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Abstract
We address the problem of curvature estimation from sampledcompact sets. The main contribution is a stability
result: we show that the Gaussian, mean or anisotropic curvature measures of the offset of a compact set K with
positive µ-reach can be estimated by the same curvature measures of the offset of a compact set K’ close to K
in the Hausdorff sense. We show how these curvature measurescan be computed for finite unions of balls. The
curvature measures of the offset of a compact set with positive µ-reach can thus be approximated by the curvature
measures of the offset of a point-cloud sample.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—

1. Introduction

1.1. Motivation

We present in this work astable notion of curvature. A
common definition of curvature considers quantities defined
pointwisely on a twice differentiable manifold. However, the
objects we have to deal with in practice are not twice dif-
ferentiable: consider the situation where a physical object
is known through a sufficiently dense point cloud measured
on the object boundary. Intuitively, it seems feasible to infer
some meaningful information on the curvature of the phys-
ical object itself. Let us assume that we know both theac-
curacyof the measure, which is an upper bound on the dis-
tances between the measured points and their closest points
on the physical object boundary, and thesampling density,
which is an upper bound on the distance between the points
on the object boundary and their closest measured sample
points. The fact that the measure accuracy and sampling den-
sity are below a known small valueε can be expressed by
saying that the Hausdorff distance (see the definition in Sec-
tion 2) between the assumed physical object and the mea-
sured point cloud is less thanε. Even with the guarantee of
a small Hausdorff distance, the knowledge of the measured
point cloud allows many possible shapes for the physical ob-
ject boundary and it is hopeless, without additional assump-

tions, to infer the usual pointwise curvature quantities onthe
physical object.

Indeed, a first difficulty is that the geometrical and topo-
logical properties of a physical object have to be considered
at some scale: for example, if one is interested in the shape
of a ship hull, it may make sense to see it as a smooth sur-
face at a large scale (10−1 meters). However, at a finer scale
(10−4 meters) this same object may appear with many sharp
features near the rivets and small gaps between assembled
sheets of metals. At a still finer scale, one could even con-
sider each atom as a separate connected component of the
same physical object.

A second difficulty is related to the “pointwise" nature of
usual curvature definition. If the physical object is known
up toε in Hausdorff distance, it seems impossible to distin-
guish between the pointwise curvature at two points whose
distance is of the order ofε. Without very strong assumptions
on the regularity of the unknown object, it is again meaning-
less to evaluate a pointwise curvature quantity.

In this work, we overcome the first difficulty by consid-
ering a scale dependent notion of curvature which consists
merely, for a compact setK, in looking at the curvature of
the r-offsets ofK (i.e. the set of points at distance less than
or equal tor from K). This offset, which can be seen as a
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kind of convolution, in the same spirit of similar operators
in mathematical morphology or image processing, filters out
high frequencies features of the object’s boundary.

We overcome the second difficulty by considering curva-
ture measures instead of pointwise curvature. In the case of
smooths manifolds, curvature measures associate to a subset
of the manifold the integral of pointwise curvatures over the
subset. However the curvature measures are still defined on
non smooth objects such as convex sets or more generally
sets with positive reach [Fed59].

In practice, in order to state our stability theorem, one has
to make some assumption on the unknown physical object,
namely thepositive µ-reachproperty defined below. To be
more precise, our stability theorem still applies to objects
whose offsets have positiveµ-reaches.

Some other approaches assume stronger properties such
as smoothness or positive reach. But is it legitimate to make
such assumptions on an unknown object? In practice, the
only available informations about the physical object ap-
pears through the physical measures. A distinctive character
of our assumption on theµ-reach of offsets of physical object
is that, thanks to the so-called critical values separationtheo-
rem [CCL06], it can be reliably checked from the measured
point sample. In this situation our curvature estimations re-
flect reliably the intrinsic properties of the physical object.

1.2. Related previous work.

Due to its applications in geometry processing, many meth-
ods have been suggested that, given a triangulated surface,
are able to estimate the curvature of an assumed underlying
smooth surface (see [Pet02] for a survey). Several authors
(for example [CP03]) compute the curvature of a smooth
polynomial surface approximating locally the triangulated
surface. Other authors [Hua06, PWY*07, PWHY09] con-
sider integral invariants that allow to estimate curvatures
of underlying smooth objects. Other authors use finite el-
ement based methods or laplacians [Dzi88,HPW06,LP05],
statistical approaches [KSNS07] or tensor-fitting approaches
[Rus04]. Cheeger and his coauthors also showed results of
convergence for the Lipschitz-Killing curvatures [CMS86].
Closely related to our work is [Mor08,Coh04,CM03,CM07],
which study a general definition of curvature measure that
applies to both smooth surfaces and their approximation
by triangulated surfaces, based on the so-called normal cy-
cle (defined below). The proximity of curvature measure
is proved using the powerful notion offlat norm [Mor87]
between the corresponding normal cycles. These ideas are
thoroughly reused in the present work.

In [CCL06], in order to address the question of topology
determination through Hausdorff approximation, the authors
have introduced the class of sets with positiveµ-reach, which
can be regarded as a mild regularity condition. In particular,
this condition does not require smoothness. If a set has a

positiveµ-reach, or at least if it has offsets with positiveµ-
reach, it is possible to retrieve the topology of its offset from
the topology of some offsets of a Hausdorff close point sam-
ple. A stable notion of normal cone has also been defined on
this class of sets [CCL07]. More recently, the authors have
proved [CCLT07] that the complement of offsets of sets with
positiveµ-reach have positive reach. Since the normal cycle
and the associated curvature measures are defined for sets
with positive reach [Fed59, Fu89] we may consider normal
cycles of offsets of sets with positiveµ-reach. This paper de-
velops this idea and gives a stability result whose proof uses
the fact that the boundary of the double offsets of sets with
positiveµ-reach are smooth surfaces.

1.3. Contributions.

Our main result states that if the Hausdorff distance be-
tween two compact sets with positiveµ-reach is less than
ε, then the curvature measures of their offsets differs by less
thatO(

√
ε), using an appropriate notion of distance between

measures. This is then extended through thecritical values
separation theoremto the case where only one set has posi-
tive µ-reach, which allows to evaluate the curvature measure
of an object from a noisy point cloud sample. These results
improve on the stability results in [Mor08, Coh04, CM03,
CM07], which were only limited to the approximation of
smooth hypersurfaces by homeomorphic triangulated mani-
folds. In order to provide a concrete algorithm we give the
formulas that express these curvatures measures on a union
of balls (i.e.on an offset of the point cloud). Our experimen-
tal results are preliminary and the evaluation on ground truth
surfaces under varying conditions of noise and sampling and
the comparison to other methods are still left open.

Closest to our work is [CCM07], which also gives a sta-
bility result for curvature measures. The main differences
are that our result also applies to anisotropic curvature mea-
sures, whereas [CCM07] is only limited to the usual curva-
ture measures. On the other hand, the stability result for cur-
vature measures in [CCM07] derives from a stability result
for so-called boundary measures, which holds without any
assumptions on the underlying compact set, whereas ours
requires to assume a lower bound on theµ-reach. While the
two results seem related at first sight, the proof techniques
are drastically different.

1.4. Outline.

The paper first recalls definitions and properties related to
the distance function to a compact set and its gradient, the
critical function and theµ-reach. Then, we introduce the
curvature measures without using the notion of normal cy-
cle, whose formal definition is somewhat lengthy. In Sec-
tion 3, we state the stability theorem for sets with positive
µ-reaches. We then extend this theorem to the case where
only one set has positiveµ-reach. In Section4, we give the
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expressions of curvature measures for unions of balls. The
last sections gives the proof.

2. Definitions and background on distance functions

We are using the following notations in the sequel of this
paper. GivenX ⊂ R

d, one denotes byXc the complement
of X, by X its closure and by∂X the boundary ofX. Given
A⊂ R

d, ch(A) denotes the convex hull ofA.

Thedistance function dK of a compact subsetK of R
d asso-

ciates to each pointx∈ R
d its distance toK:

x 7→ dK(x) = min
y∈K

d(x,y),

whered(x,y) denotes the Euclidean distance betweenx and
y. Conversely, this function characterizes completely the
compact setK sinceK = {x ∈ R

d |dK(x) = 0}. Note that
dK is 1-Lipschitz. For a positive numberr, we denote by
Kr the r-offset of K, defined byKr = {x|dK(x) ≤ r}. The
Hausdorff distance dH(K,K′) between two compact setsK
andK′ in R

d is the minimum numberr such thatK ⊂K′
r and

K′ ⊂ Kr . The triangular inequality implies that the following
formulae:

dH(K,K′) = sup
x∈Rn

|dK(x)−dK′(x)|

Given a compact subsetK of R
d, themedial axisM(K) of

K is the set of points inRd \K that have at least two closest
points onK. The infimum distance betweenK andM(K) is
called, according to Federer, thereachof K and is denoted
reach(K). The reach ofK vanishes ifK has concave sharp
edges or corners. The projection mappK that associates to a
point x its closest pointpK(x) on K is thus defined onRd \
M(K).

A C1,1 function is aC1 function whose first differential is
Lipschitz. AC1,1 hypersurfaceS is a (d−1)-manifold em-
bedded inRd such that each point ofShas a neighborhood
which is the regular image (that is the image by a function
whose differential has maximal rank) by an injectiveC1,1

function of a neighborhood of 0 inRd−1. Informally, one
can say that aC1,1 surface is a surface with bounded curva-
ture, which is strictly stronger thanC1 and strictly weaker
thanC2. An embeddedC1 compact manifold isC1,1 if and
only if it has positive reach [Fed59]. Note that a non pla-
nar polyedral surface is not of classC1, thus does not have
positive reach.

2.1. The gradient

The distance functiondK is not differentiable onM(K).
However, it is possible [Lie04] to define ageneralized gra-
dient function∇K : R

d → R
d that coincides with the usual

gradient ofdK at points wheredK is differentiable. For any

point x∈ R
d \K, we denote byΓK(x) the set of points inK

closest tox (Figure1):

ΓK(x) = {y∈ K |d(x,y) = dK(x)}
Note thatΓK(x) is a non empty compact set. There is a
unique smallest closed ballσK(x) enclosingΓK(x) (cf. Fig-
ure1). We denote byθK(x) the center ofσK(x) and byFK(x)
its radius.θK(x) can equivalently be defined as the point on
the convex hull ofΓK(x) nearest tox. For x ∈ R

d \K, the

x

K

ΓK(x)

σK(x)

θK(x)

FK(x)
RK(x)

∇K(x)

1

Figure 1: A 2-dimensional example with 2 closest points.

generalized gradient∇K(x) is defined as follows:

∇K(x) =
x−θK(x)

dK(x)

Note that the definition of∇K is chosen so that it can
be integrated into a continuous flow [Lie04]. Furthermore,
||∇K(x)|| is the cosine of the (half) angle of the smallest
cone with apexx that containsΓK(x).

2.2. Critical points, critical function and the µ-reach

Thecritical pointsof dK are defined as the pointsx for which
∇K(x) = 0. Equivalently, a pointx is a critical point if and
only if it lies in the convex hull ofΓK(x). WhenK is finite,
this last definition means that critical points are precisely the
intersections of Delaunayk-dimensional simplices with their
dual (d− k)-dimensional Voronoi facets [GJ03]. Note that
this notion of critical point is the same as the one considered
in the setting of non smooth analysis [Cla83] and Rieman-
nian geometry [Che90,Gro93].

The results of this paper rely strongly on the notions of
critical functionandµ-reach, introduced in [CCL06].

Definition 1 (critical function) Given a compact setK ⊂
R

d, itscritical functionχK : (0,+∞)→ R+ is the real func-
tion defined by:

χK(d) = inf
d−1

K (d)
||∇K ||
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The functionχK is lower semicontinuous [Lie04]. The µ-
reach of a compact setK is the maximal offset valued for
which χK(d′) ≥ µ for d′ < d.

Definition 2 (µ-reach) Theµ-reach rµ(K) of a compact set
K ⊂ R

d is defined by:

rµ(K) = inf{d | χK(d) < µ}
We have thatr1(K) coincides with the reach introduced by
Federer [Fed59]. It can be shown that a polyedron always
has positiveµ-reach. For example, the union of two adjacent
triangles inR

3 has a positiveµ-reach for anyµ≤ cos(β/2)
(whereβ is the dihedral angle). The critical function is in
some sense “stable” with respect to small (measured by
Hausdorff distance) perturbations of a compact set [CCL06].
That implies the following theorem [CCL06]:

Theorem 1 (critical values separation theorem)Let K and
K′ be two compact subsets ofR

d, dH (K,K′) ≤ ε andµ be a
non-negative number. The distance functiondK has no crit-

ical values in the interval
]
4ε/µ2, rµ(K′)−3ε

[
. Besides, for

anyµ′ < µ, χK is larger thanµ′ on the interval
]

4ε
(µ−µ′)2 , rµ(K

′)−3
√

εrµ(K′)
[
.

2.3. Complement of offsets

It has been proved in [CCLT07] that the complementKc
r of

the offsetKr has positive reach for any value 0< r < rµ.
Moreover, one has a lower bound for the critical function of
Kc

r :

Theorem 2For r ∈ (0, rµ), one has reach(Kc
r ) ≥ µr. More-

over for anyt ∈ (µr, r),

χKc
r
(t) ≥ 2µr− t(1+µ2)

t(1−µ2)
. (1)

2.4. Curvature measures

Let us first recall some basic definitions and notations in the
case whereM is a smooth surface that is the boundary of a
compact setV of R

d. The unit normal vector at a pointp∈M
pointing outwardV will be refered asn(p). Note thatM is
thereby oriented. Given a vectorv in the tangent spaceTpM
to M at p, the derivative ofn in the directionv at p is orthog-
onal ton(p). The derivativeDpn of n at p thus defines an
endomorphism ofTpM, known as the Weingarten endomor-
phism. The Weingarten endomorphism is symmetric. The
associated quadratic form is called the second fundamental
form. Eigenvectors and eigenvalues of the Weingarten en-
domorphism are respectively called principal directions and
principal curvatures. In the 3-dimensional case, both princi-
pal curvatures can be recovered from the trace and determi-
nant ofDpn, also called mean and Gaussian curvature.

It is possible to define the curvature measures of a set with

positive reach as the limit of the curvature measures of its
offsets. The advantage of these definitions is that they do not
rely on the notion of normal cycle.

More precisely, letV be a set with positive reachR > 0
and lett < R. It is known that∂Vt is a C1,1 hypersurface
of R

d [Fed59]. The second fundamental form and the prin-
cipal curvatures of∂Vt are thus defined almost everywhere.
There is of course no pointwise convergence of the principal
curvatures whent tends to 0. However, the integrals of the
curvatures of∂Vt converge to the integrals of the curvatures
of V whent tends to 0 (as can be seen for instance using the
tube formula [Fed59]). This allows us to define the isotropic
curvature measures ofV for every Borel subsetB of R

d as
follows:

Φk
V(B) = lim

t→0

Z

∂Vt∩B′

sk(p)dp

wherepV is the projection ontoV, B′ = {p∈ R
d, pV(p) ∈

B}, sk is the k-th elementary symmetric polynomial of the
principal curvaturesλ1,...,λd−1 of ∂Vt , the integral being
taken with respect to the uniform measure on∂Vt . In other
words,sk satisfies for everyx ∈ R: (x+ λ1)...(x+ λd−1) =

s0 +s1x+ ...+sd−1xd−1. Now, remark that we have:

Φk
V(B) = lim

t→0

Z

∂Vt

1B(pV(p)) sk(p)dp,

where1B is the indicator function ofB. Therefore, we can
extend this notion of curvature measure to any integrable
real function. This point of view is crucial and will allow
us to state simple results of stability in this paper. More pre-
cisely, one defines the isotropic curvature measure for every
integrable functionf on R

d by:

Φk
V( f ) = lim

t→0

Z

∂Vt

f (pV(p)) sk(p)dp.

Similarly, one extends the notion of anisotropic curvature
measure of [Coh04,CM03]: the anisotropic curvature mea-
sure ofV associates to any integrable functionf the d× d
symmetric matrix defined by:

HV( f ) = lim
t→0

Z

∂Vt

f (pV(p)) H∂Vt
(p)dp,

whereH∂Vt
is a matrix-valued function defined onRd that

coincides with the second fundamental form of∂Vt on the
tangent space, and vanishes on the orthogonal component.

Now, letK be a compact set whoseµ-reach is greater than
r > 0. ThenV = Kc

r has a reach greater thanµr. It is then pos-
sible to define the extended notions of curvature measures of
Kr (see [RZ01,RZ03] for more details) by:

Φk
Kr ( f ) = (−1)kΦk

V( f ) and HKr ( f ) = −HV( f ).

In the 3-dimensional case, it is also possible to define a sec-

ond anisotropic measure curvatureH̃ by:

H̃V( f ) = lim
t→0

Z

∂Vt

f (pV(p)) H̃∂Vt
(B)
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PV ( p)

p

support of f

V

∂Vt

Figure 2: Here the support of f is a ball andΦk
V( f ) captures

the curvature of∂V inside the support of f

and

H̃Kr ( f ) = −H̃V( f ),

where H̃∂Vt
is defined as having the same eigenvectors as

H∂Vt
, but with swapped eigenvalues on the tangent plane, and

vanishes on the orthogonal component of∂Vt .

3. Stability results

3.1. Curvature measures of the offsets

The main contribution of this paper is Theorem3. Thanks to
the formulation of the curvature measures with measurable
functions, the statement is simple. This theorem states that if
two compact setsK andK′ with positiveµ-reaches are close
in the Hausdorff sense, then the curvature measures of their
offsets are close. We recall that the covering numberN (A, t)
of a compact setA is the minimal number of closed balls of
radiust needed to coverA.

Theorem 3Let K andK′ be two compact sets ofRd whose
µ-reaches are greater thanr. We suppose that the Haus-
dorff distanceε = dH(K,K′) betweenK andK′ is less than
rµ (2−

√
2)

2 min(µ, 1
2). If f : R

d → R is a Lipschitz function
satisfying| f | ≤ 1, then:

|Φi
Kr ( f )−Φi

K′

r
( f )| ≤ k(r,µ,d, f ) sup(Lip( f ),1)

√
ε,

and

‖HKr ( f )−HK′

r
( f )‖ ≤ k(r,µ,d, f ) sup(Lip( f ),1)

√
ε,

where k(r,µ,d, f ) only depends onf through the cover-
ing numberN (spt( f )O(

√
ε),µr/2); Lip( f ) is the Lipschitz-

constant off ; spt( f ) = {x∈ Rd, f (x) 6= 0}.

We recall thatspt( f )O(
√

ε) denotes an offset ofspt( f ) of pa-

rameterO(
√

ε).The proof of this theorem is given in Section
5. We show in Figure3 that this bound is tight. Furthermore,

ǫ

p q

θ

K ′r

r
s

r

a b

Figure 3: Tightness of the bound: we take K= [p,q] and
K′ = [p,q]∪{s}, where s is at a distanceε from K. We have
dH(K,K′) = ε and the total curvatureθ of K′

r between a and
b satisfiesθ = 2arccos

( r−ε
r

)
= O

(√
ε
)
.

in the 3-dimensional case, this result also holds for the
anisotropic curvature measurẽH.

Now, if we take the functionf (x) = max(1−‖x−c‖/r,0)
equal to 1 at a pointc ∈ ∂K′

r that radially decreases in a
“small" ball B of radiusr and vanishes out ofB, then we
can get local information about the curvature ofK′

r from the
curvature ofKr in the neighborhood ofc.

We also note that the conclusion of the theorem may be
rephrased by saying that thebounded Lipschitz distancebe-
tween the curvature measures ofKr andK′

r is bounded by
O(

√
ε). The bounded Lipschitz distance between measures

is similar to the Wasserstein distance (also called earth’s
mover distance), except that it applies to general signed mea-
sures whereas Wasserstein distance is limited to probability
measures. We refer to [CCM07] for precise definitions.

3.2. General result

The result of the previous section ensuring the stability ofthe
curvature measures assume that both the compact setsK and
K′ have sufficiently largeµ-reach. Nevertheless, in practical
settings, particularly when dealing with point clouds, such
a hypothesis is rarely satisfied. Using Theorem1, it is still
possible to approximate the curvature measures of the offsets
of a compact set with positiveµ-reach from any sufficiently
close approximation of it.

Theorem 4 Let K and K′ be two compact subsets ofR
d

such thatrµ(K′) > r. Assume that the Hausdorff distance

ε = dH(K,K′) betweenK andK′ is such thatε < µ2

60+9µ2 r.
Then the conclusions of Theorem3 also hold.

Of course, if fors> 0, the compact setK′ satisfiesrµ(K′
s) >

c > 0, the same theorem applies toK′
s. Furthermore, thanks

to Theorem1, the value ofrµ(K′
s) can be read on the critical

function of the sampleK.

Proof It follows from Theorem1 (the critical values sepa-
ration theorem of [CCL06]) that the critical function ofK
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is greater thanµ2 on the interval
(

16ε
µ2 , r −3

√
εr
)

. Note that

sinceµ > µ
2 , the critical function ofK′ is also greater than

µ
2 on the same interval. As a consequence the two compact
setsK̃ = K 16ε

µ2
andK̃′ = K′

16ε
µ2

have theirµ2-reach greater than

r −3
√

εr − 16ε
µ2 . Notice that for anyδ > 0, K̃δ = K 16ε

µ2 +δ and

sincedH(K,K′) = ε thendH (K̃, K̃′) ≤ ε. To apply Theorem
3 to K̃ and K̃′, µ

2 and r, the Hausdorff distanceε between

K̃ and K̃′ must satisfy 0< ε < 2−
√

2
8 µ2(r − 3

√
εr − 16ε

µ2 )

(note that sinceµ
2 ≤ 1

2 , min(µ, 1
2) = µ). One easily checks

(by computing the solutions of the inequality and using that
for all 0 ≤ x ≤ 1,

√
1− x ≥ 1− x

2) that this inequality is
implied by the assumption made onε. The theorem now fol-
lows immediately from Theorem3.

4. Computation of the curvature measures of3D point
clouds

When the compactK is a finite set of points inR3 it is
possible to provide explicit formula for the curvature mea-
sures. Although the description and the analysis of a robust
and efficient algorithm is beyond the scope of this paper, we
show how curvature measures of a 3D point cloud can be
computed in practice. We also provide some illustrating ex-
perimental results obtained by implementing the method de-
scribed in this section.

Let K ⊂ R
3 be a finite set of points and letr > 0. To avoid

technicalities, we assume that the set of balls of radiusr and
centered inK are in general position (as in [EM94]): no 4
centers lie on a common plane; no 5 centers lie on a common
sphere; and the smallest sphere through any 2, 3 or 4 centers
of K has a radius different fromr. In the 3-dimensional case,
we denote byΦH

Kr
= Φ1

Kr
the mean curvature measure and

by ΦG
Kr

= Φ2
Kr

the Gaussian curvature measure. The compu-

tation ofΦG
Kr

andΦH
Kr

is done in three main steps described
in the following paragraphs.

4.1. Computation of the boundary of a union of balls

The boundary ofKr is a spherical polyhedron: its faces are
spherical polygons; its edges are circle arcs contained in the
intersection of pairs of spheres of radiusr with centers inK;
its vertices belong to the intersection of three spheres of ra-
diusr with centers inK. Moreover, the combinatorial struc-
ture of∂Kr is easily deduced from anα-shape ofK. Indeed,
it follows from Lemma 2.2 in [Ede93] that it is in one-to-
one correspondence with the boundary of theα-shape ofK
for α = r: faces (that may not be connected nor simply con-
nected) of the former are in one-to-one correspondence with
vertices of the latter; edges and vertices are in correspon-
dence with edges and faces respectively. As a consequence,
the combinatorial structure of∂Kr is easily deduced from
the computation of theα-shape ofK. Getting the geomet-
ric structure of∂Kr is more tricky since it requires to com-

pute intersections of spheres and arragements of circles on
sphere. To get the experimental results below we used a half-
edge data structure for boundaries of union of balls designed
and implemented by S. Loriot (INRIA Sophia-Antipolis)
that is based upon theα-shape data structure of the library
CGAL [Cga].

4.2. Computation of the curvature measures of the cells
of ∂Kr

Let C be a cell of∂Kr (i.e. a face, an edge or a vertex). Un-
der the general position assumption, to computeΦG

Kr
(C) and

ΦH
Kr

(C), it is sufficient to compute the curvature measures

ΦG
S(C) and ΦH

S (C), whereS is the union of one, two or
three balls of radiusr. The result of such computations, is
summarized in Proposition1 below where the orientation of
the boundary of the union of balls is taken so that the nor-
mal is pointing outside. Notice thatΦG

Kr
(C) andΦH

Kr
(C) are

proportional to either the area, or the length, or the Dirac
measure ofC (depending on ifC is a face or an edge or a
vertex). As a consequence, once computed on each cellC of
∂Kr , the valuesϕG

Kr
(C) andϕH

Kr
(C) can simply be stored by

adding an extra information to the elements of the data struc-
ture representing∂Kr . These values will then be used for the
integration (in step 3.).

Proposition 1
i) Let B be a ball of radiusr of R

3 and letB be a Borel set of
R

3. Then the curvature measures ofB aboveB are given by

ΦH
B

(B) = ϕH
B

Area(B∩∂B)

and ΦG
B
(B) = ϕG

B
Area(B∩∂B)

where

ϕH
B =

2
r

and ϕG
B =

1
r2 .

ii) Let B1 andB2 be two intersecting balls ofR3, of same
radiusr > 0 and of centersA1 andA2, andC be the circle
∂B1∩ ∂B2. Let B be a ball ofR3. Then the curvature mea-
sures ofB1∪B2 aboveB∩C are given by

ΦH
B1∪B2

(B∩C) = ϕH
B1∪B2

length(B∩C)

and ΦG
B1∪B2

(B∩C) = ϕG
B1∪B2

length(B∩C),

where

ϕH
B1∪B2

= − 4πr
length(C) arcsin

(
A1A2

2r

)√
1−

(
A1A2

2r

)2

ϕG
B1∪B2

= − 2πA1A2
r length(C) .

iii ) Let B1, B2 andB3 be three intersecting balls ofR
3, of

radiusr, of centersA1, A2 andA3, andp∈ ∂B1∩∂B2∩∂B3.
Then the curvature measures ofB1 ∪B2 ∪B3 abovep are
given by

ΦH
B1∪B2∪B3

({p}) = 0
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andΦG
B1∪B2∪B3

({p}) = ϕG
B1∪B2∪B3

is equal to

4 arctan

√
tan
(σ

2

)
tan
(

σ−α1,2
2

)
tan
(

σ−α2,3
2

)
tan
(

σ−α1,3
2

)
,

where

αi, j = ∠

(−→
pAi ,

−→
pAj

)
= 2 arcsin

(
AiA j

2r

)

and σ =
α1,2+α2,3+α3,1

2 .

The proof of Proposition1 is given in Section6.

4.3. Computing the curvatures for Lipschitz functions

Let now f be a Lipschitz function onRd. To compute the
curvature measuresΦG

Kr
( f ) andΦH

Kr
( f ) of the union of balls

Kr , we triangulate∂Kr . More precisely, we triangulate every
faceC of ∂Kr into “small" spherical patches of diameter less
thanη. We then approximatef by a function f̃ that is con-
stant equal toki on each “small" patch∆i and that coincides
with f in at least one point of each patch. We then calculate
the isotropic curvature measures withf̃ “above the face"C
by using Proposition1:

ΦG
Kr ( f̃ 1C) =∑

i
kiΦG

Kr (∆i) and ΦH
Kr ( f̃ 1C) =∑

i
kiΦH

Kr (∆i)

Similarly, by using Proposition1, we calculate the isotropic
curvature measures above the “spherical edges" with a func-
tion f̃ piecewise constant on “small" edges of lengths less
thanη. Finally, we calculate exactly the isotropic curvature
measures “above" the vertices by using Proposition1. A sim-
ple calculation shows that the numerical error done by ap-
proximating f by a piecewise constant functioñf is then
given by:

max
(
|ΦG

Kr
( f )−ΦG

Kr
( f̃ )|, |ΦH

Kr ( f )−ΦH
Kr ( f̃ )|

)
≤ Lip( f ) k η,

wherek is a constant depending only on the “size" of the
support off and onKr .

4.4. Experimental results

In the figures4, 5 and 6 below, the curvatures have been
computed using the following algorithm:

Input: a 3D point cloudK, a radiusr and two values 0<
r1 < r2
Output: an estimated curvature value on each vertex of∂Kr

1. Compute∂Kr

2. For each cellC (faces, edges, vertices) of∂Kr compute
ΦG

Kr
(C) andΦH

Kr
(C)

3. For each vertexV of ∂Kr , the estimated Gauss and mean
curvature values atC are ΦG

Kr
( fV) and ΦH

Kr
( fV) where

fV(x) = 1 if ‖x−V‖ ≤ r1, fV(x) = 0 if ‖x−V‖ > r2 and

fV(x) = 1− ‖x−V‖−r1
r2−r1

otherwise.

The curvatures are then represented on the boundary of the
α-shape (forα = r) of the point clouds where each triangle

is colored according to the curvature value of its correspond-
ing vertex in∂Kr and to the colorbar on the right of Figure
4. Note that the color values are different for the different
examples (since the extrema values are different).

Figure 4: The Gauss (left) and mean (right) curvatures computed
on the offset of a point cloud sampled around a smooth surface. The
colors are related to the values of the curvature according to the
colorbar on the right, the blue color corresponding to the lowest
values.

Figure 5: The Gauss (left) and mean (right) curvatures computed
on the offset of a point cloud sampled around a non smooth me-
chanical part (model is provided courtesy of INRIA and ISIT by the
AIM@SHAPE Shape Repository). One clearly sees that the mean
curvature detects all the sharp edges as highly curved partswhile
the Gauss curvatures only detects the curved sharp edges. Notice
that the positively curved corners are well-detected by theGauss
curvature.

Remark 1 This algorithm can be easily adapted to calculate
the anisotropic curvature measures for a finite set of points
(see [CCLT08]). In particular, this allows to estimate the
principal curvatures and principal directions from a cloud
of points.

Our program has not been optimized and the follow-
ing details are just given for an indication (on a laptop
with 3.5 GiB Memory, Processor Intel(R) Core(TM) 2
Duo CPU P8600 @ 2.4 GHz). We indicate the number of
points, the time for constructing the half-edge data struc-
ture for the boundary of the union of balls and the time
to compute the Gaussian and mean curvature measures.

♯ Points structure Curvatures
Tangle Cube 82036 242s 63 s

Horse 59550 174 s 79s
Rolling stage 132230 370 s 150 s
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Figure 6: The Gauss (upper row) and mean (lower row) curvatures
computed on the offset of a point cloud sampled around a horse
model.

Figure 7: The Gauss (upper row) and mean (lower row) curva-
tures computed on the offset of a point cloud sampled around anon-
manifold set union of a cube with a disc and a circle. As expected,
the vertices and the boundary of the disc have a large Gaussian
curvature.

5. Sketch of proof of Theorem3

Due to space limitation, we give here the proof of a slightly
weaker result: the constantk(r,µ,d, f ) of Theorem3 is re-

placed by a constantk(r,µ,d,N ), whereN is the covering
number of the offsetKr .

In the following, we use classical notions concerning
Hausdorff measures and rectifiable currents (see for instance
[Mor87] for more details). The proof also strongly relies on
the notion of double offset and on the notion of normal cycle
of a set of positive reach that we define now. LetV be a set
with positive reach. We define the set:

S(V) = {(p,n) ∈ R
d ×S

d−1, p∈ ∂V andn∈ NC(p)},
whereNC(p) = {n ∈ S

d−1,∀x ∈ V n.−→px ≤ 0} is the nor-
mal cone ofV at p. One can show thatS(V) is a Lipschitz
(d-1)-manifold. The normal cycleN(V) of V is then by def-
inition [Fu89] the (d-1)-currenton R

d ×R
d associated with

the manifoldS(V). We recall that currents are linear forms
on the space of differential forms. In our case, this linear
form is defined for every (d-1)-differential formω by:

N(V)(ω) =
Z

S(V)
ω.

The normal cycle contains in fact all the curvature in-
formation and allows to define the curvature measures (see
[CM03, CM07, Fu89]). For example, the mean curvature
measureφH

V ( f ) in dimension 3 is given byN(V)( f̄ ωH )
where f̄ (p,n) = f (p) and ωH is a particular 2-differential
form onR

3×R
3, that does not depend onV.

Our proof consists in comparing the normal cycles of the
complements of the offsets of compact setsK andK′. These
are well-defined thanks to the following result obtained in
[CCLT07]. For 0< t < r, the(r, t)-double offsetKr,t of K is
the set defined byKr,t = (Kr)c

t .

Theorem 5 (Double offset theorem)Let K be a compact set
with µ-reach greater thanr. Then,Kc

r has reach at leastµr
and if t < µr, ∂Kr,t is a smoothC1,1-hypersurface. Moreover
the reach of∂Kr,t is greater than min(t,µr− t).

The proof can now be divided into three steps: in the first
step, we show that the problem can be carried onto the dou-
ble offsets (the advantage being that they are smooth); in a
second step, we compare the normal cycles of the double off-
sets; in the last step, we combine Step 1 and Step 2 to show
that the curvature measures of the two offsets are close. Let
K andK′ be two compact sets with positiveµ-reach that sat-
isfy all the assumptions of Theorem3.

Step 1: Carrying the problem to the double offsets
First note thatKc

r andK′
r
c have positive reach. We introduce

the map:

F−t : R
d ×R

d → R
d ×R

d

(p,n) 7→ (p− tn,n)
.

If V is any compact set with positive reach, the mapF−t

induces naturally a one-to-one correspondence between the
support of the normal cycle of the offsetVt and the support
of the normal cycle ofV. In particular, this map allows to
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send simultaneously the normal cycles ofKr,t andK′
r,t to re-

spectively the normal cycles ofKr andK′
r . More precisely,

one has:

N(Kr
c)−N(K′

r
c) = F−t♯(N(Kr,t)−N(Kr,t)),

whereF−t♯ is the map induced byF−t at the level of currents.
Therefore, as we will see later (Step 3), in order to compare
the normal cycles ofKr

c andK′
r
c, it is sufficient to compare

the normal cycles of the double offsetsKr,t andK′
r,t .

Step 2: Comparison of the normal cycles of the double
offsets
In order to compare the normal cycles ofKr,t andK′

r,t , we

first need to compare their supports inR
d ×R

d (that is, the
associated manifolds), which is the purpose of the following
lemmas.

Lemma 1 Let K andK′ be two compact sets ofRd whose
µ-reaches are greater thanr. Then for everyt ∈ (0, rµ), we
have:

dH (Kr,t ,K
′
r,t) ≤

ε
µ

and dH (∂Kr,t ,∂K′
r,t) ≤

ε
µ
.

Proof First remark that if we take two compact setsA andB
with µ̃-reach greater thanr, such thatdH (A,B)≤ ε̃, one has:

dH

(
(Ar)c, (Br)c

)
≤ ε̃

µ̃
(2)

Indeed, letx ∈ Ar
c
. Thend(x,A) ≥ r and d(x,B) ≥ r − ε̃.

Let s 7→ σ(s), σ(0) = x be the trajectory of∇B issued from
x and parametrized by arc-length. Whileσ(s) ∈ Br , we have
[Lie04]:

dB(σ(s)) = dB(x)+
Z s

0
‖∇B(σ(s))‖ds≥ r − ε̃+sµ̃.

We then haveσ(s) ∈ (Br)c for s ≥ ε̃
µ̃. As a consequence,

there existsx′ ∈ (Br)c such thatd(x,x′)≤ ε̃
µ̃. We apply Equa-

tion (2) with A = K andB = K′ and we get:

dH

(
(Kr)c, (K′

r)c
)
≤ ε

µ
(3)

We apply again Equation (2) with A = (Kr)c andB = (K′
r )c

with ε̃ = ε
µ andµ̃= 1:

dH (Kr,t
c,K′

r,t
c) ≤ ε

µ
.

Remark also that for any compact setsA and B, one has
dH (At ,Bt) ≤ dH(A,B). Therefore, by Equation (3) one has:

dH (Kr,t ,K
′
r,t) ≤

ε
µ
.

The two last equations imply that

dH (∂Kr,t ,∂K′
r,t) ≤

ε
µ
.

Indeed, letx∈ ∂Kr,t . Thenx is at a distance less thanεµ from

K′
r,t andK′

r,t
c. Then, there existsy ∈ K′

r,t andz∈ K′
r,t

c such

thatxy≤ ε
µ andxz≤ ε

µ. Since the line-segment[yz] intersects

∂Kr,t , there existsx′ ∈ ∂K′
r,t such thatxx′ ≤ ε

µ.

Lemma 2 Let X and X′ be two compact sets ofRd with
reaches greater thanR> 0. Let t ≤ R

2 andε = dH (X,X′). If
ε ≤ t

2 , then for anyx at a distancet from X, we have:

2sin
∠ (∇X(x),∇X′(x))

2
≤ 30

√
ε
t
.

Proof Forρ such that 0< ρ < t, we denote byGX(x,ρ), as in
section 5 of [CCL07], the convex hull for everyy∈B(x,ρ) of
all the “classical" gradients∇X(y) of the distance function
dX . By using Theorem 5.6 in [CCL07], we have that:

∇X′(x) ∈ GX(x,ρ) ρ
2d(x,X′)

+ 2ε
ρ
. (4)

On another hand we know ( [Fed59] page 435) that the pro-
jection mapπX on X is R

R−(t+ρ) -Lipschitz for points at dis-

tance less than(t +ρ) from X. Then, fory∈ B(x,ρ) one has
d(x,y) ≤ ρ andd(πX(x),πX(y)) ≤ Rρ

R−(t+ρ)
and:

‖−−−−→yπX(y)−−−−−→
xπX(x)‖ ≤ ρ +

Rρ
R− (t +ρ)

.

Using the fact that∇X(z) = −1

‖−−−→zπX(z)‖
−−−→
zπX(z) one get, fory∈

B(x,ρ):

‖∇X(y)−∇X(x)‖ ≤ 1
t −ρ

(
ρ +

Rρ
R− (t +ρ)

)
.

This and Equation(4) gives:

2sin
∠∇X(x),∇X′(x)

2
= ‖∇X(x)−∇X′(x)‖

≤ ρ
t −ρ

(
1+

R
R− (t +ρ)

)
+

ρ
2(t − ε)

+
2ε
ρ

.

Takingρ =
√

εt andε ≤ t
2 one gets:

2sin
∠∇X(x),∇X′(x)

2
≤


 1

1−
√

2
2


1+

1

1− 1
2

(
1+

√
2

2

)


+3



√

ε
t
≤ 30

√
ε
t
.

Applying the previous lemma withX = Kc
r andX′ = K′c

r
shows that the difference between the normals of∂Kr,t and
∂K′

r,t is bounded by 30
√

ε/(µt). Combining the last two re-
sults, we get that the supports ofN(Kr,t) and N(K′

r,t) are
close to each other. This allows to show thatN(Kr,t) and
N(K′

r,t) are close. More precisely:

Lemma 3We can write

N(Kr,t)−N(K′
r,t) = ∂E, (5)
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where∂E is the boundary of a particulard-currentE whose
massM(E) satisfies:

M(E) ≤Hd−1(∂K′
r,t)
(

1+ 1
t2

) d−1
2



1+

(
1+t2

t
(

t− ε
µ

)2

) d−1
2





√(
ε
µ

)2
+ 900 ε

µt .

HereHk denotes the k-dimensional Hausdorff measure (i.e.
the k-volume), and the mass is the corresponding concept for
currents [Mor87].

Proof The currentE is built as follows. First, the clos-
est point projection defines a homeomorphism from∂K′

r,t
to ∂Kr,t , because the Hausdorff distance between these two
manifolds is less than their reach. This homeomorphism can
be lifted to a homeomorphismψ between the supports of
the corresponding normal cycles. CurrentE is then defined
as the volume swept by the linear interpolation between the
identity of the support ofN(K′

r,t) and the latter homeomor-
phism. Formally, we defineh as the affine homotopy be-
tweenψ and the identity

h : [0,1]× spt(N(K′
r,t)) → R

d ×R
d

(t,x) 7→ (1− t)x+ tψ(x)
.

and letE = h♯([0,1]×N(K′
r,t)). By Federer ( [Fed59], 4.1.9

page 364) or Fanghua ( [FX02] page 187), we get:

M
(
h♯

(
[0,1]×N(K′

r,t)
))

≤

M
(
N(K′

r,t)
)

sup
spt(N(K′

r,t))
|ψ− id| sup

spt(N(K′
r,t ))

|1+Jd−1(ψ)|

whereJd−1(ψ) stands for the (d-1)-dimensional jacobian (as
defined in [Mor87], page 24-25). By Lemma1, the space
component ofψ− id is less thanε

µ. By Lemma2, the normal

component ofψ− id is less than 30
√

ε
µt . Thus

sup
spt(N(K′

r,t))
|ψ− id| ≤

√(
ε
µ

)2

+900
ε
µt

.

Assumingt does not exceed the reach of∂Kr,t , we have that
the jacobian of the space component ofψ (i.e.the projection)

is bounded by

(
t

t− ε
µ

)d−1

(see [Fed59]). Under the same

assumptions, the jacobian of the Gauss map ofKr,t is upper

bounded by
(

1
t

)d−1
. Thus, the jacobian of the normal com-

ponent ofψ is upper bounded by the product

(
1
t

t
t− ε

µ

)d−1

.

We then have

sup
spt(N(K′

r,t))
|1+Jd−1(ψ)| ≤ 1+




1+ t2

(
t − ε

µ

)2




d−1
2

.

Using similar arguments, it is easily shown thatM(N(K′
r,t))

is bounded byHd−1(∂K′
r,t)
(

1+ 1
t2

) d−1
2

, which concludes

the proof of the lemma.

Step 3
In the following, we only consider the mean curvature inR

3,
the proof for the other curvature measures being similar. By
combining previous equations, one has:

φH
Kr

c( f )−φH
K′

r
c( f ) = N(Kr

c)( f̄ ωH )−N(K′
r
c
)( f̄ ωH )

= F−t♯∂E( f̄ ωH ).

It is obvious thatF−t is
√

1+ t2-Lipschitz. Then, one

has|F−t♯∂E( f̄ ωH)| ≤
(

1+ t2
) d−1

2 |∂E( f̄ ωH )|. Therefore,

since‖ωH‖∞ ≤ 2, ‖dωH‖∞ ≤ 4, one has‖d( f̄ ωH)‖∞ =
‖d f̄ ∧ ωH + f̄ ∧ dωH‖∞ ≤ 6 sup(Lip( f̄ ),1), and then by
Stokes theorem:

|F−t♯∂E( f̄ ωH)|

≤
(

1+ t2
) d−1

2
E(d( f̄ ωH))

≤ 6
(

1+ t2
) d−1

2
M(E)sup(Lip( f̄ ),1).

SinceLip( f̄ ) = Lip( f ), one gets by takingt = µr/2:

|φH
Kr

c( f )−φH
K′

r
c( f )|

≤ k(r,µ,d) sup(Lip( f ),1) Hd−1(∂K′
r,t)

√
ε,

where k(r,µ,d) only depends onr, µ and d. Now, since
φH

Kr
( f ) = −φH

Kc
r
( f ) and φH

K′

r
( f ) = −φH

K′

r
c( f ), the previous

inequality still hold for Kr and K′
r . Using the bound on

Hd−1(∂K′
r,t) in terms of covering number ofKr [CCM07]

yields almost the desired bound. The only difference is that
the obtained bound does not take advantage of the fact thatf
might have a small support. In [CCLT08], the proof is done
locally in a Borel set that contains the support of the function
f : this gives a better bound with the covering number of an
offset of the support off ; however, the proof is more com-
plicated since a second current (related to the boundary of
B∩∂K′

r,t , whereB is the chosen Borel set) appears in Equa-
tion (5).

6. Proof of Proposition1

We first recall that the curvature measures can be computed
directly by using the normal cycle. In dimension 3, the mean
curvature measure and the Gaussian curvature measure are
given by φH

V ( f ) = N(V)( f̄ ωH) and φG
V ( f ) = N(V)( f̄ ωG)

where f̄ (p,n) = f (p), ωG and ωH are two particular 2-
differential forms onR

3 × R
3, that do not depend onV

(see [Coh04,CM03] for more details).

i). Since∂B is a smooth surface, one has

ΦH
B (B) =

Z

B∩∂B

H(p)dp=
2
r

Area(B∩∂B)
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and

ΦG
B(B) =

Z

B∩∂B

G(p)dp=
1
r2 Area(B∩∂B),

whereG(p) is the Gaussian curvature andH(p) is the mean
curvature ofB at p.

ii) Since the curvature measures are additive [Coh04,CM03]
and sinceC is one-dimensional, one has:

ΦH
B1∪B2

(B∩C)

= ΦH
B1

(B∩C)+ΦH
B2

(B∩C)−ΦH
B1∩B2

(B∩C)

= −ΦH
B1∩B2

(B∩C).

We now need to describe the normal cycle ofB1 ∩ B2
“above" C∩ B. SinceB1 ∩B2 is convex, its normal cycle
“above" C∩ B is just the 2-current defined by integration
over the setSC(B1∩B2) equal to:
{
(m,ξ), m∈C∩B, ‖ξ‖ = 1 and∀q∈ B1∩B2

−→mq.ξ ≤ 0
}

.

Let α = arcsin
(

A1A2
2r

)
. In an suitable frame, the setSC(B1∩

B2) can be parametrized byf : [0,β]× [−α,α] → R
3× S

2

defined by:

f (u,v) =

( 


r cosαcosu
r cosαsinu

0


 ,sin(v)




0
0
1


+ cos(v)




cosu
sinu

0




)

Let (m,ξ) = f (u,v) ∈ S(B1∩B2). We put

e1 =




−sinu
cosu

0



 , e2 = cos(v)




0
0
1



−sin(v)




cosu
sinu

0



 .

Then(e1,e2,ξ) is a direct orthonormal basis ofR
3. We put

ε1 = (e1,0), ε2 = (e2,0), ε̃1 = (0,e1) andε̃2 = (0,e2). One
has [Coh04,CM03]:

ωH = ε1∧ ε̃2 + ε̃1∧ ε2 and ωG = ε̃1∧ ε̃2.

Furthermore, one has:

∂ f
∂u

(u,v) = (r cosα e1,cosv e1) and
∂ f
∂v

(u,v) = (0,e2).

We then have:

f ∗ωH((1,0), (0,1)) = ωH
(

∂ f
∂u

(u,v),
∂ f
∂v

(u,v)

)
= r cosα,

f ∗ωG((1,0), (0,1)) = cosv.

Then

ΦH
B1∪B2

(C) = −
Z β

0

Z α

−α
r cosα dudv= −2βrαcosα.

Similarly, one has:

ΦG
B1∪B2

(C) =−
Z β

0

Z α

−α
cosv dudv=−2βsinα =−β A1A2

r
.

iii ) Since the 2-formωH is mixed and since the support of
the normal cycle ofB1∪B2∪B3 “above" p lies in{p}×R

3,

one hasΦH
B1∪B2

({p}) = 0. Since the normal cycle is additive
and since{p} is 0-dimensional, one has:

ΦG
B1∪B2∪B3

({p})ΦG
B1∩B2∩B3

({p}).

ΦG
B1∩B2∩B3

({p}) is just the area of the set:

S(p)=
{
(p,ξ), ‖ξ‖ = 1 and∀q∈ B1∩B2∩B3

−→pq.ξ ≤ 0
}

.

The setS(p) is a spherical triangle whose area is given by
the following formulae (see [Ber87] page 289):

4 arctan

√

tan

(
σ
2

)
tan

(
σ−α1,2

2

)
tan

(
σ−α2,3

2

)
tan

(
σ−α1,3

2

)
.
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8. Conclusion and future work

We have introduced the first notion of anisotropic curvature
measure which is Hausdorff stable and applies to a large
class of objects, including non manifold and non smooth sets
as well as point clouds. Indeed, it is enough to require that
some offset has a positiveµ-reach, or, equivalently that the
critical function of the set is greater than some positive num-
berµ on some interval.

In light of these results, one can introduce a scale depen-
dent variant of the normal cycle. We say that a compact set
K ⊂ R

d satisfies the(Pα) property if its critical function is
greater than some positiveµ on an open interval containing
α > 0. For suchK, we define theα-normal cycle as the rec-
tifiable(d−1)-current ofRd×S

d−1, Nα(K) = F−α♯N(Kα).
The effect of push-forwardF−α♯ is to move the support of
the normal cycle closer toK: in simple cases (but not in gen-
eral)Nα(K) is equal to the normal cycle of the double offset
Kα,αc. This current captures in some sense the curvature in-
formation at scaleα and has two nice properties. First, it
coincides with the usual normal cycle for sets with positive
reach, more precisely, if a compact setK has a reach greater
thanα, thenNα(K) = N(K). Second it is Hausdorff stable,
more precisely, ifK satisfies(Pα), then there are constantsC
andε0 > 0 depending only onK such that ifK′ is a compact
set such thatdH(K,K′) < ε ≤ ε0 then Nα(K) and Nα(K′)
differ by less thanC

√
ε in the so-calledflat norm (see for

example [Mor87,FX02] for a definition), which implies that
the associated curvature measures are alsoO

(√
ε
)

close.

We think of several possible future directions. First we
think of extending our paradigm to the measure of higher or-
der quantities such as torsion of curves or curvature deriva-
tives. A possible track to define a stable measure for these

c© 2009 The Author(s)
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higher order quantities is to integrate the gradient of a Gaus-
sian function again the normal cycle: this would retrieve in-
formations about the gradient of curvature measure. Associ-
ated stability results require more investigations.

Furthermore, although the practical setting is beyond the
scope of this paper, we obtain promising results for the es-
timation of the curvature measures from a noisy point cloud
sample and we expect potential applications in the context
of point cloud modeling.
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