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Abstract

Medial axis is known to be unstable for nonsmooth objects. For an open set O, we define
the weak feature size, wfs, minimum distance between Oc and the critical points of the function
distance to Oc. We introduce the ‘‘lambda-medial axis’’ Mk of O, a subset of the medial axis of
O which captures the homotopy type of O when k < wfs. We show that, at least for some ‘‘reg-
ular’’ values of k, Mk remains stable under Hausdorff distance perturbations of Oc.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction and related works

The medial axis M of an open set O in Rn is the set of points x 2 O for which
there is at least 2 closest points on the complement Oc (see Section 2). The medial
axis has applications in image analysis and mathematical morphology [30], Solid
Modeling [8], or domain decomposition for CAD to CAE (i.e., Finite Elements)
models generation [32,33].
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For a few years, most successful methods for reconstructing a 3D shape from
unorganized data points sampled on the shape boundary start with a three-dimen-
sional Voronoi diagram of the points [1–3,9,18]. Recall that, for a finite set of points
S, the medial axis of the complement Sc of S is the Voronoi diagram of S, or, more
accurately, the union of the cells of dimension at most n � 1 in the Voronoi diagram.
In the ‘‘Power Crust’’ paper [2], the proposed reconstruction algorithm consists of:

(1) computing an approximation of the Medial Axis of the shape from the Voro-
noi diagram of the sampled points,
(2) reconstructing the Solid corresponding to this approximate Medial Axis,
together with the associated distance function.

The approximation of the Medial Axis in step 1 consists of the selection of a sub-
set of the Voronoi vertices, called the poles. It has been shown in [9,2] that, for a C2

smooth surface, the set of poles converges toward the Medial Axis in Hausdorff dis-
tance when the sampling density approaches 0. Even if this is not explicit in other
algorithms based on 3D Voronoi diagrams, topological fidelity in reconstruction
algorithms is related to the ability to select a relevant subset of the Voronoi diagram
of the sampling that approaches the Medial Axis of the underlying object.

The exact computation paradigm assumes exact inputs belonging to countable
sets, for which usual geometric predicates are decidable and can then be computed
exactly. On the other hand considering approximate inputs (or inputs belonging to
uncountable sets) asks for a model of computation in which the continuity (that is
the stability) of the operator is required: one should be able to compute an arbitrary
accurate approximation of the output using a sufficiently accurate approximation of
the input. Proposed algorithms for the computation of the Medial axis in the first
model of computation includes Voronoi diagram of a finite set of rational points,
and seems to be feasible for exact (that is rational or algebraic numbers) polyhedral
inputs (see [14,19,20]).

For nonexact inputs, such as CAD BRep models or measured objects, one has to
do with approximation. The computation of the Medial Axis of two-dimensional or
three-dimensional solids is known to be problematic due to its unstableness: small
variations in the boundary of an object result in large variations of its Medial Axis.
For example, if the input is a BRep solid, an arbitrary small G0 (incidence) or G1

(tangency) discontinuity between two boundary elements entails a large ‘‘spike’’ in
the Medial Axis. We would like to emphasize here that this unstableness is not a
technical difficulty related to a specific algorithm: when the output is not a continu-
ous function of the input, the result of any computation is meaningless, unless
assuming ‘‘exact’’ input data, which is not realistic for measured or even usual
CAD data. Following the ideas developed for surface reconstruction algorithms,
some authors have examined how a specific subset of the Voronoi complex of the
sampled points can be used as an approximation of the Medial axis [2,15,16]. These
approaches assume that the sampled points lie exactly on a smooth surface with a
positive lfs. The lfs is the minimal distance from the boundary to the Medial Axis
and gives an upper bound on the curvature for a C2 surface. Indeed, in order to
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approximate the Medial Axis with respect to the Hausdorff distance, one needs infor-
mations about the boundary both in position, tangency, and curvature (see [10]).
These informations are in a sense hidden in the assumptions of positive lfs and exact
sampling. However, regarding the sampling informations actually available and the
kind of solids encountered in real life, one should be able to achieve reasonable
approximations with weaker assumptions. The aim of this work is to understand what

kind of approximation one can obtain with a priori minimum assumptions on the reg-

ularity of the solid boundary or on the quality of the sampling.

We consider a general class of objects (namely the open bounded subsets of Rn)
and we replace the notion of sampling by the more general class of closed sets
approximating the boundary within a given Hausdorff distance. Practically, this
point of view allows considering noised sampling of nonsmooth objects. Of course,
without any information on the existence of tangent planes or bounded curvature,
one cannot expect to find a good Hausdorff distance approximation of the Medial
Axis. Instead, we are looking to another object, Mk, subset of the Medial Axis.
Mk is the set of points for which any ball containing the set of closest points on the

boundary has radius at least k.
Beyond the Medial Axis, the distance function to the complement induces in fact

a finer structure. In [27], the homotopy equivalence of any open bounded subset of
Rn with its Medial Axis has been proved using a continuous deformation flow. This
flow integrates, in some weakened sense, a discontinuous vector field $ which is an
extension of the gradient of the distance function. Intuitively, for a point x 2 O, $ (x)
gives the local direction to go in order to optimally increase the distance to the com-
plement, while its norm is the rate of growth of this distance when moving in this
direction (see Section 2). This flow has been independently introduced in [17,18,25]
in the particular situation where the complement Oc of O is finite (i.e., for Voronoi
diagrams). These authors have shown that the Flow Diagram induces a nice struc-
ture on the Voronoi diagram. According to [27], this flow and the associated struc-
tures remain valid for general open sets. These structures rely in particular on the
critical points of this flow, that is the set of points x for which $ (x) = 0, as well as
the stable/unstable manifolds [18,25] associated to these critical points.

We introduce the weak feature size, wfs, minimum distance between Oc and the
critical points of O. We show in Section 3 that performing an erosion of distance
d on O, that is removing from O any point at distance at most d from Oc, preserves
the homotopy type of O as far as d < wfs. Mk enjoys the property of capturing the
homotopy type of the object when k < wfs and, when k < wfs its homotopy
corresponds to a filtered homotopy that ignores topological features smaller than
k (Section 3).

The critical points of $ and the weak feature size are closely related to the theory
of critical points of distance functions [26,23]. Such a theory allows to deduce several
properties of the objects studied in this paper. In particular, one proves that most of
the open sets encountered in practical situations (piecewise analytic open sets) have a
positive weak feature size. One also shows that to any open set O with positive wfs,
one can associate in a canonical way a topological manifold which approximate the
boundary of O. These results are given in Section 3.4.
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We claim that Mk is more relevant than M in most practical situations because it
remains stable and well defined without any assumption on the smoothness of the
object or of an unlikely exactness of the sampling. Section 5 examines in which pre-
cise sense the Mk of the ‘‘exact object’’ can be approximated from the Mk of its
Hausdorff approximation, therefore giving a sound foundation of any computation
of this object in realistic situations, which is proved hopeless for the Medial Axis. It
also gives a straightforward algorithm using filtered Voronoi diagrams of sampled
points as approximations (see Section 5.1)
2. Definitions

2.1. The continuous deformation C

We use the following definitions and notations. In the whole paper, O and M al-
ways denote, respectively, a bounded open subset of Rn and its Medial Axis defined
below. For any set X, X , X�, oX, and Xc denote, respectively, the closure, the interior,
the boundary, and the complement of X. Bx;r and B�

x;r, respectively, denote the closed
and open ball of center x and radius r in Rn. We denote by Sx;r the corresponding
sphere, that is Sx;r ¼ Bx;r n B�

x;r.
For any point x 2 O, we denote by C (x) the set of closest boundary points, that is:

CðxÞ ¼ fy 2 Oc; dðx; yÞ ¼ dðx;OcÞg
¼ fy 2 @O; dðx; yÞ ¼ dðx; @OÞg:

Because @O is compact, C (x) is a nonempty compact set. For a set E, |E| denotes the
cardinal of E.

Definition 2.1. (Medial Axis) The Medial Axis M of the open set O is the set of
points x of O who have at least 2 closest boundary points:

M ¼ fx 2 O; jCðxÞj P 2g:
The strictly positive, real valued function R defined on O is the distance to the

boundary.

RðxÞ ¼ dðx;OcÞ:
One can check, using the triangular inequality twice, that R is 1-Lipschitz.

There always exists a unique closed ball with minimal radius enclosing C (x). The
existence follows from the compactness of the set of balls whose radius is bounded by
a given value B and containing C (x) and the uniqueness from the fact that if two dis-
tinct balls contain C (x) there exist another ball of strictly smaller radius enclosing it.
The real valued, positive function F is defined as the radius of this smallest closed
ball enclosing C (x) (cf. Fig. 1). In other words:

F ðxÞ ¼ inffr; 9y 2 Rn;By;r � CðxÞg:
One proves in [27] that F is upper semicontinuous, that is:



Fig. 1. A two-dimensional example with two closest points.
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8� 2 R; fx 2 O;FðxÞ < �g is open:

Similarly, H (x) denotes the center of this smallest enclosing ball. Of course, when
x 62 M, we have C (x) = {H (x)} and F ðxÞ ¼ 0.

The vector function $ extends the gradient of R. $ (x) is defined for all x 2 O and
coincides with the gradient of R when x 2 O �M. It is defined as follows:

rðxÞ ¼ x�HðxÞ
RðxÞ :

One has the following relation (see [27]):

rðxÞ2 ¼ 1� FðxÞ2

RðxÞ2
: ð1Þ

The map x ´ i$ (x)i is lower semicontinuous (see [27]). The critical points of $ are
the points x for which $ (x) = 0. When Oc is finite, that is for Voronoi diagrams, crit-
ical points are the intersections of the Delaunay cells with their dual Voronoi cell
(when they do intersect). In the general case, a point x is a critical point if and only
if it lies in the convex hull of CðxÞ : x 2 CHðCðxÞÞ.

$ is not continuous. However, it is shown in [27] that Euler schemes using this
vector fields converge uniformly, when the integration step decreases, toward a con-
tinuous flow C:

C : Rþ �O 7! O:

This flow realizes the homotopy equivalence (see Section 2.2) between O and M.
One proves in [27] the following equalities:

Cðt; xÞ ¼ xþ
Z t

0

rðCðs; xÞÞds; ð2Þ



Fig. 2. Example of Mk with k = 0.1.
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RðCðt; xÞÞ ¼ RðxÞ þ
Z t

0

rðCðs; xÞÞ2 ds: ð3Þ

The curve image of t 7! Cðt; xÞ is rectifiable and its arc length is an increasing func-
tion of t given by:

sðtÞ ¼
Z t

0

krðCðs; xÞÞkds ð4Þ

and, if one denotes s ´ t (s) the inverse map:

RðCðtðsÞ; xÞÞ ¼ RðxÞ þ
Z s

0

krðCðtðrÞ; xÞÞkdr: ð5Þ

The main object studied in the paper, Mk is defined by (see Fig. 2 for an example):

Mk ¼ fx 2 O;FðxÞ P kg:
Notice that, because F is upper semicontinuous Mk is a closed set.

2.2. Homotopy equivalence

Two maps f0 : X´ Y and f1 : X´ Y are said homotopic if there is a continuous
map H, H : [0,1] · X ´ Y, such that "x 2 X, H (0,x) = f0 (x) and H (1,x) = f1 (x).

The homotopy equivalence between topological sets enforces a one to one corre-
spondence between connected components, cycles, holes, tunnels, cavities, or higher
dimensional topological features of the two sets, as well as the way these features are
related.

The definition of homotopy equivalence can be found in [24, pp. 171–172] or [31,
p. 108]:

Two spaces X and Y are said to have the same homotopy type if there are continuous

maps f : X ´ Y and g : Y´ X such that g � f is homotopic to the identity map of X and
f � g is homotopic to the identity map of Y.
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We are in the case where Y � X and g is the canonical inclusion: "y 2 Y, g (y) = y.
In Section 3, as in [27], the homotopy equivalence is proved using the following char-
acterization. The definition of a deformation retract given below is taken from [29, p.
66].

Proposition 2.2. If Y � X and there exists a continuous map H, H : [0,1] · X ´ X

such that:

• "x 2 X, H(0,x) = x

• "x 2 X, H(1,x) 2 Y
• "y 2 Y, "t 2 [0,1], H(t,y) 2 Y

then, X and Y have same homotopy type. If one replaces the third property by the

stronger one: "y 2 Y, "t 2 [0,1], H(t,y) = y, H defines a deformation retract of X
towards Y.
2.3. Hausdorff distance

Hausdorff distance between sets will be widely used in the paper. Basic definitions
and properties of this distance are quickly recalled. For more general results and de-
tailed proofs, the reader is referred to [5, Section 9.11] for example.

Definition 2.3. Let A and B be two compact subsets of Rn. The Hausdorff distance
between A and B is defined by

dHðA;BÞ ¼ max sup
x2A

dðx;BÞ; sup
y2B

dðy;AÞ
� �

:

Hausdorff distance defines a distance on the set KðRnÞ of compact subsets of Rn

which becomes a complete metric space. Moreover, if K is some fixed compact set,
the metric space ðKðRnÞK ; dHÞ of compact subsets contained in K is compact.
Fig. 3. Weak feature size of an ellipse.
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3. Homotopy type of MkðOÞ

Definition 3.1. The Weak Feature Size, denoted wfsðOÞ, of an open, bounded subset
O of Rn is the distance between the complement Oc and the set of critical points
fx 2 O;rðxÞ ¼ 0g of the distance function. Fig. 3 shows the Weak Feature Size of an
ellipse.

In this section, we show that, if k < wfsðOÞ, then Ok ¼ fx 2 O;RðxÞ P kg, is a
deformation retract of O (Theorem 1) and that MkðOÞ carries the homotopy type
of O (Theorem 2).

3.1. Definition of FbðOÞ, GbðOÞ and first properties

We denote by O an open, bounded subset of Rn. The set of critical points of the
vector field $, fx 2 O;rðxÞ ¼ 0g, or, equivalently, the set of fix points of the map
x 7! Cðt; xÞ will be denoted by FðOÞ. More generally, we introduce the set FbðOÞ:

FbðOÞ ¼ fx 2 O; krðxÞk 6 bg:
With this notation, one has of course F0ðOÞ ¼ FðOÞ. Because the map x ´ i$(x)i is
lower semi-continuous, FbðOÞ is a closed set for the relative topology in O. One has
of course b 6 b0 ) FbðOÞ � Fb0 ðOÞ. Notice that FbðOÞ is related to the filtering of
the Voronoi diagram by angle criterion, taking b as the cos of the angle [22]. How-
ever, when b > 0, FbðOÞ is not, in general, globally invariant by the action of
x 7! Cðt; xÞ and, therefore does not, in general, keep the homotopy type of O.

We introduce now GbðOÞ, the smallest superset of FbðOÞ that is globally invariant

by the action of x 7! Cðt; xÞ:
GbðOÞ ¼ CðRþ;FbðOÞÞ

¼ fx 2 O; 9t 2 Rþ; 9y 2 FbðOÞ; x ¼ Cðt; yÞg:
One has of course FbðOÞ � GbðOÞ and b 6 b0 ) GbðOÞ � Gb0 ðOÞ. Unlike FbðOÞ,
GbðOÞ carries the homotopy of O, as stated in the lemma below.

Lemma 3.2. Let D be the diameter of O.

8x 2 O; C
D

b2
; x

� �
2 GbðOÞ:

Proof. Let us assume that this is not true for some x 2 O:

C
D

b2
; x

� �
62 GbðOÞ

which entails

8t 2 0;
D

b2

� �
; Cðt; xÞ 62 FbðOÞ
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that is

8t 2 0;
D

b2

� �
; krðCðt; xÞÞk > b

which gives:

R C
D

b2
; x

� �� �
¼ RðxÞ þ

Z D
b2

0

rðCðs; xÞÞ2 ds

> RðxÞ þ
Z D

b2

0

b2 ds ¼ RðxÞ þ D:

which contradicts the definition of D. h

Lemma 3.3. For any b > 0, GbðOÞ has the same homotopy type than O.

Proof. We use the characterization of Proposition 2.2. From the definition of GbðOÞ,
it is clear that it is globally invariant by the action of x 7! Cðt; xÞ, that is:

8x 2 GbðOÞ; 8t 2 Rþ; Cðt; xÞ 2 GbðOÞ:
From this property and Lemma 3.2, the homotopy ½0; 1� �O 7! O defined by
ðt; xÞ 7! Cðt D

b2
; xÞ defines an homotopy equivalence between O and GbðOÞ. h
3.2. Introduction of the weak feature size

For two sets A, B we denote by d (A,B) the minimum distance between all the
pairs of points in A and B:

dðA;BÞ ¼ inf
a2A;b2B

dða; bÞ: ð6Þ

Take care that, unlike the Hausdorff distance dH among compact sets, d does not sat-
isfy the triangular inequality and is therefore not a distance.

Definition 3.4. We call Weak Feature Size of O, denoted by wfsðOÞ, the distance
between Oc and FðOÞ:

wfsðOÞ ¼ dðOc;FðOÞÞ
¼ inf

x2FðOÞ
RðxÞ:

In the section below, one focuses on open sets O with positive wfs. The condition
wfs > 0 can be seen as a kind of minimum regularity condition on the boundary of
O. Notice that, even when wfs > 0, i$ (x)i can be arbitrarily small near @O. Consider
for example, in R2, the set S:

S ¼ fðx; yÞ 2 R2; 0 < x < 1 and 0 < y < x2g:
i$ (x)i can be arbitrarily small near the point (0,0). However, there is only one crit-
ical point and wfs (S) > 0. In other words, in general, wfsðOÞ ¼ dðOc;FðOÞÞ is not
equal to supb>0dðOc;FbðOÞÞ.
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For � > 0 and a set X, one denotes by X+� the open set of points whose distance to
X is strictly smaller than �. One has:

Lemma 3.5.

8� > 0; 9b > 0; FbðOÞ � ðOcÞþ� [ FðOÞþ�
:

Proof. From the definition of FbðOÞ one has:

FðOÞ ¼
\

n2N;nP1

F1
n
ðOÞ: ð7Þ

For any integer n P 1, the set Kn

Kn ¼ F1
n
ðOÞ n Ocð Þþ� [ F Oð Þþ�� �

is compact. Indeed, F1
n
ðOÞ being closed for the relative topology in O, one get a

closed set by removing ðOcÞþ�.
The sequence Kn is decreasing for the inclusion order and it results from Eq. (7)

that: \
n2N;nP1

Kn ¼ ;:

It results from the compactness of the Kn that, for some integer N, KN = ; which
means:

F1
N
ðOÞ � Ocð Þþ� [ FðOÞþ�

: �

Let us denote by D� the set of points of O whose distance to the complement ðOcÞ
is comprised between � and wfs � �:

D� ¼ fx 2 O; � 6 RðxÞ 6 wfs� �g:
From Lemma 3.5, we know that for any � > 0, there exists b > 0 such that

8x 2 D�; b < krðxÞk 6 1: ð8Þ
Let x in D� and r 2 ½0;wfs� ��RðxÞ�. We claim that there exists a unique t,
t 2 ½0; wfs

b2
� such that:

RðCðt; xÞÞ ¼ RðxÞ þ r:

Indeed, assuming RðCðwfs
b2
; xÞÞ < wfs� � leads to a contradiction with Eq. (3) and

relation (8). The map t 7! RðCðt; xÞÞ is continuous and strictly increasing by (3)
and (8). Therefore, one get the existence and uniqueness of a such t.

This allows to introduce the map Cr:

Crðr; xÞ ¼ Cðt; xÞ

defined for any x 2 D� and r 2 ½0;wfs� ��RðxÞ�. This means that, for x 2 D� and as
far as the distance to Oc is less than wfs � �, one can parametrize the trajectory of x
by the distance r to the complement.
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Let us consider x 2 D� with Cðt1; xÞ 2 D� and Cðt2; xÞ 2 D�, with t1 6 t2. Let us
denote by s1 (respectively s2) the path length from x to Cðt1; xÞ (respectively
Cðt2; xÞ) along the trajectory of x and r1 ¼ RðCðt1; xÞÞ �RðxÞ (respectively
r2 ¼ RðCðt2; xÞÞ �RðxÞ). It results from the equalities (3)–(5) and inequation (8)
that, along such a trajectory, one has

bðt2 � t1Þ < ðs2 � s1Þ 6 ðt2 � t1Þ; ð9Þ
bðs2 � s1Þ < ðr2 � r1Þ 6 ðs2 � s1Þ; ð10Þ
b2ðt2 � t1Þ < ðr2 � r1Þ 6 ðt2 � t1Þ: ð11Þ

It results from inequalities (11) that Cr is Lipschitz in the variable r, because C is
Lipschitz with respect to the variable t. The lemma below states that Cr is also Lips-
chitz with respect to both variables.

Lemma 3.6. For any � > 0, using again the b of Lemma 3.5, one has:

8x1; x2 2 D�; 8r1 2 ½0;wfs� ��Rðx1Þ�; 8r2 2 ½0;wfs� ��Rðx2Þ�;

kCrðr2; x2Þ � Crðr1; x1Þk 6
1

b
jr2 � r1j þ 1þ 1

b

� �
e
wfs

�b2 þ 1

b

� �
kx2 � x1k:

Proof. With the notation of the lemma, let us call t1 (respectively t2) the value in
½0; wfs

b2
� such that Crðr1; x1Þ ¼ Cðt1; x1Þ (respectively Crðr2; x2Þ ¼ Cðt2; x2Þ). Without loss

of generality, one can assume that t1 6 t2, which ensures that Cðt1; x2Þ 2 D�.

The case Rðx2Þ P RðCðt1; x1ÞÞ is considered later. Therefore, we first assume that
Rðx2Þ < RðCðt1; x1ÞÞ.

In this case, there exists a value t01 such that:

RðCðt01; x2ÞÞ ¼ RðCðt1; x1ÞÞ:
One has:

Crðr2; x2Þ � Crðr1; x1Þ ¼ Cðt2; x2Þ � Cðt1; x1Þ
¼ Cðt2; x2Þ � Cðt01; x2Þ
þCðt01; x2Þ � Cðt1; x2Þ
þCðt1; x2Þ � Cðt1; x1Þ

and:

kCrðr2; x2Þ � Crðr1; x1Þk 6 kCðt1; x2Þ � Cðt1; x1Þk ð12Þ
þkCðt01; x2Þ � Cðt1; x2Þk ð13Þ
þkCðt2; x2Þ � Cðt01; x2Þk: ð14Þ

From Lemma 4.13 in [27], one has:

kCðt1; x2Þ � Cðt1; x1Þk 6 e
1
�t1kx2 � x1k

and then:

kCðt1; x2Þ � Cðt1; x1Þk 6 e
1
�
wfs

b2 kx2 � x1k
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and that bounds term (12). But we know that the map R is 1-Lipschtiz, which
gives:

jRðCðt1; x2ÞÞ �RðCðt1; x1ÞÞj 6 e
1
�
wfs

b2 kx2 � x1k
or, using the definition of t01:

jRðCðt1; x2ÞÞ �R Cðt01; x2Þ
� �

j 6 e
1
�
wfs

b2 kx2 � x1k:

Along the trajectory of x2 between Cðt1; x2Þ and Cðt01; x2Þ, in some increasing order,
one can apply inequality (10) which gives:

kCðt1; x2Þ � Cðt01; x2Þk 6
1

b
e
1
�
wfs

b2 kx2 � x1k

and that bounds term (13).
In order to bound the third term kCðt2; x2Þ � Cðt01; x2Þk, note that:

jRðCðt2; x2ÞÞ �RðCðt01; x2ÞÞj ¼ jRðCðt2; x2ÞÞ �RðCðt1; x1ÞÞj
¼ jRðx2Þ þ r2 �Rðx1Þ � r1j
6 jRðx2Þ �Rðx1Þj þ jr2 � r1j
6 kx2 � x1k þ jr2 � r1j

and, along the trajectory of x2 between Cðt2; x2Þ and Cðt01; x2Þ, in some increasing
order, one can apply inequality (10)

kCðt2; x2Þ � Cðt01; x2Þk 6
1

b
ðkx2 � x1k þ jr2 � r1jÞ

and that bounds the last term.
Let us assume now that:

Rðx2Þ P RðCðt1; x1ÞÞ ¼ Rðx1Þ þ r1:

In this case, one has (recall that R is 1-Lipschitz):

r1 6 jRðx2Þ �Rðx1Þj 6 kx2 � x1k ð15Þ
and

r2 6 kx2 � x1k þ jr2 � r1j: ð16Þ
One has

kCrðr2; x2Þ � Crðr1; x1Þk 6 kCðt2; x2Þ � x2k þ kx2 � x1k þ kCðt1; x1Þ � x1k: ð17Þ
From inequations (10) one get:

kCðt1; x1Þ � x1k 6
r1
b

kCðt2; x2Þ � x2k 6
r2
b

and, using Eqs. (15) and (16):
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kCðt1; x1Þ � x1k 6
kx2 � x1k

b
;

kCðt2; x2Þ � x2k 6
kx2 � x1k þ jr2 � r1j

b
:

And (17) gives:

kCrðr2; x2Þ � Crðr1; x1Þk 6
1

b
jr2 � r1j þ 1þ 2

b

� �
kx2 � x1k: ð18Þ

And this is always less than the bound given in the lemma. h

Remark 3.6.1. Notice that, if �1 < �2, the map Cr defined on D�1 extends the map Cr

defined on D�2 : they coincide on D�2 . Therefore, Cr is defined without ambiguity on
[�>0D� ¼ O nOwfs. Cr is locally Lipschitz and therefore continuous.

Following [27], we denote by Od the set of points of O at distance greater than d

from the boundary:

Od ¼ fx 2 O;RðxÞ > dg
and by Od the closure of Od .

Theorem 1. If d < wfsðOÞ, Od is a deformation retract of O and Od has the homotopy
type of O.

Proof. Proposition 2.2 gives the definition of a deformation retract. Assuming
d < wfsðOÞ, we define the map Hd:

Hd : ½0; 1� �O 7! O

ðt; xÞ 7! Hdðt; xÞ ¼Cr t d �RðxÞð Þ; xð Þ if RðxÞ 6 d;

¼x if RðxÞ P d:

Hd is a deformation retract of O toward Od . Let � ¼ wfs�d
2

. The map Hd+� defines the
homotopy equivalence of O toward Od using the characterization given in
Proposition 2.2. h

We define Gd
bðOÞ, the smallest superset of Od \ FbðOÞ that is globally invariant by

the action of x 7! Cðt; xÞ:
Gd

bðOÞ ¼CðRþ;Od \ FbðOÞÞ
¼fx 2 O;9t 2 Rþ; 9y 2 Od \ FbðOÞ; x ¼ Cðt; yÞg:

Lemma 3.7. If d < wfsðOÞ and b>0, Gd
b has the homotopy type of O.

Proof. We use once again the characterization given in Proposition 2.2. One has triv-
ially Gd

b � Od . Using Lemma 3.2 one gets the homotopy equivalence with Od using
the homotopy ½0; 1� �Od 7! Od defined by ðt; xÞ 7! CðtðD

b2
Þ; xÞ. This together with

Theorem 1 gives the result. h
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3.3. Homotopy type of MkðOÞ

Lemma 3.8. If k < wfsðOÞ, then there exists b > 0 such that

Gk
b � MkðOÞ:

Proof. Let us assume that k < wfsðOÞ, and let us define �>0 as:

� ¼ min
k
2
;
wfsðOÞ � k

2

� �
:

From Lemma 3.5 and the definition of wfsðOÞ, we know that there exists b0 > 0 such
that:

8b; 0 < b 6 b0; dðOc;Ok \ FbðOÞÞ > kþ �: ð19Þ
Let us choose b such that 0 < b 6 b0 and ðkþ �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
> k. Now, if

y 2 Ok \ FbðOÞ, one has:

RðyÞ > kþ �

krðyÞk 6 b

which means, by Eq. (1):

RðyÞ > kþ �;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FðyÞ2

RðyÞ2

s
6 b:

Which entails:

F ðyÞ > ðkþ �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
> k:

We have proved so far that Ok \ FbðOÞ � MkðOÞ.
For any point x 2 Gk

b, there exist t 2 Rþ and y 2 Ok \ FbðOÞ such that x ¼ Cðt; yÞ.
Now, recall that the map t 7! FðCðt; xÞÞ is increasing (see [27]) and therefore
FðxÞ P F ðyÞ. One gets that FðxÞ P FðyÞ > k, which entails x 2 MkðOÞ. h

Theorem 2. If k < wfsðOÞ, MkðOÞ has the homotopy type of O.

Proof. We use once again the characterization given in Proposition 2.2. Because the
map t 7! F ðCðt; xÞÞ is increasing and from the definition of MkðOÞ it is clear that

8x 2 MkðOÞ; 8t 2 Rþ; Cðt; xÞ 2 MkðOÞ:
With the value of b taken from Lemma 3.8 and using Lemma 3.2 again, one get that
the map ½0; 1� �MkðOÞ 7! MkðOÞ defined by ðt; xÞ 7! Cðt D

b2
; xÞ defines an homotopy

equivalence between MkðOÞ and Gd
b. This, together with Lemma 3.7, proves the

theorem. h
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3.4. Weak feature size and singular points of distance functions

The vector field $ and the weak feature size are closely related to the critical
points of distance functions. Distance functions have been intensively studied (see
[26,23] for example) and the aim of this section is to show how properties of such
functions apply to our setting. As a consequence, we prove that any bounded open
subset with piecewise analytic boundary has a positive weak feature size.

As in previous sections, O is a bounded open subset of Rn, R : O ! Rþ is the
function defined by RðxÞ ¼ dðx;OcÞ and $ is the ‘‘gradient’’ of R as defined in Sec-
tion 2.1. Recall that a point x 2 O is a singular point of $ (i.e., $ (x) = 0) if and only
if it lies in the convex hull of C (x). So the singular points of $ are exactly the singular
points of the generalized Clarke gradient of the function R (see [12,13,23]) that is the
singular points of the function R. The weak feature size is thus the distance between
Oc and the set F of singular points of R.

In some way the properties of the distance function to a compact set are very sim-
ilar to the smooth functions ones. In particular, they satisfy an Isotopy Lemma [26],
that we reproduce below (Proposition 3.9). Notice that Theorem 1 above could have
been proven as a Corollary of Proposition 3.9. We choose to keep our proof. It
makes the paper self-contained and preserves the unity of proofs built around the
properties of the vector fields $ and associated flows Cr and C. Also, our proof is
more detailed and provides an explicit expression of the deformation retract.

Proposition 3.9. If 0 < q1 < q2 are such that F \ ðOq1 nOq2Þ ¼ ;, then all the levels

R�1ðqÞ, q 2 [q1,q2], are homeomorphic topological manifolds and

Oq1 nOq2 ¼ fx 2 O : q1 6 RðxÞ 6 q2g

is homeomorphic to R�1ðq1Þ � ½q1; q2�. As a consequence, Oq1 and Oq2 are homotopy

equivalent.

As a consequence, if O has a positive wfs, then for all values q 2 ]0,wfs[, the level
sets Oq are homeomorphic topological manifolds, even if the boundary of O is not a
manifold (see Fig. 4).

If n = 3, the function R satisfies a Sard theorem ([23]):

Proposition 3.10. If n = 3, then the set of critical values of R,

CritðRÞ ¼ RðFÞ ¼ Rðfx 2 O : rðxÞ ¼ 0gÞ
is a compact set with zero Lebesgue measure in R.

Note that such a result is false without the hypothesis n = 3 (see [23]). Neverthe-
less, if the open set O is piecewise analytic (see [10]) one has a stronger result.

Proposition 3.11. Let O be a piecewise analytic bounded open set. The set of critical

values of R,

CritðRÞ ¼ RðFÞ ¼ Rðfx 2 O : rðxÞ ¼ 0gÞ

is finite. In particular wfsðOÞ > 0.



Fig. 4. An open set with positive wfs and nonmanifold boundary.
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Proof. This result has been proven by Fu [23, p. 1045] for semialgebraic sets. The
proof given here is an immediate adaptation of Fu�s proof based upon stratifiability
properties of piecewise analytic sets (see [6,7] or [10]). It is based upon the following
lemma due to Ferry [21] (see also [23, p. 1038]). If x; y 2 O are such that
$ (x) = $ (y) = 0, then

j RðxÞ �RðyÞ j6 1

2minðRðxÞ;RðyÞÞ kx� yk2:

Note that R and $�1 (0) are subanalytic (see [10]). So there exists a finite analytic
stratification of $�1 (0) =M1 [ � � � [Mk such that each Mi is an real analytic man-
ifold and the restriction of R to Mi is an analytic function. It follows from previous
lemma that the derivative of R restricted to Mi is zero. So R is constant on Mi. This
concludes the proof of proposition. h
4. Stability of Mk under perturbations

The aim of this section is to prove that the k-medial axis of an open bounded sub-
set of Rn satisfies some stability properties when one makes a small perturbation of
the open set (for Hausdorff distance). Let O be an open bounded subset of Rn, let
D ¼ supðx;yÞ2Odðx; yÞ be its diameter and let k > 0 be a fixed real number.

Theorem 3. Let e > 0 be such that 10e < k. For any bounded open set ~O such that

dHðOc; ~OcÞ < e, for any x 2 Mkð ~OÞ and for any k0 > 0 such that k02 < k2 � 150
ffiffi
e

p
D3=2

and k0 < k � e, there exists a point y 2 Mk0 ðOÞ such that

dðx; yÞ 6 2
ffiffiffiffi
D

p ffiffi
e

p
:

Note that the result makes sense only if e is small enough, i.e., it satisfies
150

ffiffi
e

p
D3=2 < k2. The idea of the proof of this theorem is to show that if y (s) is the

trajectory of the vector field $ issued from x, then it cannot remain during a long
time outside of some Mk0 ðOÞ for a well chosen value of k0.
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Proof. From now on, one fixes a real e > 0 and an open set ~O satisfying the
hypothesis of the theorem. The notations ~R; ~F ; ~r will, respectively, denote the
distance function, the minimum radius function, and the ‘‘gradient’’ vector field
associated to ~O. Since k > 2e, one has Mkð ~OÞ � O and MkðOÞ � ~O. Let
x 2 Mkð ~OÞ. The ball Bx;RðxÞ of radius RðxÞ > 0 and center x does not contain any
point of @O in its interior. Because dHðOc; ~OcÞ < e, the ball Bx;RðxÞ�e does not
intersect the boundary @ ~O of ~O. So, RðxÞ � e 6 ~RðxÞ. In the same way, the sphere of
center x and radius RðxÞ contains some point of oO, so the ball Bx;RðxÞþe contains
some point of @ ~O and then ~RðxÞ 6 RðxÞ þ e. We thus have proved

RðxÞ � e 6 ~RðxÞ 6 RðxÞ þ e: ð20Þ
An immediate consequence of these inequalities and ~RðxÞ P k is that RðxÞ P k� e.
It follows that if $ (x) = 0, then RðxÞ ¼ F ðxÞ P k� e and x belongs to Mk0 ðOÞ for
any k0 < k � e. From now on, suppose $ (x) „ 0 and let y (s) be the ‘‘trajectory’’ of
point x for vector field $ parametrized by arc-length and such that y (0) = x. While
this trajectory remains in the complementary of Mk0 ðOÞ for some k0 < k � e, one has

dR

ds
ðyðsÞÞ ¼ krðyðsÞÞk P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k02

RðyðsÞÞ2

s
:

Thus using the fact that Rð:Þ is increasing along trajectories of $ it follows

RðyðsÞÞ dR
ds

ðyðsÞÞ ¼ 1

2

dR2

ds
ðyðsÞÞ P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðyðsÞÞ � k02

q
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðxÞ � k02

q

which implies

R2ðxÞ þ 2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðxÞ � k02

q
6 R2ðyðsÞÞ: ð21Þ

Denote by

~CðxÞ ¼ fy 2 ~Oc : dðx; yÞ ¼ dðx; ~OcÞg � ~Oc

the set of closest boundary points and denote by ~B the smallest ball containing this
set. Its radius is equal to ~F ðxÞ P k. Let C be the cone of apex x constructed on the
(n � 2)-sphere ~S ¼ Sx; ~RðxÞ \ @~B and let 2a1 be its apex angle (see Fig. 5).

Lemma 4.1.

Angle a1 satisfies the following inequation

2ðRðxÞ � eÞ2 cosð2a1Þ ¼ 2ðRðxÞ � eÞ2ð2cos2a1 � 1Þ 6 2ðRðxÞ þ eÞ2 � 4k2: ð22Þ

Proof. Recall from [27], that the (n � 2)-sphere ~S is of radius ~FðxÞ and contains
~CðxÞ. Let p, q be two points such that segment [pq] is a diameter of this (n � 2)-sphere
(see Fig. 5). These points satisfy dðx; pÞ ¼ dðx; qÞ ¼ ~RðxÞ and since x 2 Mkð ~OÞ,
d (p,q)P 2k. It follows from inequality (20) that RðxÞ � e 6 dðx; pÞ ¼ dðx; qÞ 6
RðxÞ þ e. Lemma�s inequality is thus an immediate consequence of the classical
relation between edges of the triangle (x,p,q)



Fig. 5. The small circle depicts the smallest ball containing the set of closest boundary points.
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2 cosð2a1Þdðx; pÞ � dðx; qÞ ¼ dðx; pÞ2 þ dðx; qÞ2 � dðp; qÞ2: �

Lemma 4.2. The distance RðyðsÞÞ between y(s) and @O satisfies

RðyðsÞÞ2 6 eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRðxÞ þ eÞ2 þ s2 þ 2sðRðxÞ þ eÞ cos a1

q� �2

: ð23Þ

Proof. Distance between Oc and ~Oc being less than e, RðyðsÞÞ must satisfy
R2ðyðsÞÞ 6 ð ~RðyðsÞÞ þ eÞ2. Since y (s) is parametrized by arc-length, it follows from
Lemma 4.15 in [27] applied to functions ~R and ~F in ~O that

~RðyðsÞÞ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~RðxÞ2 þ 2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~RðxÞ2 � ~FðxÞ2

q
þ s2

r
:

Using that ~RðxÞ2 � ~FðxÞ2 ¼ ~RðxÞ2ð1� sin2ða1ÞÞ and that ~RðxÞ 6 RðxÞ þ e one de-
duces immediately the requested inequality. h

The end of the proof of Theorem 3 will now follow from computations using
inequalities (21)–(23). Eq. (21) forces RðyðsÞÞ to increase sufficiently fast while Eq.
(23) forces increasing of RðyðsÞÞ to be sufficiently slow. The computations below
show that these two conditions cannot be simultaneously satisfied for a large range
of values of s.In order to simplify notations, introduce the following notations

E ¼ e
RðxÞ ; S ¼ s

RðxÞ ; K ¼ k
RðxÞ ; K0 ¼ k0

RðxÞ :

Inequations (21) and (23) lead to

1þ 2S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K02

p
6 E þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ EÞ2 þ S2 þ 2Sð1þ EÞ cos a1

q� �2
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which is equivalent to

1þ 2S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K02

p
6 E2 þ ð1þ EÞ2 þ S2 þ 2Sð1þ EÞ cos a1

þ 2E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ EÞ2 þ S2 þ 2Sð1þ EÞ cos a1

q
and which becomes (using that

ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p
6 1þ u=2 for all u P 0),

2S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K02

p
6 ð4E þ 4E2 þ E3Þ þ 2Sð1þ EÞ2 cos a1 þ ð1þ EÞS2:

Now, Eq. (22) is equivalent to

2cos2a1 6 1þ ð1þ EÞ2

ð1� EÞ2
� 2K2

ð1� EÞ2
:

Using that (1 + E)2 = (1 � E)2 + 4E one deduces that

cos2a1 6 1þ 2E

ð1� EÞ2
� K2

ð1� EÞ2
:

Recall that e < k/10 and RðxÞ P k� e, which entails that E < 1/9. In particular, one
has 1/2 < (1 � E)2 6 1. With this, previous inequation implies

cos2a1 6 1þ 2E

ð1� EÞ2
� K2

ð1� EÞ2
6 1þ 4E � K2

and using that E < 1, one obtains

9E þ 2SAþ ð1þ EÞS2 P 0; A ¼ ð1þ EÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4E � K2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K02

p� 	
:

ð24Þ

Claim 1.

Choosing K02 < K2 � 150
ffiffiffiffi
E

p
(i.e., k02 < k2 � 150R3=2ðxÞ

ffiffi
e

p
), one has A < �5

ffiffiffiffi
E

p
.

Proof. Note that condition A < �5
ffiffiffiffi
E

p
is equivalent to

1� K02 > ð1þ 2E þ E2Þ2ð1þ 4E � K2Þ þ 25E þ 10
ffiffiffiffi
E

p
ð1þ EÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4E � K2

p
:

Remark that K2 (1 + 2E + E2)2 > K2 and, since E < 1/8, one has (1 + 2E + E2)2

(1 + 4E) � 1 < 12E. Thus previous condition is implied by

K02 < K2 � 12E � 25E � 10
ffiffiffiffi
E

p
ð1þ EÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4E � K2

p
:

Now, using that 10
ffiffiffiffi
E

p
ð1þ EÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4E � K2

p
< 100

ffiffiffiffi
E

p
, this last condition is implied

by

K02 < K2 � 37E � 100
ffiffiffiffi
E

p

which is implied by
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K02 < K2 � 150
ffiffiffiffi
E

p
: �

It follows from previous claim that the discriminant of inequation (24) satisfies

D0 ¼ A2 � 9Eð1þ EÞ > 7E > 0

which implies that the inequation is not satisfied for

S 2 �A�
ffiffiffiffiffi
D0

p

1þ E
;
�Aþ

ffiffiffiffiffi
D0

p

1þ E

" #
:

So the trajectory y (s) cannot remain in Mk0c for S ¼ �A�
ffiffiffi
D0p

1þE > 0. Now, using thatffiffiffiffiffiffiffiffiffiffiffi
1� u

p
P 1� u for all u 2 [0, 1], it comes

�A�
ffiffiffiffiffi
D0

p
¼ �A 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 9Eð1þ EÞ

A2

r !
6 � 9Eð1þ EÞ

A
:

Since �A > 5
ffiffiffiffi
E

p
, it follows that

�A�
ffiffiffiffiffi
D0

p

1þ E
<

9
ffiffiffiffi
E

p

5

which implies that y (s) cannot remain in M0c
k for S P 2

ffiffiffiffi
E

p
, i.e., for s > 2

ffiffiffiffiffiffiffiffiffiffiffiffi
RðxÞe

p
.

We thus have proved Theorem 3. h

In case one wants to estimate the distance of Mkð ~OÞ to the medial axis MðOÞ of
O one can deduce a better bound from previous proof.

Corollary 4. Let e > 0 such that e < minð k10 ; k3

50D2 ;
k4

1200D4Þ. For any bounded open set ~O
such that dHðOc; ~OcÞ < e, for any x 2 Mkð ~OÞ there exists a point y 2 MðOÞ such that

dðx; yÞ 6 72D2

k2
e:

Proof. Using notations of above proof, while y (s) remains in the complementary of
the closure of the medial axis of O, inequality (21) becomes

R2ðxÞ þ 2sRðxÞ 6 R2ðyðsÞÞ: ð25Þ
The same computations as above then lead to

9E þ 2SAþ ð1þ EÞS2 P 0; A ¼ ð1þ EÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4E � K2

p
� 1

� 	
: ð26Þ

Claim 2.

Let b ¼ k2

8D2. One has A < �b.

Proof. This is just a computation. The condition A < �b is equivalent to

K2 > 1þ 4E � ð1� bÞ2

ð1þ EÞ4
:
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Using that K2 ¼ k2=R2ðxÞ > k2=D2, this condition is implied by

k2

D2
> 1þ 4E � ð1� bÞ2

ð1þ EÞ4
that is

ð1� bÞ2

ð1þ EÞ4
> 1� k2

D2
þ 4E:

Since k 6 RðxÞ þ e and e < k3/(16D2) one has 4E < k2

2D2 and previous condition is thus
implied by

ð1� bÞ2 > ð1þ EÞ4ð1� 4bÞ that is b < 1� ð1þ EÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4b

p
:

Using that
ffiffiffiffiffiffiffiffiffiffiffi
1� u

p
6 1� u=2 for u P 0, this last condition is implied by

b < 1þ ð1þ EÞ2ð�1þ 2bÞ that is b < 2bð1þ EÞ2 � 3E

which is clearly satisfied because e < k3

50D2 implies 3E < b. h

One concludes the proof of corollary in the same way as in the proof of theorem:

D0 ¼ A2 � 9Eð1þ EÞ > 0 because e <
k4

1200D4

and
�A�

ffiffiffiffiffi
D0

p

1þ E
6 � 9E

A
<

72D2

k2
E:

So y (s) cannot remain in the complementary of the closure of MðOÞ for S > 72D2

k2
E,

i.e., for s > 72D2

k2
e. h
5. Approximation of k-medial axis from a noisy sample of points

Results of previous section lead to an algorithm to approximate the k-medial axis
of an open set O from the Voronoi diagram of a set of points sampled on the bound-
ary of O. The main interest of this algorithm is twofold. First, no hypothesis on the
smoothness of the boundary of O is needed. Second, noisy samples are allowed, i.e.,
it is only required that the Hausdorff distance between @O and the sample is
bounded by e.
5.1. Computation of the k-medial axis of a sample of points

Let O be a bounded open subset of Rn which boundary is denoted by
S ¼ @O ¼ Oc \O.

Definition 5.1. A finite sample of points E such that the Hausdorff distance between
S and E is less than e is called an e-noisy sample of S.

Let E be an e-noisy sample and let ~O be the open set which is the complementary
of E intersected with Oþe ¼ fx 2 Rn : dðx;OÞ < eg (see Fig. 6). Remark that
dHðOc; ~OcÞ < e.

Lemma 5.2. If k > e, Mkð ~OÞ is contained in the Voronoi diagram of E.



Fig. 6. An e-noisy sample of S.
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Proof. Let x 2 Mkð ~OÞ and suppose there exists z 2 ðOþeÞc such that
dðx; zÞ ¼ ~RðxÞ > e. Thus the ball Bx; ~RðxÞ is contained in Oþe and does not contain
any point of E. Points x and z being in O and ðOþeÞc, respectively, there exists a point
y on the segment [x,z] such that y 2 oO. The ball Bz;e does not intersect O, so
d (y,z) P e which entails By;e � Bx; ~RðxÞ. But Bx; ~RðxÞ \ E ¼ ; and dðy; EÞ < e because
dHð@O; EÞ < e, which is a contradiction. Thus one has ~CðxÞ � E. This concludes
the proof. h

In the following Mkð ~OÞ will be denoted MkðEÞ and one supposes that k > e. The
‘‘minimum radius function’’ F 0 associated to the open set Rn n E is constant on each
cell of the Voronoi diagram of E. It follows from previous lemma that MkðEÞ is the
union of the cells of the Voronoi diagram of E on which F 0 is greater or equal to k.
So the following algorithm compute MkðEÞ.

• MkðEÞ ¼ ;
• Compute Delaunay triangulation D of E
• For each cell c of D do
if c has smallest enclosing ball of radius greater than k then
MkðEÞ ¼ MkðEÞ [ dualðcÞ.

The algorithm is illustrated in Fig. 7 where one considers a 2D open set bounded
by two half-circles of radius 1 and 2 and two segments. The first and the second pic-
tures show the output of the algorithm for noisy samples (e = 0.02) and values of k
equal to 0.15 (left picture) and 0.2 (right picture). The third picture show the output
for a sample without noise and k = 0.2.

5.2. Convergence of k-medial axis

In order to be useful, previous algorithm needs some convergence guarantees.
That is one needs to know if the k-medial axis of an e-noisy sample of S converges
to the k-medial axis of O when e goes to 0 (for the Hausdorff distance). This is not



Fig. 7. Examples of approximations of Mk for a half-annulus: the two upper ones correspond to noisy
inputs (e = 0.02) k = 0.15 (left) and k = 0.2 (right). The lower one correspond to exact inputs and k = 0.2.
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always the case for some values of k as it is shown in the next example. Consider a
cylinder C in R3 of radius k > 0 and axis (Oz) bounding an open set O. Then MkðOÞ
is exactly the axis of C. But for any e > 0, if one chooses a e-noisy sample E of C on
the cylinder of axis (Oz) and radius k � e/2, then MkðEÞ ¼ ; (see Fig. 8).

In some sense, such an example and such a value of k are not ‘‘generic.’’ The lack
of convergence is due to the fact that F is equal to k on a ‘‘big part’’ of the medial
axis of O, i.e., F is constant equal to k on an open subset of MðOÞ for the induced
Fig. 8. The k-medial is unstable on a cylinder of radius k.
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topology on MðOÞ. Recall from [27] that map F is upper semicontinuous and then
since O is bounded, Mkð ~OÞ is a compact set for any k > 0. Let M be the map from
]0;+1[ to the set of compact subsets of O endowed with the topology induced by
Hausdorff distance between compact sets (see Section 2.3) defined by
MðkÞ ¼ MkðOÞ. Since F is upper continuous and since MðkÞ � Mðk0Þ whenever
k0 < k, the map M is left continuous. This means that if kn is an increasing sequence
which converges to some k > 0, then dHðMknðOÞ;MkðOÞÞ ! 0 as n fi 0. The map
M is continuous at k if previous property is true for any sequence kn. Note that
in above example M was not continuous at k.

Theorem 5. Let O be an open bounded subset of Rn with boundary S and let k > 0 be

such that the above defined map M is continuous at k. For any sequence En of en-noisy
samples of S satisfying limnfi+1 en = 0 one has

dHðMkðEnÞ;MkðOÞÞ ! 0 as n ! þ1:

Proof. This is a consequence of Theorem 3 and of some classical properties of Haus-
dorff topology on the set of compact sets in Rn (see Section 2.3). Let e > 0 and let E be
a e-noisy sample of S. It follows from Theorem 3, applied to O and ~Oe ¼ Oþe n E
symmetrically, that there exist some functions f (e), g1 (e), and g2 (e) such that limefi0 -
f (e) = limefi0g1 (e) = limefi0g2 (e) = 0 and such that

Mkð ~OeÞ � M
f ðeÞ
k�g1ðeÞðOÞ ¼ fx 2 Rn : dðx;Mk�g1ðeÞðOÞÞ < f ðeÞg

and

Mkþg2ðeÞðOÞ � Mkð ~OeÞf ðeÞ ¼ fx 2 Rn : dðx;Mkð ~OeÞÞ < f ðeÞg:

So,

Mkþg2ðeÞðOÞ � Mkð ~OeÞf ðeÞ � M
2f ðeÞ
k�g1ðeÞðOÞ:

Since M is continuous at k,

lim
e!0

Mkþg2ðeÞðOÞ ¼ lim
e!0

M
2f ðeÞ
k�g1ðeÞðOÞ ¼ MkðOÞ

which implies Theorem 5. h
5.3. Genericity of hypothesis of Theorem 5

As mentioned above, the map M is not always continuous on the whole interval
]0,+1[. Nevertheless under some quite general hypothesis, the number of values k
for which M is not continuous is finite. Such an hypothesis is in particular satisfied
for open sets bounded by piecewise linear manifolds and more generally by piecewise
analytic manifolds, such as for example BRep solid.

A precise mathematical definition of piecewise analytic open set in terms of sub-
analytic geometry is given in [10]. Roughly speaking, a relatively compact piecewise
analytic (or equivalently a subanalytic) set in Rn is the linear projection of a set which
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is defined by analytic equations and inequations in some Rnþk. Such a set may be
decomposed into a finite union of smooth analytic manifolds. Note that the bound-
ary of a piecewise analytic set is also piecewise analytic. It is proven in [10] that if O is
a piecewise analytic bounded open set in Rn, then its medial axis is piecewise analytic.
In the same way, MkðOÞ is also piecewise analytic.

Theorem 6. Let O be a bounded piecewise analytic open subset of Rn. There is only a

finite number of values k1, . . . ,kk such that the function M is not continuous at ki,
i = 1, . . . , k.

In other words, if k > 0 is such that k „ ki, for all i = 1, . . . ,k, then MkðOÞ is well
approximated by the k-medial axis of e-noisy samples S ¼ @O.

Proof. The theorem will follow from the fact that the sets MkðOÞ are piecewise
analytic and that the function F restricted to MðOÞ is piecewise analytic. This quite
technical fact, which is a variant of a result proven in [10], is proven in Lemma A.1.
Let k > 0 be such thatM is not continuous at k. SinceM is left continuous,M is not
right continuous at k. There exists a decreasing sequence (kn) which converges to k
such that dHðMknðOÞ;MkðOÞÞ90 when n fi 1. The sequence (kn) being decreasing,
one has MknðOÞ � Mknþ1

ðOÞ � � � � � MkðOÞ and there exists c > 0 such that
dHðMknðOÞ;MkðOÞÞ > c for any n > 0. It follows that there exists an open ball of
radius c/2 in O with center on Mk which does not intersect any of theMk0 , k

0 > k. So
if one considers the topology induced on MðOÞ by the usual topology on Rn, the
function F is constant equal to k on some nonempty open subset of MðOÞ. Now,
MðOÞ and F being piecewise analytic, there exists a finite partition M1; . . . ;Ml of
MðOÞ such that eachMi is a connected analytic manifold and the restriction of F to
Mi is an analytic function. So, there exists i 2 {1, . . . , l} such that the restriction of
F to Mi is constant equal to k on some nonempty open subset of Mi. It follows
from a classical property of analytic functions on a connected manifold that F has to
be constant on Mi. So the number of values k such that M is not continuous at k is
less than l. h

Remark 5.2.1. In practice, one does not know the ‘‘bad’’ values k1, . . . ,kk. In order
to take care about them one can use the following heuristic. From a noisy sample of
point E, one can easily compute Mk�eðEÞ and MkþeðEÞ for some small value e > 0. If
the distance between these two sets is ‘‘small enough’’ one considers that k is a reg-
ular value. Note that it follows from Section 5.1 that such computations need only
one computation of the Voronoi diagram of E.
6. Conclusion

This paper focuses on the properties of the k-medial axis of an arbitrary bounded
open subset of Rn. Our detailed proofs of these properties make use of the recently
introduced [27] vector field $ and its corresponding flow C.
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The stability of the k-medial axis under Hausdorff distance perturbation of the ob-
ject boundary (Theorems 3 and 5) makes it computable in practice. Therefore, the k-
medial axis being a more constructive object, is given more ‘‘reality’’ than the ‘‘ex-
act’’ medial axis. The relevance of the k-medial axis for the question of the compu-
tation of medial axes is pointed out by Attali et al. [4].

Beside the stability properties, the new notion of Weak Feature Size and the asso-
ciated theorems on the homotopy type of erosions or k-medial axes (Theorems 1 and
2) provide us with tools for capturing the homotopy type of a set from a given Haus-
dorff approximation of its boundary. The smoothness assumption lfs > 0 can now be
replaced by the much weaker condition wfs > 0. This line of research has since been
followed in [11].
Appendix A. Subanalyticity of F and MkðOÞ

This appendix contains the proof of some result used in above section: the func-
tion F and the k-medial axis of a piecewise analytic open set are piecewise analytic.
Recall that a subset of Rn is said to be piecewise analytic if it is a subanalytic subset
of Rn. These proofs are classical in the context of subanalytic geometry. The reader
may refer to appendix of [10] for a quick introduction to the subject and to [6,7] or
[28] for a general introduction. Let O � Rn be a piecewise analytic bounded open set
with boundary S. Note that the function F is in fact defined for any point x 2 Rn in
the same way as for points of O. It is constant equal to 0 on the complementary of O.
Recall that function F is said to be subanalytic (or equivalently piecewise analytic) if
its graph

F ¼ fðx; tÞ 2 Rn � ½0;þ1½: t ¼ FðxÞg

is a subanalytic subset of Rn � ½0;þ1½.

Lemma A.1. The function F is subanalytic, and MkðOÞ is a subanalytic set for any

k>0.

Proof. The proof is very similar to the proof of the subanalyticity of the medial axis
given in [10] and is based upon very classical technics in the setting of subanalytic
geometry. It is sufficient to prove that F is subanalytic since MkðOÞ ¼ fx 2 O :
FðxÞ P kg is the canonical linear projection on Rn of the intersection of the graph
F with the half space fðx; tÞ 2 Rn � ½0;þ1½: t P kg. Since S ¼ @O is subanalytic,
the set

A ¼ fðx; zÞ 2 Rn � S : dðx; zÞ ¼ dðx; SÞg

is clearly subanalytic. Remark that (x, t) 2 F if and only if

ð9y such that 8ðx; zÞ 2 A; dðy; zÞ 6 tÞ and ð8t0 < t;8y 2 Rn; 9ðx; zÞ
2 A such that dðy; zÞ > t0Þ:
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The distance function being subanalytic and subanalytic sets being stable under lin-
ear projections, finite union, finite intersection, and complementary, the set of points
(x, t) satisfying these two previous conditions are subanalytic.

In fact, F is the intersection of the two sets defined by these two conditions. The
quantifiers involved in these conditions may be ‘‘eliminated’’ if one considers the sets
as the linear projection or the complementary of the linear projection of some
subanalytic set defined in a space of higher dimension. For example, this can be done
in the following way for the first of the two sets. Let Pxyt be the canonical projection
ðx; z; t; yÞ 2 A�O � R ! ðx; y; tÞ, let Pxt be the canonical projection
ðx; y; tÞ 2 A� R ! ðx; tÞ. The first set is thus defined by the following:

Pxt Pxytfðx; y; z; tÞ 2 A�O � R : dðz; yÞ > tg
� �c� �

:

The similar construction, for the second set is left to the reader. So F is a subanalytic
set of Rn � ½0;þ1½. h
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