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STOCHASTIC CONVERGENCE OF PERSISTENCE LANDSCAPES AND1

SILHOUETTES2
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Larry Wasserman‡4

Abstract. Persistent homology is a widely used tool in Topological Data Analysis that5

encodes multi-scale topological information as a multiset of points in the plane called a6

persistence diagram. It is difficult to apply statistical theory directly to a random sample7

of diagrams. Instead, we summarize persistent homology with a persistence landscape,8

introduced by Bubenik, which converts a diagram into a well-behaved real-valued function.9

We investigate the statistical properties of landscapes, such as weak convergence of the10

average landscapes and convergence of the bootstrap. In addition, we introduce an alternate11

functional summary of persistent homology, which we call the silhouette, and derive an12

analogous statistical theory.13

1 Introduction14

Often, data can be represented as point clouds that carry specific topological and geometric15

structures. Identifying, extracting, and exploiting these underlying geometric structures16

has become a problem of fundamental importance for data analysis and statistical learn-17

ing. Recently, the tools of computational topology have been used in data analysis, giving18

birth to the field of Topological Data Analysis, whose aim is to infer relevant, multi-scale,19

qualitative, and quantitative topological structures from data.20

Persistent homology [11, 20] is a fundamental tool for providing multi-scale homology21

descriptors of data. More precisely, it provides a framework and efficient algorithms to22

quantify the evolution of the topology of a family of nested topological spaces, {X(t)}t∈R,23

built on top of the data and indexed by a set of real numbers, which we can interpret24

as scale parameters, such that X(t) ⊆ X(s) for all t ≤ s. At the homology level1, such a25

filtration induces a family {H(X(t))}t∈R of homology groups and the inclusions X(t) ↪→ X(s)26

induce a family of homomorphisms H(X(t)) → H(X(s)), for t ≤ s, which is known as the27

persistence module associated to the filtration. When the rank of all the homomorphisms28

H(X(t))→ H(X(s)) are finite, the module is said to be q-tame [2] and it can be summarized29

as a set of real intervals {(bi, di)}i representing homological features that appear in the30

filtration at t = bi and disappear at t = di. Such a set of intervals can be represented as31

a multiset of points in the real plane and is then called a persistence diagram. Thanks to32
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their stability properties [9, 2], persistence diagrams provide relevant multi-scale topological33

information about the data.34

In a more statistical framework, when several data sets are randomly generated or35

are coming from repeated experiments, one often has to deal with not only one persistence36

diagram but with a whole distribution of diagrams. Unfortunately, since the space of37

persistence diagrams is a general metric space, analyzing and quantifying the statistical38

properties of such a distribution is particularly difficult.39

A few attempts have been made towards a statistical analysis of distributions of per-40

sistence diagrams. For example, the concentration and convergence properties of persistence41

diagrams obtained from point clouds randomly sampled on manifolds and from more gen-42

eral compact metric spaces are studied in [14] and [6]. Considering general distributions of43

persistence diagrams, [17] suggested using the Fréchet average of the diagrams D1, . . . , Dn.44

Unfortunately, the Fréchet average is unstable and not even unique. A solution that uses45

a probabilistic approach to define a unique Fréchet average can be found in [15], but its46

computation remains practically prohibitive.47

In this paper, we also consider general distributions of persistence diagrams but48

we build on a completely different approach, proposed in [1], consisting of encoding a49

persistence diagram as a sequence of real-valued one-Lipschitz functions that are called50

persistence landscapes; see Section 2. The advantage of landscapes –and, more generally, of51

any function-valued summaries of persistent homology– is that we can analyze them using52

existing techniques and theories from nonparametric statistics. For example, converting53

persistence diagrams to landscapes enables the comparison of distributions of diagrams as54

well as the detection of outliers.55

We have in mind two scenarios where multiple persistence diagrams arise:56

Scenario 1: We have a random sample of compact sets K1, . . . ,Kn drawn from a prob-57

ability distribution on the space of compact sets. Each set Ki gives rise to a persistence58

diagram, which, in turn, yields a persistence landscape function λi. An analogous sampling59

scenario is the one where we observe a sample of n random Morse functions f1, . . . , fn from60

a common probability distribution. Each such function fi induces a persistence diagram61

built from its sub-level set filtration, which can again be encoded by a landscape λi. The62

goal is to use the observed landscapes λ1, . . . , λn to infer the mean landscape µ = E(λi).63

Scenario 2: We have a very large dataset with N points. There is a diagram D and land-64

scape λ corresponding to some filtration built on the data. When N is large, computing D65

is prohibitive. Instead, we draw n subsamples, each of size m. We compute a diagram and66

landscape for each subsample yielding landscapes λ1, . . . , λn. (Assuming m is much smaller67

than N , these subsamples are essentially independent and identically distributed.) Then,68

we are interested in estimating µ = E(λi), which can be regarded as an approximation of λ.69

Two questions arise: how far are the λi’s from their mean µ? How far is µ from λ? We70

focus on the first question in this paper.71

In both sampling scenarios, we study the statistical behavior as the number of per-72
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sistence diagrams n grows. We then analyze the stochastic limiting behavior of the average73

landscape, as well as the speed of convergence to the limit. Specifically, the contributions74

of this paper are as follows:75

1. We show that the average persistence landscape converges weakly to a Gaussian pro-76

cess and we find the rate of convergence of that process.77

2. We show that a statistical procedure known as the bootstrap leads to valid confidence78

bands for the average landscape. We provide an algorithm to compute these confidence79

bands, and illustrate it on a few real and simulated examples.80

3. We define a new functional summary of persistent homology, the silhouette.81

As the proofs are rather technical, we refer the interested reader to the appendices.82

Notation. We write X
d
= Y when two random variables X and Y are equal in distribution.83

I(·) is the indicator function. The notationXn = OP (an) means that the set of valuesXn/an84

is stochastically bounded. That is, for any ε > 0, there exists a finite M > 0 such that, for85

large n, P (|Xn/an| > M) < ε.86

2 Diagrams and Landscapes87

A (finite) persistence diagram is a multiset of real intervals {(bi, di)}i∈I , where I is a finite88

set. We represent a persistence diagram as the finite multiset of pointsD =
{

( bi+di2 , di−bi2 )
}
i∈I

.89

Given a positive real number T , we say that D is T -bounded if for each point (x, y) =90 (
d+b
2 , d−b2

)
∈ D, we have 0 ≤ b ≤ d ≤ T . We denote by DT the space of all positive, finite,91

T -bounded persistence diagrams.92

A persistence landscape, introduced by Bubenik in [1], is a sequence of continuous,93

piecewise linear functions λ(k, ·) : R→ R, indexed by k ∈ Z+, that provide an encoding of94

a persistence diagram. To define the landscape, consider the set of functions created by95

“tenting” each persistence point p = (x, y) =
(
b+d
2 , d−b2

)
∈ D to the base line x = 0 as with96

the following function:97

Λp(t) =


t− x+ y t ∈ [x− y, x]

x+ y − t t ∈ (x, x+ y]

0 otherwise

=


t− b t ∈ [b, b+d2 ]

d− t t ∈ ( b+d2 , d]

0 otherwise.

(1)

Notice that p is itself on the graph of Λp(t). We obtain an arrangement of curves by98

overlaying the graphs of the functions {Λp}p∈D; see Figure 1.99

The persistence landscape of D is a summary of this arrangement. Formally, the100

persistence landscape of D is the collection of functions101

λD(k, t) = kmax
p∈D

Λp(t), t ∈ [0, T ], k ∈ Z+, (2)

where kmax is the kth largest value in the set; in particular, 1max is the usual maxi-102

mum function. We set λD(k, t) = 0 if the set {Λp(t), p ∈ D} contains less than k points.103
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Figure 1: The pink circles are the points in a persistence diagram D. Each point p corre-
sponds to a function Λp given in (1), The landscape λ(k, ·) is the k-th largest of the arrange-
ment of the graphs of {Λp}. In particular, the thick cyan curve is the landscape λ(1, ·).

From the definition of persistence landscape, we immediately observe that λD(k, ·) is one-104

Lipschitz, since Λp is one-Lipschitz. We denote by LT the space of persistence landscapes105

corresponding to DT . For ease of exposition, in this paper, we focus on the case k = 1,106

and set λ(t) = λD(1, t). However, the results we present hold for any fixed k, as the key107

assumtion we use is that λ(t) is one-Lipschitz.108

3 Uniform Convergence of Landscapes109

Let P be a probability distribution on LT , and let λ1, . . . , λn
iid∼ P . We define the mean

landscape as

µ(t) = E[λi(t)], t ∈ [0, T ].

The mean landscape is an unknown function that we would like to estimate. We estimate µ
with the sample average

λn(t) =
1

n

n∑
i=1

λi(t), t ∈ [0, T ].

Note that since E[λn(t)] = µ(t), we have that λn is a pointwise unbiased estimator of the110

unknown function µ. Our goal is then to quantify how close the resulting estimate is to111

the function µ. To do so, we first need to explore the statistical properties of λn. Bubenik112

[1] showed that λn converges pointwise to µ and that the pointwise Central Limit Theorem113

holds. In this section, we extend these results, proving the uniform convergence of the114

average landscape. In particular, we show that the process115 {√
n
(
λn(t)− µ(t)

)}
t∈[0,T ]

(3)

converges weakly to a Gaussian process on [0, T ] and we establish the rate of convergence.116

For more details on the theory of empirical processes, we refer the interested reader to [19].117

Let118

F = {ft}t∈[0,T ], (4)
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where ft : LT → R is defined by ft(λ) = λ(t). Writing P (f) =
∫
fdP and letting Pn be the

empirical measure that puts mass 1/n at each λi, we can and will regard (3) as an empirical
process indexed by ft ∈ F . Thus, for t ∈ [0, T ], we write

Gn(t) = Gn(ft) :=
√
n
(
λn(t)− µ(t)

)
=

1√
n

n∑
i=1

(ft(λi)− µ(t)) =
√
n(Pn − P )(ft). (5)

We note that the function F (λ) = T/2 is a measurable envelope for F .119

A Brownian bridge is a Gaussian process on the set of bounded functions from F120

to R, such that the process has mean zero and the covariance between any pair f, g ∈ F has121

the form
∫
f(u)g(u)dP (u) −

∫
f(u)dP (u)

∫
g(u)dP (u). A sequence of random objects Xn122

converges weakly to X, written Xn  X, if E∗(f(Xn)) → E(f(X)) for every bounded123

continuous function f . (The symbol E∗ is an outer expectation, which is used for technical124

reasons; the reader can think of this as an expectation.) Thus, we arrive at the follow-125

ing theorem (see Theorem 2.4 in [5]):126

Theorem 1 (Weak Convergence of Landscapes). Let G be a Brownian bridge with covari-127

ance function κ(t, s) =
∫
ft(λ)fs(λ)dP (λ) −

∫
ft(λ)dP (λ)

∫
fs(λ)dP (λ), for t, s ∈ [0, T ].128

Then Gn  G.129

Next, we describe the rate of convergence of the maximum of the normalized empir-130

ical process Gn to the maximum of the limiting distribution G. The maximum is relevant131

for statistical inference, as we shall see in the next section.132

For each t ∈ [0, T ], let σ(t) be the standard deviation of
√
nλn(t), i.e.133

σ(t) =

√
nVar(λn(t)) =

√
Var(ft(λ1)). (6)

Theorem 2 (Uniform CLT). If there exists an interval [t∗ , t
∗] ⊂ [0, T ] and a constant c > 0

such that σ(t) > c for every t ∈ [t∗ , t
∗], then there exists a random variable W

d
= supt∈[t∗ ,t∗] |G(ft)|

such that

sup
z∈R

∣∣∣∣∣P( sup
t∈[t∗,t∗]

|Gn(t)| ≤ z
)
− P (W ≤ z)

∣∣∣∣∣ = O
((log n)

7
8

n
1
8

)
.

Remarks: The assumption in Theorem 2 that the standard deviation function σ is positive134

over a subinterval of [0, T ] can be replaced with the weaker assumption of positivity of σ135

over a finite collection of sub-intervals without changing the result. We have stated the136

theorem in this simplified form for ease of readability. Furthermore, it may be possible to137

improve the term n−1/8 in the rate using what is known as a “Hungarian embedding” (see138

Chapter 19 of [18]). However, we do not pursue this point further.139

4 The Bootstrap for Landscapes140

Recall that our goal is to use the observed landscapes (λ1, . . . , λn) to make inferences about141

µ(t) = E[λi(t)], where 0 ≤ t ≤ T . Specifically, in this paper, we will seek to construct142
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an asymptotic confidence band for µ. A pair of functions `n, un : R → R is an asymptotic143

(1− α)-confidence band for µ if, as n→∞,144

P
(
`n(t) ≤ µ(t) ≤ un(t) for all t

)
≥ 1− α−O(rn), (7)

where rn = o(1). Confidence bands are valuable tools for statistical inference, as they145

allow us to quantify and to visualize the uncertainty about the mean persistence landscape146

function µ and to screen out topological noise, i.e., features with small persistence. The147

notion of topological noise was first introduced in [11], and we note that features considered148

topological noise are usually, but not always, unimportant features.149

Below, we describe an algorithm for constructing the functions `n and un from the150

sample of landscapes λn1 := (λ1, . . . , λn), prove that it yields an asymptotic (1−α)-confidence151

band for the unknown mean landscape function µ, and determine its rate rn. Our algorithm152

relies on the use of the bootstrap, a simulation-based statistical method for constructing a153

confidence band under minimal assumptions on the data generating distribution P ; see154

[12, 13, 18]. There are several different versions of the bootstrap. This paper uses the155

multiplier bootstrap.156

Let ξn1 := (ξ1, . . . , ξn) be independent Gaussian random variables with mean zero
and variance one, and define the multiplier bootstrap process

G̃n(ft) = G̃n(λn1 , ξ
n
1 )(ft) :=

1√
n

n∑
i=1

ξi
(
ft(λi)− λn(t)

)
, t ∈ [0, T ]. (8)

Let Z̃(α) be the unique value such that157

P

(
sup

t∈[t∗ ,t∗]

∣∣∣G̃n(ft)
∣∣∣ > Z̃(α)

∣∣∣∣∣ λ1, . . . , λn
)

= α. (9)

Note that the only random quantities in this definition are ξ1, . . . , ξn ∼ N(0, 1). Hence,158

Z̃(α) can be approximated by Monte Carlo simulation to great precision as follows: repeat159

the bootstrap B times, yielding B processes, {G̃(j)
n (·), j = 1, . . . , B}, and the corresponding160

values θ̃j := supt∈[t∗ ,t∗] |G̃
(j
n )(ft)|, j = 1, . . . , B. Then let161

Z̃(α) = inf

z :
1

B

B∑
j=1

I(θ̃j > z) ≤ α

 . (10)

We may take B as large as we like to make the Monte Carlo error arbitrarily small. Thus,162

when using bootstrap methods, one ignores the error caused by approximating Z̃(α) as163

defined in (9) with its simulation approximation as defined in (10). The multiplier bootstrap164

confidence band is {(`n(t), un(t)) : t ∈ [t∗ , t
∗]}, where165

`n(t) = λn(t)− Z̃(α)√
n
, un(t) = λn(t) +

Z̃(α)√
n
. (11)

The steps of the algorithm are given in Algorithm 1.166
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Algorithm 1 The multiplier bootstrap algorithm.

INPUT: Landscapes λ1, . . . , λn; confidence level 1− α; number of bootstrap samples B
OUTPUT: confidence functions `n, un : R→ R

1: Compute the average λn(t) = 1
n

∑n
i=1 λi(t), for all t

2: for j = 1 to B do
3: Generate ξ1, . . . , ξn ∼ N(0, 1)
4: Set θ̃j = supt n

−1/2|
∑n

i=1 ξi (λi(t)− λn(t))|
5: end for
6: Define Z̃(α) = inf

{
z : 1

B

∑B
j=1 I(θ̃j > z) ≤ α

}
7: Set `n(t) = λn(t)− Z̃(α)√

n
and un(t) = λn(t) + Z̃(α)√

n

8: return `n(t), un(t)

The accuracy of the coverage of the confidence band and the width of the band167

are described in the next result, which follows from Theorem 2 and Proposition 13 in168

Appendix B.169

Theorem 3 (Uniform Band). Suppose that σ(t) > c for each t in an interval [t∗ , t
∗] ⊂ [0, T ]

and some some constant c > 0. Then

P
(
`n(t) ≤ µ(t) ≤ un(t) for all t ∈ [t∗ , t

∗]
)
≥ 1− α−O

(
(log n)7/8

n1/8

)
.

Also, supt (un(t)− `n(t)) = OP

(
1√
n

)
.170

The second statement follows from the fact that Z̃(α) = OP (1), where Z̃(α) is171

defined in (10). We remark that the randomness is with respect to the joint probabilities172

of the landscapes and of the ξ′s. In [5], a similar asymptotic confidence band is computed173

for the whole interval [0, T ] (see Theorem 2.5), but the rate of convergence is not provided.174

The confidence band above has constant width; that is, the width is the same for175

all t. However, the empirical estimate λ(t) might be a more accurate estimator of µ(t) for176

some t than others. This suggests that we may construct a more refined confidence band177

whose width varies with t. Hence, we construct a variable width confidence band. Consider178

the standard deviation function σ, defined in (6), and its estimate179

σ̂n(t) :=

√√√√ 1

n

n∑
i=1

[ft(λi)]2 − [λn(t))]2, t ∈ [0, T ]. (12)

Define the standardized empirical process180

Hn(ft) = Hn(λn1 )(ft) :=
1√
n

n∑
i=1

ft(λi)− µ(t)

σ(t)
, t ∈ [t∗ , t

∗] (13)

and, for ξ1, . . . , ξn ∼ N(0, 1), define its multiplier bootstrap version: for ∈ [t∗ , t
∗],181

Ĥn(ft) = Ĥn(λn1 , ξ
n
1 )(ft) :=

1√
n

n∑
i=1

ξi
ft(λi)− λn(t)

σ̂n(t)
. (14)

http://jocg.org/
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Just like in the construction of uniform bands, let Q̂(α) be such that182

P
(

sup
t∈[t∗ ,t∗]

∣∣∣Ĥn(λn1 , ξ
n
1 )(ft)

∣∣∣ > Q̂(α)
∣∣∣ λ1, . . . , λn) = α. (15)

Again, Q̂(α) can be computed by simulation to arbitrary precision. The variable width183

confidence band is {(`σn(t), uσn(t)) : t ∈ [t∗ , t
∗]}, where184

`σn(t) = λn(t)− Q̂(α)σ̂n(t)√
n

, uσn(t) = λn(t) +
Q̂(α)σ̂n(t)√

n
. (16)

Theorem 4 (Variable Width Band). Suppose that σ(t) > c > 0 in an interval [t∗ , t
∗] ⊂

[0, T ], for some constant c. Then

P
(
`σn(t) ≤ µ(t) ≤ uσn(t) for all t ∈ [t∗ , t

∗]
)
≥ 1− α−O

(
(log n)1/2

n1/8

)
.

The examples in Section 6 illustrate the difference between confidence bands of185

constant and variable widths.186

5 The Weighted Silhouette187

The kth persistence landscape λ(k, t) can be interpreted as a summary function of the188

persistence diagram. A summary function is a function that takes a persistence diagram189

and outputs a real-valued continuous function. The persistence landscape is just one of190

many functions that could be used to summarize a persistence diagram. In this section,191

we introduce a new family of summary functions called weighted silhouettes. A probability192

distribution on the original sample space of persistence diagrams induces a probability193

distribution on the space of summary functions, allowing us to apply the techniques we194

discussed above.195

Consider a persistence diagram with m off-diagonal points. In this formulation, we196

take the weighted average of the functions defined in (1):197

φ(t) =

∑m
j=1wjΛj(t)∑m

j=1wj
, (17)

where wj is the (non-negative) weight associated to Λj . Consider two points of the per-198

sistence diagram, representing the pairs (bi, di) and (bj , dj). In general, we would like to199

have wj ≥ wi whenever |dj − bj | ≥ |di − bi|. This correspond to the intuition that the most200

persistent points are the most important. In particular, let φ(t) have weights wj = |dj−bj |p,201

for p > 0.202

Definition 5 (Power-Weighted Silhouette). For every 0 ≤ p < ∞, we define the power-
weighted silhouette

φ(p)(t) =

∑m
j=1 |dj − bj |pΛj(t)∑m

j=1 |dj − bj |p
.
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Figure 2: An example of power-weighted silhouettes for different choices of p. The axes are
on different scales. The weighted silhouette is one-Lipschitz.

The value p can be though of as a trade-off parameter between uniformly treating all203

pairs in the persistence diagram and considering only the most persistent pairs. Specifically,204

when p is small, φ(p)(t) is dominated by the effect of low persistence pairs. Conversely,205

when p is large, φ(p)(t) is dominated by the most persistent pair; see Figure 2.206

The power-weighted silhouette preserves the property of being one-Lipschitz. In fact,207

this is true for any choice of non-negative weights. Therefore all the results of Sections 3208

and 4 hold for the weighted silhouette by simply replacing λ with φ. In particular, consider209

φ1, . . . , φn ∼ Pφ. Applying theorems 1, 2, 3 and 4, we obtain:210

Corollary 6. The empirical process
√
n
(
n−1

∑n
i=1 φi(t)− E[φ(t)]

)
converges weakly to a211

Brownian bridge. The rate of convergence of the maximum of this process to the maximum212

of the limiting distribution is O
(
(logn)7/8

n1/8

)
.213

Corollary 7. The multiplier bootstrap algorithm of Algorithm 1 can be used to construct214

a uniform confidence band for {E[φ(t)]}t∈[t∗,t∗] with coverage probability at least 1 − α −215

O
(
(logn)7/8

n1/8

)
and a variable width confidence band with coverage at least 1−α−O

(
(logn)1/2

n1/8

)
,216

where [t∗, t
∗] ⊂ [0, T ] is such that

√
Var(φ(t)) > c > 0 for all t ∈ [t∗, t

∗] and some constant c.217

6 Examples218

In Topological Data Analysis, persistent homology is classically used to encode the evolution219

of the homology of filtered simplicial complexes built on top of data sampled from a metric220

space; see [3]. For example, given a metric space (X, dX) and a probability distribution PX221

supported on X, one can sample m points, K = {X1, . . . , Xm} i.i.d. from PX and consider222

the Vietoris-Rips (VR) filtration built on top of these points. The persistent homology of223

this filtration induces a persistence diagram D and a landscape λ. Sampling n such K,224

one obtains n persistence landscapes λ1, . . . , λn. In this section, we adopt this setting to225

illustrate our results on two examples, one real and one simulated. We note that we compute226

homology with coefficients in the field Z/2Z.227
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Figure 3: Top: Sample space of epicenters of 8000 earthquakes and one of the 30 persis-
tence diagrams. Middle: uniform and variable width 95% confidence bands for the mean
landscape µ(t). Bottom: uniform and variable width 95% confidence bands for the mean
weighted silhouette E[φ(0.01)(t)].

6.1 Earthquake Data228

Figure 3 (left) shows the epicenters of 8000 earthquakes in the latitude/longitude rectangle229

[−75, 75]× [−170, 10] of magnitude greater than 5.0 recorded between 1970 and 2009.2 We230

randomly sample m = 400 epicenters, construct the VR filtration (using the Euclidean231

distance), compute the persistence diagram using Dionysus3 and the corresponding first232

landscape function. We repeat this procedure n = 30 times and compute the mean land-233

scape λn. Using Algorithm 1, we obtain the uniform 95% confidence band of Theorem 3234

and the variable width 95% confidence band of Theorem 4. See Figure 3 (middle). Both235

the confidence bands have coverage probability 95% for the mean landscape µ(t) that is236

attached to the distribution induced by the sampling scheme. Similarly, using the same 30237

persistence diagrams we construct the corresponding weighted silhouettes using p = 0.01238

and construct uniform and variable width 95% confidence bands for the mean weighted239

silhouette E[φ(0.01)(t)]; see Figure 3 (right). Notice that, for most t ∈ [0, T ], the variable240

width confidence band is tighter than the fixed-width confidence band.241

2USGS Earthquake Search. http://earthquake.usgs.gov/earthquakes/search/.
3Dionysus is a C++ library for computing persistent homology, developed by Dmitriy Morozov.

http://mrzv.org/software/dionysus/.
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6.2 Toy Example: Rings242

Figure 4: Top: Sample space and one of the 30 persistence diagrams. Middle: variable
width 95% confidence bands for the mean first landscape µ1(t) and mean third landscape
µ3(t). Bottom: variable width 95% confidence bands for the mean weighted silhouettes
E[φ(4)(t)] and E[φ(0.1)(t)].

In this example, we embed the torus S1×S1 in R3 and we use the rejection sampling243

algorithm of [10] (R = 5, r = 1.8) to sample 10,000 points uniformly from the torus. Then,244

we link it with a circle of radius 5, from which we sample 1,800 points; see Figure 4 (top245

left). These N = 11, 800 points constitute the sample space. We randomly sample m = 600246

of these points, construct the VR filtration, compute the persistence diagram (Betti 1) and247

the corresponding first and third landscapes and the silhouettes for p = 0.1 and p = 4. We248

repeat this procedure n = 30 times to construct 95% variable width confidence bands for249

the mean landscapes µ1(t), µ3(t) and the mean silhouettes E[φ(4)(t)], E[φ(0.1)(t)]. Figure 4250

(bottom left) shows one of the 30 persistence diagrams. In the persistence diagram, notice251

that three persistence pairs are more persistent than the rest. These correspond to the252

two nontrivial cycles of the torus and the cycle corresponding to the circle. We notice that253

many of the points in the persistence diagram are hidden by the first landscape. However, as254

shown in the figure, the third landscape function and the silhouette with parameter p = 0.1255

are able to detect the presence of these features.256
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7 Discussion257

We have shown how the bootstrap can be used to give confidence bands for Bubenik’s258

persistence landscapes and for persistence silhouettes defined in this paper. We are currently259

working on several extensions to our work, including the following: allowing persistence260

diagrams with countably many points, allowing T to be unbounded, and extending our261

results to new functional summaries of persistence diagrams. In the case of subsampling262

(scenario 2 defined in the introduction), we have provided accurate inferences for the mean263

function µ. In [4], we investigate methods to estimate the difference between µ (the mean264

landscape from subsampling) and λ (the landscape from the original large dataset). Coupled265

with our confidence bands for µ, this provides an efficient approach to approximating the266

persistent homology in cases where exact computations are prohibitive.267
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A Results from Chernozhukov et al.311

In this appendix, we summarize the results from [7] that are used in this paper. Given a312

set of functions G and a probability measure Q, define the covering number N(G, L2(Q), ε)313

as the smallest number of balls of size ε needed to cover G, where the balls are defined314

with respect to the norm ||g||2 =
∫
g2(u)dQ(u). Let X1, . . . , Xn be i.i.d. random variables315

taking values in a measurable space (S,S). Let G be a class of functions defined on S and316

uniformly bounded by a constant b, such that the covering numbers of G satisfy317

sup
Q
N(G, L2(Q), bτ) ≤ (a/τ)v , 0 < τ < 1 (18)

for some a ≥ e and v ≥ 1 and where the supremum is taken over all probability measures
Q on (S,S). The set G is said to be of VC type, with constants a and v and envelope b.
Let σ2 be a constant such that supg∈G E[g(Xi)

2] ≤ σ2 ≤ b2 and for some sufficiently large
constant C1, denote Kn := C1v(log n ∨ log(ab/σ)). Finally, define

Gn(g) :=
1√
n

n∑
i=1

(g(Xi)− E[g(Xi)]), g ∈ G,

and let Wn := ‖Gn‖G = supg∈G |Gn(g)| denote the supremum of the empirical process Gn.318
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Theorem 8 (Theorem A.1 in [7]). Consider the setting specified above. For any γ ∈ (0, 1),

there is a random variable W
d
= ‖G‖G such that

P

(
|Wn −W | >

bKn

γ1/2n1/2
+
σ1/2K

3/4
n

γ1/2n1/4
+
b1/3σ2/3K

2/3
n

γ1/3n1/6

)
≤ C2

(
γ +

log n

n

)
for some constant C2.319

Let ξ1, . . . , ξn be i.i.d. N(0, 1) random variables independent of Xn
1 := {X1, . . . , Xn}.

Let ξn1 := {ξ1, . . . , ξn}. Define the Gaussian multiplier process

G̃n(g) = G̃n(Xn
1 , ξ

n
1 )(g) :=

1√
n

n∑
i=1

ξi

(
g(Xi)−

1

n

n∑
i=1

[g(Xi)]

)
, g ∈ G.

Lastly, for fixed xn1 , let W̃n(xn1 ) := supg∈G |G̃n(xn1 , ξ
n
1 )(g)| denote the supremum of this320

process.321

Theorem 9 (Theorem A.2 in [7]). Consider the setting specified above. Assume that b2Kn ≤
nσ2. For any δ > 0 there exists a set Sn ∈ Sn such that P(Sn) ≥ 1−3/n and for any xn1 ∈ Sn
there is a random variable W

d
= supg∈G |G| such that

P

(
|W̃n(xn1 )−W | > σK

1/2
n

n1/2
+
b1/2σ1/2K

3/4
n

n1/4
+ δ

)
≤ C3

(
b1/2σ1/2K

3/4
n

δn1/4
+

1

n

)
for some constant C3.322

The following two results are known as “anti-concentration” inequalities for suprema323

of Gaussian processes. They shows that suprema of Gaussian processes do not concentrate324

too fast.325

Theorem 10 (Corollary 2.1 in [7]).
Let W = (Wt)t∈T be a separable Gaussian process indexed by a semi-metric space T such
that E[Wt] = 0 and E[W 2

t ] = 1 for all t ∈ T . Assume that supt∈T Wt < ∞ a.s. Then,
a(|W |) := E[supt∈T |Wt|] ∈ [

√
2/π,∞) and

sup
x∈R

P
(∣∣∣ sup

t∈T
|Wt| − x

∣∣∣ ≤ ε) ≤ Aεa(|W |)

for all ε ≥ 0 and some constant A.326

Theorem 11 (Lemma A.1 in [8]). Let (S,S, P ) be a probability space, and let F ⊂ L2(P )
be a P -pre-Gaussian class of functions. Denote by G a tight Gaussian random element in
`∞(F) with mean zero and covariance function E[G(f)G(g)] = CovP (f, g) for all f, g ∈ F .
Suppose that there exist constants σ, σ > 0 such that σ2 ≤ VarP (f) ≤ σ2 for all f ∈ F .
Then for every ε > 0,

sup
x∈R

P

(∣∣∣∣∣sup
f∈F

Gf − x

∣∣∣∣∣ ≤ ε
)
≤ Cσε

(
E

[
sup
f∈F

Gf

]
+
√

1 ∨ log(σ/ε)

)
,

where Cσ is a constant depending only on σ and σ.327
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Theorem 12 (Talagrand’s ineq., Th. B.1 in [7]).
Let ξ1, . . . , ξn be i.i.d. random variables taking values in a measurable space (S,S). Suppose

that G is a measurable class of functions on S uniformly bounded by a constant b such that
there exist constants a ≥ e and v > 1 with supQN(G, L2(Q), bε) ≤ (a/ε)v for all 0 < ε < 1.
Let σ2 be a constant such that supg∈G Var(g) ≤ σ2 ≤ b2. If b2v log(ab(σ)) ≤ nσ2, then for
all t ≤ nσ2/b2,

P

(
sup
g∈G

∣∣∣∣∣
n∑
i=1

{g(ξi)− E[g(ξ1)]}

∣∣∣∣∣ > A

√
nσ2

[
t ∨
(
v log

ab

σ

)])
≤ e−t,

where A is an absolute constant.328

B Technical Tools329

In this section, we prove some results that will be used in the proofs of Appendix C. Some of330

our techniques are an adaptation of the strategy used in [7] to construct adaptive confidence331

bands.332

Consider the class of functions F = {ft}0≤t≤T , defined in (4) and let λn1 = (λ1, . . . , λn)333

be an i.i.d. sample from a probability P on the measurable space (LT ,S) of persistence334

landscapes. We summarize the processes used in the analysis of persistence landscapes,335

given in Sections 3 and 4:336

• G(ft) is a Brownian Bridge described in Theorem 1,337

• Gn(ft) = 1√
n

∑n
i=1(ft(λi)− µ(t)),338

• G̃n(ft) = 1√
n

∑n
i=1 ξi

(
ft(λi)− λn(t)

)
.339

For σ(t) > c > 0, we also defined340

• Hn(ft) = Hn(λn1 )(ft) := 1√
n

∑n
i=1

ft(Bi)−µ(t)
σ(t) ,341

• Ĥn(ft) = H̃n(λn1 , ξ
n
1 )(ft) := 1√

n

∑n
i=1 ξi

ft(λi)−λn(t)
σ̂n(t)

,342

and for completeness we introduce343

• H(ft), the standardized Brownian Bridge with covariance function344

κ(t, u) =
∫ ft(λ)fu(λ)

σ(t)σ(u) dP (λ)−
∫ ft(λ)

σ(t) dP (λ)
∫ fu(λ)

σ(u) dP (λ) (19)

• The process345

H̃n(ft) := Ĥn(λn1 , ξ
n
1 )(ft) :=

1√
n

n∑
i=1

ξi
ft(λi)− λn(t)

σ(t)
, (20)

which differs from Ĥn(ft) in the use of the standard deviation σ(t) that replace its346

estimate σ̂n(t).347
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Proposition 13 (Bootstrap Convergence).
Suppose that σ(t) > c > 0 in an interval [t∗ , t

∗] ⊂ [0, T ], for some constant c. Then, for

large n, there exists a random variable W
d
= supt∈[t∗,t∗] |G(ft)| and a set Sn ∈ Sn such that

P(λn1 ∈ Sn) ≥ 1− 3/n and, for any fixed λ̆n1 := (λ̆1, . . . , λ̆n) ∈ Sn,

sup
z∈R

∣∣∣P( sup
t∈[t∗,t∗]

|G̃n(λ̆n1 , ξ
n
1 )(ft)| ≤ z

)
− P (W ≤ z)

∣∣∣ ≤ C6

((log n)5/8

n1/8

)
,

for some constant C6 > 0.348

Proof. Let F∗ = {ft ∈ F : t ∈ [t∗ , t
∗]}. Consider the covering number N(F∗, L2(Q), ||F ||2ε)

of the class F∗, as defined in Appendix A, with F = T/2. In the proof of Theorem 2 we
show that

sup
Q
N(F∗, L2(Q), ||F ||2ε) ≤ 2/ε,

where the supremum is taken over all measures Q on LT .
For n > 2, b = σ = T/2, v = 1, Kn = A (log n ∨ 1), Theorem 9 implies that there exists
a set Sn such that P(λn1 ∈ Sn) ≥ 1 − 3/n and, for any fixed λ̆n1 := (λ̆1, . . . , λ̆n) ∈ Sn and
δ > 0,

P

(∣∣ sup
t∈[t∗ ,t∗]

|G̃n| −W
∣∣ > T

√
A log n

2n1/2
+
T (A log n)3/4

2n1/4
+ δ

)
≤ C3

(
T (A log n)3/4

2δn1/4
+

1

n

)
.

Define

g(n, δ, T ) :=
T (A log n)1/2

2n1/2
+
T (A log n)3/4

2n1/4
+ δ.

Using the strategy of Theorem 2 and applying the anti-concentration inequality of Theorem
11, it follows that for large n and λ̆n1 := (λ̆1, . . . , λ̆n) ∈ Sn,

sup
z

∣∣∣∣∣P
(

sup
t∈[t∗ ,t∗]

|G̃n(λ̆n1 , ξ
n
1 )| ≤ z

)
− P(W ≤ z)

∣∣∣∣∣
≤ C5 g(n, δ, T )

√
log

c

g(n, δ, T )
+ C3

(
T (A log n)3/4

2δn1/4
+

1

n

)
(21)

for some constant C5 > 0. Choosing δ = (A logn)1/8

n1/8 , we have

g(n, δ, T ) =
T (A log n)1/2

2n1/2
+
T (A log n)3/4

2n1/4
+

(A log n)1/8

n1/8
.

The result follows by noticing that, g(n, δ, T ) = O
(
(logn)1/8

n1/8

)
and

√
log c

g(n,δ,T ) = O
(
(log n)1/2

)
.349

350

In the following lemma we consider the class Gc = {gt : gt = ft/σ(t), t∗ ≤ t ≤ t∗}351

where ft ∈ F is defined in (4) and we bound the corresponding covering number, as in (18).352
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Lemma 14. Consider the assumptions of Theorem 4 and consider the class of functions
Gc = {gt : gt = ft/σ(t), t∗ ≤ t ≤ t∗}, where ft ∈ F . Note that T/(2c) is a measurable
envelope for Gc. Then

sup
Q
N(Gc, L2(Q), ε‖T/(2c)‖Q,2) ≤ (a/ε)v, 0 < ε < 1

for a = (T 2 + 2c2)/c2 and v = 1, where the supremum is taken over all measures Q on LT .353

Gc is of VC type, with constants a and v and envelope T/(2c).354

Proof. First, using the definition of σ(t) given in (6) for t > u, we have

σ2(t)− σ2(u) = Var(ft(λ1))−Var(fu(λ1))

= E[f2t (λ1)]− (E[ft(λ1)])
2 − E[f2u(λ1)] + (E[fu(λ1)])

2

= E [(ft(λ1)− fu(λ1)) (ft(λ1) + fu(λ1))] +

(E[fu(λ1)]− E[ft(λ1)]) (E[fu(λ1)] + E[ft(λ1)])

≤ (t− u)
(
E[ft(λ1) + fu(λ1)] + E[fu(λ1)] + E[ft(λ1)]

)
≤ 2(t− u)T.

Note that we used the fact that ft(λ) is 1-Lipschitz in t and T/2 is an envelope of F .
Therefore

|σ(t)− σ(u)| = |σ
2(t)− σ2(u)|
σ(t) + σ(u)

≤ |t− u|T
c

.

Using that ft(λ) is one-Lipschitz, we also have that |σ(t)gt(λ) − σ(u)g(u)| ≤ |t − u|, for

t, u ∈ [t∗, t
∗]. Construct a grid t∗ ≡ t0 < t1 < · · · < tN ≡ t∗ such that tj+1 − tj = εTc2

T 2+2c2
.

We claim that {gtj : 1 ≤ j ≤ N} is an εT/(2c)-net of Gc. If gt in Gc, then there exists a j
so that tj ≤ t ≤ tj+1 and

‖gtj+1 − gt‖Q,2 =

∥∥∥∥σ(tj+1)gtj+1

σ(tj+1)
− σ(t)gt

σ(t)

∥∥∥∥
Q,2

=

∥∥∥∥σ(tj+1)σ(t)gtj+1 − σ(tj+1)σ(t)gt

σ(tj+1)σ(t)

∥∥∥∥
Q,2

.

By subtracting and adding σ2(tj+1)gtj+1 in the numerator the last quantity becomes355

∥∥∥∥σ(tj+1)gtj+1 [σ(t)− σ(tj+1)] + σ(tj+1)[σ(tj+1)gtj+1 − σ(t)gt]

σ(tj+1)σ(t)

∥∥∥∥
Q,2

≤
∥∥∥∥T [σ(t)− σ(tj+1)]

2c2

∥∥∥∥
Q,2

+
tj+1 − t

c

≤ (tj+1 − t)T 2

2c3
+
tj+1 − t

c
≤ (tj+1 − tj)

T 2 + 2c2

2c3

=
εTc2

T 2 + 2c2
T 2 + 2c2

2c3
=
εT

2c
.

Thus,356

supQN(Gc, L2(Q), εT/(2c)) ≤ (T 2+2c2)(t∗−t∗)
εTc2

≤ T 2+2c2

εc2
.357
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Let H be a Brownian bridge with covariance function given in (19). Then, combining358

Lemma 14 and Theorem 8, with γ = (logn)1/2

n1/8 , we obtain:359

Lemma 15. One can construct a random variable Y
d
= supt∈[t∗,t∗] |H| such that for large

n,

P

(∣∣ sup
t∈[t∗,t∗]

|Hn(ft)| − Y
∣∣ > C7

(log n)1/2

n1/8

)
≤ C8

(log n)1/2

n1/8
.

for some absolute constants C7 and C8.360

Consider σ(t) and σ̂(t), defined in (6) and (12).361

Lemma 16. For large n and some constant C9,362

P

(
sup

t∈[t∗,t∗]

∣∣∣∣ σ̂n(t)

σ(t)
− 1

∣∣∣∣ ≥ C9
(log n)1/2

n1/2

)
≤ 2

n
. (22)

Proof. Let Gc = {gt : gt = ft/σ(t), t∗ ≤ t ≤ t∗} and G2c := {g2 : g ∈ Gc}.

By definition σ̂2n(t) =
1

n

n∑
i=1

f2t (λi)− [λn(t)]2 and σ2(t) = E[f2t (λ1)]− (E[ft(λ1)])
2. Thus

∣∣∣∣ σ̂n(t)

σ(t)
− 1

∣∣∣∣ ≤ ∣∣∣∣ σ̂2n(t)

σ2(t)
− 1

∣∣∣∣ =

∣∣∣∣ σ̂2n(t)− σ2(t)
σ2(t)

∣∣∣∣
≤ sup

t∈[t∗,t∗]

∣∣∣∣ 1n
∑n

i=1 f
2
t (λi)

σ2(t)
− E[f2t (λ1)]

σ2(t)

∣∣∣∣+ sup
t∈[t∗,t∗]

∣∣∣∣∣
[

1

n

∑n
i=1 ft(λi)

σ(t)

]2
−
[
E[ft(λ1)]

σ(t)

]2∣∣∣∣∣
= sup

g∈G2c

∣∣∣∣∣ 1n
n∑
i=1

g(λ)− E[g(λ)]

∣∣∣∣∣+ sup
g∈Gc

∣∣∣∣∣∣
[

1

n

n∑
i=1

g(λ)

]2
− (E[g(λ)])2

∣∣∣∣∣∣ (23)

Using the same strategy of Lemma 14, it can be shown that G2c is VC type with some363

constants A and V ≥ 1 and envelope T 2/(4c2). Therefore, by Theorem 12, with t = log n364

and for large n,365

P

(
sup
g∈G2c

∣∣∣∣∣ 1n
n∑
i=1

g(λ)− E[g(λ)]

∣∣∣∣∣ > C10
(log n)1/2

n1/2

)
≤ 1

n
. (24)

Note that

sup
g∈Gc

∣∣∣∣∣∣
[

1

n

n∑
i=1

g(λ)

]2
− (E[g(λ)])2

∣∣∣∣∣∣ ≤ T

c
sup
g∈Gc

∣∣∣∣∣ 1n
n∑
i=1

g(λ)− E[g(λ)]

∣∣∣∣∣
and, applying again Theorem 12 to the right hand side, we obtain366

P
(

sup
g∈Gc

∣∣∣∣∣∣
[

1

n

n∑
i=1

g(λ)

]2
− (E[g(λ)])2

∣∣∣∣∣∣ > C11
(log n)1/2

n1/2

)
≤ 1

n
. (25)

The inequality of (22) follows from (23), (24) and (25).367
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Lemma 17 (Estimation error of Q̂(α)). Let Q(α) be the (1 − α)-quantile of the ran-368

dom variable Y
d
= supt∈[t∗,t∗] |H| and Q̂(α) be the (1 − α)-quantile of the random variable369

supt∈[t∗,t∗] |Ĥn|. There exist positive constants C12 and C13 such that for large n:370

(i) P
[
Q̂(α) < Q

(
α+ C12

(logn)3/8

n1/8

)
− C13

(logn)3/8

n1/8

]
≤ 5

n ,371

(ii) P
[
Q̂(α) > Q

(
α− C12

(logn)3/8

n1/8

)
+ C13

(logn)3/8

n1/8

]
≤ 5

n .372

Proof. Define ∆Hn(ft) := Ĥn(ft) − H̃n(ft). Consider the set Sn,1 ∈ Sn of values λ̆n1 such
that, if λn1 ∈ Sn,1, then∣∣∣∣ σ̂(t)

σ(t)
− 1

∣∣∣∣ ≤ C9
(log n)1/2

n1/2
for all t ∈ [t∗, t

∗].

By Lemma 16, P(λn1 ∈ Sn,1) ≥ 1− 2/n. Fix λ̆n1 ∈ Sn,1. Then

∆Hn(λ̆n1 , ξ
n
1 )(ft) :=

1√
n

n∑
i=1

ξi
ft(λ̆i)− λn(t)

σ(t)

(
σ(t)

σ̂n(t)
− 1

)
is a zero-mean Gaussian process with variance

σ̂2n(t)

σ2(t)

(
σ(t)

σ̂n(t)
− 1

)2

≤ C2
9

log n

n
.

Let G̃c = {ag : a ∈ (0, 1], g ∈ Gc}. G̃c is VC type with some constants A and V ≥ 1 and
envelope T 2/(4c2). Moreover, the uniform covering number of the process ∆Hn(λ̆n1 , ξ

n
1 )(ft)

with respect to the natural semi-metric (standard deviation) is bounded by the uniform
covering number of G̃c. Therefore we can apply Theorem 2.4 in [16] (see also Section A.2.2
in [19]) and obtain

P

(∣∣∣∣∣ sup
t∈[t∗,t∗]

|Ĥ(λ̆n1 )(ft)| − sup
t∈[t∗,t∗]

|H̃(λ̆n1 )(ft)|

∣∣∣∣∣ ≥ βn
)

≤P

(
sup

t∈[t∗,t∗]
|∆Hn(λ̆n1 , ξ

n
1 )(ft)| ≥ βn

)

≤D
(

βnn

C2
9 log n

)V C9
√

log n

βn
√
n

exp

(
− β2nn

2C2
9 log n

)
, (26)

for some constant D. For C14 =
√

2C9(1 + V/2)1/2 and βn = C14(log n)/n1/2, the last
quantity is bounded by C15/[n(log n)1/2], for some constant C15. Therefore, for large n,

P

(∣∣∣∣sup
t
|Ĥ(λ̆n1 )(ft)| − sup

t
|H̃(λ̆n1 )(ft)|

∣∣∣∣ ≥ C14
(log n)3/8

n1/8

)

≤ P
(∣∣∣∣sup

t
|Ĥ(λ̆n1 )(ft)| − sup

t
|H̃(λ̆n1 )(ft)|

∣∣∣∣ ≥ C14
(log n)

n1/2

)
≤ C15

1

n(log n)1/2
≤ C15

(log n)3/8

n1/8
. (27)
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By Theorem 9 with δ = (logn)3/8

n1/8 , for large n, there exists a set Sn,2 ∈ Sn such373

that P(λn1 ∈ Sn,2) ≥ 1 − 3/n, and for any λ̆n1 ∈ Sn,2, one can construct a random variable374

Y
d
= supt∈[t∗,t∗] |H| such that375

P
(∣∣∣ sup

t∈[t∗,t∗]
|H̃(λ̆n1 )(ft)| − Y

∣∣∣ ≥ C16
(log n)

3
8

n1/8

)
≤ C17

(log n)
3
8

n1/8
. (28)

Combining (27) and (28), we have that, for large n and λ̆n1 ∈ Sn,0 := Sn,1 ∩ Sn,2,376

P
(∣∣∣ sup

t∈[t∗,t∗]
|Ĥ(λ̆n1 )(ft)| − Y

∣∣∣ ≥ C13
(log n)

3
8

n1/8

)
≤ C12

(log n)
3
8

n1/8
, (29)

for some constants C12, C13.377

Let Q̂(α, λ̆n1 ) be the conditional (1 − α)-quantile of supt∈[t∗,t∗] |Ĥ(λ̆n1 )(ft)|. Then

Q̂(α) = Q̂(α, λ̆n1 ) is a random quantity and for λ̆n1 ∈ Sn,0, we have that

P

(
Y ≤ Q̂(α, λ̆n1 ) + C13

(log n)3/8

n1/8

)

≥ P

({
Y ≤ Q̂(α, λ̆n1 ) + C13

(log n)3/8

n1/8

}⋂{∣∣∣∣∣ sup
t∈[t∗,t∗]

|Ĥ(λ̆n1 )(ft)| − Y

∣∣∣∣∣ ≤ C13
(log n)3/8

n1/8

})

≥ P

(
sup

t∈[t∗,t∗]
|Ĥ(λ̆n1 )(ft)| ≤ Q̂(α, λ̆n1 )

)
− C12

(log n)3/8

n1/8

≥ 1− α− C12
(log n)3/8

n1/8
.

Therefore Q
(
α+ C12

(logn)3/8

n1/8

)
≤ Q̂(α) + C13

(logn)3/8

n1/8 whenever λn1 ∈ Sn,0, which happens378

with probability at least 1 − 5/n. This proves part (i) of the theorem. The proof of part379

(ii) is similar and therefore is omitted.380

C Main Proofs381

Proof of Theorem 2. Let F∗ = {ft ∈ F : t ∈ [t∗ , t
∗]} and let Q be a probability measure on

LT . The Lipschitz property implies that for every λ ∈ LT , |ft(λ)− fu(λ)| = |λ(t)−λ(u)| ≤
|t − u| and hence ‖ft − fu‖Q,2 ≤ |t − u|. Construct a grid, 0 ≡ t0 < t1 < · · · < tN ≡ T
where tj+1 − tj := ε‖F‖Q,2 = ε T/2. In the last equality, we used the constant envelope
F (λ) = T/2. We claim that {ftj : 1 ≤ j ≤ N} is an (ε T/2)−net of F∗: choosing ft ∈ F∗,
then there exists a j so that tj ≤ t ≤ tj+1 and

‖ftj+1 − ft‖Q,2 ≤ |tj+1 − t| ≤ |tj+1 − tj | = ε T/2.

Thus, we can bound the covering number of F∗, as in (18):

sup
Q
N(F∗, L2(Q), ε‖F‖Q,2) ≤

T

ε‖F‖Q,2
= 2/ε,
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where the supremum is taken over all measures Q on LT .
By Theorem 8, with b = σ = T/2, v = 1, Kn = A (log n ∨ 1) for some constant A, there

exists W
d
= supf∈F∗ G such that, for n > 2,

P

(∣∣ sup
t∈[t∗ ,t∗]

|Gn| −W
∣∣ > TA log n

2γ1/2n1/2
+
T 1/2(A log n)3/4

21/2γ1/2n1/4
+
T (A log n)2/3

2γ1/3n1/6

)
≤ C2

(
γ +

log n

n

)
holds for n > 2 and for some constant C2.

Define the event E :=
{∣∣ supt∈[t∗ ,t∗] |Gn| −W

∣∣ > g(n, γ, T )
}

, where

g(n, γ, T ) =
TA log n

2γ1/2n1/2
+
T 1/2(A log n)3/4

21/2γ1/2n1/4
+
T (A log n)2/3

2γ1/3n1/6
.

Then, for any z and large n,

P

(
sup

t∈[t∗ ,t∗]
|Gn| ≤ z

)
− P(W ≤ z)

≤P (W ≤ z + g(n, γ, T ))− P(W ≤ z) + P(Ec)

≤C4 g(n, γ, T )

√
log

c

g(n, γ, T )
+ C2

(
γ +

log n

n

)
,

where in the last step we used the anti-concentration inequality of Theorem 11. Similarly,

P(W ≤ z)− P

(
sup

t∈[t∗ ,t∗]
|Gn| ≤ z

)

≤P(W ≤ z, E)− P

(
sup

t∈[t∗ ,t∗]
|Gn| ≤ z, E

)
+ P (Ec)

≤P (z − g(n, γ, T ) ≤W ≤ z, E) + P (Ec)

≤C4 g(n, γ, T )

√
log

c

g(n, γ, T )
+ C2

(
γ +

log n

n

)
.

It follows that

sup
z

∣∣∣∣∣P
(

sup
t∈[t∗ ,t∗]

|Gn| ≤ z

)
− P(W ≤ z)

∣∣∣∣∣ ≤ C4 g(n, γ, T )

√
log

c

g(n, γ, T )
+ C2

(
γ +

log n

n

)
.

(30)

Choosing γ = (A logn)7/8

n1/8 , we have382

g(n, γ, T ) = T (A logn)9/16

2n7/16 + T 1/2(A logn)5/16

21/2n3/16 + T (A logn)3/8

2n1/8 . The result follows by noticing that,383

g(n, γ, T ) = O
(
(logn)3/8

n1/8

)
and

√
log c

g(n,γ,T ) = O
(
(log n)1/2

)
.384

Proof of Theorem 4 (Variable Width Band).385

Let H(ft) be the Brownian bridge with covariance function given in (19). Consider Y
d
=386
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supt∈[t∗,t∗] |H|. Let Q(α) be the (1 − α)-quantile of Y and Q̂(α) be the (1 − α)-quantile of387

the random variable supt∈[t∗,t∗] |Ĥn|.388

Let ε1(n) = C7(log n)1/2/n1/8, ε2(n) = C13(log n)3/8/n1/8, ε3(n) = C9(log n)1/2/n1/2, and389

define ε(n) = ε1(n) + ε2(n) + ε3(n)Q(α).390

Similarly let δ1(n) = C8(log n)1/2/n1/8, δ2(n) = 5/n, δ3(n) = 2/n, and define δ(n) =
δ1(n) + δ2(n) + δ3(n). Define τ(n) = C12(log n)3/8/n1/8. Then, for large n,

P
(
`σ(t) ≤ µ(t) ≤ uσ(t) for all t ∈ [t∗ , t

∗]
)

= P

(
sup

t∈[t∗,t∗]

∣∣∣∣Hn(ft)
σ(t)

σ̂n(t)

∣∣∣∣ ≤ Q̂(α)

)

≥ P

[
sup

t∈[t∗,t∗]
|Hn(ft)| ≤ (1− ε3(n))Q (α+ τ(n))− ε2(n)

]
− δ2(n)− δ3(n),

where we applied Lemmas 16 and 17. Using Lemma 15, the last quantity is no smaller than

P
[
Y ≤ (1− ε3(n))Q (α+ τ(n))− ε2(n)− ε1(n)

]
− δ1(n)− δ2(n)− δ3(n)

≥ P
[
Y ≤ Q (α+ τ(n))− ε(n)

]
− δ(n)

≥ P
[
Y ≤ Q (α+ τ(n))

]
− sup
x∈R

P
(∣∣∣Y − x∣∣∣ ≤ ε(n)

)
− δ(n)

≥ 1− α− τ(n)− δ(n)− sup
x∈R

P
(∣∣∣Y − x∣∣∣ ≤ ε(n)

)
≥ 1− α− τ(n)− δ(n)−Aε(n),

where in the last step we applied the anti-concentration inequality of Theorem 10.391
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