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Abstract

In many real-world applications data appear to be sampled around 1-dimensional filamentary
structures that can be seen as topological metric graphs. In this paper we address the metric recon-
struction problem of such filamentary structures from data sampled around them. We prove that they
can be approximated, with respect to the Gromov-Hausdorff distance by well-chosen Reeb graphs
(and some of their variants) and provide an efficient and easy to implement algorithm to compute
such approximations in almost linear time. We illustrate the performances of our algorithm on a few
data sets.

1 Introduction

Motivation. With the advance of sensor technology, computing power and Internet, massive amounts of
geometric data are being generated and collected in various areas of science, engineering and business.
As they are becoming widely available, there is a real need to analyze and visualize these large scale
geometric data to extract useful information out of them. In many cases this data is not embedded in
Euclidean spaces and come as (finite) sets of points with pairwise distances information, i.e. (discrete)
metric spaces. A large amount of research has been done on dimensionality reduction, manifold learning
and geometric inference for data embedded in, possibly high dimensional, Euclidean spaces and assumed
to be concentrated around low dimensional manifolds [?, ?, ?]. However, the assumption of data lying
on a manifold may fail in many applications. In addition, the strategy of representing data by points
in Euclidean space may introduce large metric distortions as the data may lie in highly curved spaces,
instead of in flat Euclidean space raising many difficulties in the analysis of metric data. In the past
decade, with the development of topological methods in data analysis, new theories such as topological
persistence (see, for example, [?, ?, ?, ?]) and new tools such as the Mapper algorithm [?] have given
rise to new algorithms to extract and visualize geometric and topological information from metric data
without the need of an embedding into an Euclidean space. In this paper we focus on a simple but impor-
tant setting where the underlying geometric structure approximating the data can be seen as a branching
filamentary structure i.e., more precisely, as a metric graph which is a topological graph endowed with a
length assigned to each edge. Such structures appear naturally in various real-world data such as collec-
tions of GPS traces collected by vehicles on a road network, earthquakes distributions that concentrate
around geological faults, distributions of galaxies in the universe, networks of blood vessels in anatomy
or hydrographic networks in geography just to name a few. It is thus appealing to try to capture such
filamentary structures and to approximate the data by metric graphs that will summarize the metric and
allow convenient visualization. Contribution. In this paper we address the metric reconstruction prob-

lem for filamentary structures. The input of our method and algorithm is a metric space (X, dX) that is
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assumed to be close with respect to the so-called Gromov-Hausdorff distance dGH to a much simpler,
but unknown, metric graph (G′, dG′). Our algorithm outputs a metric graph (G, dG) that is proven to be
close to (X, dX) in both geometry and topology. Our approach relies on the notion of Reeb graph (and
some variants of it introduced in Section ??) and our main theoretical results are stated in the following
two theorems.

Theorem 4.9 [Recovery of Geometry]. Let (X, dX) be a compact connected geodesic space, let r ∈ X
be a fixed base point such that the metric Reeb graph (G, dG) of the function d = dX(r, .) : X → R is a
finite graph. If for a given ε > 0 there exists a finite metric graph (G′, dG′) such that dGH(X,G′) < ε
then we have

dGH(X,G) < 2(β1(G) + 1)(17 + 8NE,G′(8ε))ε

where NE,G′(8ε) is the number of edges of G′ of length at most 8ε and β1(G) is the first Betti number
of G, i.e. the number of edges to remove from G to get a spanning tree. In particular if X is at distance
less than ε from a metric graph with shortest edge larger than 8ε then dGH(X,G) < 34(β1(G) + 1)ε.

Note that β1(G) 6 β1(X) and thus dGH(X,G) is upper bounded by the quantities depending only on
the input X .

Theorem 5.1 [Recovery of Topology]. Let (X, dX) be a compact connected path metric space and
(G′, dG′) is a metric graph so that dGH(X,G′) < ε. Let r ∈ X , α > 60ε and I{[0, 2α), (iα, (i +
2)α)|1 6 i 6 m} covers the segment [0,Diam(X)] such that the α-Reeb graph G associated to I and
the function d = dX(r, .) : X → R is a finite graph. If no edges of G′ is shorter than L and no loops of
G′ is shorter than 2L with L > (24α+ 9ε), then we have G and G′ are homotopy equivalent.

To turn this result into a practical algorithm we address two issues:
(1) Raw data usually do not come as geodesic spaces. They are given as discrete sets of point (and

thus not connected metric spaces) sampled from the underlying space (X, dX). Moreover in many cases
only distances between nearby points are known. A geodesic space (see Section 2 for a definition of
geodesic space) can then be obtained from these raw data as a neighborhood graph where nearby points
are connected by edges whose length is equal to their pairwise distance. The shortest path distance in this
graph is then used as the metric. In our experiments we use this new metric as the input of our algorithm.
The question of the approximation of the metric on X by the metric induced on the neighborhood graphs
is out of the scope of this paper.

(2) Approximating the Reeb graph (G, dG) from a neighborhood graph is usually not obvious. If
we compute the Reeb graph of the distance function to a given point defined on the neighborhood graph
we obtain the neighborhood graph itself and do not achieve our goal of representing the input data
by a simple graph. See Table 1. It is then appealing to build a two dimensional complex having the
neighborhood graph as 1-dimensional skeleton and use the algorithm of [?, ?] to compute the Reeb
graph of the distance to the root point. Unfortunately adding triangles to the neighborhood graph may
widely change the metric between the data points on the resulting complex and significantly increase the
complexity of the algorithm. We overcome this issue by introducing a variant of the Reeb graph, the
α-Reeb graph, inspired from [?] and related to the recently introduced notion of graph induced complex
[?], that is easier to compute than the Reeb graph but also comes with approximation guarantees (see
Theorem 4.10). As a consequence our algorithm runs in almost linear time (see Section 6).

Related work. Approximation of data by 1-dimensional geometric structures has been considered by
different communities. In statistics, several approaches have been proposed to address the problem of
detection and extraction of filamentary structures in point cloud data. For example Arial-Castro et al
[?] use multiscale anisotropic strips to detect linear structure while [?, ?] and more recently [?] base
their approach upon density gradient descents or medial axis techniques. These methods apply to data
corrupted by outliers embedded in Euclidean spaces and focus on the inference of individual filaments
without focus on the global geometric structure of the filaments network.

In computational geometry, the curve reconstruction problem from points sampled on a curve in an
euclidean space has been extensively studied and several efficient algorithms have been proposed [?, ?,
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?]. Unfortunately, these methods restricts to the case of simple embedded curves (without singularities
or self-intersections) and hardly extend to the case of topological graphs. In a more intrinsic setting
where data come as finite abstract metric spaces, [?] propose an algorithm that outputs a topologically
correct (up to a homeomorphism) reconstruction of the approximated graph. However this algorithm
requires some tedious parameters tuning and relies on quite restrictive sampling assumptions. When
these conditions are not satisfied, the algorithm may fail and not even outputs a graph. Compared to the
algorithm of [?], our algorithm not only comes with metric guarantees but also whatever the input data is,
it always outputs a metric graph and does not require the user to choose any parameters. Closely related
to our approach is the data skeletonization algorithm proposed in [?] that computes the Reeb graph of
an approximation of the distance function to a root point on a 2-dimensional complex built on top of the
data whose size might be significantly larger than a neighboring graph. The algorithm of [?] also always
output a graph but it does not come with metric guaranties. Recently, Bauer, Ge and Wang [?] define a
metric based on the function for Reeb graph and show it is stable under Gromov-Hausdorff distance. The
implementation of our algorithm relies on the Mapper algorithm [?], that provides a way to visualize data
sets endowed with a real valued function as a graph, where the considered function is the distance to the
chosen root point. However, unlike the general Mapper algorithm, our methods provides an upper bound
on the Gromov-Hausdorff distance between the reconstructed graph and the underlying space from which
the data points have been sampled.

In theoretical computer science, there is much of work on approximating metric spaces using trees
[?, ?, ?] or distribution of trees [?, ?] where the trees are often constructed as spanning trees possibly
with Steiner points. Our approach is different as our reconstructed graph or tree is a quotient space of
the original metric space where the metric only gets contracted (see Proposition 4.5). Finally we remark
that the recovery of filament structure is also studied in various applied settings, including road networks
[?, ?], galaxies distributions [?].

The paper is organized as follows. The basic notions and definitions used throughout the paper are
recalled in Section 2. The Reeb and α-Reeb graphs endowed with a natural metric are introduced in
Section ?? and the approximation results are stated and proven in Sections 4.1 and 4.2. Our algorithm is
described in Section 6 and experimental results are presented and discussed in Section 7.

2 Preliminaries

Recall that a metric space is a pair (X, dX) whereX is a set and dX : X×X → R is a non negative map
such that for any x, y, z ∈ X , dX(x, y) = 0 if and only if x = y, dX(x, y) = dX(y, x) and dX(x, z) 6
dX(x, y) + dX(y, z). Two compact spaces (X, dX) and (Y, dY ) are isometric if there exits a bijection
ϕ : X → Y that preserves the distances, namely: for any x, x′ ∈ X, dY (ϕ(x), ϕ(x′)) = dX(x, x′). The
set of isometry classes of compact metric spaces can be endowed with the Gromov-Hausdorff distance
that can be defined using the following notion of correspondence ([?] Def. 7.3.17).

Definition 2.1. Let (X, dX) and (Y, dY ) be two compact metric spaces. Given ε > 0, an ε-correspondence
between (X, dX) and (Y, dY ) is a subset C ⊂ X×Y such that: i) for any x ∈ X there exists y ∈ Y such
that (x, y) ∈ C; ii) for any y ∈ Y there exists x ∈ X such that (x, y) ∈ C; iii) for any (x, y), (x′, y′) ∈ C,
|dX(x, x′)− dY (y, y′)| 6 ε.

Definition 2.2. The Gromov-Hausdorff distance between two compact metric spaces (X, dX) and (Y, dY )
is defined by

dGH(X,Y ) =
1

2
inf{ε > 0 :

there exists an ε-correspondence between X and Y }

A metric space (X, dX) is a path metric space if the distance between any pair of points is equal
to the infimum of the lengths of the continuous curves joining them 1. In the sequel of the paper we

1see [?] Chap.1 for the definition of the length of a continuous curve in a general metric space
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consider compact path metric spaces. It follows from the Hopf-Rinow theorem (see [?] p.9) that such
spaces are geodesic, i.e. for any pair of point x, x′ ∈ X there exists a minimizing geodesic joining them.2

A continuous path δ : I → X where I is a real interval or the unit circle is said to be simple if it is not
self intersecting, i.e. if δ is an injective map.

Recall that a (finite) topological graph G = (V,E) is the geometric realization of a (finite) 1-
dimensional simplicial complex with vertex set V and edge set E. If moreover each 1-simplex e ∈ E
is a metric edge, i.e. e = [a, b] ⊂ R, then the graph G inherits from a metric dG which is the unique
one whose restriction to any e = [a, b] ∈ E coincides with the standard metric on the real segment [a, b].
Then (G, dG) is a metric graph (see [?], Section 3.2.2 for a more formal definition). Intuitively, a metric
graph can be seen as a topological graph with a length assigned to each of its edges.

The first Betti number β1(G) of a finite topological graph G is the rank of the first homology group
of G, or equivalently, the number of edges to remove from G to get a spanning tree.

3 Reeb-type Graph

In this section, we describe a construction to build a Reeb-type graph for approximating the metric space.
Let (X, dX) be a compact geodesic space and let r ∈ X be a fixed base point. Let d : X → R be the
distance function to r, i.e., d(x) = dX(r, x).

The Reeb graph. The relation x ∼ y if and only if d(x) = d(y) and x, y are in the same path connected
component of d−1(d(x)) is an equivalence relation. The quotient space G = X/ ∼ is called the Reeb
graph of d and we denote by π : X → G the quotient map. Notice that π is continuous and as X is
path connected, G is path connected. The function d induces a function d∗ : G → R+ that satisfies
d = d∗ ◦ π. The relation defined by: for any g, g′ ∈ G, g 6G g′ if and only if d∗(g) 6 d∗(g

′) and there
exist a continuous path γ in G connecting g to g′ such that d ◦ γ is non decreasing, makes G a partially
ordered set.

The α-Reeb graphs. Computing or approximating the Reeb graph of (X, d) from a finite set of point
sampled on X is usually a difficult task. To overcome this issue we also consider a variant of the Reeb
graph that shares very similar properties than the Reeb graph. Let α > 0 and let I = {Ii}i ∈ I be a
covering of the range of d by open intervals of length at most α. The transitive closure of the relation
x ∼α y if and only if d(x) = d(y) and x, y are in the same path connected component of d−1(Ii)
for some interval Ii ∈ I is an equivalence relation that is also denoted by ∼α. The quotient space
Gα = X/ ∼α is called the α-Reeb graph3 of d and we denote by π : X → Gα the quotient map. Notice
that π is continuous and asX is path connected, Gα is path connected. The function d induces a function
d∗ : Gα → R+ that satisfies d = d∗ ◦ π. The relation defined by: for any g, g′ ∈ Gα, g 6Gα g

′ if and
only if d∗(g) 6 d∗(g

′) and there exist a continuous path γ in Gα connecting g to g′ such that d ◦ γ is non
decreasing, makes Gα a partially ordered set.

The α-Reeb graph is closely related to the graph constructed by the Mapper algorithm introduced in
[?] making its computation much more easier than the Reeb graph (see Section 6).

Notice that without making assumptions onX and d, in generalG andGα are not finite graphs. However
when the number of path connected components of the level sets of d is finite and changes only a finite
number of times then the Reeb graph turns out to be a finite directed acyclic graph. Similarly, when the
covering of X by the connected components of d−1(Ii), i ∈ I is finite, the α-Reeb graph also turns out
to be a finite directed acyclic graph. This happens in most applications and for example when (X, dX) is
a finite simplicial complex or a compact semialgebraic (or more generally a compact subanalytic space)
with d being semi-algebraic (or subanalytic).

2recall that a minimizing geodesic in X is any curve γ : I → X , where I is a real interval, such that dX(γ(t), γ(t′)) =
|t− t′| for any t, t′ ∈ I .

3strictly speaking we should call it the α-Reeb graph associated to the covering I but we assume in the sequel that some
covering I has been chosen and we omit it in notations
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All the results and proofs presented in Section 4 are exactly the same for the Reeb and the α-Reeb graphs.
In the following paragraph and in Section 4.1,G denotes indifferently the Reeb graph or an α-Reeb graph
for some α > 0. We also always assume that X and d (and α and I) are such that G is a finite graph.
A metric on Reeb and α-Reeb graphs. Let define the set of vertices V of G as the union of the set of
points of degree not equal to 2 with the set of local maxima of d∗ over G, and the base point π(r). The
set of edges E of G is then the set of the connected components of the complement of V . Notice that
π(r) is the only local (and global) minimum of d∗: since X is path connected, for any x ∈ X there exists
a geodesic γ joining r to x along which d is increasing; d∗ is thus also increasing along the continuous
curve π(γ), so π(x) cannot be a local minimum of d∗. As a consequence d∗ is monotonic along the edges
of G. We can thus assign an orientation to each edge: if e = [p, q] ∈ G is such that d∗(p) < d∗(q) then
the positive orientation of e is the one pointing from p to q. Finally, we assign a metric to G. Each edge
e ∈ E is homeomorphic to an interval to which we assign a length equal to the absolute difference of the
function d∗ at two endpoints. The distance between two points p, p′ of e is then |d∗(p) − d∗(p′)|. This
makes G a metric graph (G, dG) isometric to the quotient space of the union of the intervals isometric
to the edges by identifying the endpoints if they correspond to the same vertex in G. Note that d∗ is
continuous in (G, dG) and for any p ∈ G, d∗(p) = dG(π(r), p). Indeed this is a consequence of the
following lemma.

Lemma 3.1. If δ is a path joining two points p, p′ ∈ G such that d∗ ◦ δ is strictly increasing then δ is a
shortest path between p and p′ and dG(p, p′) = d∗(p

′)− d∗(p).

Proof. As d∗ ◦ δ is strictly increasing, when δ enters an edge e by one of its end points, either it exits
at the other end point or it stops at p′ if p′ ∈ e. Moreover δ cannot go through a given edge more than
one time. As a consequence δ can be decomposed in a finite sequence of pieces e0 = [p, p1], e1 =
[p1, p2], · · · , en−1 = [pn−1, pn], en = [pn, p

′] where e0 and en are the segments joining p and p′ to
one of the endpoint of the edges that contain them and e1, · · · , en−1 are edges. So, the length of δ
is equal to (d∗(p1) − d∗(p)) + (d∗(p2) − d∗(p1)) + · · · + (d∗(p

′) − d∗(pn)) = d∗(p
′) − d∗(p) and

dG(p, p′) 6 d∗(p
′)− d∗(p).

Similarly any simple path joining p to p′ can be decomposed in a finite sequence of pieces e′0 =
[p, p′1], e

′
1 = [p′1, p

′
2], · · · , e′k−1 = [p′k−1, p

′
k], e

′
k = [p′k, p

′] where e′0 and e′k are the segments joining p
and p′ to one of the endpoint of the edges that contain them, and e′1, · · · , e′k−1 are edges. Now, as we do
not know that d∗ is increasing along this path, its length is thus equal to |d∗(p′1) − d∗(p)| + |d∗(p′2) −
d∗(p

′
1)|+ · · ·+ |d∗(p′)− d∗(p′n)| > d∗(p

′)− d∗(p). So, dG(p, p′) > d∗(p
′)− d∗(p).

4 Approximation of Metric

4.1 Bounding the Gromov-Hausdorff distance between X and G

The goal of this section is to provide an upper bound of the Gromov-Hausdorff distance between X and
G that only depends on the first Betti number β1(G) of G and the maximal diameter M of the level sets
of π. An upper bound of M is given in the next section.

Theorem 4.1. dGH(X,G) < (β1(G) + 1)M where dGH(X,G) is the Gromov-Hausdorff distance be-
tween X and G, β1(G) is the first Betti number of G and M = supp∈G{diam(π−1(p))} is the supremum
of the diameters of the level sets of π.

Remark that as β1(G) 6 β1(X), from the above theorem, dGH(X,G) is upper bounded by the
quantities depending only on the input X . The proof of Theorem 4.1 is deduced from two propositions
comparing the distances between pairs of points x, y ∈ X and their images π(x), π(y) ∈ G whose
proofs rely on the notion of merging vertex. A vertex v ∈ V is called a merging vertex if it is the
end point of at least two edges e1 and e2 that are pointing to it according to the orientation defined
in Section ??. Geometrically this means that there are at least two distinct connected components of
π−1(d−1∗ (d∗(v) − ε)) that accumulate to π−1(v) as ε > 0 goes to 0. The set of merging vertices is
denoted by Vm. We have
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Lemma 4.2. The cardinality of Vm is at most β1(G) where β1(G) is the rank of the first homology group
of G.

Proof. The result follows from classical homology persistence theory [?]. First remark that, as π(r) is the
only local minimum of d∗, the sublevel sets of the function d∗ : G→ R+ are all path connected. Indeed
if π(x), π(y) ∈ G are in the same sublevel set d−1∗ ([0, α]), α > 0, then the images by π of the shortest
paths in X connecting x to r and y to r are contained in d−1∗ ([0, α]) and their union is a continuous path
joining π(x) to π(y). As a consequence, the 0-dimensional persistence of d∗ is trivial. So as we increase
the α value, no merging vertices serve as connecting two different connected components. Thus, each
merging vertex in Vm creates at least a cycle that never dies asG is one dimensional and does not contain
any 2-dimensional simplex. Thus |Vm| 6 β1(G).

The following lemma show that a shortest path in G is the projection of a shortest path in X as long
as it does not meet a merging vertex and allow to prove proposition 4.4 below.

Lemma 4.3. Let p, p′ ∈ G and let δ : [d∗(p), d∗(p
′)]→ G be a strictly increasing path going from p to p′

that does not contain any point of Vm in its interior. Then for any x′ ∈ π−1(p′)∩cl(π−1(δ(d∗(p), d∗(p′)))
where cl(.) denotes the closure, there exists a shortest path γ connecting a point x of π−1(p) to x′ such
that π(γ) = δ and dX(x, x′) = d(x′)− d(x) = d∗(p

′)− d∗(p) = dG(p, p′).

Proof. First assume that p′ is not a merging point. Let γ0 : [0, d(x′)]→ X be any shortest path between
r and x′ and let γ be the restriction of γ0 to [d∗(p), d(x′)] = [d∗(p), d∗(p

′)]. If the infimum t0 of the set
I = {t ∈ [d∗(p), d∗(p

′)] : π(γ(t′)) ∈ δ, ∀t′ > t} is larger than d∗(p), then π(γ(t0)) then there exists an
increasing sequence (tn) that converges to t0 such that γ(tn) 6∈ δ. As a consequence δ(t0) is a merging
point; a contradiction. So t0 = d∗(p) and γ(d∗(p)) intersects π−1(p) at a point x.

Now if p′ is a merging point, as x′ is chosen in the closure of π−1(δ(d∗(p), d∗(p′)), for any sufficiently
large n ∈ N one can consider a sequence of points x′n ∈ π−1(δ(d∗(p′)− 1/n)) that converges to x′ and
apply the first case to get a sequence of shortest path γn from a point xn ∈ π−1(p) and x′n. Then
applying Arzelà-Ascoli’s theorem (see [?] 7.5) we can extract from γn a sequence of points converging
to a shortest path γ between a point x ∈ π−1(p) and x′.

To conclude the proof, notice that from Lemma 3.1 we have dG(p, p′) = d∗(p
′) − d∗(p) = d(x′) −

d(x). Since γ is the restriction of a shortest path from r to x we also have dX(x, x′) = d(x′)−d(x).

Notice that from Lemma 3.1, δ is a shortest path and the parametrization by the interval [d∗(p), d∗(p
′)]

can be chosen to be an isometric embedding.

Proposition 4.4. For any x, y ∈ X we have

dX(x, y) 6 dG(π(x), π(y)) + 2(β1(G) + 1)M

where M = supp∈G{diam(π−1(p))} and β1(G) is the first Betti number of G.

Proof. Let δ be a shortest path between π(x) and π(y). Remark that except at the points π(x) and π(y)
the local maxima of the restriction of d∗ to δ are in Vm. Indeed as δ is a shortest path it has to be simple,
so if p ∈ δ is a local maximum then p has to be a vertex and δ has to pass through two edges having p as
end point and pointing to p according to the orientation defined in Section ??. So p is a merging point.
Since δ is simple and Vm is finite, δ can be decomposed in at most |Vm| + 1 connected paths along the
interior of which the restriction of d∗ does not have any local maxima. So along each of these connected
paths the restriction of d∗ can have at most one local minimum. As a consequence, δ can be decomposed
in a finite number of continuous paths δ1, δ2, · · · , δk with k 6 2(|Vm| + 1), such that the restriction of
d∗ to each of these path is strictly monotonic. For any i ∈ {1, · · · , k} let pi and pi+1 the end points
of δi with p1 = π(x) and pk+1 = π(y). We can apply Lemma 4.3 to each δi to get a shortest path
γi in X between a point xi ∈ π−1(pi) and a point in yi+1 ∈ π−1(pi+1) such that π(γi) = δi and
dX(xi, yi+1) = dG(pi, pi+1). The sum of the lengths of the paths γi is equal to the sum of the lengths
of the path δi which is itself equal to dG(π(x), π(y)). Now for any i ∈ {1, · · · , k}, since π(xi) = π(yi)
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we have dX(xi, yi) 6M and xi and yi can be connected by a path of length at most M (x1 is connected
to x and yk+1 is connected to y. Gluing these paths to the paths γi gives a continuous path from x to y
whose length is at most dG(π(x), π(y)) + kM 6 dG(π(x), π(y)) + 2(|Vm|+ 1)M . Since from Lemma
4.2, |Vm| 6 β1(G), we finally get that dX(x, y) 6 dG(π(x), π(y)) + 2(β(G) + 1)M .

Proposition 4.5. The map π : X → G is 1-Lipschitz: for any x, y ∈ X we have

dG(π(x), π(y)) 6 dX(x, y).

Proof. Let x, y ∈ X and let γ : I → X be a shortest path from x to y in X where I ⊂ R is a closed
interval. The path π(γ) connects π(x) and π(y) in G.

We first claim that there exists a continuous path Γ contained in π(γ) connecting π(x) and π(y) that
intersects each vertex ofG at most one time. The path Γ can be defined by iteration in the following way.
Let v1, · · · vn ∈ V be the vertices of G that are contained in π(γ) \ {π(x), π(y)} and let Γ0 = π(γ) :
J0 = I → G. For i = 1, · · ·n let t−i = inf{t : Γi−1(t) = vi} and t+i = sup{t : Γi−1(t) = vi} and
define Γi as the restriction of Γi−1 to Ji = Ji−1 \ (t−i , t

+
i ). The path Γi is a connected continuous path

(although Ji is a disjoint union of intervals) that intersects the vertices v1, v2, · · · , vi at most one time.
We then define Γ = Γn : J = Jn → G where J ⊂ I is a finite union of closed intervals. Notice that Γ
is the image by π of the restriction of γ to J and that Γ(t) ∈ {v1, · · · vn} only if t is one of the endpoints
of the closed intervals defining J .

Now, for each connected component [t, t′] of J , γ((t, t′)) is contained in π−1(e) where e is the edge
of G containing Γ([t, t′]). As a consequence,

dG(π(γ)(t), π(γ)(t′)) = |d∗(π(γ)(t)− d∗(π(γ)(t′))|
= |d(γ(t))− d(γ(t′))|.

Recalling that d(γ(t)) = dX(r, γ(t)) and d(γ(t′)) = dX(r, γ(t′)) and using the triangle inequality we
get that |d(γ(t))− d(γ(t′))| 6 dX(γ(t), γ(t′)). To conclude the proof, since γ is a geodesic path we just
need to sum up the previous inequality over all connected components of J :

dX(x, y) >
∑

[t,t′]∈cc(J)

dX(γ(t), γ(t′))

>
∑

[t,t′]∈cc(J)

dG(π(γ)(t), π(γ)(t′)) > dG(π(x), π(y))

where cc(J) is the set of connected components of J .

The proof of Theorem 4.1 now easily follows from Propositions 4.4 and 4.5.

Proof. (of Theorem 4.1) Consider the set C = {(x, π(x)) : x ∈ X} ⊂ X × G. As π is surjec-
tive this is a correspondence between X and G. It follows from Propositions 4.4 and 4.5 that for any
(x, π(x)), (y, π(y)) ∈ C,

|dX(x, y)− dG(π(x), π(y))| 6 2(β1(G) + 1)M

So C is a 2(β1(G) + 1)M -correspondence and dGH(X,G) 6 (β1(G) + 1)M .

4.2 Bounding M

The two following lemmas, proven in Appendix, allow to bound the diameter of the level sets of π.

Lemma 4.6. Let (G, dG) be a connected finite metric graph and let r ∈ G. We denote by dr = dG(r, .) :
G→ [0,+∞) the distance to r. For any edge e ⊂ G, the restriction of dr to e is either strictly monotonic
or has only one local maximum. Moreover the length l = l(e) of e is upper bounded by two times the
difference between the maximum and the minimum of dr restricted to e.

7



r

d− α

4α

B

Figure 1: Tightness of the bound in Lemma 4.7: there are 3 edges of length at most 4α and the diameter
of B is equal to 20α.

Proof. Let l be the length of E and let t 7→ e(t), t ∈ [0, l], be an arc length parametrization of E. Since
E is an edge of G, for t ∈ [0, l] any shortest geodesic γt joining r to e(t) must contain either x1 = e(0)
or x2 = e(l). If it contains x1 then for any t′ < t the restriction of γt between r and e(t′) is a shortest
geodesic containing x1 and if it contains x2 then for any t′ > t the restriction of γt between r and e(t′) is
a shortest geodesic containing x2. Moreover in both cases, the function dr is strictly monotonic along γ.
As a consequence, the set I1 = {t ∈ [0, l] : a shortest geodesic joining r to e(t) contains x1} is a closed
interval containing 0. Similarly the set I2 = {t ∈ [0, l] : a shortest geodesic joining r to e(t) contains x2}
is a closed interval containing l and [0, l] = I1 ∪ I2. Moreover dr is strictly monotonic on e(I1) and on
e(I2). As a consequence I1 ∩ I2 is reduced to a single point t0 that has to be the unique local maximum
of dr restricted to E.

The second part of the lemma follows easily from the previous proof: the minimum of dr restricted
to E is attained either at x1 or x2 and dr(e(t0)) = dr(x1) + t0 = dr(x2) + l − t0 is the maximum of dr
restricted to E. We thus obtain that 2t0 = l + (dr(x2)− dr(x1)). As a consequence if dr(x1) 6 dr(x2)
then l/2 6 t0 = dr(e(t0)) − dr(x1); similarly if dr(x1) > dr(x2) then l/2 6 l − t0 = dr(e(t0)) −
dr(x2).

Proposition 4.7. Let (G, dG) be a connected finite metric graph and let r ∈ G. For α > 0 we denote by
NE(α) the number of edges of G of length at most α. For any d > 0 and any connected component B of
the set Bd,α = {x ∈ G : d− α 6 dG(r, x) 6 d+ α} we have

diam(B) 6 4(2 +NE(4α))α

Proof. Let x, y ∈ B and let t 7→ γ(t) ∈ B be a continuous path joining x to y in B. Let E be an edge of
G that does not contain x or y and with end points x1, x2 such that γ intersects the interior of E. Then
γ−1(E) is a disjoint union of closed intervals of the form I = [t, t′] where γ(t) and γ(t′) belong to the
set {x1, x2}. If γ(t) = γ(t′) we can remove the part of γ between t and t′ and still get a continuous
path between x and y. So without loss of generality we can assume that if γ intersects the interior of
E, then E is contained in γ. Using the same argument as previously we can also assume that if γ goes
across E, it only does it one time, i.e. γ−1(E) is reduced to only one interval. As a consequence, γ can
be decomposed in a sequence [x, v0], E1, E2, ·, Ek, [vk, y] where [x, v0] and [vk, y] are pieces of edges
containing x and y respectively and E1 = [v0, v1], E2 = [v1, v2]·, Ek = [vk−1, vk] are pairwise distinct
edges of G contained in B. It follows from Lemma 4.6 that the lengths of the edges E1, · · ·Ek and
of [x, v0] and [vk, y] are upper bounded by 4α. As a consequence the length of γ is upper bounded by
4(k + 2)α which is itself upper bounded by 4(NE(4α) + 2)α since the edges E1, · · ·Ek are pairwise
distinct. It follows that dG(x, y) 6 4(NE(4α) + 2)α.

The example of the right picture shows that the bound of Lemma 4.7 is tight.

Theorem 4.8. Let (G, dG) be a connected finite metric graph and let (X, dX) be a compact geodesic
metric space such that dGH(X,G) < ε for some ε > 0. Let x0 ∈ X be a fixed point and let dx0 =
dX(x0, .) : X → [0,+∞) be the distance function to x0. Then for d > α > 0 the diameter of any
connected component L of d−1x0 ([d− α, d+ α]) satisfies

diam(L) 6 4(2 +NE(4(α+ 2ε)))(α+ 2ε) + ε
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where NE(4(α + 2ε)) is the number of edges of G of length at most 4(α + 2ε). In particular if α = 0
and 8ε is smaller that the length of the shortest edge of G then diam(L) < 17ε.

Proof. Let ε′ > 0 be such that dGH(X,G) < ε′ < ε. Let C ⊂ X ×G be an ε′-correspondence between
X and G and (x0, r) ∈ C. we denote by dr = dG(r, .) : G → [0,+∞) the distance function to r in G.
Let xa, xb ∈ L and let (xa, ya), (xb, yb) ∈ C. There exists a continuous path γ ⊆ L joining xa to xb.
Since C is an ε′-correspondence for any x ∈ γ there exists a point (x, y) ∈ C such that d − α − ε′ 6
dr(y) 6 d+α+ε′. The set of points y obtained in this way is not necessarily a continuous path from ya to
yb. However one can consider a finite sequence x1 = xa, x2, · · · , xn = xb of points in γ such that for any
i = 1, · · ·n−1 we have dX(xi, xi+1) < ε−ε′. If (xi, yi) ∈ C then we have dG(yi, yi+1) < ε−ε′+ε′ = ε.
As a consequence, since d−α−ε < d−α−ε′ < dr(yi) < d+α+ε′ < d+α+ε the shortest geodesic
connecting yi to yi+1 inG remains in the set d−1r ([d−α−2ε, d+α+2ε]) and connecting these geodesics
for all i = 1, · · · , n − 1 we get a continuous path from ya to yb in d−1r ([d − α − 2ε, d + α + 2ε]). It
then follows from Proposition 4.7 that dG(ya, yb) 66 4(2 +NE(4(α+ 2ε)))(α+ 2ε) and since C is an
ε′-correspondence (and so an ε-correspondence), dX(xa, xb) < 4(2 +NE(4(α+ 2ε)))(α+ 2ε) + ε.

From Theorems 4.8 and 4.1 we obtain the following results for the Reeb and α-Reeb graphs.

Theorem 4.9. Let (X, dX) be a compact connected path metric space, let r ∈ X be a fixed base point
such that the metric Reeb graph (G, dG) of the function d = dX(r, .) : X → R is a finite graph. If for a
given ε > 0 there exists a finite metric graph (G′, dG′) such that dGH(X,G′) < ε then we have

dGH(X,G) < (β1(G) + 1)(17 + 8NE,G′(8ε))ε

where NE,G′(8ε) is the number of edges of G′ of length at most 8ε. In particular if X is at distance less
than ε from a metric graph with shortest edge length larger than 8ε then dGH(X,G) < 17(β1(G) + 1)ε.

Theorem 4.10. Let (X, dX) be a compact connected path metric space. Let r ∈ X , α > 0 and I be a
finite covering of the segment [0,Diam(X)] by open intervals of length at most α such that the α-Reeb
graph Gα associated to I and the function d = dX(r, .) : X → R is a finite graph. If for a given ε > 0
there exists a finite metric graph (G′, dG′) such that dGH(X,G′) < ε then we have

dGH(X,Gα) < (β1(Gα) + 1)(4(2 +NE,G′(4(α+ 2ε)))(α+ 2ε) + ε)

where NE,G′(4(α + 2ε)) is the number of edges of G′ of length at most 4(α + 2ε). In particular if
X is at distance less than ε from a metric graph with shortest edge length larger than 4(α + 2ε) then
dGH(X,Gα) < (β1(Gα) + 1)(8α+ 17ε).

5 Recovery of Topology

In this section, we show the following theorem which asserts that the α-Reeb graph G of (X, d) recovers
some topology of X .

Theorem 5.1. Let (X, dX) be a compact connected path metric space and (G′, dG′) is a metric graph so
that dGH(X,G′) < ε. Let r ∈ X , α > 60ε and I{[0, 2α), (iα, (i+2)α)|1 6 i 6 m} covers the segment
[0,Diam(X)] such that the α-Reeb graph G associated to I and the function d = dX(r, .) : X → R is a
finite graph. If no edges ofG′ is shorter thanL and no loops ofG′ is shorter than 2LwithL > (24α+9ε),
then we have G and G′ are homotopy equivalent.

Since dGH(X,G′) < ε, there exists an ε-correspondence between the two spaces, denotedC(X,G′).
For any subset V ⊂ X , denote C(V ) = {g′ : (x, g′) ∈ C(X,G′), x ∈ V }, and similarly for any
subset U ⊂ G′, denote C(U) = {x : (x, g′) ∈ C(X,G′), g′ ∈ U}. We call C(V ) and C(U) are
the correspondence set of V and U respectively under C(X,G′). Recall that r ∈ X is the root point.
Choose a point gr ∈ C(r) and define a distance function b : G′ → R by b(g) = dG′(gr, g). Let
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N = {gn1 , gn2 , · · · , gnp} be the vertices of G′, i.e., N is the set of vertices whose degree is not equal
to two. From the hypothesis of the above theorem, the distance between any pair of vertices gni , gnj
with i 6= j is larger than L. For convenience, we also add into the vertices of G′ the remaining local
maximal/minimal points of the distance function b, which we denote using M = {gm1 , · · · , gmq}. Note
any newly added vertex gmi ∈M is of degree two. We call the graph G′ before adding the vertices in M
the original G′, and the edges in the original G′ the original edges of G′. An original edge of G′ contains
at most one vertex in M and thus can be splitted into at most two edges in G′.

Our strategy of proving Theorem 5.1 is to construct some open covers for X and G′ and relate the
graph G and the grah G′ to the nerves of the open covers.

5.1 Construction of open cover for X

We start with the following open cover of X . For each Ik ∈ I, denote Vk = d−1(Ik). Vk may have
several connected components, which can be listed in an arbitrary order. Denote V l

k the l-th connected
component of Vk. Then V0 = {V l

k}k,l is an open cover of X . Since at most two elements in I are
overlapped, the nerve of V0, denoted N(V0), is a graph. Moreover by construction N(V0) is homotopy
equivalent to the alpha-Reeb graph G. The following lemma states that any loop in the nerve N(V0) is
large, which is useful for the proof of Theorem 5.1. We say an open set V l1

k1
∈ V0 is lower than the open

set V l2
k2
∈ V0 if k1 < k2 and is higher than V l2

k2
if k2 > k1.

Lemma 5.2. Let V l
k and V i

j are the lowest vertex and the highest vertex of a loop respectively in the
nerve N(V0). Then under the hypothesis of Theorem 5.1, we have j − k > 11.

Proof. Let x1 ∈ V l
k ∩d−1(kα, (k+1)α) and x2 ∈ V i

j ∩d−1((j+1)α, (j+2)α). From the hypothesis of
the lemma, there are two different paths γ1, γ2 connecting x1 to x2 so that γ1∩d−1((k+1)α, (j+1)α) and
γ2∩d−1((k+1)α, (j+1)α) are in the different connected components of d−1((k+1)α, (j+1)α). Choose
gi ∈ G′ from C(xi) for i = 1, 2. By a similar construction in the proof of Theorem 4.8, the path γi in X
for i = 1, 2 traces out a path Li in G′ connecting g1 to g2 so that Li lies in b−1(kα− 2ε, (j + 2)α+ 2ε).
One can verify that L1 and L2 are different and thus form a loop in G′, denoted β. We have b(β) ∈
(kα − 2ε, (j + 2)α + 2ε). We claim the range of any loop, in particular β, under the function b, covers
an interval with the length at least L2 . If the claim holds, then we have (j − k + 2)α + 4ε > L

2 , which
implies j − k > 11 from the hypothesis of Theorem 5.1. Indeed, if β contains at least two vertices in N ,
then it is obvious that the range of β under the function b covers an interval the length at least L2 as any
edge in G′ (before adding the vertices in M ) is longer than L. Now consider the case where β contains
one vertex in N , say ga. If β does not contain gr, then there is exactly one local maximum on β, say
gb. If β contains gr, let gb = gr. The removal of ga and gb cuts β into two pieces. Along either piece,
the function b is monotonic. As the length of β is longer than 2L. We have b(β) covers an interval with
length longer than L. If β contains gr, Finally, if β contains no vertex in N , then G′ is a single loop β
and the claim obviously holds.

In the following, we modify this open cover by merging while preserve the homotopy type of its
nerve. The main purpose of the merging operation is make it easy to relate the open cover of X to the
open cover of G′ constructed in Section 5.2. The merging operation is done in two steps.

For any vertex g ∈ M ∪ N of G′, we construct a connected open set V (g) as the union of a subset
of the open cover V0 as follows. If b(g) > α

2 , then there exists a unique positive integer k′ s.t. k′ α2 6

b(g) < (k′ + 1)α2 . Let k = [k
′+1
2 ] − 1 > 0, and one can verify that (k + 1

2)α 6 b(g) 6 (k + 3
2)α.

Therefore for all x ∈ C(g), d(x) ∈ [(k + 1
2)α − ε, (k + 3

2)α + ε] ⊂ Ik. Moreover C(g) is contained
in V l

k ⊂ Vk for some l. Indeed, if not, assume x1, x2 ∈ C(g) with xi ∈ V i
k for i ∈ {1, 2}. By the

definition of V i
k , the geodesic connecting x1 and x2 must pass through a point x0 outside of Vk, which

means dX(xi, x0) > |d(xi)− d(x0)| > α
2 − ε. Then dX(x1, x2) > α− 2ε which contradicts to the fact

that dX(x1, x2) 6 dG′(g, g) + ε 6 ε. Now we construct the open set V (g) as the union of the elements
in the open cover V0 having non-empty intersection with V l

k , i.e.,

V (g) = ∪V ∈V0 and V ∩V lk 6=∅
V.
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In the case where b(g) < α
2 , we construct the open set V (g) = V0 ∪ V1 = d−1([0, 3α)). Note in both

cases, V (g) is a connected open set of X . We abuse the notation and also denote V (g) the subset of V0
whose union is the open set V (g). What V (g) represents will be clear from the context. For convenience,
we call the V l

k containing C(g) the center of V (g). Note that it is possible that V (g) = V (g′) for two
different vertices g, g′.

Now we obtain an intermediate open cover of X

V = {V (g) : g ∈M ∪N} ∪ {V ∈ V0 : V /∈ V (g)∀g ∈M ∪N}

Note as a set, V does not have duplicated elements, i.e., if V (g) = V (g′) for g 6= g′, then V only contains
one copy of V (g). We call an open set V (g) ∈ V for any g ∈ M ∪ N critical and the remaining ones
regular. The following two lemmas describe the properties of both critical open sets and the regular open
sets.

Lemma 5.3. Under the hypothesis of Theorem 5.1, we have for any vertex g ∈M ∪N ,
i) d(V (g)) ⊂ [sα, (s+ 4)α] for some integer s > 0, and
ii) for any point x ∈ ∪V ∈V0\V (g)V and any gx ∈ C(x) ⊂ G′, dG′(g, gx) > α

2 − 2ε.

Proof. The claim (i) is obvious from the construction of V (g). We now prove claim (ii). In the case where
b(g) < α

2 , for any x ∈ ∪V ∈V0\V (g)V , one have d(x) > 2α and b(gx) > 2α − ε. Thus dG′(g, gx) >
|b(gx) − b(g)| > 2α − ε − α

2 > α
2 − 2ε. Now consider the case where b(g) > α

2 . If d(x) 6∈ Ik, then
dX(x, y) > α

2 − ε for any point y ∈ C(g) from the construction of V (g), which implies dG′(gx, g) >
α
2 − 2ε. Otherwise d(x) ∈ Ik. Then x is not in V l

k and the geodesic from x to any point y ∈ C(g) must
pass x0 /∈ Vk. This implies that dX(x, y) > dX(x0, y) > α

2 −ε and dG′(gx, g) > dX(x, y)−ε > α
2 −2ε.

This proves the lemma.

Lemma 5.4. For any regular open set V ∈ V , V is also an open set in V0. Moreover, it is of degree two
in the nerve of N(V0) with one neighbhoring vertex higher than V and one neighboring vertex lower
than V .

V

Va Vb

l

x1 x2

(j + 2)α

(j + 1)α

Figure 2: V with two lower neighbourhoods.

Proof. We prove the lemma by contradiction. Assume V ∈ V0 \ ∪g∈M∪NV (g) has two neighboring
vertices, say Va, Vb, which are lower than V . Without loss of generality, assume d(V ) ⊂ Ij and d(Va)
and d(Vb) are subsets of Ij−1. Let xa ∈ Va and xb ∈ Vb such that (j − 1)α < d(xa), d(xb) < jα. As Va
and Vb both have non-empty intersection with V , there exist a path in d−1((j − 1)α, (j + 2)α). Now let
l = inf{s : there exists a path connecting xa, xb in d−1((j − 1)α, s]∩ (V ∪ Va ∪ Vb)}. We have l > jα
as Va, Vb are disconnected.

We prove the lemma by contradiction. Assume V ∈ V/ ∪g∈M∪N V (g) has more than one lower
neighbourhood, say, Va, Vb. Without loss of generality, let d(V ) ⊂ Ij , then d(Va) and d(Vb) are Ij−1.
Let xa ∈ Va and xb ∈ Vb such that (j − 1)α < d(xa), d(xb) < (j − 1

2)α, as Va and Vb both have
non-empty intersection with V , there exist a path in d−1((j − 1)α, (j + 2)α). Now let l = inf{ there
is a path connecting xa, xb in d−1((j − 1)α, l] ∩ (V ∪ Va ∪ Vb)}, obviously l > jα otherwise Va, Vb are
connected to each other. Specially we can find two points x1, x2 in the different connected components
of d−1((j − 1)α, l)} such that d(x1) = d(x2) = l − 3.5ε. Therefore x1, x2 are path connected in
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C1

C2

C3

N(V)

C2

C1

C3

N(Ṽ)

Figure 3: N(V) and N(Ṽ).

d−1([l − 3.5ε, l]), on the other hand, the diameter of this component is upper bounded by 31ε, i.e.
dX(x1, x2) 6 31ε. Obviously dX(x1, x2) > 2(l − (l − 3.5ε)) = 7ε. Let (xi, gi) ∈ C(X,G′), then
b(gi) ∈ [l − 4.5ε, l + 2ε] and 6ε 6 dX(x1, x2) − ε 6 dG′(g1, g2) 6 dX(x1, x2) + ε 6 32ε. If the
geodesic contains no node or local maximal point, dG′(g1, g2) = |b(g1)− b(g2)| 6 2ε < 6ε: impossible.
If the geodesic contains more than one node of G′, then the length of the geodesic exceeds L, which
contradicts to dG′(g1, g2) 6 32ε, thus there is at most one node in the geodesic.

Since we can find a path connecting x1 and x2 in d−1([l− 3.5ε, l]), there exists a path connecting g1
and g2 in b−1([l−5.5ε, l+ 2ε]). Now we claim that the geodesic between g1 and g2 must be contained in
the corresponding path in G′: otherwise the path together with the geodesic is a loop in G′, so the length
of the loop is larger than 2L − dG′(g1, g2) > 2L − 32ε, therefore the range of the path in G′ is at least
2L−32ε

2 = L − 16ε > 7.5ε: contradiction. As mentioned before, there must be some critical point(s) in
the geodesic, thus for all the critical point(s) gc, b(gc) ∈ [l − 5.5ε, l + 2ε].

Another observation about the critical point in the geodesic is we can at least find a gc for one of
g1, g2, say, g1, such that dG′(gc, g1) = b(gc) − b(g1). In fact if there is no node on the geodesic, then
g1, g2 are in the same edge ofG′, so there is one and only one critical point, more precisely, local maximal
point gm in that geodesic. Obviously gc = gm and dG′(gc, gi) = b(gc)−b(gi), i = 1, 2. Another possible
case is there is exactly one node gn in the geodesic, then g1 and g2 are in two distinct edges which are
connected by gn respectively. If there is no local maximal point between gi and gn, then b(gn) must be
larger than b(gi), otherwise the geodesic for g1, g2 lies in b−1([l − 5.5ε, l − 2.5ε]), then we can find a
path in X connecting x1, x2 in d−1([l− 7.5ε, l− 0.5ε]): contradiction, thus gc = gn. At last if there is a
local maximal point gm between one of (or both) paths from gi to gn, without loss of generality, from g1
to gn, then dG′(gm, g1) = b(gm)− b(g1), i.e. gc = gm.

WLOG we assume we find gc a critical point in the geodesic between g1, g2 such that dG′(gc, g1) =
b(gc)− b(g1), noticing that the geodesic is contained in b−1([l − 5.5ε, l + 2ε]), thus b(gc) 6 l + 2ε and
dG′(gc, g1) 6 l + 2ε − (l − 4.5ε) = 6.5ε. On the other hand, we can find a point x0 in V ∩ d−1(l)
such that there exists an x′1 satisfies dX(x0, x

′
1) = d(x0) − d(x′1) = 3.5ε. Also we have dX(x1, x

′
1) 6

17ε, then dX(x1, x0) 6 20.5ε and dG′(g0, g1) 6 21.5ε. Finally we got a point x0 ∈ V such that
dG′(g0, gc) 6 6.5ε + 21.5ε = 28ε, however according to the definition of V , for any critical point gc,
dG′(g0, gc) >

α
2 − 2ε > 28ε: contradiction.

Using almost the same argument we can also prove V can not have more than one higher neighbour-
hood. At last if V is of degree 1, then obviously C(V ) is close to some local maximal point, which is
also an impossible situation.

We now perform a second step of merging. Two critical open set V (g1) and V (g2) in N(V) are said
to be close if there is a path in the 1-skeleton of the nerveN(V) connecting V (g1) and V (g2) and passing
through at most one more open set in V . If exists, such open set is said to connect the critical open sets
V (g1) and V (g2). We have the following properties for two critical open sets being close.

Lemma 5.5. i. For any two vertices gn1 , gn2 ∈ N , V (gn1) and V (gn2) can not be close;
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ii. If V (gm1) and V (gm2) are close for any two vertices gm1 , gm2 ∈M , then there must exist a vertex
gn ∈ N such that V (gm1) and V (gm2) are both close to V (gn);

iii. For any gm ∈M , there exists at most one gn ∈ N such that V (gm) and V (gn) are close.

Proof. First we consider two critical points g1, g2 of G′ satisfy dG′(g1, g2) = |b(g1) − b(g2)|, i.e. the
geodesic connecting them is in fact a monotonous path. Now we claim that if dG′(g1, g2) > 5α + 4ε,
then V (g1) and V (g2) are not close. WLOG, assume that b(g1) > b(g2), let the range of the center of
V (g1)/V (g2) is subset to Ij/Ik, one has b(g1) ∈ [(j+ 0.5)α, (j+ 1.5)α], d(x1) ∈ [(j+ 0.5)α− ε, (j+
1.5)α+ε](similar for g2), now dG′(g1, g2) = b(g1)−b(g2) 6 d(x1)+ε−(d(x2)−ε) = d(x1)−d(x2)+2ε,
on the other hand, d(x1) − d(x2) 6 (j + 1.5)α + ε − ((k + 0.5)α − ε) = (j − k + 1)α + 2ε, so
(j − k+ 1)α+ 4ε > 5α+ 4ε, meaning j − k > 4 thus there must be at least two Vr between the centres
of V (g1), V (g2).

Remark 5.6. It seems natural that the shortest path in N(V) from V (g1) and V (g2) are connected via
Vr as the path between g1, g2 are monotonous. I believe it is true but am not sure about the proof. That
is also the obstacle I mentioned before. And if we have that guarantee, then for any two critical points,
we separate the geodesic at the interior critical points and therefore we have a series of monotonous
segments of the geodesic, now if one of the segments is longer than 5α + 4ε, then the path contains at
least two Vr, meaning that V (endpoints) are not close.

The only possible case that g1 and g2 are connected via some other critical point(s), and all of the
segments are not longer than 5α+ 4ε is g1, g2 are two local maximal points connected via a node gn.

i)By assumption, dG′(gn1 , gn2) > L > 10α+ 9α, V (gn1) and V (gn2) are not close;

ii)The geodesic between two local maximal points must contain some node, if not, then the two lo-
cal maximal points are in the same edge of G′, then the restriction of b(g) in this edge has at most one
local maximum, that means gm1 = gm2 . Furthermore, if the geodesic passes more than one node, then
dG′gm1 , gm2 > L > 10α + 9ε, contradicts to V (gm1), V (gm2) are close. Therefore there is only one
node in the geodesic, denote it by gn. In fact we only need to prove that the path connecting the cen-
tres of V (gm1) and V (gm2) must pass the centre of V (gn). Assume intervals Ij , Ik1 , Ik2 well-contains
b(gn), b(gm1), b(gm2):

case 1, if V (gm1), V (gm2) are neither not close to V (gn), that is ki > j+6, specially, ifmax{k1, k2}
is smaller than j + 10, then we are going to find a loop in d−1(jα, (j + 12)α), that contradicts to lemma
??. Thus we have k1 + k2 > j + 6 + j + 11 = 2j + 17, then dG′(gm1 , gm2) > (k1 + k2 − 2j − 2)α =
15α > 10α+ 9ε: impossible.

case 2, if V (gm1) is close to V (gn) while V (gm2) is not. Still we need k2 > j+ 11, at the same time
k1 6 j + 5 as the closeness. Then k2 − k1 > 6, contradicts to the assumption V (gm1) and V (gm2) are
close.

iii)If V (gm) is close to V (gn1) and V (gn2) at the same time, then dG′(gn1 , gn2) 6 dG′(gm, gn1) +
dG′(gm, gn2) 6 20α + 18ε < L, contradicts to the assumption. So any V (gm) can at most close to one
V (gn).

First we claim that if dG′(g1, g2) > 10α+9ε, then V (g1) and V (g2) are not close. Since dG′(g1, g2) 6
10α+ 13ε, the range of any path connecting g1 and g2 is at least 5α+ 6.5ε. On the other hand, if V (g1)
is close to V (g2), then we have the C(g1), C(g2) are connected in d−1((k+ 1

2)α− ε, (k+ 4 + 3
2)α+ ε).

That implies we can find a path from g1 to g2 in b−1((k + 1
2)α− 3ε, (k + 4 + 3

2)α+ 3ε), thus the range
of the path is at most 5α+ 6ε, thus it is not the case.

i)By assumption, dG′(gn1 , gn2) > L > 10α+ 9α, V (gn1) and V (gn2) are not close;

ii)The geodesic between two local maximal points must contain some node, if not, then the two lo-
cal maximal points are in the same edge of G′, then the restriction of b(g) in this edge has at most one
local maximum, that means gm1 = gm2 . Furthermore, if the geodesic passes more than one node, then
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dG′gm1 , gm2 > L > 10α + 9ε, contradicts to V (gm1), V (gm2) are close. Therefore there is only one
node in the geodesic, denote it by gn. In fact we only need to prove that the path connecting the cen-
tres of V (gm1) and V (gm2) must pass the centre of V (gn). Assume intervals Ij , Ik1 , Ik2 well-contains
b(gn), b(gm1), b(gm2):

case 1, if V (gm1), V (gm2) are neither not close to V (gn), that is ki > j+6, specially, ifmax{k1, k2}
is smaller than j + 10, then we are going to find a loop in d−1(jα, (j + 12)α), that contradicts to lemma
??. Thus we have k1 + k2 > j + 6 + j + 11 = 2j + 17, then dG′(gm1 , gm2) > (k1 + k2 − 2j − 2)α =
15α > 10α+ 9ε: impossible.

case 2, if V (gm1) is close to V (gn) while V (gm2) is not. Still we need k2 > j+ 11, at the same time
k1 6 j + 5 as the closeness. Then k2 − k1 > 6, contradicts to the assumption V (gm1) and V (gm2) are
close.

iii)If V (gm) is close to V (gn1) and V (gn2) at the same time, then dG′(gn1 , gn2) 6 dG′(gm, gn1) +
dG′(gm, gn2) 6 20α + 18ε < L, contradicts to the assumption. So any V (gm) can at most close to one
V (gn).

Now we are ready to further merge the open sets in V to obtain the final open cover Ṽ of X as
follows. For any vertex gn ∈ N of G′, Let Ṽ (gn) be the subset of V consisting of (1) V (gn), and (2) any
critical open set V (g) ∈ V for any g ∈ M which is close to V (gn), and (3) any regular open set V ∈ V
connecting V (gn) and some critical open set. We abuse the notation and also denote Ṽ (gn) the open set
of the union of the open sets in Ṽ (gn). What Ṽ (gn) represents will be clear from the context.

Let ṼN = {V ∈ V : V ∈ Ṽ (gn) for some gn ∈ N}. The open cover Ṽ = Ṽ1∪Ṽ2∪Ṽ3 of X consists
of three types of open sets:

(1) Ṽ1 = {Ṽ (gn) : gn ∈ N};

(2) Ṽ2 = {V (g) : g ∈M and V (g) /∈ ṼN}

(3) Ṽ3 = {V ∈ V : V is regular and V /∈ ṼN}.

We summarize the properties for the open cover Ṽ in the following corollary, which follows from
Lemma 5.3, Lemma 5.4, and Lemma 5.5.

Corollary 5.7. The open sets in Ṽ satisfy the following properties.

• Ṽ (g1) and Ṽ (g2) are disjoint for two different g1, g2 ∈ N .

• For any two open sets V1, V2 ∈ Ṽ1 ∪ Ṽ2, any path in the 1-skeleton of the nerve N(Ṽ) connecting
V1, V2 consists of at least two elements from Ṽ3.

• Any open set V ∈ Ṽ3 is also an open set in V0. It is of degree two in the 1-skeleton of the
nerve N(Ṽ) with one neighboring vertex lower than V and one neighboring vertex higher than V .
Moreover any point g ∈ C(V ) ⊂ G′ is at least α2 − 2ε away from any vertex of G′.

Proposition 5.8. Under the hypothesis of Theorem 5.1, N(Ṽ) and N(V0) are homotopy equivalent.

Proof. Figure 3 shows an example of N(V0) and N(Ṽ). We obtain the open covering Ṽ by merging
some particular open sets in V0.

It suffices to prove that all sub-complex of form Ci is a tree in N(V). If Ci = V (gc), gc ∈ M ∪N ,
than the range of d(x) restricted in Ci is at most 4α. Otherwise Ci is obtained by combining all the
V (gm)′s that close to some V (gn). Assume I1 = (kα, (k + 2)α), I2 = (jα, (j + 2)α) well contain
V (gn) and V (gm) respectively(i.e. b(gn) and b(gm) are in the middle part of the two intervals), if
I2 is higher than I1, since they are close, j − k 6 4. Other if I2 is lower than I1, it is impossible
k − j > 1, otherwise b(gn) > (k + 1

2)α > (j + 2 + 1
2α) > (j + 3

2)α + α > b(gm) + α, thus
b(gn) > b(gm) + α > b(gm). That means the geodesic from gn to gm must contains some other node
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Figure 4: The upper bound of the range of Ci.

in G′, therefore dG′(gn, gm) > L, V (gn) and V (gm) can not be close. To conclude, the range of d(x)
restricted to Ci is at most 9α. According to lemma ??, it contains no loop in N(V), so it is a tree in
N(V).

Since N(Ṽ) is obtained by collapsing the sub-complex Ci of N(V). Without loss of generality, we
can collapse one Ci at one time, following the proposition ??, N(V) ' N(V)/Ci, the number of Ci is
finite, so at the end we get N(V) ' N(Ṽ).

5.2 Construction of open cover for G′

In this section, we construct an open cover G′ based on the open cover Ṽ of X . For a open set V ∈ V0,
we construct a connected open set UV ∈ G′ so that C(V ) ∈ UV as follows. Let l = min{d(V )} and
u = max{d(V )}. We have u − l 6 2α. Let U = b−1([u + 2ε, l − 2ε]), and then C(V ) ⊂ U . Since
u − l + 4ε < 2α + 4ε < L

4 , one can verify that there is no loop in U and thus U consists of a set of
trees. We claim C(V ) is contained in one of the trees. Indeed, for any two g1, g2 ∈ C(V ), we have
l − ε < b(g1), b(g2) < u + ε. Now let xi ∈ V so that gi ∈ C(xi) for i = 1, 2. Let γ be a path in
V connecting x1 and x2. Using an argument in the proof of Theorem 4.8, γ can trace out a path in U
connecting g1 and g2, which implies that C(V ) is contained in a tree in U . Let UV denote that tree. Let
U0 = {UV : V ∈ V0}. It is obvious that U0 is an open cover of G′. We now merge the elements in U0
to construct a new open cover according to the way in which the elements in V0 are merged to obtain Ṽ .
Specifically, from our construction of Ṽ , any open set Ṽ ∈ Ṽ is the union of a subset of open sets of V0.
We also denote this subset using Ṽ . Let UṼ = {UV : V ∈ Ṽ ⊂ V0}. We also denote UṼ is the open set
of the union of open sets in UṼ .

Consider an open set Ṽ ∈ Ṽ3. As it is also a regular open set in V and thus an open set in V0,
d(Ṽ ) = (pα, (p + 2)α) for some integer p > 0. From Corollary 5.7, any point in C(Ṽ ) is at least
α
2 − 2ε away from any vertex in M ∪ N and any point in UṼ is at least α2 − 4ε away from any vertex
in M ∪ N . Thus UṼ is a segment in G′ without any branches. We shrink UṼ to obtain a new open set
ŨṼ = UṼ ∩ b−1(pα+ 2ε, (p+ 2)α− 2ε). For any open set Ṽ ∈ Ṽ1 ∪ Ṽ2, let ŨṼ = UṼ . Thus we obtain

Ũ = {ŨṼ : Ṽ ∈ Ṽ}.

One can verify that Ũ is an open cover of G′. Moreover we have the following two lemmas which relate
the nerve N(Ṽ) to G′.

Proposition 5.9. Under the hypothesis of Theorem 5.1, the nerve N(Ṽ) and the nerve N(Ũ) are isomor-
phic as graph.

Proof. It suffices to prove the following three claims.
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• Claim (i): For any two Ṽi, Ṽj ∈ Ṽ1 ∪ Ṽ2, ŨṼi ∩ ŨṼj = ∅.

Any path in N(Ṽ) connecting Ṽi and Ṽj must pass through at least two open sets in Ṽ3, which
are regular open sets in V . From Lemma ??, any regular set has two neighbors in the nerve N(V)
one lower and one higher, WLOG, assume Ṽi is higher than Ṽj . We have inf{d(x) : x ∈ Ṽi} >
α + sup{d(x)|x ∈ Ṽi}, which implies inf{b(g)|g ∈ ŨṼi} > α + sup{b(g)|g ∈ ŨṼj} − 2ε >

sup{b(g)|g ∈ ŨṼj}. Thus ŨṼi ∩ ŨṼj = ∅.

• Claim (ii): For any two Ṽi, Ṽj ∈ Ṽ3, Ṽi ∩ Ṽj = ∅ if and only if ŨṼi ∩ ŨṼj = ∅.

If Ṽi ∩ Ṽj 6= ∅, assume Ṽi is the only neighboring vertex in the nerve N(V) higher than Ṽj . Let
d(Ṽj) = (pα, (p+ 2)α and d(Ṽi) = ((p+ 1)α, (p+ 3)α). Choose a point x from Ṽi ∩ Ṽj so that
d(x) = (p+ 3

2)α). We have C(x) ∈ ŨṼicapŨṼj , which shows ŨṼi ∩ ŨṼj 6= ∅.

If Ṽi ∩ Ṽj = ∅. Let d(Ṽi) = (pα, (p + 2)α) and d(Ṽi) = (qα, (q + 2)α). If |p − q| > 2, it
is obvious that ŨṼicapŨṼj = ∅. Now assume that q − p 6 1, which forces the shortest path

connecting Ṽi and Ṽj in N(Ṽ) must pass through some open set Ṽ ∈ Ṽ1 ∪ Ṽ2. By Lemma ??,
dG′(C(Ṽi), g) > α

2 − 2ε and dG′(C(Ṽj), g) > α
2 − 2ε for any vertex g ∈ M ∪ N such that

V (g) ∈ Ṽ . Thus dG′(C(Ṽi), C(Ṽj)) > α− 4ε, which implies ŨṼi ∩ ŨṼj = ∅.

• Claim (iii): For any Ṽi ∈ Ṽ1 ∪ Ṽ2 and any Ṽj ∈ Ṽ3, Ṽi ∩ Ṽj = ∅ if and only if ŨṼi ∩ ŨṼj = ∅.

First assume that Ṽi and Ṽj have a non-empty intersection. As Ṽj ∈ Ṽ3, it is a regular open set
in (V ) which has one higher neighering vertex and one lower neighboring vertex in N((V )). Let
d(Ṽj) = (pα, (p+2)α) for some integer p > 0. Ṽi is a subset of open sets in V0. Let V ∈ Ṽi be the
open set in V0 so that V ∩ Ṽj 6= ∅. WLOG, assume d(V ) ⊂ ((p+1)α, (p+3)α). In fact, we claim
d(V ) = ((p+ 1)α, (p+ 3)α). If not, one can verify that V is the center of an open set V (g) ∈ V
from some vertex g of G′. This is impossible as Ṽj being a regular open set can not intersect with
the center of V (g) for any g. we choose a point in x ∈ Ṽj ∩ V so that d(x) = ((p + 2)α − 4ε).
Since b(C(x)) ⊂ ((p+ 2)α− 5ε, (p+ 2)α− 3ε), C(x) ∈ ŨṼj ∩ ŨṼi and thus ŨṼi ∩ ŨṼj 6= ∅.

Second assume Ṽi ∩ Ṽj = ∅. If any path in the nerve N(Ṽ) connecting Ṽi and Ṽj passes through
some open set in Ṽ1 ∪ Ṽ2, then we are done based on Claim (i). Now assume there is a path β in
the nerve N(Ṽ) connecting Ṽi and Ṽj only passing through open sets in Ṽ3. Since any open set
in Ṽ3 is a regular set in V , the worst scenery is that β contains no intermediate open sets. In this
worst scenery, due to the shrinking operation on ŨṼj , one can verify that ŨṼi ∩ ŨṼj = ∅.

Proposition 5.10. Under the hypothesis of Theorem 5.1, N(Ũ) is homotopy equivalent to G′.

Proof. As we have proved, Ũ is an open covering of G′. Since any edge on the original G′ has a length
longer than L, one can verify that any element of Ũ contains no loop and thus is a tree, and in particular
is contratible. Furthermore, the union of any two elements of Ũ does not contains a loop. This means
that if two elements of Ũ intersect with each other, their intersection is connected and thus contractible.
Following from Nerve lemma, we have N(Ũ) is homotopy equivalent to G′.

Proof of Theorem 5.1. The theorem follows from Proposition 5.8, Proposition 5.9, Proposition 5.10
and the fact that the nerve N(V0) is homotopy equivalent to the α-Reeb graph G.

6 Algorithm

In this section, we describe an algorithm for computing α-Reeb graph for some α > 0. We assume the
input of the algorithm includes a neighboring graph H = (V,E), a function l : E → R+ specifying the
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Figure 5: Illustration of the different steps of the algorithm for computing α-Reeb graph. In the disjoint
union of copies of intervals, the subintervals marked with same labels are identified in the α-Reeb graph.

edge length and a parameter α. In the applications where the input is given as a set of points together
with pairwise distances, i.e., a finite metric space, one can generate the neighboring graph H as a Rips
graph of the input points with the parameter chosen as a fraction of α. We assume H is connected as one
can apply the algorithm to each connected component otherwise.

Our algorithm, whose different steps are illustrated on Figure 5, can be described as follows. In
the first step, we fix a node of H as the root r and then obtain the distance function d : V → R+ by
computing d(v) as the graph distance from the node v to r. In the second step, we apply the Mapper
algorithm [?] to the nodes V with filter d to construct a graph G̃. Specifically, let I = {(iα, (i +
1)α), ((i+ 0.5)α, (i+ 1.5)α)|0 6 i 6 m} so that ∪Ik∈IIk covers the range of the function d. We say an
interval Ik1 ∈ I is lower than another interval Ik2 ∈ I if the midpoint of Ik1 is smaller than that of Ik2 .
Now let Hk be the subgraph of H restricted to Vk = d−1(Ik). Namely two nodes in Hk are connected
with an edge if they are in H . Notice that each subgraph Hk may have several connected components,
which can be listed in an arbitrary order. Denote H l

k the l-th connected component of Hk and V l
k its set

of nodes. Then of {V l
k}k,l is a cover of V and the graph G̃ constructed by the Mapper algorithm is the

1-skeleton of the nerve of that cover. Namely, each node in G̃ represents an element in {V l
k}k,l, i.e., a

subset of nodes in V . Two nodes V l1
k1

and V l2
k2

are connected with an edge if V l1
k1
∩ V l2

k2
6= ∅.

In the final step, we represent each node V l
k in G̃ using a copy of the interval Ik. As mentioned

in the Section ??, α-Reeb graph is a quotient space of the disjoint union of those copies of intervals.
Specifically, for an edge in G̃, let V l1

k1
and V l2

k2
be its endpoints. Then Ik1 and Ik2 must be partially

overlapped. We identify the overlap part of these two intervals. After identifying the overlapped intervals
for all edges in G̃, the resulting quotient space is the α-Reeb graph. Algorithmically, the identification is
performed as follows. We split each copy of internal Ik into two by adding a point in the middle. Now
think of it as a graph with two edges and label one of them upper and the other lower. Notice that two
overlapped intervals Ik1 and Ik2 can not be exactly the same. One must be lower than the other. To
identify their overlapped part, we identify the upper edge of the lower interval with the lower edge of the
upper interval.

The time complexity of the above algorithm is dominated by the computation of the distance function
in the first step, which is O(|E| + |V | log |V |). The computation of the connected components in the
second step is O(|V | log |V |) based on union-find data structure. In the final step, there are at most
O(|V |) number of the copies of the intervals. Based on union-find data structure, the identification can
also be performed in O(|V | log |V |) time.
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(a) (b)

Figure 6: (a) The distance functions d on each connected components. The value increases from cold to
warm colors. (b) The reconstructed α-Reeb graph.

7 Experiments

In this section, we illustrate the performances of our algorithm on three different data sets. The first
data set was obtained from USGS Earthquake Search [?]. It consists of earthquakes epicenters locations
collected, between 01/01/1970 and 01/01/2010, in the rectangular area between latitudes -75 degrees
and 75 degrees and longitude -170 degrees and 10 degrees, and of magnitude greater than 5.0. This
raw earthquake data set contains the coordinates of the epicenters of 12790 earthquakes that are mainly
located around geological faults. We follow the procedure described in [?] to remove outliers and
randomly sampled 1600 landmarks. Finally, we computed a neighboring graph from these landmarks
with parameter 4. The length of an edge in this graph is the Euclidean distance between its endpoints.
For each connected component, we fix a root point and compute the graph distance function d to the
root point as shown in Figure 6(a). We also set α equals 4 and apply our algorithm to the above data
to obtain the α-Reeb graph. In general α-Reeb graph is an abstract metric graph. In this example, for
the purpose of visualization, we use the coordinates of the landmarks to embed the graph into the plane
as follows. Recall that for a copy of interval Ik representing the node V l

k in G̃, we split it into two by
adding a point in the middle. We embed the endpoints of the interval to the landmarks of the minimum
and the maximum of the function d in V l

k , and the point in the middle to the landmark of the median
of the function d in V l

k . Figure 6(b) shows the embedding of the α-Reeb graph. Note this embedding
may introduce metric distortion, i.e., the Euclidean length of the edge may not reflect the length of the
corresponding edge in the α-Reeb graph.

The second data set is that of 500 GPS traces tagged “Moscow” from OpenStreetMap [?]. Since cars
move on roads, we expect the locations of cars to provide information about the metric graph structure
of the Moscow road network. We first selected a metric ε-net on the raw GPS locations with ε =
0.0001 using furthest point sampling. Then, we computed a neighboring graph from the samples with
parameter 0.0004. Again for each connected component, we fix a root point and compute the graph
distance function d to the root point as shown in Figure 7(a). Set α also equals 0.0004 and compute the
α-Reeb graph. Again, we use the same method as above to embed the α-Reeb graph into the plane, as
shown in Figure 7(b).

To evaluate the quality of our α-Reeb graph for each data set, we computed both original pairwise
distances, and pairwise distances approximated from the constructed α-Reeb graph. For GPS traces, we
randomly select 100 points as the data set is too big to compute all pairwise distances. We also evaluated
the use of α-Reeb graph to speed up distance computations by showing reductions in computation time.
Only pairs of points in the same connected component are included because we obtain zero error for
the pairs of vertices that are not. Statistics for the size of the reconstructed graph, error of approximate
distances, and reduction in computation time are given in Table 1.
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Figure 7: (a) The distance functions d on each connected components. The value increases from cold to
warm colors. (b) The reconstructed α-Reeb graph.

#OP #OE #N #E GRT ODT ADT Mean Median
GPS traces 82541 313415 21644 21554 46.8 15.27 0.96 6.5% 5.3%
Earthquake 1600 26996 147 137 0.32 1.12 0.01 14.1% 12.5%

Table 1: #OP (#OE, #N, #E) stands for the number of original points (original edges, nodes, edges in α-
Reeb graph). The graph reconstruction time (GRT) is the total time of computing distance function and
reconstructing the graph. The original (ODT), respectively approximate (ADT), distance computation
time shows the total time of computing these distances using the original, respectively reconstructed,
graph. All times are in seconds. The last two columns show the mean and median metric distortions.

The third data set we consider is also obtained from GPS traces. Roads are often split so that cars in
different directions run in different lanes. In particular, this is the true for highways. In addition, when
two roads cross in GPS coordinates, they may bypass through a tunnel or an evaluated bridge and thus
the road network itself may not cross. Such directional information is contained in the GPS traces. We
encode this directional information by stacking several consecutive GPS coordinates to form a point in
a higher dimensional space. In this way, we obtain a new set of points in this higher dimension space.
Then we build a neighboring graph for this new set of points based on L2 norm and apply our algorithm
to recover the road network. In particular, although the paths intersect at the cross in GPS coordinates,
the road network does not and this should be detected by our algorithm. To test the above strategy, we
extract those GPS traces from the above “Moscow” dataset which pass through a highway crossing as
shown in Figure 8(a). Since GPS records the position based on time, we resample the traces so that the
distances between any two consecutive samples is the same among all traces. Then we apply the above
algorithm to the resampled traces. Figure 8(c) and (d) show the reconstructed graph which recovers the
road network of this highway crossing.

8 Discussion

We have proposed a method to approximate path metric spaces using metric graphs with bounded
Gromov-Hausdorff distortion, and illustrated the performances of our method on a few data sets. Here
we point out a few possible directions for future work. First, notice that the α-Reeb graph is a quotient
space where the quotient map is 1-Lipschitz and thus the metric only gets contracted. In addition, the
distance from a point to the chosen root is exactly preserved. Therefore, one always reduces the metric
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Figure 8: (a) GPS traces passing through a highway crossing in Moscow . (b) The distance function. (c)
and (d)The reconstructed α-Reeb graph viewed from two perspectives.

distortion by taking the maximum of the graph metrics of different root points. It is interesting to study
the strategy of sampling root points to obtain the smallest metric distortion with the fixed number of root
points. Second, our method is sensitive to the noise. One can preprocess the data and remove the noise
and then apply our algorithm. Nevertheless, it is interesting to see if the algorithm can be improved to
handle noise.
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