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ABSTRACT

In many real-world applications data appear to be sampled around
1-dimensional filamentary structures that can be seen as topological
metric graphs. In this paper we address the metric reconstruction
problem of such filamentary structures from data sampled around
them. We prove that they can be approximated, with respect to
the Gromov-Hausdorff distance by well-chosen Reeb graphs (and
some of their variants) and we provide an efficient and easy to im-
plement algorithm to compute such approximations in almost linear
time. We illustrate the performances of our algorithm on a few data
sets.

Categories and Subject Descriptors

1.3.5 [Computing Methodologies]: Computer Graphics—Compu-
tational Geometry and Object Modeling
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1. INTRODUCTION

Motivation. With the advance of sensor technology, computing
power and Internet, massive amounts of geometric data are being
generated and collected in various areas of science, engineering
and business. As they are becoming widely available, there is a
real need to analyze and visualize these large scale geometric data
to extract useful information out of them. In many cases this data
is not embedded in Euclidean spaces and come as (finite) sets of
points with pairwise distances information, i.e. (discrete) metric
spaces. A large amount of research has been done on dimension-
ality reduction, manifold learning and geometric inference for data
embedded in, possibly high dimensional, Euclidean spaces and as-
sumed to be concentrated around low dimensional manifolds [6,
31, 36]. However, the assumption of data lying on a manifold may
fail in many applications. In addition, the strategy of represent-
ing data by points in Euclidean space may introduce large metric
distortions as the data may lie in highly curved spaces, instead of
in flat Euclidean space raising many difficulties in the analysis of
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metric data. In the past decade, with the development of topological
methods in data analysis, new theories such as topological persis-
tence (see, for example, [22, 38, 9, 10]) and new tools such as the
Mapper algorithm [35] have given rise to new algorithms to extract
and visualize geometric and topological information from metric
data without the need of an embedding into an Euclidean space.
In this paper we focus on a simple but important setting where the
underlying geometric structure approximating the data can be seen
as a branching filamentary structure i.e., more precisely, as a met-
ric graph which is a topological graph endowed with a length as-
signed to each edge. Such structures appear naturally in various
real-world data such as collections of GPS traces collected by ve-
hicles on a road network, earthquakes distributions that concentrate
around geological faults, distributions of galaxies in the universe,
networks of blood vessels in anatomy or hydrographic networks in
geography just to name a few. It is thus appealing to try to capture
such filamentary structures and to approximate the data by metric
graphs that will summarize the metric and allow convenient visu-
alization. Contribution. In this paper we address the metric re-

construction problem for filamentary structures. The input of our
method and algorithm is a metric space (X, dx ) that is assumed to
be close with respect to the so-called Gromov-Hausdorff distance
d¢m to a much simpler, but unknown, metric graph (G’, dg+). Our
algorithm outputs a metric graph (G, d¢) that is proven to be close
to (X, dx). Our approach relies on the notion of Reeb graph (and
some variants of it introduced in Section 3.1) and one of our main
theoretical result can be stated as follows.

Theorem 3.10. Ler (X,dx) be a compact connected geodesic
space, let r € X be a fixed base point such that the metric Reeb
graph (G, dg) of the function d = dx(r,.) : X — Risa fi-
nite graph. If for a given € > 0 there exists a finite metric graph
(G',dg) such that dgu (X, G') < € then we have

dan(X,G) < 2(1(G) + 1) (17 + 8Np. (8¢))e

where N g1 (8€) is the number of edges of G’ of length at most 8¢
and B1(QG) is the first Betti number of G, i.e. the number of edges
to remove from G to get a spanning tree. In particular if X is at
distance less than € from a metric graph with shortest edge larger
than 8¢ then dau (X, G) < 34(51(G) + 1)e.

Note that 81 (G) < B1(X) and thus dew (X, G) is upper bounded
by the quantities depending only on the input X . To turn this result
into a practical algorithm we address two issues:

(1) Raw data usually do not come as geodesic spaces. They
are given as discrete sets of point (and thus not connected metric
spaces) sampled from the underlying space (X, dx ). Moreover in
many cases only distances between nearby points are known. A
geodesic space (see Section 2 for a definition of geodesic space)



can then be obtained from these raw data as a neighborhood graph
where nearby points are connected by edges whose length is equal
to their pairwise distance. The shortest path distance in this graph is
then used as the metric. In our experiments we use this new metric
as the input of our algorithm. The question of the approximation of
the metric on X by the metric induced on the neighborhood graphs
is out of the scope of this paper.

(2) Approximating the Reeb graph (G, d¢) from a neighborhood
graph is usually not obvious. If we compute the Reeb graph of
the distance function to a given point defined on the neighborhood
graph we obtain the neighborhood graph itself and do not achieve
our goal of representing the input data by a simple graph. See Ta-
ble 1. It is then appealing to build a two dimensional complex hav-
ing the neighborhood graph as 1-dimensional skeleton and use the
algorithm of [29, 33] to compute the Reeb graph of the distance to
the root point. Unfortunately adding triangles to the neighborhood
graph may widely change the metric between the data points on the
resulting complex and significantly increase the complexity of the
algorithm. We overcome this issue by introducing a variant of the
Reeb graph, the a-Reeb graph, inspired from [35] and related to
the recently introduced notion of graph induced complex [17], that
is easier to compute than the Reeb graph but also comes with ap-
proximation guarantees (see Theorem 3.11). As a consequence our
algorithm runs in almost linear time (see Section 4).

Related work. Approximation of data by 1-dimensional geomet-
ric structures has been considered by different communities. In
statistics, several approaches have been proposed to address the
problem of detection and extraction of filamentary structures in
point cloud data. For example Arial-Castro et al [4] use multiscale
anisotropic strips to detect linear structure while [25, 27] and more
recently [26] base their approach upon density gradient descents
or medial axis techniques. These methods apply to data corrupted
by outliers embedded in Euclidean spaces and focus on the infer-
ence of individual filaments without focus on the global geometric
structure of the filaments network.

In computational geometry, the curve reconstruction problem
from points sampled on a curve in an euclidean space has been
extensively studied and several efficient algorithms have been pro-
posed [3, 15, 16]. Unfortunately, these methods restricts to the case

of simple embedded curves (without singularities or self-intersections)

and hardly extend to the case of topological graphs. In a more in-
trinsic setting where data come as finite abstract metric spaces, [1]
propose an algorithm that outputs a topologically correct (up to a
homeomorphism) reconstruction of the approximated graph. How-
ever this algorithm requires some tedious parameters tuning and
relies on quite restrictive sampling assumptions. When these con-
ditions are not satisfied, the algorithm may fail and not even outputs
a graph. Compared to the algorithm of [1], our algorithm not only
comes with metric guarantees but also whatever the input data is,
it always outputs a metric graph and does not require the user to
choose any parameters. Closely related to our approach is the data
skeletonization algorithm proposed in [24] that computes the Reeb
graph of an approximation of the distance function to a root point
on a 2-dimensional complex built on top of the data whose size
might be significantly larger than a neighboring graph. The algo-
rithm of [24] also always output a graph but it does not come with
metric guaranties. Recently, Bauer, Ge and Wang [5] define a met-
ric based on the function for Reeb graph and show it is stable under
Gromov-Hausdorff distance. The implementation of our algorithm
relies on the Mapper algorithm [35], that provides a way to visual-
ize data sets endowed with a real valued function as a graph, where
the considered function is the distance to the chosen root point.
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However, unlike the general Mapper algorithm, our methods pro-
vides an upper bound on the Gromov-Hausdorff distance between
the reconstructed graph and the underlying space from which the
data points have been sampled.

In theoretical computer science, there is much of work on ap-
proximating metric spaces using trees [8, 2, 13] or distribution of
trees [19, 23] where the trees are often constructed as spanning
trees possibly with Steiner points. Our approach is different as our
reconstructed graph or tree is a quotient space of the original metric
space where the metric only gets contracted (see Proposition 3.6).
Finally we remark that the recovery of filament structure is also
studied in various applied settings, including road networks [12,
37], galaxies distributions [14].

The paper is organized as follows. The basic notions and defini-
tions used throughout the paper are recalled in Section 2. The Reeb
and a-Reeb graphs endowed with a natural metric are introduced
in Section 3.1 and the approximation results are stated and proven
in Sections 3.2 and 3.3. Our algorithm is described in Section 4 and
experimental results are presented and discussed in Section 5.

2. PRELIMINARIES

Recall that a metric space is a pair (X, dx) where X is a set
and dx : X X X — R is a non negative map such that for any
z,y,2 € X, dx(z,y) = 0if and only if z = y, dx(z,y) =
dx(y,z) and dx(z,z) < dx(z,y) + dx(y,z). Two compact
spaces (X,dx) and (Y, dy) are isometric if there exits a bijec-
tion ¢ : X — Y that preserves the distances, namely: for any
z,x' € X,dy(¢(z),p(x')) = dx(z,z'). The set of isometry
classes of compact metric spaces can be endowed with the Gromov-
Hausdorff distance that can be defined using the following notion
of correspondence ([7] Def. 7.3.17).

DEFINITION 2.1. Let (X, dx ) and (Y, dy) be two compact met-
ric spaces. Given € > 0, an e-correspondence between (X, dx)
and (Y,dy) is a subset C C X X Y such that: i) for any x € X
there exists y € Y such that (z,y) € C; ii) forany y € Y there
exists v € X such that (z,y) € C, iii) forany (z,y), (z',y") € C,
dx (2, 2) — dy (4, 4')] < &

DEFINITION 2.2. The Gromov-Hausdorff distance between two
compact metric spaces (X, dx) and (Y, dy) is defined by

den(X,Y) = %inf{a >0:

there exists an e-correspondence between X and Y }

A metric space (X, dx) is a path metric space if the distance
between any pair of points is equal to the infimum of the lengths
of the continuous curves joining them '. In the sequel of the paper
we consider compact path metric spaces. It follows from the Hopf-
Rinow theorem (see [28] p.9) that such spaces are geodesic, i.e. for
any pair of point z, z’ € X there exists a minimizing geodesic join-
ing them.? A continuous path § : T — X where I is a real interval
or the unit circle is said to be simple if it is not self intersecting, i.e.
if § is an injective map.

Recall that a (finite) topological graph G = (V, E) is the ge-
ometric realization of a (finite) 1-dimensional simplicial complex
with vertex set V' and edge set E. If moreover each 1-simplex

Tsee [28] Chap.1 for the definition of the length of a continuous
curve in a general metric space

’recall that a minimizing geodesic in X is any curve vy : T — X,
where T is a real interval, such that dx (y(t),y(t')) = |t — ¢'| for
any t,t' € I.



e € E is a metric edge, i.e. ¢ = [a,b] C R, then the graph G in-
herits from a metric de which is the unique one whose restriction
to any e = [a,b] € E coincides with the standard metric on the
real segment [a, b]. Then (G, d¢) is a metric graph (see [7], Sec-
tion 3.2.2 for a more formal definition). Intuitively, a metric graph
can be seen as a topological graph with a length assigned to each
of its edges.

The first Betti number ($1(G) of a finite topological graph G is
the rank of the first homology group of G, or equivalently, the num-
ber of edges to remove from G to get a spanning tree.

3. APPROXIMATION

Let (X, dx) be a compact geodesic space and let r € X be a
fixed base point. Let d : X — R be the distance function to r, i.e.,
d(z) = dx(r,z).

3.1 The Reeb and «-Reeb graphs of ¢

The Reeb graph. The relation z ~ y if and only if d(z) = d(y)
and z,y are in the same path connected component of d~* (d(z))
is an equivalence relation. The quotient space G = X/ ~ is called
the Reeb graph of d and we denote by m : X — G the quotient
map. Notice that 7 is continuous and as X is path connected, G is
path connected. The function d induces a function d. : G — Ry
that satisfies d = d. o. The relation defined by: for any g, ¢’ € G,
g <c ¢  if and only if d..(g) < d«(g’) and there exist a continuous
path v in G connecting g to g’ such that d o y is non decreasing,
makes G a partially ordered set.
The a-Reeb graphs. Computing or approximating the Reeb graph
of (X, d) from a finite set of point sampled on X is usually a diffi-
cult task. To overcome this issue we also consider a variant of the
Reeb graph that shares very similar properties than the Reeb graph.
Let > O and let Z = {I;}; € I be a covering of the range of d
by open intervals of length at most «. The transitive closure of the
relation x ~ y if and only if d(x) = d(y) and x, y are in the same
path connected component of d~*(I;) for some interval I; € T is
an equivalence relation that is also denoted by ~.. The quotient
space Go = X/ ~q is called the a-Reeb graph® of d and we de-
note by m : X — G the quotient map. Notice that 7 is continuous
and as X is path connected, GG, is path connected. The function d
induces a function d. : G, — R that satisfies d = d. o w. The
relation defined by: for any g,¢9' € Ga, g <, ¢ if and only if
d.(g) < d.(g’) and there exist a continuous path v in G, connect-
ing g to ¢’ such that d o -y is non decreasing, makes G, a partially
ordered set.

The a-Reeb graph is closely related to the graph constructed by
the Mapper algorithm introduced in [35] making its computation
much more easier than the Reeb graph (see Section 4).

Notice that without making assumptions on X and d, in general G
and G, are not finite graphs. However when the number of path
connected components of the level sets of d is finite and changes
only a finite number of times then the Reeb graph turns out to be
a finite directed acyclic graph. Similarly, when the covering of X
by the connected components of d~*(I;),i € Z is finite, the a-
Reeb graph also turns out to be a finite directed acyclic graph. This
happens in most applications and for example when (X, dx) is
a finite simplicial complex or a compact semialgebraic (or more
generally a compact subanalytic space) with d being semi-algebraic
(or subanalytic).

3strictly speaking we should call it the a-Reeb graph associated to
the covering Z but we assume in the sequel that some covering 7
has been chosen and we omit it in notations
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All the results and proofs presented in Section 3 are exactly the
same for the Reeb and the a-Reeb graphs. In the following para-
graph and in Section 3.2, G denotes indifferently the Reeb graph or
an a-Reeb graph for some o« > 0. We also always assume that X
and d (and « and Z) are such that G is a finite graph.

A metric on Reeb and a-Reeb graphs. Let define the set of ver-
tices V' of G as the union of the set of points of degree not equal
to 2 with the set of local maxima of d. over G, and the base point
m(r). The set of edges E of G is then the set of the connected
components of the complement of V. Notice that 7(r) is the only
local (and global) minimum of d.: since X is path connected, for
any x € X there exists a geodesic «y joining 7 to x along which d
is increasing; d. is thus also increasing along the continuous curve
m(7y), so w(z) cannot be a local minimum of d.. As a consequence
d. is monotonic along the edges of G. We can thus assign an ori-
entation to each edge: if e = [p, g| € G is such that d.(p) < d«(q)
then the positive orientation of e is the one pointing from p to q. Fi-
nally, we assign a metric to G. Each edge e € E is homeomorphic
to an interval to which we assign a length equal to the absolute dif-
ference of the function d. at two endpoints. The distance between
two points p, p’ of e is then |d«(p) — d«(p")|. This makes G a met-
ric graph (G, d¢) isometric to the quotient space of the union of
the intervals isometric to the edges by identifying the endpoints if
they correspond to the same vertex in G. Note that d.. is continuous
in (G, dg) and for any p € G, d«(p) = da(w(r),p). Indeed this
is a consequence of the following lemma.

LEMMA 3.1. If § is a path joining two points p,p’ € G such
that d.. o § is strictly increasing then ¢ is a shortest path between p
and p’ and da(p,p") = d.(p') — d«(p).

PROOF. As d, o 4 is strictly increasing, when ¢ enters an edge
e by one of its end points, either it exits at the other end point or it
stops at p’ if p’ € e. Moreover § cannot go through a given edge
more than one time. As a consequence § can be decomposed in a
finite sequence of pieces eg = [p, p1],e1 = [p1,p2],  ,€n—1 =
[Pr—1,Dn], €n = [Pn,p’] where eg and e,, are the segments joining
p and p’ to one of the endpoint of the edges that contain them and
ei, -+ ,en—1 are edges. So, the length of ¢ is equal to (d«(p1) —
di(p)) +(du(p2) = di(p1)) +- -+ (du(p') = ds(pn)) = du(p) -
d.(p) and dg (p,p’) < d.(p") — ds(p).

Similarly any simple path joining p to p’ can be decomposed in a
finite sequence of pieces ey = [p, pi], €1 = [p1, po], -+ €1 =
[Ph_1,Pk], € = [Pk, P’] where e and e}, are the segments joining
p and p’ to one of the endpoint of the edges that contain them,
and e}, -- ,ej_; are edges. Now, as we do not know that d. is
increasing along this path, its length is thus equal to |d.(p}) —
4. (p) |+ 1du () — du(p})| + -+ |du(p) — du(p))] > du(p') —
d«(p)- So, dc(p,p') = d«(p) — d«(p). O

3.2 Bounding the Gromov-Hausdorff distance
between X and ¢

The goal of this section is to provide an upper bound of the
Gromov-Hausdorff distance between X and G that only depends
on the first Betti number 31 (G) of G and the maximal diameter M
of the level sets of . An upper bound of M is given in the next
section.

THEOREM 3.2. dgu (X, G) < (B1(G)+1)M where dgu (X, G)
is the Gromov-Hausdorf{f distance between X and G, 51(G) is the
first Betti number of G and M = sup,, ¢ {diam(x~"(p))} is the
supremum of the diameters of the level sets of .

Remark that as 81 (G) < 31(X), from the above theorem, dgu (X, G)
is upper bounded by the quantities depending only on the input X.



The proof of Theorem 3.2 is deduced from two propositions com-
paring the distances between pairs of points x,y € X and their
images w(z), 7(y) € G whose proofs rely on the notion of merg-
ing vertex. A vertex v € V is called a merging vertex if it is the end
point of at least two edges e; and e» that are pointing to it accord-
ing to the orientation defined in Section 3.1. Geometrically this
means that there are at least two distinct connected components of
77 (d7 (de(v) — €)) that accumulate to 77 (v) as € > 0 goes to
0. The set of merging vertices is denoted by V,,. We have

LEMMA 3.3. The cardinality of Vi, is at most 51(G) where
B1(G) is the rank of the first homology group of G.

PROOF. The result follows from classical homology persistence
theory [21]. First remark that, as 7(r) is the only local minimum
of d., the sublevel sets of the function d. : G — R are all path
connected. Indeed if 7(z), 7(y) € G are in the same sublevel set
d; ([0, a]), & > 0, then the images by 7 of the shortest paths in X
connecting « to 7 and ¥ to r are contained in d; ([0, a]) and their
union is a continuous path joining 7(x) to 7(y). As a consequence,
the O-dimensional persistence of d, is trivial. So as we increase
the o value, no merging vertices serve as connecting two different
connected components. Thus, each merging vertex in V;, creates
at least a cycle that never dies as G is one dimensional and does not
contain any 2-dimensional simplex. Thus |V;,,| < 51(G). O

The following lemma show that a shortest path in G is the pro-
jection of a shortest path in X as long as it does not meet a merging
vertex and allow to prove proposition 3.5 below.

LEMMA 3.4. Let p,p’ € G and let § : [d«(p),d(p)] = G
be a strictly increasing path going from p to p' that does not con-
tain any point of Vi, in its interior. Then for any ' € =~ (p') N
cl(m™H(6(dw(p), du (p'))) where cl(.) denotes the closure, there ex-
ists a shortest path y connecting a point x of T~ (p) to =’ such that
7(7) = 6 and dx(z,2') = d(z') — d(x) = du(p) — d.(p) =
de(p, p').

PROOF. First assume that p’ is not a merging point. Let o :
[0,d(z")] — X be any shortest path between r and z’ and let -y
be the restriction of o to [d«(p), d(z')] = [d«(p), d«(p")]. If the
infimum ¢o of the set I = {t € [du(p),d«(p’)] : 7(v(¢")) €
d, Vt' > t} is larger than d. (p), then 7(y(to)) then there exists an
increasing sequence (¢, ) that converges to to such that v(¢,) & 9.
As a consequence (o) is a merging point; a contradiction. So
to = d.(p) and y(d.(p)) intersects 7! (p) at a point =.

Now if p’ is a merging point, as «’ is chosen in the closure of
77 1(8(ds (), di(p)), for any sufficiently large n € N one can
consider a sequence of points 2, € 7 (6(d.(p’) — 1/n)) that
converges to #’ and apply the first case to get a sequence of short-
est path 7, from a point z, € 7 *(p) and z},. Then applying
Arzela-Ascoli’s theorem (see [20] 7.5) we can extract from v, a
sequence of points converging to a shortest path + between a point
x €7 (p) and 2.

To conclude the proof, notice that from Lemma 3.1 we have
da(p,p’) = di(p') — di(p) = d(z’) — d(z). Since v is the re-
striction of a shortest path from r to = we also have dx (v, ') =
d(z') —d(z). O

Notice that from Lemma 3.1, § is a shortest path and the parametriza-

tion by the interval [d. (p), d«(p")] can be chosen to be an isometric
embedding.

PROPOSITION 3.5. Forany x,y € X we have
dx (z,y) < do(m(z), 7(y)) + 2(8:1(G) + 1)M
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where M = suppec{diam(wfl(p))} and B1(G) is the first Betti
number of G.

PROOF. Let § be a shortest path between 7 (z) and 7(y). Re-
mark that except at the points 7(z) and 7(y) the local maxima of
the restriction of d. to J are in V;,,. Indeed as § is a shortest path it
has to be simple, so if p € § is a local maximum then p has to be
a vertex and J has to pass through two edges having p as end point
and pointing to p according to the orientation defined in Section
3.1. So p is a merging point.

Since 9§ is simple and V;,, is finite, § can be decomposed in at most
|Vin |+ 1 connected paths along the interior of which the restriction
of d. does not have any local maxima. So along each of these con-
nected paths the restriction of d. can have at most one local mini-
mum. As a consequence, § can be decomposed in a finite number

of continuous paths 41,82, -, 0, with k& < 2(|Vi,| 4+ 1), such
that the restriction of d. to each of these path is strictly mono-
tonic. For any ¢ € {1,--- ,k} let p; and p;y1 the end points of

0; with p1 = 7(z) and pr+1 = 7(y). We can apply Lemma 3.4
to each §; to get a shortest path «; in X between a point x; €
7Y (p;) and a point in y;41 € 7 *(piy1) such that w(y;) = &
and dx (zi, yi+1) = da(pi, pi+1). The sum of the lengths of the
paths ~y; is equal to the sum of the lengths of the path §; which
is itself equal to dg(mw(z), 7(y)). Now for any ¢ € {1,---  k},
since w(xz;) = m(y;) we have dx(z;,y:) < M and z; and y;
can be connected by a path of length at most M (x; is connected
to « and yx+1 is connected to y. Gluing these paths to the paths
v; gives a continuous path from x to y whose length is at most
de(m(@), w(y)) + kM < do (w(x), m(y)) +2(|Viu| + 1) M. Since
from Lemma 3.3, |V;,| < B1(G), we finally get that dx (z,y) <
do(m (@), w(y)) +2(8(G) + VM. O]

PROPOSITION 3.6. The map m : X — G is 1-Lipschitz: for
any z,y € X we have

da(m(z),7(y)) < dx(2,y).

PROOF. Let z,y € X and let v : I — X be a shortest path
from z to y in X where I C R is a closed interval. The path ()
connects 7(z) and 7(y) in G.

We first claim that there exists a continuous path I'" contained
in 7(7) connecting 7(x) and 7 (y) that intersects each vertex of
G at most one time. The path I" can be defined by iteration in
the following way. Let v1,---v, € V be the vertices of GG that
are contained in 7(y) \ {m(z),7(y)} and let Ty = 7w (v) : Jo =
I - G. Fori =1,---nlett; = inf{t : I'i_1(t) = v;} and
t7 = sup{t : Ty_1(t) = v;} and define T; as the restriction
of Ty_1 to J; = Ji—1 \ (¢;,t]). The path T; is a connected
continuous path (although J; is a disjoint union of intervals) that
intersects the vertices vy, ve,- - ,v; at most one time. We then
definel’ =T, : J = J, — G where J C I is a finite union of
closed intervals. Notice that I is the image by 7 of the restriction of
~to J and that I'(¢) € {v1,--- vy, } only if ¢ is one of the endpoints
of the closed intervals defining J.

Now, for each connected component [¢, t'] of J, y((¢,t")) is con-
tained in 7' (e) where e is the edge of G containing T'([t, t']). As
a consequence,

da(m(7)(8), 7(7)(t))

|d (7 () (t) — du(m(7) ()]
|d(v(t)) — d(y("))].

Recalling that d(y(t)) = dx (r,v(t)) and d(y(t)) = dx (r,v(t"))
and using the triangle inequality we get that |d(~(¢)) —d(~(t'))] <
dx (v(t),~(t')). To conclude the proof, since - is a geodesic path
we just need to sum up the previous inequality over all connected



components of J:

dx (.Z‘, y) > Z
[t,t/]€ce(JT)
>

da(m(7)(t), 7(7)(t)) = da(n(z), 7(y))
[t,t']€ce(J)

dx (v(t),7(t))

where cc(J) is the set of connected components of J. []

The proof of Theorem 3.2 now easily follows from Propositions
3.5 and 3.6.

PROOF. (of Theorem 3.2) Consider the set C = {(z,w(x)) :
xz € X} C X x G. As 7 is surjective this is a correspondence
between X and G. It follows from Propositions 3.5 and 3.6 that for

any (z, (), (y,7(y)) € C,
ldx (z,y) — da(n(z), 7(y))| < 2(6:(G) + 1)M

So C is a 2(81(G) + 1)M-correspondence and dam(X,G) <
(Bir(@)+ M. O

3.3 Bounding M

The two following lemmas, proven in Appendix, allow to bound
the diameter of the level sets of 7.

LEMMA 3.7. Let (G,dg) be a connected finite metric graph
and let r € G. We denote by d, = dg(r,.) : G — [0, +00) the
distance to r. For any edge e C G, the restriction of d, to e is either
strictly monotonic or has only one local maximum. Moreover the
length | = l(e) of e is upper bounded by two times the difference
between the maximum and the minimum of d, restricted to e.

PROOF. Let [ be the length of E and let ¢t — e(t), t € [0,1], be
an arc length parametrization of E. Since E is an edge of G, for
t € [0,1] any shortest geodesic ~y; joining r to e(t) must contain
either z1 = €(0) or z2 = e(l). If it contains x1 then for any ¢’ < ¢
the restriction of y; between r and e(t’) is a shortest geodesic con-
taining x1 and if it contains x> then for any ¢’ > ¢ the restriction of
¢ between 7 and e(t') is a shortest geodesic containing z2. More-
over in both cases, the function d;. is strictly monotonic along . As
a consequence, the set Iy = {t € [0, (] : a shortest geodesic joining
r to e(t) contains 1} is a closed interval containing 0. Similarly
the set [, = {t € [0,] : a shortest geodesic joining r to e(t)
contains 2} is a closed interval containing ! and [0,1] = I U I5.
Moreover d- is strictly monotonic on e(/1 ) and on e(I2). As a con-
sequence I1 N I is reduced to a single point ¢o that has to be the
unique local maximum of d,. restricted to E.

The second part of the lemma follows easily from the previous
proof: the minimum of d, restricted to E is attained either at 1
or xo and dr(e(to)) = dr(l’l) + to = dT(mg) + 1 — to is the
maximum of d, restricted to E. We thus obtain that 2t = [ +
(dr(z2) — dr(z1)). As a consequence if d,(z1) < dr(x2) then
l/Q < to = dr(e(to)) — dr(l‘l); similarly if dr(xl) 2 dr(l'z)
thenl/2 <l —to :dr(e(to)) —dr(mz). O

LEMMA 3.8. Let (G,dg) be a connected finite metric graph
and let r € G. For a > 0 we denote by Ng(«) the number of
edges of G of length at most a.. For any d > 0 and any connected
component B of the set B, = {x € G :d — a < dg(r,z) <
d + a} we have

diam(B) < 4(2 4+ Ng(4a))a

PROOF. Let z,y € B and lett — ~(t) € B be a continuous
path joining x to y in B. Let E be an edge of G that does not
contain z or y and with end points x1, 2 such that - intersects the
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Figure 1: Tightness of the bound in Lemma 3.8: there are 3
edges of length at most 4. and the diameter of B is equal to
20q.

interior of E. Then v~ *(E) is a disjoint union of closed intervals of
the form I = [t, '] where y(t) and (') belong to the set {x1, T2}
If y(t) = ~v(t') we can remove the part of y between ¢ and ¢’ and
still get a continuous path between = and y. So without loss of
generality we can assume that if 7y intersects the interior of E, then
E' is contained in 7. Using the same argument as previously we
can also assume that if « goes across E, it only does it one time,
ie. v '(E) is reduced to only one interval. As a consequence,
~ can be decomposed in a sequence [z, vo], E1, E2, -, Eg, [vk, Y]
where [z, vo] and [vk,y] are pieces of edges containing z and y
respectively and E1 = [vo, v1], B2 = [v1,v2]", Bx = [Vk—1, Vk]
are pairwise distinct edges of GG contained in B. It follows from
Lemma 3.7 that the lengths of the edges E1, - - - E and of [z, vg]
and [vg, y] are upper bounded by 4. As a consequence the length
of 7 is upper bounded by 4(k + 2)a which is itself upper bounded
by 4(Ng(4a) + 2)« since the edges E1, - - - By are pairwise dis-
tinct. It follows that dg(z,y) < 4(Ng(4a) + 2)a. [

The example of the right picture shows that the bound of Lemma
3.8 is tight.

THEOREM 3.9. Let (G,dq) be a connected finite metric graph
and let (X,dx) be a compact geodesic metric space such that
deu(X,G) < € for some e > 0. Let xo € X be a fixed point
and let dy, = dx(zo,.) : X — [0,+00) be the distance func-
tion to xo. Then for d > o > 0 the diameter of any connected
component L of d, ([d — c, d + o)) satisfies

diam(L) < 424+ Ng(4(a+2¢)))(a+2¢e) + &

where Ng(4(a+2¢)) is the number of edges of G of length at most
4(a + 2¢). In particular if « = 0 and 8¢ is smaller that the length
of the shortest edge of G then diam(L) < 17e.

PROOF. Let & > 0 be such that dgr(X,G) < &' < e. Let
C C X x @ be an &'-correspondence between X and G and
(zo,7) € C. we denote by d, = dg(r,.) : G — [0, 4+00) the dis-
tance function to r in G. Let zo, xp» € L andlet (za,ya), (s, Ys) €
C. There exists a continuous path v C L joining x, to zp. Since
C' is an €’-correspondence for any x € -~ there exists a point
(z,y) € Csuchthatd — a — &' < dr(y) < d+ a+&'. The
set of points y obtained in this way is not necessarily a contin-
uous path from y, to y,. However one can consider a finite se-
quence 1 = T4, T2, - ,Tn = Tp Of points in ~y such that for any
i=1,---n—1wehave dx (z;,xit1) < e —'. If (z3,9;) € C
then we have de (i, yi+1) < € — & + ¢’ = e. As a consequence,
sinced—a—e<d—a—¢ <d-(y;)) <d+a+e <d+a+e
the shortest geodesic connecting y; to y;+1 in G remains in the set
d:'([d — a — 2e,d + a + 2¢]) and connecting these geodesics
foralli = 1,--- ,n — 1 we get a continuous path from y, to ys
indy'([d — a — 2¢,d + « + 2¢]). It then follows from Propo-
sition 3.8 that dg(ya,ys) << 4(2 + Ne(4(a + 2¢))) (o + 2¢)
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Figure 2: Illustration of the different steps of the algorithm for computing «-Reeb graph. In the disjoint union of copies of intervals,
the subintervals marked with same labels are identified in the «-Reeb graph.

and since C is an £’-correspondence (and so an e-correspondence),
dx (xa,zs) < 4(2+ Nep(d(a+ 2¢)))(a+2¢) +e. O

From Theorems 3.9 and 3.2 we obtain the following results for
the Reeb and a-Reeb graphs.

THEOREM 3.10. Let (X, dx ) be a compact connected path met-
ric space, let v € X be a fixed base point such that the metric Reeb
graph (G, dg) of the function d = dx(r,.) : X — Ris a fi-
nite graph. If for a given € > 0 there exists a finite metric graph
(G',dg) such that dgu (X, G') < € then we have

don(X,G) < (B1(G) + 1)(17 + 8N ¢ (8¢))e

where Ng o/ (8¢) is the number of edges of G' of length at most
8e. In particular if X is at distance less than € from a metric
graph with shortest edge length larger than 8¢ then dau (X, G) <
17(51(G) + 1)e.

THEOREM 3.11. Let (X, dx) be a compact connected path met-
ric space. Let v € X, o > 0 and T be a finite covering of
the segment [0, Diam(X)] by open intervals of length at most «
such that the a-Reeb graph G associated to T and the function
d=dx(r,.) : X — Ris afinite graph. If for a given € > 0 there
exists a finite metric graph (G',dg) such that deu(X,G') < ¢
then we have

den(X,Ga) < (B1(Ga)+1)(4(2+NEg, ¢ (4(a+2¢))) (a+2¢e)+e)

where Ng g (4(a+ 2€)) is the number of edges of G' of length at
most 4(a+ 2¢). In particular if X is at distance less than e from a
metric graph with shortest edge length larger than 4(« + 2¢) then

dea(X,Ga) < (B1(Ga) + 1)(8a + 17¢).

4. ALGORITHM

In this section, we describe an algorithm for computing a-Reeb
graph for some o > 0. We assume the input of the algorithm in-
cludes a neighboring graph H = (V, E), a function l : E — R™
specifying the edge length and a parameter . In the applications
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where the input is given as a set of points together with pairwise
distances, i.e., a finite metric space, one can generate the neighbor-
ing graph H as a Rips graph of the input points with the parameter
chosen as a fraction of a. We assume H is connected as one can
apply the algorithm to each connected component otherwise.

Our algorithm, whose different steps are illustrated on Figure 2,
can be described as follows. In the first step, we fix a node of H as
the root 7 and then obtain the distance function d : V' — R™ by
computing d(v) as the graph distance from the node v to r. In the
second step, we apply the Mapper algorithm [35] to the nodes V'
with filter d to construct a graph G. Specifically, let Z = { (i, (i +
1)a), ((1+0.5)a, (i+1.5)x)|0 < i < m} so that U, ez ) covers
the range of the function d. We say an interval I}, € 7 is lower
than another interval I, € Z if the midpoint of Iz, is smaller
than that of I,. Now let H}, be the subgraph of H restricted to
Vi, = d7'(Ix). Namely two nodes in Hj, are connected with an
edge if they are in H. Notice that each subgraph Hj may have
several connected components, which can be listed in an arbitrary
order. Denote H}, the [-th connected component of H, and Vi its
set of nodes. Then of {V}'},.; is a cover of V and the graph G
constructed by the Mapper algorithm is the 1-skeleton of the nerve
of that cover. Namely, each node in G represents an element in
{Vi{}r 1, i-e., a subset of nodes in V. Two nodes Vkll1 and Vkl; are

connected with an edge if Vkl; N Vklj # 0.

In the final step, we represent each node V' in G using a copy
of the interval ;. As mentioned in the Section 3.1, a-Reeb graph
is a quotient space of the disjoint union of those colpies of inter-
vals. Specifically, for an edge in G, let Vkli and V;? be its end-
points. Then I, and Iy, must be partially overlapped. We identify
the overlap part of these two intervals. After identifying the over-
lapped intervals for all edges in G, the resulting quotient space is
the a-Reeb graph. Algorithmically, the identification is performed
as follows. We split each copy of internal I into two by adding
a point in the middle. Now think of it as a graph with two edges
and label one of them upper and the other lower. Notice that two
overlapped intervals i, and I, can not be exactly the same. One
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Figure 3: (a) The distance functions d on each connected components. The value increases from cold to warm colors. (b) The

reconstructed a-Reeb graph.

must be lower than the other. To identify their overlapped part, we
identify the upper edge of the lower interval with the lower edge of
the upper interval.

The time complexity of the above algorithm is dominated by
the computation of the distance function in the first step, which
is O(|E| + |V|log|V]). The computation of the connected com-
ponents in the second step is O(]V|log |V|) based on union-find
data structure. In the final step, there are at most O(|V'|) number of
the copies of the intervals. Based on union-find data structure, the
identification can also be performed in O(|V|log |V]) time.

S. EXPERIMENTS

In this section, we illustrate the performances of our algorithm
on three different data sets. The first data set was obtained from
USGS Earthquake Search [34]. It consists of earthquakes epicen-
ters locations collected, between 01/01/1970 and 01/01/2010, in the
rectangular area between latitudes -75 degrees and 75 degrees and
longitude -170 degrees and 10 degrees, and of magnitude greater
than 5.0. This raw earthquake data set contains the coordinates of
the epicenters of 12790 earthquakes that are mainly located around
geological faults. We follow the procedure described in [1] to re-
move outliers and randomly sampled 1600 landmarks. Finally, we
computed a neighboring graph from these landmarks with parame-
ter 4. The length of an edge in this graph is the Euclidean distance
between its endpoints. For each connected component, we fix a
root point and compute the graph distance function d to the root
point as shown in Figure 3(a). We also set v equals 4 and apply our
algorithm to the above data to obtain the a-Reeb graph. In general
«a-Reeb graph is an abstract metric graph. In this example, for the
purpose of visualization, we use the coordinates of the landmarks
to embed the graph into the plane as follows. Recall that for a copy
of interval Iy, representing the node V} in G, we split it into two
by adding a point in the middle. We embed the endpoints of the
interval to the landmarks of the minimum and the maximum of the
function d in V., and the point in the middle to the landmark of the
median of the function d in V. Figure 3(b) shows the embedding
of the a-Reeb graph. Note this embedding may introduce metric
distortion, i.e., the Euclidean length of the edge may not reflect the
length of the corresponding edge in the a-Reeb graph.

The second data set is that of 500 GPS traces tagged “Moscow”
from OpenStreetMap [32]. Since cars move on roads, we expect
the locations of cars to provide information about the metric graph
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structure of the Moscow road network. We first selected a metric e-
net on the raw GPS locations with e = 0.0001 using furthest point
sampling. Then, we computed a neighboring graph from the sam-
ples with parameter 0.0004. Again for each connected component,
we fix a root point and compute the graph distance function d to
the root point as shown in Figure 4(a). Set o also equals 0.0004
and compute the a-Reeb graph. Again, we use the same method
as above to embed the a-Reeb graph into the plane, as shown in
Figure 4(b).

To evaluate the quality of our a-Reeb graph for each data set, we
computed both original pairwise distances, and pairwise distances
approximated from the constructed a-Reeb graph. For GPS traces,
we randomly select 100 points as the data set is too big to com-
pute all pairwise distances. We also evaluated the use of a-Reeb
graph to speed up distance computations by showing reductions
in computation time. Only pairs of points in the same connected
component are included because we obtain zero error for the pairs
of vertices that are not. Statistics for the size of the reconstructed
graph, error of approximate distances, and reduction in computa-
tion time are given in Table 1.

The third data set we consider is also obtained from GPS traces.
Roads are often split so that cars in different directions run in dif-
ferent lanes. In particular, this is the true for highways. In addi-
tion, when two roads cross in GPS coordinates, they may bypass
through a tunnel or an evaluated bridge and thus the road network
itself may not cross. Such directional information is contained in
the GPS traces. We encode this directional information by stacking
several consecutive GPS coordinates to form a point in a higher di-
mensional space. In this way, we obtain a new set of points in this
higher dimension space. Then we build a neighboring graph for
this new set of points based on L2 norm and apply our algorithm to
recover the road network. In particular, although the paths intersect
at the cross in GPS coordinates, the road network does not and this
should be detected by our algorithm. To test the above strategy, we
extract those GPS traces from the above “Moscow” dataset which
pass through a highway crossing as shown in Figure 5(a). Since
GPS records the position based on time, we resample the traces
so that the distances between any two consecutive samples is the
same among all traces. Then we apply the above algorithm to the
resampled traces. Figure 5(c) and (d) show the reconstructed graph
which recovers the road network of this highway crossing.
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Figure 4: (a) The distance functions d on each connected components. The value increases from cold to warm colors. (b) The

reconstructed a-Reeb graph.

#OP #OE #N #E GRT ODT ADT | Mean Median
GPS traces | 82541 313415 21644 21554 | 46.8 1527 096 | 6.5% 5.3%
Earthquake | 1600 26996 147 137 032 112 001 | 141% 12.5%

Table 1: #OP (#OE, #N, #E) stands for the number of original points (original edges, nodes, edges in a-Reeb graph). The graph
reconstruction time (GRT) is the total time of computing distance function and reconstructing the graph. The original (ODT),
respectively approximate (ADT), distance computation time shows the total time of computing these distances using the original,
respectively reconstructed, graph. All times are in seconds. The last two columns show the mean and median metric distortions.

6. DISCUSSION

We have proposed a method to approximate path metric spaces
using metric graphs with bounded Gromov-Hausdorff distortion,
and illustrated the performances of our method on a few data sets.
Here we point out a few possible directions for future work. First,
notice that the a-Reeb graph is a quotient space where the quo-
tient map is 1-Lipschitz and thus the metric only gets contracted.
In addition, the distance from a point to the chosen root is exactly
preserved. Therefore, one always reduces the metric distortion by
taking the maximum of the graph metrics of different root points. It
is interesting to study the strategy of sampling root points to obtain
the smallest metric distortion with the fixed number of root points.
Second, our method in the current form does not recover the topol-
ogy of the underlying metric space. The tools recently developed
in persistence homology seem useful for recovering topology: we
provide a preliminary result in the Appendix showing that the first
Betti number of the underlying metric graph can be inferred from
the data. On another hand, Reeb graphs have recently been used
for topological inference purpose in [18]. It would be interesting
to combine our method to these approaches to also obtained topo-
logically correct reconstruction algorithms. Finally, our method is
sensitive to the noise. One can preprocess the data and remove the
noise and then apply our algorithm. Nevertheless, it is interesting
to see if the algorithm can be improved to handle noise.
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Appendix

Getting the first Betti number of a graph from
an approximation

Although our metric graph reconstruction algorithm does not pro-
vide topological guarantees, we show below that, using persistent
topology arguments, that the first Betti number of a graph can be
inferred from an approximation.

Recall that given a compact metric space (X,dx) and a real
parameter o > 0, the Vietoris-Rips complex Rips(X, «) is the
simplicial complex with vertex set X and whose simplices are the
finite subsets of X with diameter at most a:

o = [zo,z1, - ,zk] € Rips(X, @) & dx (i, z;) < « forall 4, j.

LEMMA 7.1. Let G be a connected metric graph and let l(G)
be the length of the shortest loop in G that is not homologous to 0.
For any metric space D such that dar (G, D) < {=1(G) and any
dan(G, D) < o < £1U(G), the first Betti number of G is given by

b1(G) = rank (H1(Rips(D, «)) — Hi(Rips(D, 3a))

where the homomorphism between the homology groups is the one
induced by the inclusion maps between the Rips complexes.

PROOF. The proof follows from a result of [30] that relates the
homology of the Rips complexes built on top of G to the homology
of G and a result of [11] that allows to relate the Rips filtration built
on top of G and D at the homology level. Since G is a geodesic
path, it follows from Theorem 3.5 and Remark 2), p.179 in [30]
that for any a < $1(G), Rips(G, «) and G are homotopy equiv-
alent. Moreover, from Proposition 3.3 in [30], for any a < o <
11(G), the homomorphism Hi (Rips(G, o)) — H1(Rips(G, o))
induced by the inclusion map is an isomorphism.
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Now let C' C D x G be an e-correspondence between D and
G where € < %Z(G). According to [11], the persistence modules
(Hi(Rips(D, a))aer, and (H:1(Rips(G, a))acr, are e-interleaved.
Now let « be as in the statement of the lemma and let 8 > 0 be
such that 5 + ¢ < «. The e-interleaving induces the following
sequence of homomorphisms

Hq(Rips(G,8)) — Hi(Rips(D,«)) — H1(Rips(G,a+¢))
— Hi(Rips(D,3«a)) — H1(Rips(G,3a + ¢))

where the composition of two consecutive homomorphisms is the
homomorphism induced by the inclusion map between the corre-
sponding Rips complexes. As a consequence since 3a+¢ < il(G )
the homomorphisms H1 (Rips(G, 8)) — Hi1(Rips(G, a+¢)) and
Hq(Rips(G,a +¢)) — H1(Rips(G, 3a + ¢)) are isomorphisms
of rank b1(G). It follows that the rank of Hi(Rips(D,«)) —
Hq(Rips(D, 3«)) is equal to b1 (G). O
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