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Abstract In many real-world applications data appear to be sampled around 1-dimensional filamentary structures
that can be seen as topological metric graphs. In this paper we address the metric reconstruction problem of such
filamentary structures from data sampled around them. We prove that they can be approximated, with respect to the
Gromov-Hausdorff distance by well-chosen Reeb graphs (and some of their variants) and provide an efficient and
easy to implement algorithm to compute such approximations in almost linear time. We illustrate the performances
of our algorithm on a few data sets.

1 Introduction

Motivation. With the advance of sensor technology, computing power and the Internet, massive amounts of geo-
metric data are being generated and collected in various areas of science, engineering and business. As they are
becoming widely available, there is a real need to analyze and visualize these large scale geometric data to extract
useful information out of them. In many cases this data is not embedded in Euclidean spaces and come as (finite)
sets of points with pairwise distance information, i.e. (discrete) metric spaces. A large amount of research has
been done on dimensionality reduction, manifold learning and geometric inference for data embedded in (possibly
high dimensional) Euclidean spaces and assumed to be concentrated around low dimensional manifolds [11,13,5].
However, the assumption of data lying on a manifold may fail in many applications. In addition, the strategy of
representing data by points in Euclidean space may introduce large metric distortions as the data may lie in highly
curved spaces, instead of in flat Euclidean space raising many difficulties in the analysis of metric data. In the past
decade, with the development of topological methods in data analysis, new theories such as topological persistence
(see, for example, [9,14,22,31]) and new tools such as the Mapper algorithm [18] have given rise to new algorithms
to extract and visualize geometric and topological information from metric data without the need of an embedding
into an Euclidean space. In this paper we focus on a simple but important setting where the underlying geometric
structure approximating the data can be seen as a branching filamentary structure i.e., more precisely, as a metric
graph which is a topological graph endowed with a length assigned to each edge. Such structures appear naturally
in various real-world data such as collections of GPS traces collected by vehicles on a road network, earthquakes
distributions that concentrate around geological faults, distributions of galaxies in the universe, networks of blood
vessels in anatomy or hydrographic networks in geography just to name a few. It is thus appealing to try to capture
such filamentary structures and to approximate the data by metric graphs that will summarize the metric and allow
convenient visualization.

Contribution. In this paper we address the metric reconstruction problem for filamentary structures. The input
of our method and algorithm is a metric space (X, dX) that is assumed to be close with respect to the so-called
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Gromov-Hausdorff distance dGH to a much simpler, but unknown, metric graph (G′, dG′). Our algorithm outputs
a metric graph (G, dG) that is proven to be close to (G′, dG′) in both geometry and topology. Our approach relies
on the notion of Reeb graph (and some variants of it introduced in Section 3) and our main theoretical results are
stated in the following two theorems.

Theorem 3 [Recovery of Geometry]. Let (X, dX) be a compact connected geodesic space, let r ∈ X be a fixed
base point such that the metric Reeb graph (G, dG) of the function d = dX(r, .) : X → R is a finite graph. If for
a given ε > 0 there exists a finite metric graph (G′, dG′) such that dGH(X,G′) < ε then we have

dGH(X,G) < 2(β1(G) + 1)(17 + 8NE,G′(8ε))ε

where NE,G′(8ε) is the number of edges of G′ of length at most 8ε and β1(G) is the first Betti number of G, i.e.
the number of edges to remove from G to get a spanning tree. In particular if X is at distance less than ε from a
metric graph with shortest edge larger than 8ε then dGH(X,G) < 34(β1(G) + 1)ε.

Note that β1(G) ≤ β1(X) and thus dGH(X,G) is upper bounded by the quantities depending only on the input
X .

Theorem 5 [Recovery of Topology]. Let (X, dX) be a compact connected path metric space and (G′, dG′) is a
metric graph so that dGH(X,G′) < ε. Let r ∈ X , α > 60ε and I = {[0, 2α), (iα, (i + 2)α)|1 ≤ i ≤ m} covers
the segment [0,Diam(X)] such that the 2α-Reeb graph G associated to I and the function d = dX(r, .) : X → R
is a finite graph. If no edges of G′ are shorter than L and no loops of G′ are shorter than 2L with L ≥ 32α + 9ε,
then we have G and G′ are homotopy equivalent.

To turn this result into a practical algorithm we address two issues:
(1) Raw data usually do not come as geodesic spaces. They are given as discrete sets of points (and thus not

connected metric spaces) sampled from the underlying space (X, dX). Moreover in many cases only distances
between nearby points are known. A geodesic space (see Section 2 for a definition of geodesic space) can then
be obtained from these raw data as a neighborhood graph where nearby points are connected by edges whose
length is equal to their pairwise distance. The shortest path distance in this graph is then used as the metric. In our
experiments we use this new metric as the input of our algorithm. The question of the approximation of the metric
on X by the metric induced on the neighborhood graphs is out of the scope of this paper.

(2) Approximating the Reeb graph (G, dG) from a neighborhood graph is usually not obvious. If we compute
the Reeb graph of the distance function to a given point defined on the neighborhood graph we obtain the neigh-
borhood graph itself and do not achieve our goal of representing the input data by a simple graph. See Table 1. It is
then appealing to build a two dimensional complex having the neighborhood graph as 1-dimensional skeleton and
use the algorithm of [26,32] to compute the Reeb graph of the distance to the root point. Unfortunately adding tri-
angles to the neighborhood graph may widely change the metric between the data points on the resulting complex
and significantly increase the complexity of the algorithm. We overcome this issue by introducing a variant of the
Reeb graph, the α-Reeb graph, inspired from [18] and related to the recently introduced notion of graph induced
complex [33], that is easier to compute than the Reeb graph but also comes with approximation guarantees (see
Theorem 4). As a consequence our algorithm runs in almost linear time (see Section 6).

Related work. Approximation of data by 1-dimensional geometric structures has been considered by different
communities. In statistics, several approaches have been proposed to address the problem of detection and extrac-
tion of filamentary structures in point cloud data. For example Arial-Castro et al [16] use multiscale anisotropic
strips to detect linear structure while [21,29] and more recently [30] base their approach upon density gradient de-
scents or medial axis techniques. These methods apply to data corrupted by outliers embedded in Euclidean spaces
and focus on the inference of individual filaments without focus on the global geometric structure of the filaments
network.

In computational geometry, the curve reconstruction problem from points sampled on a curve in an euclidean
space has been extensively studied and several efficient algorithms have been proposed [2,4,7]. Unfortunately,
these methods restrict to the case of simple embedded curves (without singularities or self-intersections) and hardly
extend to the case of topological graphs. In a more intrinsic setting where data come as finite abstract metric
spaces, [28] propose an algorithm that outputs a topologically correct (up to a homeomorphism) reconstruction
of the approximated graph. However this algorithm requires some tedious parameters tuning and relies on quite
restrictive sampling assumptions. When these conditions are not satisfied, the algorithm may fail and not even
outputs a graph. Compared to the algorithm of [28], our algorithm not only comes with metric guarantees but also
whatever the input data is, it always outputs a metric graph and does not require the user to choose any parameters.
Closely related to our approach is the data skeletonization algorithm proposed in [27] that computes the Reeb
graph of an approximation of the distance function to a root point on a 2-dimensional complex built on top of the
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data whose size might be significantly larger than a neighboring graph. The algorithm of [27] also always output
a graph but it does not come with metric guaranties. Recently, Bauer, Ge and Wang [34] define a metric based
on the function for Reeb graph and show it is stable under Gromov-Hausdorff distance. The implementation of
our algorithm relies on the Mapper algorithm [18], that provides a way to visualize data sets endowed with a real
valued function as a graph, where the considered function is the distance to the chosen root point. However, unlike
the general Mapper algorithm, our methods provides an upper bound on the Gromov-Hausdorff distance between
the reconstructed graph and the underlying space from which the data points have been sampled.

In theoretical computer science, there is much of work on approximating metric spaces using trees [17,19,20]
or distribution of trees [15,12] where the trees are often constructed as spanning trees possibly with Steiner points.
Our approach is different as our reconstructed graph or tree is a quotient space of the original metric space where
the metric only gets contracted (see Proposition 2). Finally we remark that the recovery of filament structure is also
studied in various applied settings, including road networks [23,3], galaxies distributions [24].

Part of the result (Theorem 3) shown in the paper also appears in [35]. The paper is organized as follows. The
basic notions and definitions used throughout the paper are recalled in Section 2. The Reeb and α-Reeb graphs
endowed with a natural metric are introduced in Section 3, and the approximation results in metric are stated and
proven in Section 4, and the results of recovery of topology are stated and proven in Section 5. Our algorithm is
described in Section 6 and experimental results are presented and discussed in Section 7.

2 Preliminaries

Recall that a metric space is a pair (X, dX) where X is a set and dX : X×X → R is a non negative map such that
for any x, y, z ∈ X , dX(x, y) = 0 if and only if x = y, dX(x, y) = dX(y, x) and dX(x, z) ≤ dX(x, y)+dX(y, z).
Two compact spaces (X, dX) and (Y, dY ) are isometric if there exits a bijection φ : X → Y that preserves the
distances, namely: for any x, x′ ∈ X, dY (φ(x), φ(x′)) = dX(x, x′). The set of isometry classes of compact metric
spaces can be endowed with the Gromov-Hausdorff distance that can be defined using the following notion of
correspondence ([6] Def. 7.3.17).

Definition 1 Let (X, dX) and (Y, dY ) be two compact metric spaces. Given ε > 0, an ε-correspondence between
(X, dX) and (Y, dY ) is a subset C ⊂ X×Y such that: i) for any x ∈ X there exists y ∈ Y such that (x, y) ∈ C; ii)
for any y ∈ Y there exists x ∈ X such that (x, y) ∈ C; iii) for any (x, y), (x′, y′) ∈ C, |dX(x, x′)−dY (y, y′)| ≤ ε.

Definition 2 The Gromov-Hausdorff distance between two compact metric spaces (X, dX) and (Y, dY ) is defined
by

dGH(X,Y ) =
1

2
inf{ε ≥ 0 : there exists an ε-correspondence between X and Y }

A metric space (X, dX) is a path metric space if the distance between any pair of points is equal to the infimum
of the lengths of the continuous curves joining them 1. In the sequel of the paper we consider compact path metric
spaces. It follows from the Hopf-Rinow theorem (see [10] p.9) that such spaces are geodesic, i.e. for any pair of
point x, x′ ∈ X there exists a minimizing geodesic joining them.2 A continuous path δ : I → X where I is a real
interval or the unit circle is said to be simple if it is not self intersecting, i.e. if δ is an injective map.

Recall that a (finite) topological graph G = (V,E) is the geometric realization of a (finite) 1-dimensional
simplicial complex with vertex set V and edge set E. If moreover each 1-simplex e ∈ E is a metric edge, i.e.
e = [a, b] ⊂ R, then the graph G inherits from a metric dG which is the unique one whose restriction to any
e = [a, b] ∈ E coincides with the standard metric on the real segment [a, b]. Then (G, dG) is a metric graph (see
[6], Section 3.2.2 for a more formal definition). Intuitively, a metric graph can be seen as a topological graph with
a length assigned to each of its edges.

The first Betti number β1(G) of a finite topological graph G is the rank of the first homology group of G, or
equivalently, the number of edges to remove from G to get a spanning tree.

1 see [10] Chap.1 for the definition of the length of a continuous curve in a general metric space
2 recall that a minimizing geodesic in X is any curve γ : I → X , where I is a real interval, such that dX(γ(t), γ(t′)) = |t − t′| for any

t, t′ ∈ I .
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3 Reeb-type Graph

In this section, we describe a construction to build a Reeb-type graph for approximating the metric space. Let
(X, dX) be a compact geodesic space and let r ∈ X be a fixed base point. Let d : X → R be the distance function
to r, i.e., d(x) = dX(r, x).

The Reeb graph. Define relation x ∼ y if and only if d(x) = d(y) and x, y are in the same path connected
component of d−1(d(x)). This relation is an equivalence relation. The quotient space G = X/ ∼ is called the
Reeb graph of d and we denote by π : X → G the quotient map. Notice that π is continuous and as X is path
connected, G is path connected. The function d induces a function d∗ : G → R+ that satisfies d = d∗ ◦ π. The
relation defined by: for any g, g′ ∈ G, g ≤G g′ if and only if d∗(g) ≤ d∗(g′) and there exist a continuous path γ in
G connecting g to g′ such that d ◦ γ is non decreasing, makes G a partially ordered set.

The α-Reeb graphs. Computing or approximating the Reeb graph of (X, d) from a finite set of point sampled
on X is usually a difficult task. To overcome this issue we also consider a variant of the Reeb graph that shares
very similar properties to the Reeb graph. Let α > 0 and let I = {Ii} be a covering of the range of d by open
intervals of length at most α. The transitive closure of the relation x ∼α y if and only if d(x) = d(y) and x, y are
in the same path connected component of d−1(Ii) for some interval Ii ∈ I is an equivalence relation that is also
denoted by ∼α. The quotient space Gα = X/ ∼α is called the α-Reeb graph3 of d and we denote by π : X → Gα
the quotient map. Notice that π is continuous and as X is path connected, Gα is path connected. The function d
induces a function d∗ : Gα → R+ that satisfies d = d∗ ◦ π. The relation defined by: for any g, g′ ∈ Gα, g ≤Gα g′
if and only if d∗(g) ≤ d∗(g

′) and there exist a continuous path γ in Gα connecting g to g′ such that d ◦ γ is non
decreasing, makes Gα a partially ordered set.

The α-Reeb graph is closely related to the graph constructed by the Mapper algorithm introduced in [18]
making its computation much easier than the Reeb graph (see Section 6).

Notice that without making assumptions on X and d, in general G and Gα are not finite graphs. However when the
number of path connected components of the level sets of d is finite and changes only a finite number of times then
the Reeb graph turns out to be a finite directed acyclic graph. Similarly, when the covering of X by the connected
components of d−1(Ii), Ii ∈ I is finite, the α-Reeb graph also turns out to be a finite directed acyclic graph.
This happens in most applications and for example when (X, dX) is a finite simplicial complex or a compact
semialgebraic (or more generally a compact subanalytic space) with d being semi-algebraic (or subanalytic).

All the results and proofs presented in Section 4 are exactly the same for the Reeb and the α-Reeb graphs. In
the following paragraph and in Section 4.1, G denotes indifferently the Reeb graph or an α-Reeb graph for some
α > 0. We also always assume that X and d (and α and I) are such that G is a finite graph.
A metric on Reeb and α-Reeb graphs. Let us define the set of vertices V of G as the union of the set of points of
degree not equal to 2 with the set of local maxima of d∗ over G, and the base point π(r). The set of edges E of G
is then the set of the connected components of the complement of V . Notice that π(r) is the only local (and global)
minimum of d∗: since X is path connected, for any x ∈ X there exists a geodesic γ joining r to x along which
d is increasing; d∗ is thus also increasing along the continuous curve π(γ), so π(x) cannot be a local minimum
of d∗. As a consequence d∗ is monotonic along the edges of G. We can thus assign an orientation to each edge:
if e = [p, q] ∈ G is such that d∗(p) < d∗(q) then the positive orientation of e is the one pointing from p to q.
Finally, we assign a metric to G. Each edge e ∈ E is homeomorphic to an interval to which we assign a length
equal to the absolute difference of the function d∗ at two endpoints. The distance between two points p, p′ of e is
then |d∗(p) − d∗(p′)|. This makes G a metric graph (G, dG) isometric to the quotient space of the union of the
intervals isometric to the edges by identifying the endpoints if they correspond to the same vertex in G. Note that
d∗ is continuous in (G, dG) and for any p ∈ G, d∗(p) = dG(π(r), p). Indeed this is a consequence of the following
lemma.

Lemma 1 If δ is a path joining two points p, p′ ∈ G such that d∗ ◦ δ is strictly increasing then δ is a shortest path
between p and p′ and dG(p, p′) = d∗(p

′)− d∗(p).

Proof As d∗◦δ is strictly increasing, when δ enters an edge e by one of its end points, either it exits at the other end
point or it stops at p′ if p′ ∈ e. Moreover δ cannot go through a given edge more than one time. As a consequence δ
can be decomposed in a finite sequence of pieces e0 = [p, p1], e1 = [p1, p2], · · · , en−1 = [pn−1, pn], en = [pn, p

′]
where e0 and en are the segments joining p and p′ to one of the endpoint of the edges that contain them and

3 strictly speaking we should call it the α-Reeb graph associated to the covering I but we assume in the sequel that some covering I has
been chosen and we omit it in notations
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e1, · · · , en−1 are edges. So, the length of δ is equal to (d∗(p1) − d∗(p)) + (d∗(p2) − d∗(p1)) + · · · + (d∗(p
′) −

d∗(pn)) = d∗(p
′)− d∗(p) and dG(p, p′) ≤ d∗(p′)− d∗(p).

Similarly any simple path joining p to p′ can be decomposed in a finite sequence of pieces e′0 = [p, p′1], e′1 =
[p′1, p

′
2], · · · , e′k−1 = [p′k−1, p

′
k], e′k = [p′k, p

′] where e′0 and e′k are the segments joining p and p′ to one of the
endpoint of the edges that contain them, and e′1, · · · , e′k−1 are edges. Now, as we do not know that d∗ is increasing
along this path, its length is thus equal to |d∗(p′1) − d∗(p)| + |d∗(p′2) − d∗(p

′
1)| + · · · + |d∗(p′) − d∗(p

′
n)| ≥

d∗(p
′)− d∗(p). So, dG(p, p′) ≥ d∗(p′)− d∗(p).

4 Approximation of Metric

4.1 Bounding the Gromov-Hausdorff distance between X and G

The goal of this section is to provide an upper bound of the Gromov-Hausdorff distance between X and G that
only depends on the first Betti number β1(G) of G and the maximal diameter M of the level sets of π. An upper
bound of M is given in the next section.

Theorem 1 dGH(X,G) < (β1(G) + 1)M where dGH(X,G) is the Gromov-Hausdorff distance between X and
G, β1(G) is the first Betti number of G and M = supp∈G{diam(π−1(p))} is the supremum of the diameters of in
the level sets of π.

Remark that as β1(G) ≤ β1(X), from the above theorem, dGH(X,G) is upper bounded by the quantities de-
pending only on the input X . The proof of Theorem 1 is deduced from two propositions comparing the distances
between pairs of points x, y ∈ X and their images π(x), π(y) ∈ G whose proofs rely on the notion of merging
vertex. A vertex v ∈ V is called a merging vertex if it is the end point of at least two edges e1 and e2 that are
pointing to it according to the orientation defined in Section 3. Geometrically this means that there are at least two
distinct connected components of π−1(d−1∗ (d∗(v) − ε)) that accumulate to π−1(v) as ε > 0 goes to 0. The set of
merging vertices is denoted by Vm. We have

Lemma 2 The cardinality of Vm is at most β1(G) where β1(G) is the rank of the first homology group of G.

Proof The result follows from classical persistence homology theory [25]. First remark that, as π(r) is the only
local minimum of d∗, the sublevel sets of the function d∗ : G→ R+ are all path connected. Indeed if π(x), π(y) ∈
G are in the same sublevel set d−1∗ ([0, α]), α > 0, then the images by π of the shortest paths in X connecting
x to r and y to r are contained in d−1∗ ([0, α]) and their union is a continuous path joining π(x) to π(y). As a
consequence, the 0-dimensional persistence of d∗ is trivial. So as we increase the α value, no merging vertices
serve as connecting two different connected components. Thus, each merging vertex in Vm creates at least a cycle
that never dies as G is one dimensional and does not contain any 2-dimensional simplex. Thus |Vm| ≤ β1(G).

The following lemma shows that a shortest path in G is the projection of a shortest path in X as long as it does
not meet a merging vertex and allow to prove proposition 1 below.

Lemma 3 Let p, p′ ∈ G and let δ : [d∗(p), d∗(p
′)] → G be a strictly increasing path going from p to p′ that

does not contain any point of Vm in its interior. Then for any x′ ∈ π−1(p′)
⋂
cl(π−1(δ(d∗(p), d∗(p

′))) where cl(.)
denotes the closure, there exists a shortest path γ connecting a point x of π−1(p) to x′ such that π(γ) = δ and
dX(x, x′) = d(x′)− d(x) = d∗(p

′)− d∗(p) = dG(p, p′).

Proof First assume that p′ is not a merging point. Let γ0 : [0, d(x′)] → X be any shortest path between r and
x′ and let γ be the restriction of γ0 to [d∗(p), d(x′)] = [d∗(p), d∗(p

′)]. If the infimum t0 of the set I = {t ∈
[d∗(p), d∗(p

′)] : π(γ(t′)) ∈ δ, ∀t′ ≥ t} is larger than d∗(p), then there exists an increasing sequence (tn) that
converges to t0 such that π(γ(tn)) 6∈ δ. As a consequence δ(t0) is a merging point; a contradiction. So t0 = d∗(p)
and γ(d∗(p)) intersects π−1(p) at a point x.

Now if p′ is a merging point, as x′ is chosen in the closure of π−1(δ(d∗(p), d∗(p
′)), for any sufficiently large

n ∈ N one can consider a sequence of points x′n ∈ π−1(δ(d∗(p
′) − 1/n)) that converges to x′ and apply the

first case to get a sequence of shortest path γn from a point xn ∈ π−1(p) and x′n. Then applying Arzelà-Ascoli’s
theorem (see [1] 7.5) we can extract from γn a sequence of points converging to a shortest path γ between a point
x ∈ π−1(p) and x′.

To conclude the proof, notice that from Lemma 1 we have dG(p, p′) = d∗(p
′)− d∗(p) = d(x′)− d(x). Since

γ is the restriction of a shortest path from r to x we also have dX(x, x′) = d(x′)− d(x).

Notice that from Lemma 1, δ is a shortest path and the parametrization by the interval [d∗(p), d∗(p
′)] can be

chosen to be an isometric embedding.
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Proposition 1 For any x, y ∈ X we have

dX(x, y) ≤ dG(π(x), π(y)) + 2(β1(G) + 1)M

where M = supp∈G{diam(π−1(p))} and β1(G) is the first Betti number of G.

Proof Let δ be a shortest path between π(x) and π(y). Remark that except at the points π(x) and π(y) the local
maxima of the restriction of d∗ to δ are in Vm. Indeed as δ is a shortest path it has to be simple, so if p ∈ δ is a
local maximum then p has to be a vertex and δ has to pass through two edges having p as end point and pointing to
p according to the orientation defined in Section 3. So p is a merging point.
Since δ is simple and Vm is finite, δ can be decomposed in at most |Vm|+ 1 connected paths along the interior of
which the restriction of d∗ does not have any local maxima. So along each of these connected paths the restriction of
d∗ can have at most one local minimum. As a consequence, δ can be decomposed in a finite number of continuous
paths δ1, δ2, · · · , δk with k ≤ 2(|Vm|+1), such that the restriction of d∗ to each of these path is strictly monotonic.
For any i ∈ {1, · · · , k} let pi and pi+1 the end points of δi with p1 = π(x) and pk+1 = π(y). We can apply Lemma
3 to each δi to get a shortest path γi in X between a point xi ∈ π−1(pi) and a point in yi+1 ∈ π−1(pi+1) such
that π(γi) = δi and dX(xi, yi+1) = dG(pi, pi+1). The sum of the lengths of the paths γi is equal to the sum of the
lengths of the path δi which is itself equal to dG(π(x), π(y)). Now for any i ∈ {1, · · · , k}, since π(xi) = π(yi)
we have dX(xi, yi) ≤M and xi and yi can be connected by a path of length at most M (x1 is connected to x and
yk+1 is connected to y. Gluing these paths to the paths γi gives a continuous path from x to y whose length is at
most dG(π(x), π(y)) + kM ≤ dG(π(x), π(y)) + 2(|Vm|+ 1)M . Since from Lemma 2, |Vm| ≤ β1(G), we finally
get that dX(x, y) ≤ dG(π(x), π(y)) + 2(β(G) + 1)M .

Proposition 2 The map π : X → G is 1-Lipschitz: for any x, y ∈ X we have

dG(π(x), π(y)) ≤ dX(x, y).

Proof Let x, y ∈ X and let γ : I → X be a shortest path from x to y in X where I ⊂ R is a closed interval. The
path π(γ) connects π(x) and π(y) in G.

We first claim that there exists a continuous path Γ contained in π(γ) connecting π(x) and π(y) that intersects
each vertex of G at most one time. The path Γ can be defined by iteration in the following way. Let v1, · · · vn ∈ V
be the vertices of G that are contained in π(γ) \ {π(x), π(y)} and let Γ0 = π(γ) : J0 → G, J0 = I . For
i = 1, · · ·n let t−i = inf{t : Γi−1(t) = vi} and t+i = sup{t : Γi−1(t) = vi} and define Γi as the restriction
of Γi−1 to Ji = Ji−1 \ (t−i , t

+
i ). The path Γi is a connected continuous path (although Ji is a disjoint union of

intervals) that intersects the vertices v1, v2, · · · , vi at most one time. We then define Γ = Γn : J = Jn → G where
J ⊂ I is a finite union of closed intervals. Notice that Γ is the image by π of the restriction of γ to J and that
Γ (t) ∈ {v1, · · · vn} only if t is one of the endpoints of the closed intervals defining J .

Now, for each connected component [t, t′] of J , γ((t, t′)) is contained in π−1(e) where e is the edge of G
containing Γ ([t, t′]). As a consequence,

dG(π(γ)(t), π(γ)(t′)) = |d∗(π(γ)(t))− d∗(π(γ)(t′))|
= |d(γ(t))− d(γ(t′))|.

Recalling that d(γ(t)) = dX(r, γ(t)) and d(γ(t′)) = dX(r, γ(t′)) and using the triangle inequality we get that
|d(γ(t)) − d(γ(t′))| ≤ dX(γ(t), γ(t′)). To conclude the proof, since γ is a geodesic path we just need to sum up
the previous inequality over all connected components of J :

dX(x, y) ≥
∑

[t,t′]∈cc(J)

dX(γ(t), γ(t′))

≥
∑

[t,t′]∈cc(J)

dG(π(γ)(t), π(γ)(t′)) ≥ dG(π(x), π(y))

where cc(J) is the set of connected components of J .

The proof of Theorem 1 now easily follows from Propositions 1 and 2.

Proof (of Theorem 1) Consider the set C = {(x, π(x)) : x ∈ X} ⊂ X ×G. As π is surjective this is a correspon-
dence between X and G. It follows from Propositions 1 and 2 that for any (x, π(x)), (y, π(y)) ∈ C,

|dX(x, y)− dG(π(x), π(y))| ≤ 2(β1(G) + 1)M

So C is a 2(β1(G) + 1)M -correspondence and dGH(X,G) ≤ (β1(G) + 1)M .
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r

d− α

4α

B

Fig. 1 Tightness of the bound in Lemma 3: there are 3 edges of length at most 4α and the diameter of B is equal to 20α. The range of the
distances from r to the points on the red curve is [d− α, d+ α].

4.2 Bounding the diameter M

The two following lemmas allow to bound M , the diameter of the level sets of π.

Lemma 4 Let (G, dG) be a connected finite metric graph and let r ∈ G. We denote by dr = dG(r, .) : G →
[0,+∞) the distance to r. For any edge e ⊂ G, the restriction of dr to e is either strictly monotonic or has only
one local maximum. Moreover the length l = l(e) of e is upper bounded by two times the difference between the
maximum and the minimum of dr restricted to e.

Proof Let l be the length of E and let t 7→ e(t), t ∈ [0, l], be an arc length parametrization of E. Since E is an
edge of G, for t ∈ [0, l] any shortest geodesic γt joining r to e(t) must contain either x1 = e(0) or x2 = e(l). If
it contains x1 then for any t′ < t the restriction of γt between r and e(t′) is a shortest geodesic containing x1 and
if it contains x2 then for any t′ > t the restriction of γt between r and e(t′) is a shortest geodesic containing x2.
Moreover in both cases, the function dr is strictly monotonic along γ. As a consequence, the set I1 = {t ∈ [0, l] : a
shortest geodesic joining r to e(t) contains x1} is a closed interval containing 0. Similarly the set I2 = {t ∈ [0, l] : a
shortest geodesic joining r to e(t) contains x2} is a closed interval containing l and [0, l] = I1 ∪ I2. Moreover dr
is strictly monotonic on e(I1) and on e(I2). As a consequence I1 ∩ I2 is reduced to a single point t0 that has to be
the unique local maximum of dr restricted to E.

The second part of the lemma follows easily from the previous proof: the minimum of dr restricted to E is
attained either at x1 or x2 and dr(e(t0)) = dr(x1) + t0 = dr(x2) + l − t0 is the maximum of dr restricted to
E. We thus obtain that 2t0 = l + (dr(x2) − dr(x1)). As a consequence if dr(x1) ≤ dr(x2) then l/2 ≤ t0 =
dr(e(t0))− dr(x1); similarly if dr(x1) ≥ dr(x2) then l/2 ≤ l − t0 = dr(e(t0))− dr(x2).

Proposition 3 Let (G, dG) be a connected finite metric graph and let r ∈ G. For α > 0 we denote by NE(α) the
number of edges of G of length at most α. For any d > 0 and any connected component B of the set Bd,α = {x ∈
G : d− α ≤ dG(r, x) ≤ d+ α} we have

diam(B) ≤ 4(2 +NE(4α))α

Proof Let x, y ∈ B and let t 7→ γ(t) ∈ B be a continuous path joining x to y inB. LetE be an edge ofG that does
not contain x or y and with end points x1, x2 such that γ intersects the interior of E. Then γ−1(E) is a disjoint
union of closed intervals of the form I = [t, t′] where γ(t) and γ(t′) belong to the set {x1, x2}. If γ(t) = γ(t′)
we can remove the part of γ between t and t′ and still get a continuous path between x and y. So without loss of
generality we can assume that if γ intersects the interior of E, then E is contained in γ. Using the same argument
as previously we can also assume that if γ goes across E, it only does it one time, i.e. γ−1(E) is reduced to only
one interval. As a consequence, γ can be decomposed in a sequence [x, v0], E1, E2, ·, Ek, [vk, y] where [x, v0] and
[vk, y] are pieces of edges containing x and y respectively and E1 = [v0, v1], E2 = [v1, v2]·, Ek = [vk−1, vk] are
pairwise distinct edges of G contained in B. It follows from Lemma 4 that the lengths of the edges E1, · · ·Ek and
of [x, v0] and [vk, y] are upper bounded by 4α. As a consequence the length of γ is upper bounded by 4(k + 2)α
which is itself upper bounded by 4(NE(4α) + 2)α since the edges E1, · · ·Ek are pairwise distinct. It follows that
dG(x, y) ≤ 4(NE(4α) + 2)α.

The example of Figure 1 shows that the bound of Lemma 3 is tight.

Lemma 5 Let X and Y be compact geodesic metric spaces and C ⊂ X × Y be an ε′−correspondence between
them. Assume (x0, y0) ∈ C(X,Y ), we define functions dx0

(.) = dX(x0, .) and dy0(.) = dY (y0, .) in X and Y
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X Y

x0
y0

xa

xb

x2
x3

x4

x5

x6

x7

x8
x9

ya

yb

y2

y3

y4

y5(= y6)

y7

y8 y9

Fig. 2 The path correspondence between two metric spaces X and Y .

respectively. Then for any path γx inX connecting xa, xb ∈ X , we can find a path γy in Y such that its end points,
ya, yb, are corresponding to xa, xb. And further more:

[miny∈γydy0(y),maxy∈γydy0(y)] ⊂ [minx∈γxdx0(x)− 2ε′,maxx∈γxdx0(x) + 2ε′]

Proof Let ε > ε′ > 0 and u, l be the maximum and minimum of dx0
restricted to γx. Since C is an ε′-

correspondence for any x ∈ γx there exists a point (x, y) ∈ C such that dx0
(x) − ε′ ≤ dy0(y) ≤ dx0

(x) + ε′.
As illustrated in Figure 2, the set of points y obtained in this way is not necessarily a continuous path from ya
to yb. However one can consider a finite sequence x1 = xa, x2, · · · , xn = xb of points in γx such that for any
i = 1, · · ·n− 1 we have dX(xi, xi+1) < ε− ε′. If (xi, yi) ∈ C then we have dY (yi, yi+1) < ε− ε′ + ε′ = ε. As
a consequence, since l − ε < l − ε′ < dy0(yi) < u+ ε′ < u+ ε the shortest geodesic connecting yi to yi+1 in G
remains in the set d−1y0 ([l−2ε, u+2ε]) and connecting these geodesics for all i = 1, · · · , n−1 we get a continuous
path from ya to yb in d−1r ([l − 2ε, u+ 2ε]). Now decreasing ε to ε′, we finish the construction.

As a corollary, we have the following theorem.

Theorem 2 Let (G, dG) be a connected finite metric graph and let (X, dX) be a compact geodesic metric space
such that dGH(X,G) < ε for some ε > 0. Let x0 ∈ X be a fixed point and let dx0

= dX(x0, .) : X → [0,+∞) be
the distance function to x0. Then for d ≥ α ≥ 0 the diameter of any connected component L of d−1x0

([d−α, d+α])
satisfies

diam(L) ≤ 4(2 +NE(4(α+ 2ε)))(α+ 2ε) + ε

where NE(4(α + 2ε)) is the number of edges of G of length at most 4(α + 2ε). In particular if α = 0 and 8ε is
smaller that the length of the shortest edge of G then diam(L) < 17ε.

Proof Let ε′ > 0 be such that dGH(X,G) < ε′ < ε. Let C ⊂ X × G be an ε′-correspondence between X and
G and (x0, r) ∈ C. we denote by dr = dG(r, .) : G → [0,+∞) the distance function to r in G. Let xa, xb ∈ L
and let (xa, ya), (xb, yb) ∈ C. There exists a continuous path γ ⊆ L joining xa to xb. Following lemma 5, we
get a continuous path from ya to yb in d−1r ([d − α − 2ε′, d + α + 2ε′]). It then follows from Proposition 3 that
dG(ya, yb) ≤ 4(2 +NE(4(α + 2ε)))(α + 2ε) and since C is an ε′-correspondence (and so an ε-correspondence),
dX(xa, xb) < 4(2 +NE(4(α+ 2ε)))(α+ 2ε) + ε.

From Theorems 2 and 1 we obtain the following results for the Reeb and α-Reeb graphs.

Theorem 3 Let (X, dX) be a compact connected path metric space, let r ∈ X be a fixed base point such that the
metric Reeb graph (G, dG) of the function d = dX(r, .) : X → R is a finite graph. If for a given ε > 0 there exists
a finite metric graph (G′, dG′) such that dGH(X,G′) < ε then we have

dGH(X,G) < (β1(G) + 1)(17 + 8NE,G′(8ε))ε

where NE,G′(8ε) is the number of edges of G′ of length at most 8ε. In particular if X is at distance less than ε
from a metric graph with shortest edge length larger than 8ε then dGH(X,G) < 17(β1(G) + 1)ε.



Gromov-Hausdorff Approximation of Filament Structure Using Reeb-type Graph 9

Theorem 4 Let (X, dX) be a compact connected path metric space. Let r ∈ X , α > 0 and I be a finite covering
of the segment [0,Diam(X)] by open intervals of length at most α such that the α-Reeb graph Gα associated to
I and the function d = dX(r, .) : X → R is a finite graph. If for a given ε > 0 there exists a finite metric graph
(G′, dG′) such that dGH(X,G′) < ε then we have

dGH(X,Gα) < (β1(Gα) + 1)(4(2 +NE,G′(4(α+ 2ε)))(α+ 2ε) + ε

where NE,G′(4(α + 2ε)) is the number of edges of G′ of length at most 4(α + 2ε). In particular if X is at
distance less than ε from a metric graph with shortest edge length larger than 4(α + 2ε) then dGH(X,Gα) <
(β1(Gα) + 1)(8α+ 17ε).

5 Recovery of Topology

In this section, we show the following theorem which asserts that the α-Reeb graph G of (X, d) recovers some
topology of X .

Theorem 5 Let (X, dX) be a compact connected path metric space and (G′, dG′) is a metric graph so that
dGH(X,G′) < ε. Let r ∈ X , α > 60ε and I = {[0, 2α), (iα, (i + 2)α)|1 ≤ i ≤ m} covers the segment
[0,Diam(X)] such that the 2α-Reeb graph G associated to I and the function d = dX(r, .) : X → R is a finite
graph. If no edges of G′ are shorter than L and no loops(’lengths) of G′ are shorter than 2L with L ≥ 32α + 9ε,
then we have G and G′ are homotopy equivalent.

Our strategy of proving Theorem 5 is to construct some open covers for X and G′ and relate the α-Reeb graph
G and the graphG′ to the nerves of the open covers. Specifically, we construct an initial open cover V0 ofX whose
nerve N(V0) is homotopy equivalent to G. Then we obtain a new open cover Ṽ of X by merging certain elements
in V0 while preserving the homotopy type of the nerve of the open cover, i.e., N(V0) and N(Ṽ) are homotopy
equivalent. Based on the open cover Ṽ , we construct an open cover Ũ for G′ whose nerve N(Ũ) is isomorphic to
N(Ṽ) as graphs and at the same time is homotopy equivalent to G′. In the following, we describe the constructions
of the above open covers for X and G′ and show the above claimed relations between them.

Since dGH(X,G′) < ε, there exists an ε-correspondence between the two spaces, denoted C(X,G′). For any
subset V ⊂ X , denote C(V ) = {g′ : (x, g′) ∈ C(X,G′), x ∈ V }, and similarly for any subset U ⊂ G′, denote
C(U) = {x : (x, g′) ∈ C(X,G′), g′ ∈ U}. We call C(V ) and C(U) are the correspondence set of V and U
respectively under C(X,G′). Recall that r ∈ X is the root point. Choose a point gr ∈ C(r) and define a distance
function b : G′ → R by b(g) = dG′(gr, g). Let N = {gn1 , gn2 , · · · , gnp} be the vertices of G′, i.e., N is the
set of vertices whose degree is not equal to two. From the hypotheses of the above theorem, the distance between
any pair of vertices gni , gnj with i 6= j is larger than L. For convenience, we also add into the vertices of G′ the
remaining local maximal/minimal points of the distance function b, which we denote using M = {gm1

, · · · , gmq}.
Note any newly added vertex gmi ∈M is of degree two. We call the graph G′ before adding the vertices in M the
original G′, and the edges in the original G′ the original edges of G′. An original edge of G′ contains at most one
vertex in M and thus can be split into at most two edges in G′.

5.1 Construction of open cover for X

We start with the following open cover of X . For each Ik ∈ I, denote Vk = d−1(Ik). Vk may have several
connected components, which can be listed in an arbitrary order. Denote V lk the l-th connected component of Vk.
Then V0 = {V lk}k,l is an open cover of X . Since at most two elements in I are overlapped, the nerve of V0,
denoted N(V0), is a graph. The following lemma states that any loop in the nerve N(V0) is large, which is useful
for the proof of Theorem 5. We say an open set V l1k1 ∈ V0 is lower than the open set V l2k2 ∈ V0 if k1 < k2 and is
higher than V l2k2 if k2 > k1.

Lemma 6 Let V lk and V ij are the lowest vertex and the highest vertex of a loop respectively in the nerve N(V0).
Then under the hypotheses of Theorem 5, we have j − k ≥ 15.

Proof First notice that j > k. Let x1 ∈ V lk ∩d−1(kα, (k+ 1)α) and x2 ∈ V ij ∩d−1((j+ 1)α, (j+ 2)α). From the
hypotheses of the lemma, there are two different paths β1, β2 connecting x1 to x2 so that β1 ∩ d−1((k+ 1)α, (j +
1)α) and β2∩d−1((k+1)α, (j+1)α) are in the different connected components of d−1((k+1)α, (j+1)α). Choose
gi ∈ G′ from C(xi) for i = 1, 2. Following Lemma 5, the path βi in X for i = 1, 2 traces out a simple path γi in
G′ connecting g1 to g2 so that γi lies in b−1(kα− ε, (j + 2)α+ ε). One can verify that γ1 and γ2 are two different
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paths due to the fact that β1 and β2 pass through different connected components of d−1((k + 1)α, (j + 1)α) and
thus form a loop in G′, denoted γ. We have b(γ) ⊂ (kα− ε, (j + 2)α+ ε).

We claim the range of the function b restricted to any loop, in particular β, covers an interval with the length at
least L2 . If the claim holds, then we have (j − k + 2)α + 2ε ≥ L

2 , which implies j − k ≥ 15 from the hypothesis
L ≥ 32α+ 9ε of Theorem 5. Indeed, if β contains at least two vertices in N , then it is obvious that the range of the
function b restricted to γ covers an interval the length at least L2 as any original edge of G′ is longer than L. Now
consider the case where γ contains one vertex in N , say ga. If γ does not contain gr, then there is exactly one local
maximum on γ, say gb. If γ contains gr, let gb = gr. The removal of ga and gb cuts γ into two pieces. Along either
piece, the function b has at most one local maximum. As the length of γ is longer than 2L. We have b(γ) covers an
interval with length longer than L/2. Finally, if β contains no vertex in N , then G′ is a single loop γ and the claim
obviously holds.

In the following, we modify this open cover by merging while preserving the homotopy type of its nerve. The
main purpose of the merging operation is make it easy to relate the open cover of X to the open cover of G′ as
constructed in Section 5.2. The merging operation is done in two steps.

For any vertex g ∈ M ∪ N of G′, we construct a connected open set V (g) as the union of a subset of the
open cover V0 as follows. If b(g) ≥ α

2 , then there exists a unique positive integer k′ s.t. k′ α2 ≤ b(g) < (k′ + 1)α2 .
Let k = bk′+1

2 c − 1 ≥ 0, and one can verify that (k + 1
2 )α ≤ b(g) ≤ (k + 3

2 )α. Therefore for all x ∈ C(g),
d(x) ∈ [(k+ 1

2 )α−ε, (k+ 3
2 )α+ε] ⊂ Ik. MoreoverC(g) is contained in V lk ⊂ Vk for some l. Indeed, if not, assume

x1, x2 ∈ C(g) with xi ∈ V ik for i ∈ {1, 2}. By the definition of V ik , the geodesic connecting x1 and x2 must pass
through a point x0 outside of Vk, which means dX(xi, x0) ≥ |d(xi)− d(x0)| ≥ α

2 − ε. Then dX(x1, x2) ≥ α− 2ε
which contradicts to the fact that dX(x1, x2) ≤ dG′(g, g) + ε ≤ ε. Now we construct the open set V (g) as the
union of the elements in the open cover V0 having non-empty intersection with V lk , i.e.,

V (g) =
⋃

V ∈V0 and V ∩V lk 6=∅

V.

In the case where b(g) < α
2 , we construct the open set V (g) = V0 ∪ V1 = d−1([0, 3α)). Note in both cases, V (g)

is a connected open set of X . We abuse the notation and also denote V (g) the subset of V0 whose union is the open
set V (g). What V (g) represents will be clear from the context. For convenience, we call V lk containing C(g) the
center of V (g). Note that it is possible that V (g) = V (g′) for two different vertices g, g′.

Now we obtain an intermediate open cover of X

V = {V (g) : g ∈M ∪N}
⋃
{V ∈ V0 : V /∈ V (g),∀g ∈M ∪N}

Note as a set, V does not have duplicated elements, i.e., if V (g) = V (g′) for g 6= g′, then V only contains one copy
of V (g). We call an open set V (g) ∈ V for any g ∈M ∪N critical and the remaining ones regular. The following
two lemmas describe the properties of the critical open sets and the regular open sets.

Lemma 7 Under the hypotheses of Theorem 5, we have for any vertex g ∈M ∪N ,
i) d(V (g)) ⊂ [sα, (s+ 4)α] for some integer s ≥ 0, and
ii) for any point x ∈ ⋃

V ∈V0\V (g) V and any gx ∈ C(x) ⊂ G′, dG′(g, gx) ≥ α
2 − 2ε.

Proof The claim (i) is obvious from the construction of V (g). We now prove claim (ii). In the case where b(g) < α
2 ,

for any x ∈ ⋃
V ∈V0\V (g) V , we have d(x) > 3α and b(gx) > 3α − ε. Thus dG′(g, gx) ≥ |b(gx) − b(g)| >

3α − ε − α
2 > α

2 − 2ε. Now consider the case where b(g) ≥ α
2 . Assume V lk is the center of V (g). If d(x) 6∈ Ik,

then dX(x, y) ≥ α
2 − ε for any point y ∈ C(g) from the construction of V (g), which implies dG′(gx, g) ≥ α

2 − 2ε.
Otherwise d(x) ∈ Ik. Then x is not in V lk and the geodesic from x to any point y ∈ C(g) must pass x0 /∈ Vk. This
implies that dX(x, y) > dX(x0, y) ≥ α

2 − ε and dG′(gx, g) ≥ dX(x, y)− ε ≥ α
2 − 2ε. This proves the lemma.

Lemma 8 For any regular open set V ∈ V , V is also an open set in V0. Moreover, under the hypotheses of Theo-
rem 5, it is of degree two in the nerve of N(V0) with one neighboring vertex higher than V and one neighboring
vertex lower than V .

Proof We prove the lemma by contradiction. Assume V ∈ V0 \
⋃
g∈M∪N V (g) has two neighboring vertices, say

Va, Vb, which are lower than V . Without loss of generality, assume d(V ) ⊂ Ij and d(Va) and d(Vb) are subsets
of Ij−1. Let xa ∈ Va and xb ∈ Vb such that (j − 1)α < d(xa), d(xb) < jα. As Va and Vb both have non-empty
intersection with V , there exist a path in d−1((j−1)α, (j+2)α). Now let l = inf{s : there exists a path connecting
xa, xb in d−1((j − 1)α, s]

⋂
(V ∪ Va ∪ Vb)}. We have (j + 1)α ≤ l < (j + 2)α as Va, Vb are disconnected.
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V
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l

x1 x2

(j + 2)α

(j + 1)α

Fig. 3 V with two lower neighborhoods.

We can choose two points x1, x2 ∈ V ∪ Va ∪ Vb from a path connecting xa and xb such that d(x1) = d(x2) =
l − 2ε, and x1, x2 are disconnected in d−1([l − 2ε, l))

⋂
(V ∪ Va ∪ Vb) but are connected by a path, say β, in

d−1([l− 2ε, l])
⋂

(V ∪ Va ∪ Vb). Obviously dX(x1, x2) ≥ 2(l− (l− 2ε)) = 4ε. Let gi ∈ C(xi) for i = 1, 2. Then
b(gi) ∈ [l − 3ε, l − ε] for i = 1, 2 and dG′(g1, g2) ≥ dX(x1, x2)− ε ≥ 3ε. Following Lemma 5, the path β traces
out a simple path in G′ denoted γ connecting g1 and g2 which lies in b−1(l− 4ε, l+ 2ε). We claim γ must contain
a vertex gc in M ∪N . If not,

dG′(g1, g2) = |b(g1)− b(g2)|
≤ |b(g1)− d(x1) + d(x2)− b(g2)|
≤ |(b(g1)− b(gr))− (d(x1)− d(r))|+ |(d(x2)− d(r))− (b(g2)− b(gr))|
= |dG′(g1, gr)− dX(x1, r)|+ |dG′(g2, gr)− dX(x2, r)|
≤ 2ε

This contradicts to the fact that dG′(g1, g2) ≥ 3ε. From the construction of γ, there exists a point g ∈ γ so that
dG′(g, gc) ≤ ε and there exists a point x ∈ β ∩ C(g). Then for any point xc ∈ C(gc), we have dX(x, xc) ≤ 2ε.
For any vertex x0 ∈ V ∩d−1(l), since x0 and x are connected in d−1([l−2ε, l])

⋂
(V ∪Va∪Vb), dX(x0, x) ≤ 25ε

from Theorem 2, and therefore dX(x0, xc) ≤ 27ε. However, since x0 ∈ V which is regular, x /∈ V (gc). From
Lemma 7, we have dX(x0, xc) ≥ α

2 − 2ε > 27ε. This is a contradiction. Therefore V can not have more than one
neighboring vertices that are lower than V .

Using a similar argument we can also prove that V can not have more than one neighboring vertices that are
higher than V .

We now perform a second step of merging. Two critical open set V (g1) and V (g2) in N(V) are said to be close
if there is a simple path γ in the nerve N(V0) connecting the center V l1k1 of V (g1) and the center V l2k2 of V (g2) so
that γ consists of at most 4 edges. If there is a regular open set along the above path, we say this regular open set
connects the critical open sets V (g1) and V (g2). We have the following properties for two close critical open sets.

Lemma 9 Under the hypotheses of Theorem 5, we have

(i) for any two vertices gn1
, gn2

∈ N , V (gn1
) and V (gn2

) can not be close;
(ii) for any gm ∈M , there exists at most one gn ∈ N such that V (gm) and V (gn) are close;

(iii) if V (gm1) and V (gm2) are close for any two vertices gm1 , gm2 ∈ M , then there must exist a vertex gn ∈ N
such that at least one of V (gm1) and V (gm2) is close to V (gn). Moreover, there is a path in N(V0) of at most
5 edges connecting the center of V (gn) to the center of V (gmi) for any i = 1, 2.

Proof Let V pj , V
q
k are the centers of V (g1) and V (g2) respectively for g1, g2 ∈ N ∪ M . If V (g1) and V (g2)

are close, then |k − j| ≤ 4. Assume j ≤ k. Then for any x1 ∈ C(g1) and x2 ∈ C(g2), there is a path in
d−1((jα, (k+ 2)α)) connecting x1 and x2. Note that k+ 2− j ≤ 6. We claim that V (g1) and V (g2) are not close
provided that dG′(g1, g2) > 12α+ 9ε. Indeed, since dG′(g1, g2) > 12α+ 9ε, the range of the function b restricted
to any path connecting g1 and g2 in G′ covers an interval of the length at least 6α + 4.5ε. This implies that the
range of the function d restricted to any path in X connecting x1 and x2 covers an interval of the length at least
6α+ 0.5ε. This means that V (g1) and V (g2) can not be close. Since dG′(gn1

, gn2
) ≥ L > 12α+ 9α, V (gn1

) and
V (gn2) are not close. This proves (i).

Assume V (gm) is close to both V (gn1) and V (gn2) with gn1 , gn2 ∈ N . We have dG′(gn1 , gn2) ≤ dG′(gm, gn1)+
dG′(gm, gn2) ≤ 24α+ 18ε < L, which means gn1 = gn2 . This proves (ii).

We now prove (iii). Since at most one vertex in M is added into an original edge of G′, any path in G′ con-
necting gm1

and gm2
passes through at least one vertex from N . Furthermore, let γ be a geodesic in G′ connecting

gm1
and gm2

. If γ passes more than one vertices in N , dG′(gm1
, gm2

) ≥ L > 12α + 9ε, which contradicts to the
fact that V (gm1

) and V (gm2
) are close. Therefore γ contains exactly one vertex in N . Denote this vertex by gn.
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Let V l1k1 and V l2k2 be the centers of V (gm1
) and V (gm2

) respectively, and δ be the simple path from V l1k1 to V l2k2 in
N(V0) so that δ consists of at most 4 edges, or equivalently at most five elements in V0.

Recall V (gn) consists of a subset of V0. We claim that δ must pass through an element in V (gn).
If the claim holds, it is easy to verify that at least one of V (gm1

) and V (gm2
) is close to V (gn). In addition, if

we let V lk be the center of V (gn), then there is a path in N(V0) with as most 5 edges connecting V liki and V lk for
any i = 1, 2. This proves (iii).

It remains to show the above claim. We prove by contradiction. If we let

V (δ) = {V ∈ V0 : V is on the path of δ},

then V (gn) as a subset of V0 does not intersect with V (δ). We have C(gm1
) and C(gm2

) are contained in V l1k1 and
V l2k2 respectively. For any x1 ∈ C(gm1) and any x2 ∈ C(gm2), there is a path β in X connecting x1 and x2 so
that β is contained in

⋃
V ∈V (δ) V . From Lemma 7, for any x ∈ β and any gx ∈ C(x), dG′(gx, gn) ≥ α

2 − 2ε.
From the construction in the proof of Theorem 2, the path β can trace out a simple path γ′ in G′ connecting gm1

and gm2 so that for any point g ∈ γ′, dG′(g, gn) ≥ α
2 − 3ε. This means that γ and γ′ form a loop in G′. Since

β is contained in
⋃
V ∈V (δ) V , d(β) is contained in an interval with the length of 6α, which implies that b(γ′) is

contained in an interval with the length of 6α+ 4ε. Thus the length of γ′ is at most 2(6α+ 4ε) as it passes through
at most one vertex in N . Since γ is a geodesic in G′ connecting gm1

and gm2
, the length of the above loop is at

most 4(6α+ 4ε), which contradicts to the hypotheses of Theorem 5. This proves the above claim.

We say ga, gb ∈M ∪N are equivalent, denoted ga ∼c gb, if there exists a finite sequence ga = g1, g2, ..., gk =
gb such that V (gi) and V (gi+1) are close for any i = 1, · · · , k − 1. This is an equivalence relation. From
Lemma 9 (iii), if an equivalence class contains at least two vertices in M ∪ N , it must contain a vertex in N .
We have the following lemma

Lemma 10 Under the hypotheses of Theorem 5, an equivalence class contains at most one vertex from N .

Proof If not, assume gn1 6= gn2 and gn1 ∼c gn2 . Let gn1 = g1, g2, ..., gk = gn2 be a sequence so that V (gi) and
V (gi+1) are close for any i = 1, · · · , k − 1. WLOG, we can further assume gi ∈M for i = 2, · · · , k − 1.

We first show that k > 5. Assume not. let V l
i

ki
be the center of V (gi) for i = 1, · · · , k. From Lemma 9 (iii),

there is a path in N(V0) with at most 2× 5 = 10 edges connecting V l
1

k1
to V l

5

k5
. Thus for any x1 ∈ C(gn1) and any

x2 ∈ C(gn2), there is a path β in X connecting x1 and x2 so that d(β) is contained in an interval with the length
at most 12α. The path β traces out a path γ in G′ connecting gn1

and gn2
so that b(γ) is contained in an interval

with the length at most 12α + 4ε, which implies dG′(gn1
, gn2

) ≤ 2(12α + 4ε). This contradicts to the hypothesis
concerning the lengths of the edges in G′.

Now we assume k > 5. Since V (g3) and V (g4) are close and g3, g4 ∈ M , from Lemma 9 (iii), there exists a
gn ∈ N so that V (gn) is close to at least one of V (g3) and V (g4). Assume V (gn) is close to V (g3). If V (gn) 6=
V (gn1

), we obtain a sequence of g′1 = gn1
, g′2 = g2, g

′
3 = g3, g

′
4 = gn so that V (g′i) and V (g′i+1) are close for

any i = 1, · · · , 3. If V (gn) 6= V (gn2
), we obtain a sequence g′1 = gn, g

′
2 = g3, · · · g′k−1 = gn2

so that V (g′i) and
V (g′i+1) are close for any i = 1, · · · , k−2. In either case, the new sequence has a length less than k. Similarly, we
can obtain a shorter sequence if V (gn) is close to V (g4). One can keep shortening the sequence so that its length
is no longer than 5, which however has been proven to be impossible. This proves the lemma.

Now we are ready to further merge the open sets in V to obtain the final open cover Ṽ of X as follows. For any
vertex gn ∈ N of G′, Let Ṽ (gn) be the subset of V consisting of (1) V (gn), and (2) any critical open set V (g) ⊂ V
with g ∼c gn, and (3) any regular open set V ⊂ V connecting two critical open sets which are equivalent to gn.
We abuse the notation and also denote Ṽ (gn) the open set of the union of the open sets in Ṽ (gn). What Ṽ (gn)
represents will be clear from the context. Let ṼN = {V ∈ V : V ∈ Ṽ (gn) for some gn ∈ N}. The open cover
Ṽ = Ṽ1 ∪ Ṽ2 ∪ Ṽ3 of X consists of three types of open sets:

(1) Ṽ1 = {Ṽ (gn) : gn ∈ N};
(2) Ṽ2 = {V (g) : g ∈M and V (g) 6⊂ ṼN}
(3) Ṽ3 = {V ∈ V : V is regular and V 6⊂ ṼN}.
Figure 4 shows different types of elements in Ṽ . We summarize the properties for the open cover Ṽ in the following
corollary, which follows from Lemma 7, Lemma 8, Lemma 9, and Lemma 10.

Corollary 1 Under the hypotheses of Theorem 5, the open sets in Ṽ satisfy the following properties.

– Ṽ (g1) and Ṽ (g2) are disjoint for two different g1, g2 ∈ N .
– For any two open sets Ṽ1, Ṽ2 ∈ Ṽ1 ∪ Ṽ2, any path in the 1-skeleton of the nerve N(Ṽ) connecting Ṽ1, Ṽ2

consists of at least two elements from Ṽ3.
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N(V)N(V0)

N(Ṽ)

V (gm1)

V (gn1)

V (gn2)

V (gm2)

in Ṽ1

in Ṽ2

in Ṽ3

Fig. 4 Illustration of the merging strategy: From top-left to top-right (First step): We select the unions of open sets from V0 based on the
critical points w.r.t. b(g) in G′ and merge them respectively; From top-right to bottom-left (Second step): We further merge the unions which
are mutually close. Bottom-right: the nerve of the merging result N(Ṽ).

– Any open set Ṽ ∈ Ṽ3 is also a regular element in V and thus an element in V0. Moreover any point g ∈ C(Ṽ ) ⊂
G′ is at least α2 − 2ε away from any vertex of G′.

Proposition 4 Under the hypotheses of Theorem 5, N(Ṽ) and N(V0) are homotopy equivalent.

Proof We obtain the elements in the open covering Ṽ by merging a subset of open sets in V0. Think of any element
Ṽ ∈ Ṽ as a subset of V0. The nerve N(V0) restricted to Ṽ is a subgraph of N(V0), whose vertex set is Ṽ and edge
set includes the edges in N(V0) with both endpoints in Ṽ . We call this subgraph the nerve of Ṽ , denoted N(Ṽ ).
The nerve ofN(Ṽ) as a topological space is the quotient spaceN(V0)/

⋃
Ṽ ∈Ṽ N(Ṽ ). From Proposition 0.17 in [8],

it is sufficient to show that N(Ṽ ) is a tree for any Ṽ ∈ Ṽ .
For Ṽ ∈ Ṽ2∪Ṽ3,N(Ṽ ) is obviously a tree. Consider Ṽ ∈ Ṽ1. There exists a gn ∈ N so that V (gn) ⊂ Ṽ (gn) ∈

Ṽ . Let V ts be the center of V (gn). For any gm ∈ M and V (gm) ⊂ Ṽ (gn), if let vt
′

s′ be the center of V (gm), from
Lemma 9, |s − s′| < 5. Therefore, if V il is the element in Ṽ with the smallest sub-index and V jh is the element in
Ṽ with the largest sub-index, then we have |h− l| ≤ 5 + 5 + 2 + 2 = 14. From Lemma 6, there is no loop in the
subgraph N(Ṽ ). This proves the proposition.

5.2 Construction of open cover for G′

In this section, we construct an open coverG′ based on the open cover Ṽ ofX . For an open set V ∈ V0, we construct
a connected open set UV ⊂ G′ so that C(V ) ⊂ UV as follows. Let l = min{d(V )} and u = max{d(V )}. We
have u − l ≤ 2α. Let Ū = b−1([l − 2ε, u + 2ε]), and then C(V ) ⊂ Ū . Since u − l + 4ε < 2α + 4ε < L

4 , one
can verify that there is no loop in Ū and thus Ū consists of a set of trees. We claim C(V ) is contained in one of
the trees. Indeed, for any two g1, g2 ∈ C(V ), we have l − ε < b(g1), b(g2) < u + ε. Now let xi ∈ V so that
gi ∈ C(xi) for i = 1, 2. Let β be a path in V connecting x1 and x2. Following Lemma 5, β can trace out a path
γ in Ū connecting g1 and g2, which implies that C(V ) is contained in a tree in Ū . Let UV denote that tree. Let
U0 = {UV : V ∈ V0}. It is obvious that U0 is an open cover of G′. We now merge the elements in U0 to construct
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a new open cover according to the way in which the elements in V0 are merged to obtain Ṽ . Specifically, from our
construction of Ṽ , any open set Ṽ ∈ Ṽ is the union of a subset of open sets in V0. We also denote this subset using
Ṽ . Let UṼ = {UV : V ∈ Ṽ ⊂ V0}. We also denote UṼ is the open set of the union of the open sets in UṼ .

Consider an open set Ṽ ∈ Ṽ3. As it is also a regular open set in V and thus an open set in V0, d(Ṽ ) =
(pα, (p + 2)α) for some integer p > 0. From Corollary 1, any point in C(Ṽ ) is at least α2 − 2ε away from any
vertex in M ∪N and any point in UṼ is at least α2 − 4ε away from any vertex in M ∪N . Thus UṼ is a segment in
G′ without any branches. We shrink UṼ to obtain a new open set ŨṼ = UṼ ∩ b−1(pα+ 2ε, (p+ 2)α− 2ε), which
is also a segment in G′. For any open set Ṽ ∈ Ṽ1 ∪ Ṽ2, let ŨṼ = UṼ . Thus we obtain

Ũ = {ŨṼ : Ṽ ∈ Ṽ}.

One can verify that Ũ is an open cover of G′. Moreover we have the following two lemmas which relate the nerve
N(Ṽ) to G′.

Proposition 5 Under the hypotheses of Theorem 5, the nerveN(Ṽ) and the nerveN(Ũ) are isomorphic as graphs.

Proof It suffices to prove the following three claims.

– Claim (i): For any two Ṽi, Ṽj ∈ Ṽ1 ∪ Ṽ2, ŨṼi ∩ ŨṼj = ∅.
Any path in N(Ṽ) connecting Ṽi and Ṽj must pass through at least two open sets in Ṽ3, which are regular open
sets in V . From Lemma 8, any regular set has two neighbors in the nerve N(V) one lower and one higher,
WLOG, assume Ṽi is higher than Ṽj . We have inf{d(x) : x ∈ Ṽi} ≥ α + sup{d(x)|x ∈ Ṽj}, which implies
inf{b(g)|g ∈ ŨṼi} ≥ α+ sup{b(g)|g ∈ ŨṼj} − 2ε > sup{b(g)|g ∈ ŨṼj}. Thus ŨṼi ∩ ŨṼj = ∅.

– Claim (ii): For any two Ṽi, Ṽj ∈ Ṽ3, Ṽi ∩ Ṽj = ∅ if and only if ŨṼi ∩ ŨṼj = ∅.
If Ṽi ∩ Ṽj 6= ∅, assume Ṽi is the only neighboring vertex in the nerve N(V) higher than Ṽj . Let d(Ṽj) =

(pα, (p+ 2)α) and d(Ṽi) = ((p+ 1)α, (p+ 3)α). Choose a point x from Ṽi ∩ Ṽj so that d(x) = (p+ 3
2 )α. We

have C(x) ∈ ŨṼi ∩ ŨṼj , which shows ŨṼi ∩ ŨṼj 6= ∅.
If Ṽi ∩ Ṽj = ∅. Let d(Ṽi) = (pα, (p + 2)α) and d(Ṽi) = (qα, (q + 2)α). If |p − q| ≥ 2, it is obvious that
ŨṼi ∩ ŨṼj = ∅. Now assume that q−p ≤ 1, which forces the shortest path connecting Ṽi and Ṽj in N(Ṽ) must

pass through some open set Ṽ ∈ Ṽ1 ∪ Ṽ2. By Lemma 7, for any gi ∈ C(Ṽi) dG′(gi, g) ≥ α
2 − 2ε and for any

gj ∈ C(Ṽj) dG′(gj , g) ≥ α
2 − 2ε for any vertex g ∈M ∪N such that V (g) ∈ Ṽ . Thus dG′(gi, gj) ≥ α− 4ε,

which implies ŨṼi ∩ ŨṼj = ∅.
– Claim (iii): For any Ṽi ∈ Ṽ1 ∪ Ṽ2 and any Ṽj ∈ Ṽ3, Ṽi ∩ Ṽj = ∅ if and only if ŨṼi ∩ ŨṼj = ∅.

First assume that Ṽi and Ṽj have a non-empty intersection. As Ṽj ∈ Ṽ3, it is a regular open set in V which
has one higher neighboring vertex and one lower neighboring vertex in N(V0). Since Ṽj is regular, we have
d(Ṽj) = (pα, (p + 2)α) for some integer p > 0. We know Ṽi consists of a subset of open sets in V0 and let
V ∈ Ṽi be the open set in V0 so that V ∩ Ṽj 6= ∅. WLOG, assume V is the higher neighboring vertex of Ṽj and
we have d(V ∩ Ṽj) ⊃ ((p+ 1)α, (p+ 2)α). We choose a point in x ∈ Ṽj ∩ V so that d(x) = (p+ 2)α− 4ε.
Since b(C(x)) ⊂ ((p+ 2)α− 5ε, (p+ 2)α− 3ε), C(x) ∈ ŨṼj ∩ ŨṼi and thus ŨṼi ∩ ŨṼj 6= ∅.
Second assume Ṽi ∩ Ṽj = ∅. If any path in the nerve N(Ṽ) connecting Ṽi and Ṽj passes through some open set
in Ṽ1 ∪ Ṽ2, then we are done based on Claim (i). Now assume there is a path β in the nerve N(Ṽ) connecting
Ṽi and Ṽj only passing through open sets in Ṽ3. Since any open set in Ṽ3 is a regular set in V , the worst scenery
is that β contains no intermediate open sets. In this worst scenery, due to the shrinking operation on ŨṼj , one

can verify that ŨṼi ∩ ŨṼj = ∅.

Proposition 6 Under the hypotheses of Theorem 5, N(Ũ) is homotopy equivalent to G′.

Proof As we have proved, Ũ is an open covering of G′. Since any edge on the original G′ has a length longer
than L, one can verify that any element of Ũ contains no loop and thus is a tree, and in particular is contractible.
Furthermore, the union of any two elements of Ũ does not contains a loop. This means that if two elements of Ũ
intersect with each other, their intersection is connected and thus contractible. Following from Nerve lemma, we
have N(Ũ) is homotopy equivalent to G′.

Proof of Theorem 5. From Proposition 4, Proposition 5, Proposition 6, it remains to show that the nerve N(V0)
is homotopy equivalent to the α-Reeb graph G. Indeed, we represent each node V lk in N(V0) using a copy of the
interval Ik. If V l1k1 and V l2k2 with k1 < k2 are the endpoints of an edge in N(V0), then we glue the upper half of Ik1
to the lower half of Ik2 . We identify any two points which are glued together directly or indirectly. By definition, the
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Fig. 5 Illustration of the different steps of the algorithm for computingα-Reeb graph. In the disjoint union of copies of intervals, the subintervals
marked with same labels are identified in the α-Reeb graph.

α-Reeb graph is the quotient space of the disjoint union of these intervals - see Figure 5. From Lemma 6, there are
more than one node between the top node and the bottom node of any loop in N(V0). Thus, we have a one-to-one
correspondence between the loops in N(V0) and the loops in the α-Reeb graph. This proves the theorem.

6 Algorithm

In this section, we describe an algorithm for computing the α-Reeb graph for some α > 0. We assume the input
of the algorithm includes a neighboring graph X = (V,E), a function l : E → R+ specifying the edge length
and a parameter α. In the applications where the input is given as a set of points together with pairwise distances,
i.e., a finite metric space, one can generate the neighboring graph X as a Rips graph of the input points with the
parameter chosen as a fraction of α. We assume X is connected as one can apply the algorithm to each connected
component otherwise.

Our algorithm, whose different steps are illustrated in Figure 5, can be described as follows. In the first step,
we fix a node of X as the root r and then obtain the distance function d : V → R+ by computing d(v) as the
graph distance from the node v to r. In the second step, we apply the Mapper algorithm [18] to the nodes V with
filter d to construct a graph G̃. Specifically, let I = {(iα, (i + 1)α), ((i + 0.5)α, (i + 1.5)α)|0 ≤ i ≤ m} so that⋃
Ik∈I Ik covers the range of the function d. We say an interval Ik1 ∈ I is lower than another interval Ik2 ∈ I if

the midpoint of Ik1 is smaller than that of Ik2 . Now let Vk = d−1(Ik) and V lk be the lth component of Vk Then
of {V lk}k,l is a cover of H and the graph G̃ constructed by the Mapper algorithm is the 1-skeleton of the nerve of
that cover. Namely, each node in G̃ represents an element in {V lk}k,l. Two nodes V l1k1 and V l2k2 are connected with
an edge if V l1k1 ∩ V

l2
k2
6= ∅. In fact, when we check if V l1k1 ∩ V

l2
k2
6= ∅, we only need to check if their vertices are

overlapped or not as we assume the lengths of the edges in H are fractions of α.
In the final step, we represent each node V lk in G̃ using a copy of the interval Ik. As mentioned in the Section 3,

α-Reeb graph is a quotient space of the disjoint union of those copies of intervals. Specifically, for an edge in G̃,
let V l1k1 and V l2k2 be its endpoints. Then Ik1 and Ik2 must be partially overlapped. We identify the overlap part of
these two intervals. After identifying the overlapped intervals for all edges in G̃, the resulting quotient space is the
α-Reeb graph. Algorithmically, the identification is performed as follows. We split each copy of internal Ik into
two by adding a point in the middle. Now think of it as a graph with two edges and label one of them upper and the
other lower. Notice that two overlapped intervals Ik1 and Ik2 can not be exactly the same. One must be lower than
the other. To identify their overlapped part, we identify the upper edge of the lower interval with the lower edge of
the upper interval.

The time complexity of the above algorithm is dominated by the computation of the distance function in the
first step, which is O(|E| + |V | log |V |). The computation of the connected components in the second step is
O(|V | log |V |) based on union-find data structure. In the final step, there are at most O(|V |) number of the copies
of the intervals. Based on union-find data structure, the identification can also be performed inO(|V | log |V |) time.
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(a) (b)

Fig. 6 Earthquake data - (a) The distance functions d on each connected components. The value increases from cold to warm colors. (b) The
reconstructed α-Reeb graph.

#OP #OE #N #E GRT ODT ADT Mean Median
GPS traces 82541 313415 21644 21554 46.8 15.27 0.96 6.5% 5.3%
Earthquake 1600 26996 147 137 0.32 1.12 0.01 14.1% 12.5%

Table 1 #OP (#OE, #N, #E) stands for the number of original points (original edges, nodes, edges in α-Reeb graph). The graph reconstruction
time (GRT) is the total time of computing distance function and reconstructing the graph. The original (ODT), respectively approximate (ADT),
distance computation time shows the total time of computing these distances using the original, respectively reconstructed, graph. All times are
in seconds. The last two columns show the mean and median metric distortions.

7 Experiments

In this section, we illustrate the performances of our algorithm on three different data sets. The first data set was
obtained from USGS Earthquake Search [36]. It consists of earthquake epicenter locations collected, between
01/01/1970 and 01/01/2010 in the rectangular area between latitudes -75 degrees and 75 degrees and longitude -
170 degrees and 10 degrees with magnitude greater than 5.0. This raw earthquake data set contains the coordinates
of the epicenters of 12790 earthquakes that are mainly located around geological faults. We follow the procedure
described in [28] to remove outliers and randomly sampled 1600 landmarks. Finally, we computed a neighboring
graph from these landmarks with parameter 4. The length of an edge in this graph is the Euclidean distance between
its endpoints. For each connected component, we fix a root point and compute the graph distance function d to the
root point as shown in Figure 6(a). We also set α = 4 and apply our algorithm to the above data to obtain the α-Reeb
graph. In general, the α-Reeb graph is an abstract metric graph. In this example, for the purpose of visualization, we
use the coordinates of the landmarks to embed the graph into the plane as follows. Recall that for a copy of interval
Ik representing the node V lk in G̃, we split it into two by adding a point in the middle. We embed the endpoints of
the interval to the landmarks of the minimum and the maximum of the function d in V lk , and the point in the middle
to the landmark of the median of the function d in V lk . Figure 6(b) shows the embedding of the α-Reeb graph. Note
this embedding may introduce metric distortion, i.e., the Euclidean length of the edge may not reflect the length of
the corresponding edge in the α-Reeb graph.

The second data set is that of 500 GPS traces tagged “Moscow” from OpenStreetMap [37]. Since cars move on
roads, we expect the locations of cars to provide information about the metric graph structure of the Moscow road
network. We first selected a metric ε-net on the raw GPS locations with ε = 0.0001 using furthest point sampling.
Then, we computed a neighboring graph from the samples with parameter 0.0004. Again for each connected
component, we fix a root point and compute the graph distance function d to the root point as shown in Figure 7(a).
Set α also equals 0.0004 and compute the α-Reeb graph. Again, we use the same method as above to embed the
α-Reeb graph into the plane, as shown in Figure 7(b).

To evaluate the quality of our α-Reeb graph for each data set, we computed both original pairwise distances,
and pairwise distances approximated from the constructed α-Reeb graph. For GPS traces, we randomly select 100
points as the data set is too big to compute all pairwise distances. We also evaluated the use of α-Reeb graph
to speed up distance computations by showing reductions in computation time. Only pairs of points in the same
connected component are included because we obtain zero error for the pairs of vertices that are not. Statistics for
the size of the reconstructed graph, error of approximate distances, and reduction in computation time are given in
Table 1.

The third data set we consider is also obtained from GPS traces. Roads are often split so that cars in different
directions run in different lanes. In particular, this is the true for highways. In addition, when two roads cross in
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(a) (b)

Fig. 7 GPS data - (a) The distance functions d on each connected components. The value increases from cold to warm colors. (b) The recon-
structed α-Reeb graph.

(a) (b)

(c) (d)

Fig. 8 (a) GPS traces passing through a highway crossing in Moscow. (b) The distance function. (c) and (d)The reconstructed α-Reeb graph
viewed from two perspectives.

GPS coordinates, they may bypass through a tunnel or an evaluated bridge and thus the road network itself may
not cross. Such directional information is contained in the GPS traces. We encode this directional information by
stacking several consecutive GPS coordinates to form a point in a higher dimensional space. In this way, we obtain
a new set of points in this higher dimension space. Then we build a neighboring graph for this new set of points
based on L2 norm and apply our algorithm to recover the road network. In particular, although the paths intersect
at the cross in GPS coordinates, the road network does not and this should be detected by our algorithm. To test
the above strategy, we extract those GPS traces from the above “Moscow” dataset which pass through a highway
crossing as shown in Figure 8(a). Since GPS records the position based on time, we resample the traces so that the
distances between any two consecutive samples is the same among all traces. Then we apply the above algorithm
to the resampled traces. Figure 8(c) and (d) show the reconstructed graph which recovers the road network of this
highway crossing.
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8 Discussion

We have proposed a method to approximate path metric spaces using metric graphs with bounded Gromov-
Hausdorff distortion, and illustrated the performances of our method on a few data sets. Here we point out a
few possible directions for future work. First, notice that the α-Reeb graph is a quotient space where the quotient
map is 1-Lipschitz and thus the metric only gets contracted. In addition, the distance from a point to the chosen
root is exactly preserved. Therefore, one always reduces the metric distortion by taking the maximum of the graph
metrics of different root points. It is interesting to study the strategy of sampling root points to obtain the small-
est metric distortion with the fixed number of root points. Second, our method is sensitive to the noise. One can
preprocess the data and remove the noise and then apply our algorithm. Nevertheless, it is interesting to see if the
algorithm can be improved to handle noise.
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