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Abstract or decomposing the object into spatial subregions and per-
forming pooling in each subregion separately][ These
This paper presents a framework for object recognition approaches, however, assume explicit parametrization of
using topological persistence. In particular, we show that the spatial information that needs to be captured (e.g. dis-
the so-called persistence diagrams built from functions de tribution of pairwise offsets as irb[46] or commute times
fined on the objects can serve as compact and informativein [3]) or a pre-defined spatial decomposition to guarantee
descriptors for images and shapes. Complementary to thethe stability of the representation under deformationsusTh
bag-of-features representation, which captures the itigtr devising a compact and informative representation to char-
tion of values of a given function, persistence diagrams canacterize the structural properties of features while pxese
be used to characterize its structural properties, reftegti  ing stability, remains a challenging open problem.

spatial information in an invariant way. In practice, the Unlike the majority of the previously proposed methods
choice of function is Simple: each dimension of the feature that try to augment the bag-of-features representatiam_to i
vector can be viewed as a function. The proposed method |%|ude some notion of Spatia”ty, we propose to use a dif-
general: it can work on various multimedia data, includ- ferent approach, which is inherenﬂy well-suited to Ca@tur
ing 2D shapes, textures and triangle meshes. Extensivestructural properties of functions defined on different do-
experiments on 3D shape retrieval, hand gesture recogni-mains in a stable way. In particular, we propose to com-
tion and texture classification demonstrate the perforneanc plement to the BoF approach, by computing pleesistence

of the proposed method in comparison with state-of-the-art diagrams(PD) of functions defined on different data modal-
methods. Additionally, our approach yields higher recog- ities, including 2D shapes, textures and triangle meshes.
hition accuracy when used in conjunction with the bag-of- |, itively, instead of considering each feature point and

features. its associated descriptor vector independently, we amalyz
all the points together by considering each dimension of the
feature vector as a real-valued function, defined on the en-
tire domain. With the assumption that the descriptors are
Over the years, thdag-of-features(BoF) model has  Stable and informative enough in the object space, we com-
been extremely popular for the recognition of text, images Pute the persistent homology of the resulting functionse Th
and shapes?[ 7,17,27,36]. In the image domain, this ap- derived PD provides a simple yet powerful description that
proach corresponds to treating a given image as a colleccaptures the structural properties of the object. Impdistan
tion of unordered local descriptors, extracted from featur Unlike the BoF representation which captures the distribu-
points, and quantizing them into discrete “visual/geoinetr tion of the values in the function, PD exploits the connec-
words” [40]. The distribution of visual words in an image tivity between different points in the domain to characteri
is then summarized by a fixed-sized vector using various therelative prominence of different feature points.

1. Introduction

pooling techniques/]. Due to the compactness and infor- In order to demonstrate the usefulness of this represen-
mativeness of the resulting representation, BoF is widely tation, we argue both theoretically and experimentally tha
used for learning and recognition. it captures information which is complementary to the in-

A large number of extensions of the BoF have been pro- formation in the bag-of-features representation. In parti
posed with the aim to recover the geometric (spatial) rela- ular, we perform extensive experiments on 3D shape re-
tions between features, which are discarded by BoF. Thetrieval, hand gesture recognition and texture classificati
two most common approaches include explicitly encoding where we demonstrate state-of-the-art performance by us-

56, 9,45,46] ing the PDs in conjunction with the ba We



Descriptors Extraction o.g. HKS TDA, and in particular provide an efficient way to encode

Input Object } |:> rn plD} o topological properties of real—valggd functions definedrov
PG =]|: .. 1 |eRV spaces. PDs have provable stability propertigs 5], and

allow to infer robust topological information on the stud-

pvi -+ PVD

ied data. Persistent homology has been successfully ap-

pjl p':D 'nil mf} plied to clustering tasksl1[], vision tasks such as shape
Feature || bl - lowa segmentation7], component detectior3[]] and recogni-
Encoding Veoior P —e—— tion [10, 12, 20]. Our work is inspired by 0, 17] but is dif-
y . . . o .
Quantization Construction ferent in that we exploit a given connectivity on the object
Spatial Pooling Persistence Computing and use feature functions to build the persistence diagrams

rather than using point samples and simplicial complex fil-
trations. We also show that multiple PDs of different func-
tions as well as the BoF representation can be combined to
improve recognition tasks in a variety of scenarios. In this
paper we focus on 0-dimensional persistent homology that
encodes connectivity information in an intuitive and easy-
to-compute way.
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Figure 1. Schematic comparison of BoF with PD.

argue that this is largely due to the fact that persistence di

agrams allow to distinguish feature configurations that are . . . .
structurally different. Schematic comparison between the3' Topological Object Representation Using

BoF with PD is shown in FigL. Persistence Diagram

The rest of the paper is organized as follows. In S€t. 3.1, Feature Encoding: From BoF to PD
we discuss some related works. S&gbresents the frame-

work of our proposed algorithm. Experimental results in We assume that every object (e.g., image, 2D shape

three applicable scenarios are provided in SécFinally, ~ OF 3D mesh) is represented as a connectivity grépk-
we conclude in Secs. {V, €}, where the set of nodag of sizeV" are samples on

the object, and the set of edg€gepresent neighborhood

relations between samples. For example, considering im-

2. Related Work ages as grids of points, we use the 4-neighborhood to define
The past decade has witnessed a surge in popularity ofhe edges iig. Similarly, for 3D objects, we use the vertices

BoF and its extensions for solving various computer vision and the edges of the faces in the mesh to define

problems. Among them, one particularly successful method ~ Similarly to the BoF approach we start by associating a

is to form a global representation by spatially aggregating D-dimensional feature vector to every sampl&iresulting

the local descriptors pioneered by Lazebeilal.[25]. The ~ inaV x D matrix:

subsequent research on spatial aggregation get compelling

performance because of two seemingly independent advan- P11 - PiD o
tages: the better design of (1) spatial regions and (2) aggre P@ =11 .. : c€R :
gating operator. The spatial pyramids manually define the pvi -+ PvD

multi-scale grid-structured regions over the image space,

and many excellent visual recognition methods either di- ~ While the BoF approach can be thought of as analyz-
rectly use them5, 44], or modify the spatial decomposi- ing P by considering its rows, which correspond to point
tion to fit their data §,26]. Recently, Jiset al.[23] proposed ~ descriptors, we propose to considércolumn-wise by in-

to learn more adaptive regions by the receptive fields. Pop-terpreting each column as a real-valued function defined on
ular aggregating (pooling) strategies include averagimd a the nodes ofj. The persistence diagrams of these functions
max pooling, which have been used by Lazelstikl.[25] allow us to capture the structural properties of the object
and Yanget al. [44] respectively. Coatest al. proposed  and in particular robustly encode the relative prominerfce o
to aggregate over multiple features in the context of deepthe different feature points.

learning [L4].

Our work relies on the theory of persistent homology,
which falls under the umbrella of topological data analysis  Given a real-valued functioii defined on the nodes of
(TDA).It was first formalized by Edelsbrunnet al. [19] G, the (-dimensional) persistence diagram pfencodes
by building on earlier notions of size functions used by the evolution of the connectivity of the 1-parameter family
Frosiniet al. for shape analysis/[l] and later developed of superlevel-setB® = f~!([a, +00)) asa goes fromi-oo
in [11,19,47]. Persistence diagrams appear prominently in to —oc in the following way. A node € V is called gpeak

3.2. Persistence Diagram



R o Invariance. Similarly to the BoF representation, PD is

E ; invariant to rotations, translations and scaling of thesobj
4 provided that the feature function remains the same. How-
. ever, unlike the BoF which is invariant to any permutation
s of the nodes, the PD is only invariant under continuous de-
() p" formations. In particular, given two objects represented a
P q q q graphsG; andG, and a maf’ between them, for any func-
P s q G flp) — +o tion f on G, the PDs off and f o T are the same if" is an
(a) (b) isomorphism. Conversely, if' is not an isomorphism then

Figure 2. Sketch of persistence computing: (a) a smooth functionthere exists a functioff whose PD will be different from

f maps the nodes @ to R, f is a noisy version off; (b) super- the one off o T Intuitively this implies that PDs capture
imposition of PDs off (red) andf (blue), showing the one-to-one  |ocal spatial information through the connectivity sturet
correspondence between the prominent pealfsafd f. Relation to spatial pyramid approaches Note that
PDs can be seen as alternatives to spatial decomposi-
tion methods, and espacially Spatial Pyramid Matching
SPM [25] and ScSPM 44], that apply BoF approach to
each region of a multi-scale decomposition of the object
and often use max pooling to characterize the features in
each region. Unlike these approaches, PDs do not require
an explicit decomposition of the object, and allow to captur
structural properties of functions in a robust and compact

if it is a local maximum off, i.e, if f(v) > f(u) for anyu
such thatv, u) is an edge off. For any peak we say that
isbornat f(v). Fora < f(v), letC(v, o) be the connected
subgraph if* C G that contain®. The infimum ofa such
that f(v) is the global maximum of restricted toC (v, o)
is called thedeathof v. See Fig2 for an example wherg
represents a line-graph (in green) and the nedé G is a
peak given the functiof shown in red in Fig2 (a). A new

connected subgraph is born in the superlevelESetvhen way.
a = f(p), and it dies whemv = f(s). _ o 3.3. PDs for object comparison

The lifespan of peak is thus determined by its birth
fa = f(v) and deathf, < f,. This allows us to associate a In this paper we propose to use persistence diagrams of
point (f., f») on a 2D plane to each peak Collecting all different feature functions as descriptors for object ggio
these points, we obtain theersistence diagranPD) of f tion and classification. To illustrate this idea, we compute

(illustrated in Fig2(b)). The difference- = f, — f, > 0'is the PD for several 3D meshes in Figjwhere we use the
called theprominence(or persistencpof the peakv. Note ~ Heat Kernel Signature (HKSP[, 39 for fixed time as the
that the prominence of is equal to the vertical distance of ~feature function. The first row displays the HKS value for
its corresponding point in the PD to the diagonal. Lastlg, th the four models: two horses, a dinosaur and pliers. The
death time of the global maxima gf i.e. the peaks that ~ Second row shows the corresponding PDs.

satisfy f(v) = max f, is set tomin f, and associated to the .
point (max f, min f) in the PD. Overall, the PD encodes - £ s
the relative prominence of the different peaks of a given ’ »
function by considering the connectivity information ireth < 0

domain.
Computation. In practice the persistence diagram can i .
be simply computed using the Union-Find algorithivo][ S I A I I - S B 2 A 4
by sorting the nodes @ according to their function value o mm e e
and keeping track of the corresponding connected compo- ~ Figure 3. HKS function and its persistence diagrams.
nents. Note that in this case the PD is invariant to isometric de-

Stability. One important property of the persistence dia- formations because the underlying HKS feature is an isome-
gram is that it is stable under some perturbations of the fea-try invariant. The PDs allow us to distinguish these 3 classe

ture function. Intuitively, the stability theorem inl[, 15] of objects since the diagrams associated to the horses are
states that if the values of a functighare perturbed by = more similar to each other to those of the other objects.

no more than some > 0, then the points on the persis- Quantitatively, we use the following construction to
tence diagrams will also be perturbed by no more than compare PDs. For two functionsand g with respective

Fig. 2(a), the blue functiory is a noisy version of the red PDsD; and D, we construct a weighted bipartite graph
function f. The PDs off and f are plotted in Fig2(b). B betweenD; U II(Dy) and D, U TI(D; ) wherell is the
These two PDs are similar, in the sense that the distance beprojection onto the diagonal, i.e. for a poifit, b)) € R?,
tween points that are far from the diagonal is small, even if II(a,b) = (%, 2£2). This can guide the points with
some extra points with low prominence can appear. smaller persistence corresponding to the points on diago-



nal, and thus remove their interference in prominent point “dissimilar” objects with larger distances to each othee W

matching. The weight of an edde,v) € B is defined as  consider learning a distance metric of the form

[lv — u||s if worwvisinD; UDy and is set td) if both

uw andv are inII(D;) U II(D;y). The bottleneck distance Dis(xj,x;) = ||v; — x5 , = \/d(aci,xj)TAd(xi,xj)

dpink (D1, D-) is defined as the minimum valdesuch there (4)

exists a perfect matching ifi with all edges having weights  whered (z;, ;) = [d1 (2, %), - . ., da(@, 25), - . ., dp (s, 25)].

less thand. Similarly, thedegreep Wasserstein distance  The problem can be formulated as an optimization pro-

dwsst. is defined as the minimum valuesuch there exists a  gramming

perfect matching irB whose the sum of the weights raised

to the powerp of all edges is less thad”. As a conse- ming -, oes @i — ;% 5)

guence, computing both distances boils down to computing s.t. Z%xjep |lzi — 5], >1,A>0

maximum matchings in bipartite graphs. This can be done

efficiently using e.g. the Hungarian algorithm for PDs with This is a standard formulation of distance metric learn-

few points. However, this might become prohibitive for PDs ing, and can be solved by the algorithms ir[43]. The

with many points. learned metricA interprets the contribution of different fea-
For this reason we also use an alternative representatioures. It is further embedded as part of the pipeline to pro-

of PDs, the persistent landscapd, [which allows us to  Vide a more reliable measure for the rest of testing data in

represent a PD as a point in a high dimensional Euclideanthe dataset.

space. Given a PD with poin{a;,b;)}"_,, a; > b;. For

each point(a;,b;), let fi, 5,y @ R = R, fa,p)(t) =

3.5. Limitations

min(a; — t,t — b;)4+, wherez; denotesmax(z,0). The While PDs allow to capture the relative prominence of
persistence landscapis defined as the set of functions the local extrema of different functions, we note that they d
Bk : R — R, k € N given by not provide any information about the distribution of other

" (non-critical) values. Thus, the information contained in
Bk(t) = kth largest value of fu, 4,) (1) },_, (1) PDs is largelycomplementaryo the information captured
in the BoF representations. Thus, as we show in the fol-
lowing section, we can often get superior performance by
combining the two approaches.

with B;(t) = 0if & > n. Givenk we consider the firsk
landscape functions, and discretize them wittsampling
points alongt. The derivatives of the sampling points are
calculated and form awk-size vector. Theéandscape dis-

tancedfg’s'g is defined as thé, norm between these vectors.

3.4. Metric Learning for Multiple Functions

4. Experimental Results

We present the results of our PD-based object recogni-
tion scheme on various datasets of three different types: 3D
In a bid to achieve higher performance, multiple features meshes (Sectiod.1), 2D gesture contours (Sectigh2),
are usually used. When these features are designed in simand texture images (Sectiof.3). The method was imple-
ilar ways, the final distance can be simply chosen as themented in MATLAB, and the experiments were performed
sum of their persistence based distances. However, whe®n a computer with an Intel Core processor running at 1.4
these features are designed in very different ways, it ismor GHz with 4 GB RAM. In each experiment we use 3 ran-
reliable to give different weights to different featureseWw domly selected samples from each class to learn the weights
use labeled data from the dataset to learn these parameter#) the metric.
Suppose we have some set of objects. Each object .
characterized by functions as"(z;) = { fa(x:)}2.,, and 4.1.3D Shape Retrieval
dq(zs,x;) is the persistence based distance ofdtefunc- Our first set of experiments is on triangulated 3D mesh
tion between two objects; andx; from the set. Addition-  retrieval. We consider two datasets: SHREC 202§ [
ally, we are given information that certain pairs of them are and a robustness datasg}l. [ The former focuses on near-
“similar”; isometric shapes, and consists of 200 watertight shapes
) o equally divided into 10 categories (Figufeillustrates a
S (zi, ;) € Sif x; andx; are similar (2)  sampling of the shapes from this dataset). The latter has
the same data used in the Shape Googi \vith an extra
transformation, which is the same as SHREC Robustness
D: (x4,x;) € Dif z; andzx; are dissimilar (3)  benchmark §] except for a few transformations. It con-
tains 596 shapes classified into 13 classes, and 456 shapes
Our goal is to learn a distance metric to respect that “sim- which do not belong to any class. For both datasets, we
ilar” objects end up with smaller distances to each othet, an use the spectral descriptors as feature functions, inodudi

and certain pairs of them are “dissimilar”



the heat kernel signature (HKS)T, 39, wave kernel sig-
nature (WKS) [] and scale invariant heat kernel signature ey,
(SIHKS) [24]. All of them are isometry-invariant. HKS and

WKS characterize the macroscopic and microscopic prop-
erties of shapes, respectively. SIHKS is a scale-invariant P
version of HKS. We compare our method to BoF-based ap- g
proach, spatially-sensitive BoF (SSBok) &nd ISPM 6], ‘* .

which is a spatial pyramid approach on surfaces. § J° w 28
. " : s
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Figure 4. Sample shapes from SHREC 2010. . " o
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Results on SHREC 2010
PD Prominent Points

On this dataset, we simplify each mesh into 2000 faces,  HK
and the retrieval results are evaluated using the measure_
provided by the organizers, including NN, FT, ST, E- Figure5. Anexample that PD discriminates different shapes, while
measure, and DCG (Se&d] for details). We first illus-  BoF fails.
trate the performance of different methods by considering
the HKS and WKS functions for fixed time and energy pa-
rameters respectively. DCG and the average running time
to compare two PDs are reported in Talile The aver-
age number of points on PDs ranges around 15 for HK

o o o
/ . |
I I I o 00 S8 o
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the PD-based method consistently outperforms the BoF rep-
resentation across different feature functions.

We then combine SIHKS, HKS and WKS to form a sin-
Sgle high-dimension descriptor. The combined performance

and 100 for WKS. It can be observed on this example, that of our method again outperforms the BoF approach, in part

S . S because PDs allow to capture structural properties of thjec
bottleneck and Wasserstein distances yield a S|gn|f|cantlyWhich are discarded by the BoF representation

higher accuracy than the landscape distance, at the price We also show that the advantages of the BoF and PD-

of a higher computation time. F'@ dlgplays an ex_ample based approaches can be combined by considering the joint
where PD provides more discriminative information than .
representation wher@sorpp = A * dor + dpp, Where

:Eg QLS.;()C%;aarn é)c]:r\:zlsueosngftghliégrgfnh?ﬁ t?])c(atrliglstlfsngf is the relative weight to normalize the distances. On this
) P Xl u dataset, we manually pickedof SIHKS, HKS, WKS and

:'r?n' Th|s' stru::turgltlnfgrrp?tlc;r? |str\:velrllp::eserved In PBs a; the high-dimension spectral descriptor to be 0.033, 0.2, 20
€ prominent points, but fost in the nistogram representa-g 4 ¢ BoF+PD, and 0.2, 1, 2000, 0.2 for ISPM+PD, re-

fuon that merges function values from different components spectively. The combined metric PD+BoF/ISPM always
into the same bins. : .
) ) ) yields the the highest results.
Table 1. Comparison between different distances. We also compare with the state-of-the-art method, in-

Metrics l HKS l WKS cluding ShapeDNA 5] and DM-EVD [38], which show
[ DCG [ time(s) | DCG [ time(s) the best performance in a larger contesi][ We test the
Bottleneck 0.8746 | 0.0020 | 0.5988 | 0.0315 . .
Wasserstein{ = 2) 0.8774 | 0.0060 | 0.6190 | 0.5354 ShapeDNA method on the the same simplified meshes, and
Lan ds‘é‘gasjgsiei;‘g =2 100y | o8003 | 00048 | oasen | oo take the result of DM-EVD and other methods frord]] in
Landscefpe((; 10, N =50) | 08471 | 0.0026 | 04578 | 0.0037 which DM-EVD is performed on the fine meshes. As can

be seen in Tabl@, our combined result is comparable to
Based on these experiments, for comparison of 3D these methods.

shapes, we use the bottleneck distance to compare PDs, Results on TOSCA-based dataset
as it provides a good trade-off between time and efficiency  On the TOSCA-based dataset3], we use multi-
whenever the diagrams do not contain too many points.  dimensional descriptors: HKS and SIHKS with 6 and 5 di-
We first compare our PD-based technique with BoF and mensions respectively. TabBsummarizes the results ob-
ISPM methods using multi-dimensional descriptors. In tained using our method compared with the performance
particular, we use 17-dimensional SIHKS, 10-dimensional of BoF, SSBoF, ISPM and PD in terms of equal error
HKS and 10-dimensional WKS. In this case we do not use rate (EER) B3]. Overall, the PD-based approach alone
the metric learning step as the different dimensions are com shows slightly worse performance than the BoF methods
mensurable. Throughout this experiment with use 32 wordson this dataset. However, we obtain superior performance
to construct the vocabulary for the BoF representation andby combining the two methods. On this dataset, we use the
use soft vector quantization. We summarize the results ofweights: A = 10, 5, 10 for HKS, SIHKS and HKS+SIHKS
SIHKS and HKS in Tabl&. As can be seen in this table, respectively in BoF+PD anil, 10000, 10 for HKS, SIHKS



Table 2. Comparison of PD, BoF, SSBoF and ISPM on SHREC 35 .

2010 pd. : S\ K.
= - 25|
Methods [ NN [ 1Ter [ 2-Tier | eMeasure | DCG Q' v (J s 2
2|
BoF 0.9100 0.4811 0.6374 0.4492 0.8061 > ‘T ° @
SSBoF 0.9150 0.4737 0.6321 0.4412 0.8040 s o e e
ISPM 0.9300 0.5745 0.7018 0.5018 0.8597 1
HKS PD 0.9600 0.5811 0.7034 0.4971 0.8677 0 05 1 1 1 B 3
BoF + PD 0.9500 0.6095 0.7382 0.5237 0.8781 (a) (b) (C) (d)
ISPM + PD 0.9700 0.6321 0.7500 0.5335 0.8869
BoF 0.9700 | 0.7145 | 08308 0.6020 0.9191 Figure 6. Persistence computing on gestures. (a) a gesture with
SSBoF 0.9700 0.7097 0.8297 0.5967 0.9164 ) T N 77 .
ISPM 09700 | 07750 | 08734 0.6359 09315 its center point in red and starting point in yellow; (istance-
SIHKS PD 0.9850 0.8532 0.9697 0.7045 0.9740 .
BoF + PD 0.9850 0.8534 0.9697 0.7051 0.9737 to-centerfunction feente; (C) gesture colored bycente; (d) PD of
ISPM + PD 0.9900 0.8784 0.9724 0.7114 0.9778
BoF 0.9700 0.7426 0.8758 0.6275 0.9367 fcenter-
SSBoF 0.9750 0.7318 0.8511 0.6102 0.9292
WKS+ ISPM 0.9750 0.8021 0.8979 0.6533 0.9408
HKS+ PD 0.9850 0.8532 0.9697 0.7045 0.9740
SIHKS BoF + PD 0.9850 0.8561 0.9705 0.7061 0.9743 ' v ‘
ISPM + PD 0.9900 0.8779 0.9742 0.7118 0.9778
ShapeDNA B5] 0.9850 0.7974 0.9203 0.6653 0.9536
BOF-dSIFT-ERC-Tree 0.9850 0.9092 0.9632 0.7055 0.9763 1 13 j 100
DM-EVD [3§] 1.0000 0.8611 0.9571 0.7012 0.9773 2 11 10 1 ] 2 99 Il
Canonical Forms 0.9200 0.6347 0.7800 0.5527 0.8781 3 3 2 ] 3 100 ]
4 2 a8l 1 12 % e 15
; { 16 4 124
Table 3. Comparison of PD, BoF, SSBoF and ISPM on TOSCA- A > "o R !
based dataset. : Y % 6
Descriptors | Transformation | BoF [ SSBoF [ ISPM [ PD [ BoF+PD | ISPM+PD 8 1 EYl 67 3‘ 21
isometry 0.0352 | 0.0307 | 0.0284 | 0.1464 | 0.0369 0.0274 o 1 10 E o 14 1
isometry+topology | 0.0394 | 0.0320 | 0.0341 | 0.1654 | 0.0397 0.0307 10 19 1.9 5 | 65 | 10} 13 1
HKS+ noise 0.1540 | 0.1464 | 0.1036 | 0.2087 0.1462 0.1019 12 3 4 5 6 7 8 9§ 10 i 2 3 4 5 6 7 8 9 10
SIHKS null 0.0412 | 0.0394 | 0.0299 | 0.1561 0.0428 0.0291
partiality 0.0507 0.0466 0.0456 0.2630 0.0521 0.0468 (a) BOF (b) PD
topology 0.0561 0.0572 0.0350 0.2173 0.0563 0.0362 . . .
triangulation 0.0520 0.0495 0.0374 0.2049 0.0562 0.0396 Flgure 7 The ConfUSIOn matrlx Of (a) Bon and (b) PD The ge8ture
Al 0.0535 | 0.0519 | 0.0417 | 0.1727 0.0527 0.0380 H
HKS All 0.0650 | 0.0712 | 0.0595 | 0.2477 0.0638 0.0581 C|aSSES are dlsplayed on top
SIHKS All 0.0670 0.0531 0.0507 0.1728 0.0658 0.0507

this dataset.
and HKS+SIHKS respectively in ISPM+PD. The EER of  \ith £ alone, BoF achieves its best performance of
ShapeDNA for all transformations is 0.0967, which isworse 72 600, when discretizing the function into 5 bins, while
tha_n state-of-the—ar_t work Shape Google (BoF+spectral de-pp gets much higher result of 87.60% (see Fig. This
scriptors) 3] on this dataset. The proposed method can gggests that the information lost by discarding the connec
help Shape Google and its spatial version (ISPM) achieveyyity in BoF is critical for the recognition of objects with
even better results. different structural properties.
To improve the performance, we include two more func-
tions by computing the eingenfunctions of the PCA per-
Our second experiment focuses on the recent Kinectformed on vertex coordinates. We denote the two eigen-
sensor-based hand gesture recognitiof] find is inspired  functions asf; andf, and their absolute values g5, | f2|-
by the work of i1]. This dataset contains 1000 gestures Using feentes | f1], and |f2|, together, the BoF reaches its
equally categorized into 10 classes. Each gesture is combest result 83.20% with 15 visual words learned using
pared against a set 20 template$2 samples for each class) means. Our method with metric learning solved bg, 3]
and nearest neighbor classification is performed. gets accuracy of 92.90% and 91.70%, respectively. Further-
Each gesture instance is represented as a sequence @fiore, BoF+PD combined using= 12 yields recognition
contour vertices, starting from the left side of the wristlly ~ accuracy of 93.50%.
low point in Fig.6(a)). We construct our graph by consid- To compare our method to the state-of-the-art, wefise
ering the sequence points as nodes, and their adjacent cor@nd/f2 directly and compute the distance by testing two sign
nectivity as edges. Rest al.[34] also provide an informa- possibilities.e.,
tive function to characterize each gesture by first computin 4, _ i {dues (D(1), D(9:) , duset (D(f3), D(—gi))} 27 = 1, 2.
the center pointf.ente; defined as the point with the maxi-
mal Distance Transform value (red point in F&fa)), and wheref; andg; are thei™ PCA eigenfunctions of the two
computing the normalized Euclidean distance from the con-gestures. For comparison, we also consider the classifica-
tour vertices to the center. We show the corresponding PDtion with only one labeled sample per clad® emplates
in Fig. 6(d). Importantly, due to the stability property, the Recent methods proposed by Remal. [34] and Wanget
PD of feentercan represent the perturbations of the contour al. [42] are based on shape segmentation and finger earth
as points close to diagonal, and thus help to alleviate noisemover distance (FEMD) introduced by Renhal.[34]. As
brought by the Kinect sensor in data acquisition. claimed by the authors, this metric is robust to the finger-
In all of the experiments below we use the Wassersteintouching, which also means that adding more labeled ges-
distance to compare persistence diagrams of functions intures with finger-touching into the training set will not sig

4.2. Hand Gesture Recognition



Table 4. Comparison on hand gesture databade [ Table 5. Comparison between PD and BoF on texture database.

Methods [ Accuracy (%) Time (s) Methods | Accuracy (%)
Shape Context without bending cost 83.2 12.346 BoF 76.0965
Shape Context with bending cost 79.1 26.777 CLBP-S PD 54.8246
Skeleton Matching 78.6 2.4449 BoF + PD 79.1667
Near-convex Decomposition+FEME4] 93.9 4.0012 BoF 74.1228
Thresholding Decomposition+FEMD {] 93.2 0.075 CLBP-MC PD 55.2632
PSD+FEMD 7] 94.1 1.967 BoF + PD 77.1930
feenter (10 templates 86.4 0.075 BoF 83.9912
Multiple functions (LO templates 90.1 0.3750 CLBP-SMC PD 57.8947
feenter (20 templates 87.6 0.1057 BoF + PD 85.9649
Multiple functions @0 templates 95.4 0.5285 CLBP-S+ BoF 84.6491
CLBP-MC+ PD 75.8772
CLBP-SMC | BoF + PD 87.5000

nificantly improve accuracy. We validate it using PSD][

for the settings that 1, 2 or 3 labeled samples are respec-
tively chosen per class. For each setting, 3 trials with dif-
ferent labeled samples (with finger touching) are testes, th
mean accuracy of PSD is 94.1%, 93.2%, and 93.1%. We
show the comparison with the state-of-the-art in Tabkhe
results of other methods are frosY]. PD can reach higher
accuracy with more training samples, without sacrificing ef
ficiency, because it avoids the time-consuming shape de-
composition stage. With the same training2@templates
persistence based method is 95.40%, while PSD is 93.80%.

o «f

> ° o %7

0g 0 o 37
88000 =t
° .

o >
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4.3. Texture Image Classification

.
Our last experiment is on texture classification. For this Texture CLBP D
we use the standard Outex databasd.[ This database
consists of 4320 texture images equally categorized into 24

classes. To evaluate our method, we first randomly select 20points appear on the top-right area, and points in the mid-

images from each class, with one of them acting as a lab(_al'dle are with higher density. When combining BoF and PD,

and rest are testing samples. We use the CLBP descrip~ ¢, ~| Bp-S CLBP-MC. CLBP-SMC and multiple func-
tor function P2}, which is based on the well-known LBP ¢ is set as 800,100,165,100, BoF+PD always gives the
_descrlptor b CI.‘BP qlescnbes each local region on an best performance. Furthermore, we test PD with CLBP-
image as three discretized components named center (C)SMC on the whole database, and get accuracy 84.1406%.

sig; ((:SI_)B?:)ntéhr;lrlggnitude (Z/l)t') Wg use ICLZBZP'S’ ﬁLBfP'MC Its accuracy by BoF is 96.5625%, which is also the reported
an f - ; prophose hy lfm a..[ Jast ed?ffi; best in the same settings’. By setting\ = 225, we find
ture functions since these three functions convey differen . 5 = op gives an even better result 97.0313%.

information. CLBP functions are (1) discrete and severely
bounded, (2) have strong local self-repetition. Therefore .
the associ:gt()ad PDs contgin many poinfs. To efficientlil dis- 5. Conclusion and Future Work

criminate these PDs, we use persistence landscape method. |, this paper, we present a method for object recognition
The dissimilarity is defined as a cor{pbmaﬂon of rgulﬂple using topological persistence. Our experiments on a yariet
normalized landscape distancss 3~/ (ki/k1) *didg.  of applicable scenarios demonstrate the effectivenesssof t
wherek; = [100, 200, 500, 800, 1000] andn = 21. approach. PD and BoF capture different information of a

~ The results are summarized in TableGiven these mul- fynction: PD describes it structural properties, while BoF
tiple functions, BoF reaches its best result 84.6491% us-gegcribes the quantity statistic of the function values.

ing 100 words. PD with metric learning gives 75.8772%,
while the manually chosen relative weights for PD with

Figure 8. The example of PD and BoF for texture classification.

One interesting future direction is to create a principled
theoretical framework to combine the PD and BoF for better

different functions result in the accuracy 77.4123%. Al ocqqnition, and to extend the persistence-based approach
though higher overall accuracy is always provided by BOF, , ey applications, such as range scans or RGB-D data.
PD shows its advantage by yielding much higher accuracy

in some classes. We show one such example with CLBP-
SMC function in Fig.8. The top two images have larger Acknowledgements The authors acknowledge the Marie
histogram distance, but their PDs are more similar: fewer Curie CIG-334283-HRGP, the CNRS chaire d’excellence,



the Google Faculty Research Award, the ANR project Top- [24]
Data ANR-13-BS01-0008 and the ERC project Gudhi.
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