'k (x) is a non empty compact set. There is a
unique smallest closed batk (x) enclosinglk (x) (cf. Fig-
urel). We denote bk () the center 0k (x) and byFk (x)
its radius.Bk (x) can equivalently be defined as the point on
the convex hull ofrk (x) nearest to. Forx € R4\ K, the

Figure 1: A 2-dimensional example with 2 closest points.

generalized gradienfk (x) is defined as follows:

V(=" Bl

dk (X)
Note that the definition ofVk is chosen so that it can
be integrated into a continuous flowi¢04]. Furthermore,
[IVk(X)|| is the cosine of the (half) angle of the smallest
cone with apex that containg g (x).

2.2. Critical points, critical function and the p-reach

Thecritical pointsof dx are defined as the pointgor which
Vk(x) = 0. Equivalently, a poink is a critical point if and
only if it lies in the convex hull of k (x). WhenK is finite,
this last definition means that critical points are pregisieé
intersections of Delaundgdimensional simplices with their
dual (d — k)-dimensional Voronoi facetsqJ03. Note that
this notion of critical point is the same as the one considlere
in the setting of non smooth analysiSla83 and Rieman-
nian geometryChe9QGro93.

The results of this paper rely strongly on the notions of
critical functionandp-reach introduced in CCLOg.

Definition 1 (critical function) Given a compact seéf C
RY, itscritical functionxk : (0, +00) — R is the real func-
tion defined by:

Xi(d) = inf [|[Vi]|

d¢ " (d)
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The functionxk is lower semicontinuousLje04]. The p-
reach of a compact sét is the maximal offset valud for
whichxk (d") > pfor d’ < d.

Definition 2 (u-reach) The p-reach (K) of a compact set
K c RY is defined by:

ru(K) =inf{d | Xk (d) < u}

We have that(K) coincides with the reach introduced by
Federer Fed59. It can be shown that a polyedron always
has positivgr-reach. For example, the union of two adjacent
triangles inR® has a positivat-reach for anyu < cos3/2)
(wheref is the dihedral angle). The critical function is in
some sense “stable” with respect to small (measured by
Hausdorff distance) perturbations of a compact 6&1L06].

That implies the following theorenCjCL0§:

Theorem 1 (critical values separation theorem).etK and
K’ be two compact subsets Bf , dy (K,K’) < & andp be a
non-negative number. The distance functégnhas no crit-

ical values in the intervaﬂl%/pz, ru(K’) — 3¢ [ Besides, for
anyp’ < W, Xk is larger thary’ on the interval

}L rp(K’)—3\/erp(7K’){

(M—W)?’
2.3. Complement of offsets

It has been proved irJCLTO07] that the complemerkF of
the offsetK; has positive reach for any value<Or < ry.
Moreover, one has a lower bound for the critical function of
KF:

Theorem 2Forr € (0,ry,), one has readKf) > pr. More-
over for anyt € (pr,r),

2ur —t(1+ 1)
T @

2.4. Curvature measures

Let us first recall some basic definitions and notations in the
case wheréVl is a smooth surface that is the boundary of a
compact se¥ of RY. The unit normal vector at a poipte M
pointing outwardv will be refered as\(p). Note thatM is
thereby oriented. Given a vectwin the tangent spacgM

to M at p, the derivative ofi in the directiorv at p is orthog-
onal ton(p). The derivativeDpn of n at p thus defines an
endomorphism ofpM, known as the Weingarten endomor-
phism. The Weingarten endomorphism is symmetric. The

positive reach as the limit of the curvature measures of its
offsets. The advantage of these definitions is that they to no
rely on the notion of normal cycle.

More precisely, leV be a set with positive readR > 0
and lett < R. It is known thatdVt is aC>' hypersurface
of RY [Fed59. The second fundamental form and the prin-
cipal curvatures od\; are thus defined almost everywhere.
There is of course no pointwise convergence of the principal
curvatures when tends to 0. However, the integrals of the
curvatures ob\t converge to the integrals of the curvatures
of V whent tends to 0 (as can be seen for instance using the
tube formula Fed59). This allows us to define the isotropic
curvature measures df for every Borel subseB of RY as
follows:

of(B) = lim $(p)dp

t—0Jov,nB’
wherepy is the projection ont&/, B' = {pe RY, py(p) €
B}, is the k-th elementary symmetric polynomial of the
principal curvatures\1,...Aq_1 of v, the integral being
taken with respect to the uniform measured. In other
words,s* satisfies for every € R: (x+A1)...(x+Ag_1) =
L4 shx+ ...+ 7191 Now, remark that we have:

o(8)=lim | 1(pu(p) S (P)dp

wherelg is the indicator function oB. Therefore, we can
extend this notion of curvature measure to any integrable
real function. This point of view is crucial and will allow
us to state simple results of stability in this paper. More- pr
cisely, one defines the isotropic curvature measure foyever
integrable functionf on R by:

O (f) = lim [ f(pv(p)) S(p)dp.
t—0Jov
Similarly, one extends the notion of anisotropic curvature
measure of Coh04 CMO03]: the anisotropic curvature mea-
sure ofV associates to any integrable functibrthed x d
symmetric matrix defined by:

Hy(f) = lim [ f(pv(p)) Hoy (P)AP,
t—0Jav;
whereHgy, is a matrix-valued function defined ard that
coincides with the second fundamental formod on the
tangent space, and vanishes on the orthogonal component.

Now, letK be a compact set whogereach is greater than
r > 0. ThenV = Kf has areach greater thgn Itis then pos-
sible to define the extended notions of curvature measures of

associated quadratic form is called the second fundamental Kr (see RZ01, RZ03 for more details) by:

form. Eigenvectors and eigenvalues of the Weingarten en-
domorphism are respectively called principal directiond a
principal curvatures. In the 3-dimensional case, bothgdrin

pal curvatures can be recovered from the trace and determi-

nant ofDpn, also called mean and Gaussian curvature.

Itis possible to define the curvature measures of a set with

ok (f) = (—D ol (f) and Hy, (f) = —Hy(f).
In the 3-dimensional case, it is al_so possible to define a sec-
ond anisotropic measure curvatuteby:

H () = fim | f(Pv(p)) How (B)

(© 2009 The Author(s)
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support of f

v

Figure 2: Here the support of f is a ball arm\k, () captures
the curvature obV inside the support of f

and

Ak, (f) = —Av(f),

where ﬁavt is defined as having the same eigenvectors as
Hay, , but with swapped eigenvalues on the tangent plane, and

vanishes on the orthogonal componend\df.

3. Stability results
3.1. Curvature measures of the offsets

The main contribution of this paper is Theor@Thanks to

P q

Figure 3: Tightness of the bound: we take=K[p,q] and
K’ = [p,qu{s}, where s is at a distancefrom K. We have
dn (K, K’) = £ and the total curvatur® of K/ between a and
b satisfied = 2arcco{'+%) = O (V%)

in the 3-dimensional case, this result also holds for the
anisotropic curvature meastuite

Now, if we take the functiorf (x) = max(1—||x—c]|/r,0)
equal to 1 at a point € 9K/ that radially decreases in a
“small" ball B of radiusr and vanishes out dB, then we
can get local information about the curvature<gffrom the
curvature ofK; in the neighborhood aof.

We also note that the conclusion of the theorem may be
rephrased by saying that theunded Lipschitz distandm-
tween the curvature measureskaf andK; is bounded by
O(+/€). The bounded Lipschitz distance between measures
is similar to the Wasserstein distance (also called earth’s

the formulation of the curvature measures with measurable mover distance), except that it applies to general signed me

functions, the statement is simple. This theorem statésftha
two compact seti& andK’ with positivep-reaches are close

in the Hausdorff sense, then the curvature measures of their

offsets are close. We recall that the covering nuriéA, t)
of a compact seA is the minimal number of closed balls of
radiust needed to coveh.

Theorem 3Let K andK’ be two compact sets @ whose
p-reaches are greater thain We suppose that the Haus-
dorff distances = dy (K, K’) betweerK andK’ is less than
W@ _V2) min, 3). 1f f: R — R is a Lipschitz function
satisfying|f| < 1, then:

@k (f) = P, ()] < k(.. f) sup(Lip(f).1) V&,
and

[Fi, () = Fiy ()| < K(r.ja.d. 1) supLip(f). 1) V&,
where k(r,p,d, f) only depends onf through the cover-
ing numberN (spt(f)q ), Hr/2); Lip(f) is the Lipschitz-
constant off; spt(f) = {x € R4, f(x) # 0}.
We recall thaspt(f)q, ) denotes an offset afpt(f) of pa-

rametetO(1/€).The proof of this theorem is given in Section
5. We show in Figure that this bound is tight. Furthermore,

(© 2009 The Author(s)
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sures whereas Wasserstein distance is limited to probabili
measures. We refer t&€CMO07] for precise definitions.

3.2. General result

The result of the previous section ensuring the stabilithef
curvature measures assume that both the compad{ satd

K’ have sufficiently largg-reach. Nevertheless, in practical
settings, particularly when dealing with point clouds, lsuc
a hypothesis is rarely satisfied. Using Theorgnit is still
possible to approximate the curvature measures of thesffse
of a compact set with positiye-reach from any sufficiently
close approximation of it.

Theorem 4 Let K andK’ be two compact subsets o

such thatry(K’) > r. Assume that the Hausdorff distance
2
€ = dy (K,K') betweerK andK’ is such that < Er.

60+92
Then the conclusions of Theoredralso hold.

Of course, if fors > 0, the compact sdt’ satisfieg(K¢) >

¢ > 0, the same theorem appliesKg. Furthermore, thanks
to Theorem, the value of(K{) can be read on the critical
function of the sampl&.

Proof It follows from Theoreml (the critical values sepa-
ration theorem of CCLO€]) that the critical function oK
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pute intersections of spheres and arragements of circles on
sphere. To get the experimental results below we used a half-
U on the same interval. As a consequence the two compact edge data structure for boundaries of union of balls designe

> - ; implemented by S. Loriot (INRIA Sophia-Antipolis)
setsK — K andk’ — K/, have theiri-reach greater than 2" IMP '
" t% 2 g that is based upon the-shape data structure of the library

1
r—3./er— 1‘1—?. Notice that for anys > 0, Ks = Kig 5 and CGAL [Cg4.
i

is greater thark on the interval(t—?,r - 3\/5). Note that
sincep > &, the critical function ofk’ is also greater than

sincedy (K,K’) = ¢ thendy (K,K’) < &. To apply Theorem
3to K andK’, § andr, the Hausdorff distance between

K andK’ must satisfy O< & < 25/2}2(r — 3,/&r — 1“—?)
(note that sincéj < 1, min(y, 3) = ). One easily checks
(by computing the solutions of the inequality and using that
for all 0 < x < 1,+/1—x>1- %) that this inequality is
implied by the assumption made enThe theorem now fol-
lows immediately from Theore®. [

4.2. Computation of the curvature measures of the cells
of aKr

LetC be a cell ofoK; (i.e.a face, an edge or a vertex). Un-
der the general position assumption, to compl?ffre(c) and

tDEr (C), it is sufficient to compute the curvature measures
®&(C) and ®'4(C), whereS is the union of one, two or
three balls of radius. The result of such computations, is
summarized in Propositichbelow where the orientation of
the boundary of the union of balls is taken so that the nor-
mal is pointing outside. Notice thag (C) and®y (C) are
When the compackK is a finite set of points i3 it is proportional to either the area, or the length, or the Dirac
possible to provide explicit formula for the curvature mea- Mmeasure o (depending on iC is a face or an edge or a
sures. Although the description and the analysis of a robust vertex). As a consequence, once computed on eact oéll
and efficient algorithm is beyond the scope of this paper, we 9K, the valuespg (C) andof (C) can simply be stored by
show how curvature measures of B Boint cloud can be adding an extra information to the elements of the datastruc
computed in practice. We also provide some illustrating ex- ture representingK:. These values will then be used for the
perimental results obtained by implementing the method de- integration (in step 3.).

scribed in this section.

4. Computation of the curvature measures of8D point
clouds

Proposition 1
i) LetB be a ball of radius of R® and letB be a Borel set of
R3. Then the curvature measuresb#boveB are given by

LetK c R? be a finite set of points and let- 0. To avoid
technicalities, we assume that the set of balls of radarsd
centered irK are in general position (as itEM94]): no 4
centers lie on acommon plane; no 5 centers lie on a common
sphere; and the smallest sphere through any 2, 3 or 4 centers
of K has a radius different from In the 3-dimensional case,
we denote bydl{ = @ the mean curvature measure and

by ®F = ®% the Gaussian curvature measure. The compu-

o (B) = ¢H Area BN aB)
and ©S(B) = ¢S AreaBNIB)

where
1

tation of ®F and®y is done in three main steps described
in the following paragraphs.

4.1. Computation of the boundary of a union of balls

The boundary oK, is a spherical polyhedron: its faces are
spherical polygons; its edges are circle arcs containeakin t
intersection of pairs of spheres of radiuaith centers irK;

its vertices belong to the intersection of three sphereg-of r
diusr with centers irK. Moreover, the combinatorial struc-
ture of K is easily deduced from am-shape oK. Indeed,

it follows from Lemma 2.2 in Ede93 that it is in one-to-
one correspondence with the boundary of dhshape oK

o :% and ¢S = >
i) Let B; andB; be two intersecting balls dk3, of same
radiusr > 0 and of centerg\; andA,, andC be the circle
0B1 N dB,. Let B be a ball ofR3. Then the curvature mea-
sures ofB; UB, aboveBNC are given by

GD]EIUBZ(BHC) = ¢1E1u132 lengthBNC)
and OF B, (BNC) = ¢B1UBZ lengthBNC),

where
H 4mr AA A\ 2
_ i 1A2 _ 1A2
P5,UB, = ~ lengthC) arcsm( 2 ) 1 ( 2r )
¢G — 21A1 A2
B1UB2 — "~ rlengthC) "

for a =r: faces (that may not be connected nor simply con-
nected) of the former are in one-to-one correspondence with iii ) Let By, B, andBg be three intersecting balls &3 of

vertices of the latter; edges and vertices are in correspon- 4 diusr. of centershy, Ay andAg, andp € 9B, N B, NoB3.
dence with edges and faces respectively. As a consequence;rhen the curvature measuresIbf U B, U B3 abovep are
the combinatorial structure @k, is easily deduced from given by

the computation of thei-shape ofK. Getting the geomet-

ric structure ofdK; is more tricky since it requires to com- GDEluﬁzum({p}) =0

(© 2009 The Author(s)
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andq)%lUBzU]B:;({p}) = ¢]§1UB2UB3 is equal to

4 arctan\/ tan(%) tan( ) tan( ) tan(

0—012 0—0a23

2 2 2
where
—_— — . AA;
aij = Z|(PpA, pA,-) =2 arcsm(T')
and o= (11,2+Ol§,3+(13,1‘

The proof of Proposition is given in Sectior6.

4.3. Computing the curvatures for Lipschitz functions

Let now f be a Lipschitz function oY, To compute the
curvature measuresg () and®y (f) of the union of balls

Kr, we triangulat@K;. More precisely, we triangulate every
faceC of 0K into “small" spherical patches of diameter less
thann. We then approximaté by a functionf that is con-
stant equal td; on each “small" patchh; and that coincides
with f in at least one point of each patch. We then calculate
the isotropic curvature measures witlfabove the faceC

by using PropositioA:

ok (flo) = T kR (&) and o (fic) = J kdk (&)

Similarly, by using Propositiod, we calculate the isotropic
curvature measures above the “spherical edges" with a func-
tion f piecewise constant on “small" edges of lengths less
thann. Finally, we calculate exactly the isotropic curvature
measures “above" the vertices by using Propositighsim-

ple calculation shows that the numerical error done by ap-
proximating f by a piecewise constant functiohis then
given by:

max(|®¢ (1) — o (7], 0, (f) ~ o (7)]) <Lip(f)kn,

wherek is a constant depending only on the “size" of the
support off and onkK.

4.4, Experimental results

In the figures4, 5 and 6 below, the curvatures have been
computed using the following algorithm:

Input: a 3D point cloudK, a radiusr and two values 6
r <rp
Output: an estimated curvature value on each verte}of

1. ComputedKy

2. For each celC (faces, edges, vertices) K, compute
@R (C) anddf (C)

3. For each verte¥ of 0Ky, the estimated Gauss and mean

curvature values € are ®g (fy) and ® (fy) where
fv(x) =1if [x=V] <ry, fy(x) =0if [x—V] >ryand
fy(x)=1— % otherwise.
The curvatures are then represented on the boundary of the
a-shape (fora = r) of the point clouds where each triangle

(© 2009 The Author(s)
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is colored according to the curvature value of its corredpon
ing vertex indK; and to the colorbar on the right of Figure
4. Note that the color values are different for the different
examples (since the extrema values are different).

Figure 4: The Gauss (left) and mean (right) curvatures computed
on the offset of a point cloud sampled around a smooth surfaee
colors are related to the values of the curvature accordioghte
colorbar on the right, the blue color corresponding to thevést
values.

Figure 5: The Gauss (left) and mean (right) curvatures computed
on the offset of a point cloud sampled around a non smooth me-
chanical part (model is provided courtesy of INRIA and |ISyTthe
AIM@SHAPE Shape Repository). One clearly sees that the mean
curvature detects all the sharp edges as highly curved pahite

the Gauss curvatures only detects the curved sharp edge¢seNo
that the positively curved corners are well-detected byGaiss
curvature.

Remark 1 This algorithm can be easily adapted to calculate
the anisotropic curvature measures for a finite set of points
(see CCLTO8). In particular, this allows to estimate the
principal curvatures and principal directions from a cloud
of points.

Our program has not been optimized and the follow-
ing details are just given for an indication (on a laptop
with 3.5 GiB Memory, Processor Intel(R) Core(TM) 2
Duo CPU P8600 @ 2.4 GHz). We indicate the number of
points, the time for constructing the half-edge data struc-
ture for the boundary of the union of balls and the time
to compute the Gaussian and mean curvature measures.

# Points | structure| Curvatures
Tangle Cube| 82036 242s 63s
Horse 59550 174 s 79s
Rolling stage| 132230 370s 150 s
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Figure 6: The Gauss (upper row) and mean (lower row) curvatures
computed on the offset of a point cloud sampled around a horse
model.

Figure 7: The Gauss (upper row) and mean (lower row) curva-
tures computed on the offset of a point cloud sampled arouraha
manifold set union of a cube with a disc and a circle. As exgkct
the vertices and the boundary of the disc have a large Ganssia
curvature.

5. Sketch of proof of Theorem3

Due to space limitation, we give here the proof of a slightly
weaker result: the constaktr, ., d, f) of Theorem3 is re-

placed by a constar(r, i, d, \'), where\ is the covering
number of the offsek.

In the following, we use classical notions concerning
Hausdorff measures and rectifiable currents (see for iostan
[Mor87] for more details). The proof also strongly relies on
the notion of double offset and on the notion of normal cycle
of a set of positive reach that we define now. Welbe a set
with positive reach. We define the set:

V) ={(p,n) e R xs%~%, peav andne NC(p)},

whereNC(p) = {n € S%~1,vx € V npk < 0} is the nor-
mal cone ofV at p. One can show th&®V) is a Lipschitz
(d-1)-manifold. The normal cycld (V) of V is then by def-
inition [Fu89 the (d-1)-currenton RY x RY associated with
the manifoldS(V). We recall that currents are linear forms
on the space of differential forms. In our case, this linear
form is defined for every (d-1)-differential form by:

N(V)(w) =

= w.
V)

The normal cycle contains in fact all the curvature in-
formation and allows to define the curvature measures (see
[CMO3, CMO07, Fu89). For example, the mean curvature
measureq(] (f) in dimension 3 is given byN(V)(faH)
where f(p,n) = f(p) andw™ is a particular 2-differential
form onR® x R3, that does not depend &h

Our proof consists in comparing the normal cycles of the
complements of the offsets of compact gétandK’. These
are well-defined thanks to the following result obtained in
[CCLTO7. For 0< t <, the(r,t)-double offseK of K is
the set defined bitr = (Kr)¢,.

Theorem 5 (Double offset theorem).etK be a compact set
with p-reach greater than Then,Kf has reach at leagir
and ift < pr, oKyt is a smootrﬂl=1-hypersurface. Moreover
the reach 0bK; is greater than mig, pr —t).

The proof can now be divided into three steps: in the first
step, we show that the problem can be carried onto the dou-
ble offsets (the advantage being that they are smooth); in a
second step, we compare the normal cycles of the double off-
sets; in the last step, we combine Step 1 and Step 2 to show
that the curvature measures of the two offsets are close. Let
K andK’ be two compact sets with positiyereach that sat-
isfy all the assumptions of TheoreBn

Step 1: Carrying the problem to the double offsets

First note thak® andK/ have positive reach. We introduce
the map:

RY x RY RY x RY

(p>n) (p_tn>n) ’
If V is any compact set with positive reach, the ntap
induces naturally a one-to-one correspondence between the

support of the normal cycle of the offsét and the support
of the normal cycle o¥. In particular, this map allows to

—

F_t:

—

(© 2009 The Author(s)
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send simultaneously the normal cyclegf and Kr’_,t to re-
spectively the normal cycles ¢f andK/. More precisely,

one has:
N(Kr®) — N(K/®) = F_tz(N(Krt) — N(Krt)),

whereF_y; is the map induced bly_; at the level of currents.

Therefore, as we will see later (Step 3), in order to compare

the normal cycles oK;© andK/®, it is sufficient to compare
the normal cycles of the double offsé¢g; andK/;.

Step 2: Comparison of the normal cycles of the double
offsets

In order to compare the normal cycles Kft and K/, we
first need to compare their supports]RH x RY (that is, the
associated manifolds), which is the purpose of the follgwin
lemmas.

Lemma 1 Let K andK’ be two compact sets @9 whose
p-reaches are greater thanThen for everyt € (O,rp), we
have:

€

dH(Krﬁt,Kr’,t)sﬁ and dy (0Krr, 0K/ <

Proof First remark that if we take two compact sétandB
with fi-reach greater than such thatly (A, B) <€, one has:

o (AR B < ﬁ @

Indeed, letx € A.°. Thend(x,A) > r andd(x,B) > r —&.
Lets— o(s), 0(0) = x be the trajectory oV p issued from
x and parametrized by arc-length. Whités) € B, we have
[LieO4):

dg(o(s)) = dg(x) —0—/Os||VB(0(S))||dSZ r—&+9i

We then haveo(s) € (Br)¢ for s >
there existx’ € (Br )¢ such thatl(x,x') < % We apply Equa-
tion (2) with A=K andB = K’ and we get:

d (K0P, (<0)°) < ®)

We apply again Equatior2) with A = (K¢
with & = ﬁ andji=1:

As a consequence,

=i

)¢ andB = (K{)¢

Remark also that for any compact sétsand B, one has
dn (At, Bt) < du (A, B). Therefore, by Equatior8f one has:

€
dy (Krg, Kiy) < 0

The two last equations imply that
 (Kr g, K/ ) <
Indeed, Ie1x € 0Krt. Thenxis at a distance less théﬁrom

Kr/,t andK €. Then, there existg € Krt andz € K{; ¢ such

(© 2009 The Author(s)
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thatxy < ﬁ andxz< ﬁ Since the line-segmefyt7 intersects
OKrt, there exists’ € 0K/ such thakx < ﬁ O

Lemma 2 Let X and X’ be two compact sets d&% with
reaches greater thdn> 0. Lett < 5 R ande = dy (X, X'). If
e< ! 5, then for anyx at a distance from X, we have:

2sin 2 Vx(X), Vx (X)) (VX(X?Z’ Vx (X)) o 30\E.

Proof Forp such that 0< p < t, we denote bysx (x,p), as in
section 5 of CCLO7], the convex hull for every € B(x, p) of
all the “classical" gradient¥/x (y) of the distance function
dx . By using Theorem 5.6 inCLQ7], we have that:

Vx: (X) € Gx(x,p) 1z 4

On another hand we know Fgd59 page 435) that the pro-
jection mapr on X is ('fﬂ)) Lipschitz for points at dis-

tance less thaft + p) from X. Then, fory € B(x,p) one has

2d(x, x’

d(xy) < p andd(mix (), Tx (y)) < gf; 5 and:

—em o < Rp

[Iymix (y) —x1ix (X) || < p+ R—(t+p)
Using the fact thaWVx (z) = H_SHznx( z) one get, foly €
B(x,p):

1 Rp
- < — .
190 =00l < 25 (o 5=

This and Equatior) gives:

/% (X), V(X

2smw = [|Vx(X) = Vx: (X

p R p 2¢
< —11 —
—t—p( +R—(t+p>)+2(t—e>+ P

Takingp = /&t ande < 5 one gets:

ZVx (X)7 VX’ (X) <
- 5 =

1 1 € €
1+ +3 \/jSSO\/j
(1—4( 1%<1+?)) ) ot

O

Applying the previous lemma witi = KF andX’ = K’¢
shows that the difference between the normal8kaf; and
0K/ is bounded by 3Q/e/(pt). Combining the last two re-
sults, we get that the supports Bi(Krt) and N(K{;) are
close to each other. This allows to show thtKrt) and
N(K(;) are close. More precisely:

2sin

Lemma 3 We can write

N(Krt) — N(K{t) = OE, (5)
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wheredE is the boundary of a particularcurrentE whose
massM (E) satisfies:

d—1
M(E) ng—l(aK,(t)(lth%)d%l {l-&- (ﬁ;) }

HereX denotes the k-dimensional Hausdorff measiiee (

the k-volume), and the mass is the corresponding concept for

currents Mor87].

Proof The currentE is built as follows. First, the clos-
est point projection defines a homeomorphism froi{

to 0Ky, because the Hausdorff distance between these two has|F_4E(f')| <
manifolds is less than their reach. This homeomorphism can S|nce||w oo < 2,

be lifted to a homeomorphisny between the supports of
the corresponding normal cycles. Currénts then defined

as the volume swept by the linear interpolation between the

identity of the support oN(K/;) and the latter homeomor-
phism. Formally, we definé as the affine homotopy be-
tweeny and the identity

h: [0,1] xspt(N(K'rt)) —
(t,%) =

RY x RY
(1—t)X+tP(x)

and letE = hy([0,1] x N(K'rt)). By Federer (Fed59, 4.1.9
page 364) or Fanghua FX02] page 187), we get:

M (h; ([0,1] x N(K'rp))) <
M(N(K'rt)) sup [p—id| sup
SPUN(K’r)) SPUN(K'rt))

whereJy_1 () stands for the (d-1)-dimensional jacobian (as
defined in Mor87], page 24-25). By Lemma, the space
component ofy —id is less tharf]. By Lemma2, the normal

€
- Thus

114 Jg—1(W)]

component ofp —id is less than 3

sup
spt(N(K/,))

Assumingt does not exceed the reachddfr ¢, we have that

the jacobian of the space componengidi.e.the projection)
d—1

(see Fed59). Under the same
M
assumptions, the jacobian of the Gauss malsrefis upper

bounded by(%)d_

2
. € £

—id| < =) 4900-.
w—id < (u) 90 pt

1
. Thus, the jacobian of the normal com-

d—1
ponent ofy is upper bounded by the produél% F%) .
M
We then have
d—1
2
sup 1+t2
2
’ €
PN (K)) (t-2)

Using similar arguments, it is easily shown thatN(K'y.t))

[1+d-1(W)] <1+

d—1
is bounded byr9~2(dK/,) (1+ t%) 2", which concludes

the proof of the lemma. []

Step 3

In the following, we only consider the mean curvatur&ih

the proof for the other curvature measures being similar. By
combining previous equations, one has:

Kee() = (1) = N(KO)(Fol) = N(KE)(Fa)
= F_yoE(fw).

It is obvious thatF_; is /14 t2-Lipschitz. Then, one

d—1

<1+t> 7 |0E(fw™)|. Therefore,

de lloo < 4, one hag|d(fw™)|jec =
[df A + f Adw™ || < 6 sudLip(f),1), and then by
Stokes theorem:

FcOE(folh)
< (1+2) T E@(fuh)
< 6(1+t2>%M(E)squip(ﬂ,l).

SinceLip(f_) = Lip(f), one gets by taking= pr/2:

o) — g )

< k(r.wd) supLip(f). 1) HOTHOKYL) VE,
where K(r, ul‘ii only depends o, 4 and d. Now, since

o (f) =— and qﬂ (pE— (f), the previous

inequality still hold for K¢ and K{. Using the bound on
del(aK,(t) in terms of covering number df; [CCMO07]
yields almost the desired bound. The only difference is that
the obtained bound does not take advantage of the facf that
might have a small support. ICCLT0g, the proof is done
locally in a Borel set that contains the support of the fuorcti

f: this gives a better bound with the covering number of an
offset of the support of ; however, the proof is more com-
plicated since a second current (related to the boundary of
BmaKr’_rt, whereB is the chosen Borel set) appears in Equa-
tion (5).

6. Proof of Proposition1

We first recall that the curvature measures can be computed
directly by using the normal cycle. In dimension 3, the mean
curvature measure and the Gaussian curvature measure are
given by ¢ (f) = N(V)(fo) and ¢f(f) = N(V)(fw®)
where f(p,n) = f(p), w® and ™ are two particular 2-
differential forms onR® x R®, that do not depend oW

(see £oh04 CMO03] for more detalils).

i). SincedB is a smooth surface, one has

2
of(®)= [ H(pdp= AreaB0E)

(© 2009 The Author(s)
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and

o8B - [

G(p)dp= iz Area(BNOB),
BNoB r

whereG(p) is the Gaussian curvature aRdp) is the mean
curvature ofB at p.

i) Since the curvature measures are addi®et04 CMO03]
and sinceC is one-dimensional, one has:

o & (BNC
_ ElUBZ( )H LH
= q’BllsBﬁCH%z(BﬂC) &g, g, (BNC)
= —®p,n5,(BNC).

We now need to describe the normal cycle Idf N B,
“above" CN B. SinceB; N B, is conve, its normal cycle
“above" CN B is just the 2-current defined by integration
over the sef:(B; NBy) equal to:

{(m&), meCNB, [E]| =1andV¥qe BiNB, MGE < O} .

Leta = arcsin(%). In an suitable frame, the s&t(B1 N

B») can be parametrized bfy: [0,[] x [—a,a] — R® x §?
defined by:

I cosa cosu 0 cosu
f(u,v) = rcosasinu | ,sin(v) | 0 | +cogv) [ sinu
0 1 0

Let(m,§) = f(u,v) € SB1NBy). We put

—sinu 0 cosu
e = cosu ,e=coqv) | 0 |—sin(v) | sinu
0 1 0

Then (e, e, &) is a direct orthonormal basis B, We put
g1 = (e1,0), &2 = (&,0), €1 = (0,e;) ande, = (0,€p). One
has [Coh04 CMO3:

W =g A& +EAe, and w® =€ AE.

Furthermore, one has:

of of

E(U’V) = (rcosa ej,cosve) and W(U’V) =(0,e2).
We then have:

e (2w % )
r6(10,01) o (S0, 5 ww)) ~reoss

f*w%((1,0),(0,1)) = cosv.
Then

B ra
CDENBZ(C) = _/o /_arcosa dudv= —2fracosa.

Similarly, one has:

B ra
qJ](B%lUm;Z(C):f/O [qcowdudv: fZBsina:fw.

i) Since the 2-formwH is mixed and since the support of

the normal cycle oB; UB, UB3 “above” pliesin{p} x R,

(© 2009 The Author(s)
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one hasbglumz({ p}) = 0. Since the normal cycle is additive
and since{ p} is 0-dimensional, one has:

G G
@5, UB,UBs ({ P} PB, B,nE; ({P})-
®F 5,5, ({P}) is just the area of the set:

S(p) = {(p.%), € = 1andvqe ByNB2NB3 p4.€ < 0} .

The setS(p) is a spherical triangle whose area is given by
the following formulae (seeHer87 page 289):

o o—a — -
4 arctan [tan( — |tan 12 tan g—da3 tan o—di3 .
2 2 2 2
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8. Conclusion and future work

We have introduced the first notion of anisotropic curvature
measure which is Hausdorff stable and applies to a large
class of objects, including non manifold and non smooth sets
as well as point clouds. Indeed, it is enough to require that
some offset has a positiyereach, or, equivalently that the
critical function of the set is greater than some positiveanu
berp on some interval.

In light of these results, one can introduce a scale depen-
dent variant of the normal cycle. We say that a compact set
K c RY satisfies thé Py ) property if its critical function is
greater than some positigeon an open interval containing
a > 0. For suchK, we define thex-normal cycle as the rec-
tifiable (d — 1)-current ofRY x S92, Nu (K) = F_qsN(Ka).

The effect of push-forwar&_; is to move the support of
the normal cycle closer td: in simple cases (but not in gen-
eral)Na (K) is equal to the normal cycle of the double offset
Ka,a®. This current captures in some sense the curvature in-
formation at scalex and has two nice properties. First, it
coincides with the usual normal cycle for sets with positive
reach, more precisely, if a compact Behas a reach greater
thana, thenNq (K) = N(K). Second it is Hausdorff stable,
more precisely, iK satisfiegPa ), then there are constar@s
andgg > 0 depending only oK such that ifk” is a compact
set such thatly (K,K’) < € < g then Ny (K) and N (K")
differ by less tharC,/¢ in the so-calledlat norm (see for
example Mor87,FX02] for a definition), which implies that
the associated curvature measures are@isge) close.

We think of several possible future directions. First we
think of extending our paradigm to the measure of higher or-
der quantities such as torsion of curves or curvature deriva
tives. A possible track to define a stable measure for these
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higher order quantities is to integrate the gradient of assau
sian function again the normal cycle: this would retrieve in

formations about the gradient of curvature measure. Associ [FX02]

ated stability results require more investigations.

Furthermore, although the practical setting is beyond the

scope of this paper, we obtain promising results for the es- . ) . )
d [Fu89] J. Fu: Monge-Ampére functions, Indiana Univ Math. J.

timation of the curvature measures from a noisy point clou

sample and we expect potential applications in the context

of point cloud modeling.
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