
Topological Uncertainty: Monitoring trained neural networks
through persistence of activation graphs

Théo Lacombe1∗ , Mathieu Carrière1 , Frédéric Chazal1 , Yuichi Ike2 , Marc Glisse1 and Yuhei
Umeda2

1DataShape - Inria
2Fujitsu Laboratories Ltd.

1{firstname.lastname}@inria.com, 2{lastname.firstname}@fujitsu.com

Abstract
Although neural networks are capable of reaching
astonishing performances on a wide variety of con-
texts, properly training networks on complicated
tasks requires expertise and can be expensive from
a computational perspective. In industrial appli-
cations, data coming from an open-world setting
might widely differ from the benchmark datasets on
which a network was trained. Being able to monitor
the presence of such variations without retraining
the network is of crucial importance. In this article,
we develop a method to monitor trained neural net-
works based on the topological properties of their
activation graphs. To each new observation, we as-
sign a Topological Uncertainty, a score that aims to
assess the reliability of the predictions by investi-
gating the whole network instead of its final layer
only, as typically done by practitioners. Our ap-
proach entirely works at a post-training level and
does not require any assumption on the network
architecture, optimization scheme, nor the use of
data augmentation or auxiliary datasets; and can be
faithfully applied on a large range of network ar-
chitectures and data types. We showcase experi-
mentally the potential of Topological Uncertainty
in the context of trained network selection, Out-Of-
Distribution detection, and shift-detection, both on
synthetic and real datasets of images and graphs.

1 Introduction
Over the last decade, Deep Learning (DL) has become the
most popular approach to tackle complex machine learning
tasks, opening the door to a broad range of industrial appli-
cations. Despite its undeniable strengths, monitoring the be-
havior of deep Neural Networks (NN) in real-life applications
can be challenging. The more complex the architectures be-
come, the stronger the predictive strengths of the networks,
but the looser our grasp on their behaviors and weaknesses.

Training a neural network requires task-specific expertise,
is time consuming, and requires the use of high-end ex-
pensive hardware. With the rise of companies providing

∗Contact Author

1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.6

0.7

0.8

0.9

1.0

1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Figure 1: (Left) Confidence (maximum in the final soft-max layer)
of the predictions made by a neural network trained on the two-
moons dataset (white and black crosses) over the plane. Away from
the thin classification boundary (confidence value close to 0.5), the
network tends to produce over-confident predictions (value close to
1), even for points that are far away from the training data. (Right)
Topological distance between all activation graphs and the activation
graphs computed on the train set (higher means less confident).

model marketplaces (e.g., [Kumar et al., 2020, §, Table 1] or
tensorflow-hub), it is now common that users only have
access to fixed trained neural networks, with few information
on the training process, and would rather avoid training the
networks again.

In practice, a network can perform well on a given learn-
ing problem—in the sense that it can achieve high accu-
racy on the training and test sets—, but lack reliability when
used in real-life applications thereafter. One can think of,
among other examples, adversarial attacks, that are mis-
interpreted by neural networks with high confidence levels
[Nguyen et al., 2015; Akhtar and Mian, 2018; Biggio and
Roli, 2018], calibration issues leading to under- or over-
confident predictions [Guo et al., 2017; Ovadia et al., 2019;
Hein et al., 2019], lack of robustness to corruption or pertur-
bation of the input data [Hendrycks and Dietterich, 2019].

Related work. Many techniques have been proposed to
improve or monitor the behavior of NN deployed in real-
life applications. Most require specific actions taken dur-
ing the training phase of the network; for instance via data
augmentation [Shorten and Khoshgoftaar, 2019]), the use
of large auxiliary datasets1 [Hendrycks et al., 2019], mod-

1In particular, the 80 million tiny images dataset
[Torralba et al., 2008], used as an auxiliary dataset in state-of-the-art
OOD detection techniques [Chen et al., 2020], has been withdrawn

https://www.tensorflow.org/hub


ifications of the network architecture [DeVries and Tay-
lor, 2018] or its objective function [Atzmon et al., 2019;
Van Amersfoort et al., 2020], or using several networks at
once to produce predictions [Lakshminarayanan et al., 2017].
The approach we introduce in this article focuses on acting
at a post-training level only, and since our goal is to bench-
mark it against the use of confidence alone in a similar set-
ting, we use, in our experimental results, the baseline intro-
duced in [Hendrycks and Gimpel, 2017], which proposes to
monitor NNs based on their confidences and on the idea that
low-confidence predictions may account for anomalies.

Using topological quantities to investigate NN properties
has experienced a growth of interest recently (see for instance
[Guss and Salakhutdinov, 2018; Carlsson and Gabrielsson,
2020]). In [Gebhart and Schrater, 2017; Gebhart et al.,
2019], the authors introduce the notion of activation graphs
and showcase their use in the context of adversarial attacks.
We mix this idea with [Rieck et al., 2019], which proposes
to investigate topological properties of NN layer-wise2. A
topological score based on an estimation of the NN decision
boundary has been proposed in [Ramamurthy et al., 2019] to
perform trained network selection, an idea we adapt in Sub-
section 4.1.

Contributions. In this work, we propose a new approach to
monitor trained NNs by leveraging the topological properties
of activation graphs. Our main goal is to showcase the poten-
tial benefits of investigating network predictions through the
lens of the whole network instead of looking at its confidence
encoded by its final layer only as usually done in practice.

To that aim, we introduce Topological Uncertainty (TU),
a simple topological quantity that, for a given NN and a new
observation, encodes how the network “reacts” to this obser-
vation, and whether this reaction is similar to the one on train-
ing data. Our approach does not require any assumption on
the network training phase nor the type of input data, and can
thus be deployed in a wide variety of settings. Furthermore, it
only relies on computating maximum spanning trees (MST),
leading to a simple and efficient implementation.

Experimentally, we show that TU can be used to monitor
trained NNs and detect Out-of-Distribution (OOD) or shifted
samples when deployed in real-life applications. Our results
suggest that TU can drastically improve on a standard base-
line based on the network confidence in different situations.
Our implementation will be made publicly available as part
of an open-source library; a preliminary version is available
in the supplementary material.

2 Background
2.1 Neural networks
For the sake of clarity, we restrict our presentation to se-
quential neural networks, although our approach (detailed in
Section 3) can be generalized to more general architectures,

for ethical concerns. This situation illustrates unexpected limitations
when relying on such datasets to calibrate neural networks.

2A more detailed comparison between our work and [Rieck et
al., 2019] is deferred to the supplementary material

e.g., recurrent neural networks. We also restrict to classifi-
cation tasks; let d denote the dimension of the input space
and K be the number of classes. A (sequential) neural net-
work (NN) is a function F : Rd → RK that can be written as
F = fL ◦ · · · ◦ f1, where the (f`)

L
`=1 are elementary blocks

defined for ` = 1, . . . , L− 1 as

x`+1 = f`(x`) = σ`(W` · x` + b`),

with W` ∈ Rd`×d`+1 , b` ∈ Rd`+1 , and (σ`)` are activation
maps3, e.g., σ` = ReLU: x 7→ max{x, 0}. In classifi-
cation tasks, the final activation fL = σL is usually taken
to be the soft-max function, so that the output xL = F (x)
can be understood as a probability distribution on {1, . . . ,K}
whose entries (F (x)k)k indicate the likelihood that x belongs
to class k. The predicted class is thus arg maxk{F (x)k},
while the confidence that the network has in its prediction
is maxk{F (x)k} ∈ [0, 1]. Given a training set of obser-
vations and labels (X train, Y train) = (xi, yi)

N
i=1 distributed

according to some (unknown) joint law (X ,Y), the net-
work parameters W`, b` are optimized to minimize the loss∑L(F (xi), yi) for some loss function L (e.g., the categori-
cal cross-entropy). The (training) accuracy of F is defined as
1
N

∑N
i=1 1arg max(F (xi))=yi .

2.2 Activation graphs and topological descriptors
Activation graphs. Let us consider a neural network F
and two layers of size d` and d`+1 respectively, connected
by a matrix W` ∈ Rd`×d`+1 . One can build a bipartite
graph G` whose vertex set is V` t V`+1 with |V`| = d` and
|V`+1| = d`+1, and edge set is E` = V` × V`+1. Following
[Gebhart et al., 2019], given an instance x ∈ Rd, one can as-
sociate to each edge (i, j) ∈ E` the weight |W`(i, j) · x`(i)|,
where x`(i) (resp. W`(i, j)) denotes the i-th coordinate of
x` ∈ Rd` (resp. entry (i, j) of W` ∈ Rd`×d`+1 ). Intuitively,
the quantity |W`(i, j) ·x`(i)| encodes how much the observa-
tion x “activates” the connection between the i-th unit of the
`-th layer and the j-th unit of the (`+1)-th layer of F . In this
way, we obtain a sequence of bipartite graphs (G`(x, F ))`
called the activation graphs of the pair (x, F ), whose vertices
are V` t V`+1 and edges weights are given by the aforemen-
tioned formula.

Maximum spanning trees and persistence diagrams. To
summarize the information contained in these possibly large
graphs in a quantitative way, we rely on topological descrip-
tors called persistence diagrams, coming from the Topologi-
cal Data Analysis (TDA) literature. A formal introduction to
TDA is not required in this work (we refer to the supplemen-
tary material for a more general introduction): in our specific
case, persistence diagrams can be directly defined as the dis-
tribution of weights of a maximum spanning tree (MST). We
recall that given a connected graph G with N + 1 vertices, a
MST is a connected acyclic sub-graph of G sharing the same
set of vertices such that the sum of the N edge weights is
maximal among such sub-graphs. MST can be computed effi-
ciently, namely in quasilinear time with respect to the number

3Note that this formalism encompasses both fully-connected and
convolutional layers that are routinely used by practitioners.



of edges in G. Given the ordered weights w1 ≥ · · · ≥ wN
of a MST built on top of a graph G, its persistence diagram is
the one-dimensional probability distribution

µ(G) :=
1

N

N∑
i=1

δwi
,

where δwi
denotes the Dirac mass at wi ∈ R. See Figure 2

for an illustration.

Comparing and averaging persistence diagrams. The
standard way to compare persistence diagrams relies on op-
timal partial matching metrics. The choice of such metrics
is motivated by stability theorems that, in our context, imply
that the map x 7→ µ(G`(x, F )) is Lipschitz with Lipschitz
constant that only depends on the network architecture and
weights4 (and not on properties of the distribution of x ∼ X
for instance). The computation of these metrics is in gen-
eral challenging [Kerber et al., 2017]. However, in our spe-
cific setting, the distance Dist(µ, ν) between two diagrams
µ = 1

N

∑N
i=1 δwi and ν = 1

N

∑N
j=1 δw′

j
can be simply ob-

tained by computing a 1D-optimal matching4, which in turn
only requires to match points in increasing order, leading to
the simple formula

Dist(µ, ν) =
1

N

N∑
i=1

|wi − w′i|,

where w1 ≥ w2 ≥ · · · ≥ wN and w′1 ≥ w′2 ≥ · · · ≥ w′N .
With this metric comes a notion of average persistence dia-
gram, called a Fréchet mean [Turner et al., 2014]: the Fréchet
mean µ of a set of M diagrams µ1, . . . , µM is a minimizer of
ν 7→∑M

m=1 Dist(µm, ν)2, which in our context simply reads

µ :=
1

N

N∑
i=1

δw̄i ,

where w̄i = 1
M

∑M
m=1 w

(m)
i and w(m)

i denotes the i-th point
of µm. The Fréchet mean provides a geometric way to con-
cisely summarize the information contained in a set of persis-
tence diagrams.

3 Topological Uncertainty (TU)
Building on the material introduced in Section 2, we pro-
pose the following pipeline, which is summarized in Figure 2.
Given a trained network F and an observation x, we build
a sequence of activation graphs G1(x, F ), . . . , GL−1(x, F ).
We then compute a MST of each G`(x, F ), which in turn in-
duces a persistence diagram D`(x, F ) := µ(G`(x, F )).

Topological Uncertainty. Given a network F : Rd → RK
trained on a set X train, one can store the corresponding se-
quence of diagrams (D`(x

train, F ))` for each xtrain ∈ X train.
These diagrams summarize how the network is activated
by the training data. Thus, given a new observation x

4We refer to the supplementary material for details and proofs.

with arg max(F (x)) = k, one can compute the sequence
(D`(x, F ))` and then the quantity

min
xtrain∈X train,

arg max(F (xtrain))=k

Dist
(
D`(x, F ), D`(x

train, F )
)
,

that is, comparingD`(x, F ) to the diagrams of training obser-
vations that share the same predicted label than x. Figure 1
(right) shows how this quantity evolves over the plane, and
how, contrary to the network confidence (left), it allows one
to detect instances that are far away from the training distri-
bution.

Since storing the whole set of training diagrams for each
class and each layer {D`(x

train, F ) : arg max(F (xtrain)) =
k} might be inefficient in practice, we propose to summa-
rize these sets through their respective Fréchet means Dtrain

`,k .
For a new observation x ∈ Rd, let k(x) = arg max(F (x)) be
its predicted class, and (D`(x, F ))` the corresponding persis-
tence diagrams. The Topological Uncertainty of x is defined
to be

TU(x, F ) :=
1

L

L∑
`=1

Dist
(
D`(x, F ), Dtrain

`,k(x)

)
, (1)

which is the average distance over layers between the per-
sistence diagrams of the activation graphs of (x, F ) and the
average diagrams stored from the training set. Having a low
TU suggests that x activates the network F in a similar way to
the points in X train whose class predicted by F was the same
as x. Conversely, an observation with a high TU (although
being possibly classified with a high confidence) is likely to
account for an OOD sample as it activates the network in an
unusual manner.
Remarks. Our definition of activation graphs differs from
the one introduced in [Gebhart et al., 2019], as we build one
activation graph for each layer, instead of a single, possi-
bly very large, graph on the whole network. Note also that
the definition of TU can be declined in a variety of ways.
First, one does not necessarily need to work with all layers
1 ≤ ` ≤ L, but can only consider a subset of those. Similarly,
one can estimate Fréchet means Dtrain

`,k using only a subset of
the training data. These techniques might be of interest when
dealing with large datasets and deep networks. One could
also replace the Fréchet mean Dtrain

`,k by some other diagram
of interest; in particular, using the empty diagram instead al-
lows us to retrieve a quantity analog to the Neural persistence
introduced in [Rieck et al., 2019]. On an other note, there are
other methods to build persistence diagrams on top of acti-
vation graphs that may lead to richer topological descriptors,
but our construction has the advantage of returning diagrams
supported on the real line (instead of the plane as it usually oc-
curs in TDA) with fixed number of points, which dramatically
simplifies the computation of distances and Fréchet means,
and makes the process efficient practically.

4 Experiments
This section showcases the use of TU in different contexts:
trained network selection (§4.1), monitoring of trained net-
works that achieve large train and test accuracies but have



−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

1.5

` = 0 ` = 1 ` = 2

` = 0 ` = 1 ` = 2

` = 2

` = 1

` = 0

` = 2

` = 1

` = 0

Figure 2: Pipeline presented in this article: Each observation activates the network with a weight |W`(i, j) ·x`(i)| on the edge connecting the
i-th unit in the `-th layer to the j-th unit of the (`+ 1)-th layer. A maximum spanning tree is then computed for each layer ` of the network,
whose distribution of weights provides a corresponding persistence diagram. On this example, the network used is a simple network with
two hidden-layers of 64 units each with ReLU activation, each layer is fully-connected (dense matrix).

not been tweaked to be robust to Out-Of-Distribution obser-
vations (§4.2) or distribution shift (§4.3).

Datasets and experimental setting. We use standard, pub-
licly available, datasets of graphs and images. MNIST,
Fashion-MNIST, CIFAR-10, SVHN, DTD are datasets
of images, while MUTAG and COX2 are datasets of graphs
coming from a chemical framework. We also build two
OOD image datasets, Gaussian and Uniform, by ran-
domly sampling pixel values following a Gaussian distribu-
tion (resp. uniform on the unit cube). A detailed report of
datasets and experimental settings (data preprocessing, net-
work architectures and training parameters, etc.) can be
found in the supplementary material.

4.1 Trained network selection for unlabeled data
In this subsection, we showcase our method in the context
of trained network selection through an experiment proposed
in [Ramamurthy et al., 2019, §4.3.2]. Given a dataset with
10 classes (here, MNIST or Fashion-MNIST), we train 45
NNs on the binary classification problems i vs. j for each pair
of classes (i, j) with i > j, and store the average persistence
diagrams of the activation graphs for the different layers and
classes as explained in Section 3. These networks are denoted
by Fij in the following, and consistently reach high accura-
cies on their respective training and test sets given the sim-
plicity of the considered tasks. Then, for each pair of classes
k1 > k2, we sample a set of new observationsXk1,k2 made of
200 instances sampled from the test set of the initial dataset
(in particular, these observations have not been seen during
the training of any of the (Fij)ij) whose labels are k1 and
k2. Assume now that k1, k2 and the labels of our new obser-
vations are unknown. The goal is to select a network that is
likely to perform well on Xk1,k2 among the (Fij)ij . To that
aim, we compute a score for each pairing (k1, k2) ↔ (i, j),
which is defined as the average TU (see Eq. (1)) when feed-

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060

Score (average Topological Uncertainty)

50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

(1, 0)

(7, 1)

(9, 1)

(8, 4)

(7, 4)

(7, 6)

Figure 3: Score and accuracies obtained on 45 models trained on the
MNIST dataset when fed with a set X1,0 of images representing 0
and 1 digits. The point annotations refer to the values (i, j) on which
the network was initially trained. For instance, a network trained on
7 and 4 has a score of 0.49 and an accuracy of ∼ 75% on X1,0.

ing Fij with Xk1,k2 . A low score between (i, j) and (k1, k2)
suggests thatXk1,k2 activates Fij in a “known” way, thus that
Fij is likely to be a relevant classifier forXk1,k2 , while a high
score suggests that the data in Xk1,k2 is likely to be different
from the one on which Fi,j was trained, making it a less rel-
evant choice. Figure 3 plots the couple (scores, accuracies)
obtained on MNIST when taking (k1, k2) = (1, 0), that is,
we feed networks that have been trained to classify between
i and j handwritten digits with images representing 0 and 1
digits. Not surprisingly, F1,0 achieves both a small TU (thus
would be selected by our method) and a high accuracy. On the
other hand, using the model F7,6 on X1,0 leads to the highest
score and a low accuracy.

To quantitatively evaluate the benefit of using our score to
select a model, we use the the metric proposed by [Rama-
murthy et al., 2019]: the difference between the mean accu-
racy obtained using the 5 models that have the lowest scores
and the 5 models that have the highest scores. We obtain
a +14.8%-increase on MNIST and a +12.6%-increase on



Baseline Topological Uncertainty
Training data OOD data FPR (TPR 95%) ↓ AUC ↑ FPR (TPR 95%) ↓ AUC ↑
MUTAG Fake-MUTAG 98.4 1.7 0.0 99.8

COX2 93.0 31 0.0 100.0

COX2 Fake-COX2 91.2 1.4 0.0 99.9
MUTAG 91.2 1.1 0.0 100.0

CIFAR-10

FMNIST 93.6 54.9 65.6 86.4
MNIST 94.7 58.3 25.4 94.7
SVHN 90.6 27.6 83.6 65.8
DTD 90.9 32.6 90.3 57.3
Uniform 91.5 31.8 59.1 80.2
Gaussian 91.0 27.2 18.8 88.2

Table 1: Comparison between the baseline OOD-detector based on
network confidence and our TU-based classifier on graph datasets
(first two rows) and on image datasets for a network trained on
CIFAR-10 (third row). ↑: higher is better, ↓: lower is better.

Fashion-MNIST. These positive values indicate that, on
average, using low TU as a criterion helps to select a better
model to classify our new set of observations. As a compar-
ison, using the average network confidence as a score leads
to +6.6% on MNIST and +4.7% on Fashion-MNIST, in-
dicating that using (high) confidence to select a model would
be less relevant than using TU, on average. See the supple-
mentary material for a complementary discussion.

Remark. Our setting differs from the one of [Ramamurthy
et al., 2019]: in the latter work, the method requires to have
access to true labels on the set of new observations Xk1,k2
(which we do not), but do not need to evaluate Fij(x), x ∈
Xk1,k2 on each model Fij (which we do). To that respect, we
stress the complementary aspect of both methods.

4.2 Detection of Out-Of-Distribution samples
The following experiment illustrates the behavior of TU when
a trained network faces Out-Of-Distribution (OOD) observa-
tions, that is, observations that are not distributed according
to the training distribution. To demonstrate the flexibility
of our approach, we present the experiment in the context
of graph classification, relying on the COX2 and the MUTAG
graph datasets. Complementary results on image datasets can
be found in Table 1 and in the supplementary material. Work-
ing with these datasets is motivated by the possibility of us-
ing simple networks while achieving reasonably high accura-
cies which are near state-of-the-art on these sets. To train
and evaluate our networks, we extract 40 spectral features
from graphs—thus representing a graph by a vector in R40—
following a procedure proposed in [Carrière et al., 2020]. See
the supplementary material for details.

For both datasets, we build a set of 100 fake graphs in the
following way. Let N and M be the distributions of num-
ber of vertices and number of edges respectively in a given
dataset (e.g., graphs in MUTAG have on average 17.9 ± 4.6
vertices and 19.8 ± 5.7 edges). Fake graphs are sampled as
Erdős-Renyi graphs of parameters (n,m/n2), with n ∼ N ,
m ∼ M, thus by construction fake graphs have (on average)
the same number of vertices and edges as graphs from the
training dataset. These sets are referred to as Fake-MUTAG
and Fake-COX2, respectively.

Now, given a network FMUTAG trained on MUTAG (resp.
FCOX2 trained on COX2), we store the average persistence
diagrams of each classes. It allows us to compute the cor-
responding distribution of TUs T train = {TU(x, FMUTAG) :

x ∈ MUTAG} (resp. TU(x, FCOX2)). Similarly, we eval-
uate the TUs of graphs from the Fake-MUTAG (resp.
Fake-COX2) and from COX2 (resp. MUTAG). These distri-
butions are shown on Figure 4 (second and fourth plots, re-
spectively). As expected, the TUs of training inputs T train

are concentrated around low values. Conversely, the TUs
of OOD graphs (both from the Fake dataset and the second
graph dataset) are significantly higher. Despite these impor-
tant differences in terms of TU, the network still shows con-
fidence near 100% (first and third plots) over all the OOD
datasets, making this quantity impractical for detecting OOD
samples.

To quantify this intuition, we propose a simple OOD de-
tector. Let F be a network trained on MUTAG or COX2, with
distribution of training TUs T train. A new observation x is
classified as an OOD sample if TU(x, F ) is larger than the q-
th quantile of T train. This classifier can be evaluated with stan-
dard metrics used in OOD detection experiments: the False
Positive Rate at 95% of True Positive Rate (FPR at 95%TPR),
and the Area Under the ROC Curve (AUC). We compare
our approach with the baseline introduced in [Hendrycks and
Gimpel, 2017] based on confidence only: a point is classi-
fied as an OOD sample if its confidence is lower than the q-th
quantile of the distribution of confidences of training sam-
ples. As recorded in Table 1, this baseline performs poorly
on these graph datasets, which is explained by the fact that
(perhaps surprisingly) the assumption of loc. cit. that training
samples tend to be assigned a larger confidence than OOD-
ones is not satisfied in this experiment. In the third row of
this Table, we provide similar results for a network trained
on CIFAR-10 using other image datasets as OOD sets. Al-
though in this setting TU is not as efficient as it is on graph
datasets, it still improves on the baseline reliably.

4.3 Sensitivity to shifts in sample distribution
This last experimental subsection is dedicated to distribu-
tion shift. Distribution shifts share similar ideas with OOD-
detection, in the sense that the network will be confronted
to samples that are not following the training distribution.
However, the difference lies in the fact that these new ob-
servations are shifted instances of observations that would be
sampled with respect to the training distribution. In partic-
ular, shifted instances still have an underlying label that one
may hope to recover. Formally, given a training distribution
X and a parametric family of shifts (sγ)γ with the conven-
tion that s0 = id, a shifted sample with level of shift γ is
a sample sγ(x1), . . . , sγ(xN ), where x1, . . . , xN ∼ X with
underlying labels y1, . . . , yN . For instance, given an image,
one can apply a corruption shift of parameter γ = n ∈ N
where sn(x) consists of randomly switching n pixels of the
image x (xij 7→ 1 − xij). See the top row of Figure 5 for an
illustration.

Ideally, one would hope a trained network F to be robust to
shifts, that is arg max(F (x)) = arg max(F (sγ(x))). How-
ever, since the map x 7→ sγ(x) cannot be inverted in general,
one cannot realistically expect robustness to hold for high lev-
els of shift. Here, we illustrate how TU can be used as a way
to monitor the presence of shifts that would lead to a dra-
matic diminution of the network accuracy in situations where



0 2 4 6 8

(a) Distrib. of TU (Train: MUTAG)

0.0

0.1

0.2

0.3

0.4

True-MUTAG (Train)

Fake-MUTAG (OOD)

COX2 (OOD)

0.0 0.2 0.4 0.6 0.8 1.0

(b) Distrib. of Confidences (Train: MUTAG)

0.0

0.2

0.4

0.6

0.8

1.0

Fake-MUTAG (OOD)

COX2 (OOD)

True-MUTAG (Train)

0 5 10 15 20

(c) Distrib. of TU (Train: COX2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 True-COX2 (Train)

Fake-COX2 (OOD)

MUTAG (OOD)

0.0 0.2 0.4 0.6 0.8 1.0

(d) Distrib. of Confidences (Train: COX2)

0.0

0.2

0.4

0.6

0.8

1.0

Fake-COX2 (OOD)

MUTAG (OOD)

True-COX2 (Train)

Figure 4: (a) Distributions of Topological Uncertainties (TU) of a network trained on the MUTAG dataset. Blue distribution corresponds to
T train. Green and red distributions correspond to topological uncertainties of observations coming from Fake-MUTAG and COX2 datasets
respectively. (b) Distributions of network confidences (max{F (x)k}). The network makes overconfident predictions, especially on OOD
datasets that are classified almost systematically with a confidence of 1. (c,d) Similar plots for the COX2 dataset.

n = 0 n = 10 n = 20 n = 50 n = 100 n = 150 n = 200 n = 250 n = 300 n = 350 n = 400 n = 450 n = 500

0 100 200 300 400 500

Shift level n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
op

ol
og

ic
al

U
n

ce
rt

ai
nt

y

median

mean

0 100 200 300 400 500

Shift level n

0

20

40

60

80

100
N

et
w

or
k

ac
cu

ra
cy

(%
)

0 100 200 300 400 500

Shift level n

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
co

n
fid

en
ce

median

mean

Figure 5: (Top row) A 0 digit from the MNIST dataset exposed to increasing level of shift (pixel corruption). (Bottom row), (Left). The TU
(with 0.1 and 0.9 quantiles) of corrupted inputs in the MNIST dataset with respect to the corruption level n. (middle) The accuracy of the
network on these data (that is, the proportion of observations that are still correctly classified). (right) The confidence of the network in its
predictions. Although the accuracy is dropping significantly, the network remains overall extremely confident in its predictions.

the network confidence would be helpless.
For this, we train a network on MNIST and, following the

methodology presented in Section 3, store the correspond-
ing average persistence diagrams for the 10 classes appearing
in the training set. We then expose a batch of 1000 obser-
vations from the test set containing 100 instances of each
class (that have thus not been seen by the network during
the training phase) to the corruption shifts with various shift
levels n ∈ {0, 10, 20, 50, 100, 150, . . . , 500}. For each shift
level, we evaluate the distributions of TUs and confidences
attributed by the network to each sample, along with the ac-
curacy of the network over the batch. As illustrated in the
second row of Figure 5, as the batch shifts, the TU increases
and the accuracy drops. However, the network confidence re-
mains very close to 1, making this indicator unable to account
for the shift. In practice, one can monitor a network by rou-
tinely evaluating the distribution of TUs of a new batch (e.g.,
daily recorded data). A sudden change in this 1D distribution
is likely to reflect a shift in the distribution of observations
that may itself lead to a drop in accuracy (or the apparition of
OOD samples as illustrated in Subsection 4.2).

We end this subsection by stressing that the empirical re-
lation we observe between the TU and the network accuracy
cannot be guaranteed without further assumption on the law
(X ,Y). It however occurs consistently in our experiments
(see the supplementary material for complementary experi-

ments involving different types of shift and network architec-
tures). Studying the theoretical behavior of the TU and acti-
vation graphs in general will be the focus of further works.

5 Conclusion and perspectives
Monitoring trained neural networks deployed in practical ap-
plications is of major importance and is challenging when
facing samples coming from a distribution that differs from
the training one. While previous works focus on improving
the behavior of the network confidence, in this article we pro-
pose to investigate the whole network instead of restricting
to its final layer. By considering a network as a sequence
of bipartite graphs on top of which we extract topological
features, we introduce the Topological Uncertainty, a tool to
compactly quantify if a new observation activates the network
in the same way as training samples did. This notion can be
adapted to a wide range of networks and is entirely indepen-
dent from the way the network was trained. We illustrate nu-
merically how it can be used to monitor networks and how
it turns out to be a strong alternative to network confidence
on these tasks. We will make our implementation publicly
available.

We believe that this work will motivate further develop-
ments involving Topological Uncertainty, and more generally
activation graphs, when it comes to understand and monitor
neural networks. In particular, most techniques introduced



in recent years to improve confidence-based descriptors may
be declined to be used with Topological Uncertainty. These
trails of research will be investigated in future work.



References
[Akhtar and Mian, 2018] Naveed Akhtar and Ajmal Mian.

Threat of adversarial attacks on deep learning in computer
vision: A survey. IEEE Access, 6:14410–14430, 2018.

[Atzmon et al., 2019] Matan Atzmon, Niv Haim, Lior Yariv,
Ofer Israelov, Haggai Maron, and Yaron Lipman. Con-
trolling neural level sets. In NeurIPS, pages 2034–2043,
2019.

[Biggio and Roli, 2018] Battista Biggio and Fabio Roli.
Wild patterns: Ten years after the rise of adversarial ma-
chine learning. Pattern Recognition, 84:317–331, 2018.

[Carlsson and Gabrielsson, 2020] Gunnar Carlsson and
Rickard Brüel Gabrielsson. Topological approaches
to deep learning. In Topological Data Analysis, pages
119–146. Springer, 2020.

[Carrière et al., 2020] Mathieu Carrière, Frédéric Chazal,
Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei
Umeda. Perslay: a neural network layer for persistence
diagrams and new graph topological signatures. In AIS-
TATS, pages 2786–2796. PMLR, 2020.

[Chen et al., 2020] Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu
Liang, and Somesh Jha. Robust out-of-distribution de-
tection via informative outlier mining. arXiv preprint
arXiv:2006.15207, 2020.

[DeVries and Taylor, 2018] Terrance DeVries and Gra-
ham W Taylor. Learning confidence for out-of-
distribution detection in neural networks. arXiv preprint
arXiv:1802.04865, 2018.

[Gebhart and Schrater, 2017] Thomas Gebhart and Paul
Schrater. Adversary detection in neural networks via per-
sistent homology. arXiv preprint arXiv:1711.10056, 2017.

[Gebhart et al., 2019] Thomas Gebhart, Paul Schrater, and
Alan Hylton. Characterizing the shape of activation space
in deep neural networks. In 2019 18th IEEE ICMLA, pages
1537–1542. IEEE, 2019.

[Guo et al., 2017] Chuan Guo, Geoff Pleiss, Yu Sun, and
Kilian Q Weinberger. On calibration of modern neural net-
works. In ICML, pages 1321–1330, 2017.

[Guss and Salakhutdinov, 2018] William H Guss and Ruslan
Salakhutdinov. On characterizing the capacity of neu-
ral networks using algebraic topology. arXiv preprint
arXiv:1802.04443, 2018.

[Hein et al., 2019] Matthias Hein, Maksym An-
driushchenko, and Julian Bitterwolf. Why relu networks
yield high-confidence predictions far away from the train-
ing data and how to mitigate the problem. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 41–50, 2019.

[Hendrycks and Dietterich, 2019] Dan Hendrycks and
Thomas Dietterich. Benchmarking neural network ro-
bustness to common corruptions and perturbations. arXiv
preprint arXiv:1903.12261, 2019.

[Hendrycks and Gimpel, 2017] Dan Hendrycks and Kevin
Gimpel. A baseline for detecting misclassified and out-
of-distribution examples in neural networks. ICLR, 2017.

[Hendrycks et al., 2019] Dan Hendrycks, Mantas Mazeika,
and Thomas Dietterich. Deep anomaly detection with out-
lier exposure. ICLR, 2019.

[Kerber et al., 2017] Michael Kerber, Dmitriy Morozov, and
Arnur Nigmetov. Geometry helps to compare persistence
diagrams. Journal of Experimental Algorithmics (JEA),
22:1–20, 2017.

[Kumar et al., 2020] Abhishek Kumar, Benjamin Finley,
Tristan Braud, Sasu Tarkoma, and Pan Hui. Marketplace
for ai models. arXiv preprint arXiv:2003.01593, 2020.

[Lakshminarayanan et al., 2017] Balaji Lakshminarayanan,
Alexander Pritzel, and Charles Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensem-
bles. NeurIPS, 30:6402–6413, 2017.

[Nguyen et al., 2015] Anh Nguyen, Jason Yosinski, and Jeff
Clune. Deep neural networks are easily fooled: High con-
fidence predictions for unrecognizable images. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 427–436, 2015.

[Ovadia et al., 2019] Yaniv Ovadia, Emily Fertig, Jie Ren,
Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can
you trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. In NeurIPS, pages 13991–
14002, 2019.

[Ramamurthy et al., 2019] Karthikeyan Natesan Rama-
murthy, Kush Varshney, and Krishnan Mody. Topological
data analysis of decision boundaries with application to
model selection. In ICML, pages 5351–5360. PMLR,
2019.

[Rieck et al., 2019] Bastian Alexander Rieck, Matteo Togni-
nalli, Christian Bock, Michael Moor, Max Horn, Thomas
Gumbsch, and Karsten Borgwardt. Neural persistence: A
complexity measure for deep neural networks using alge-
braic topology. In ICLR. OpenReview, 2019.

[Shorten and Khoshgoftaar, 2019] Connor Shorten and
Taghi M Khoshgoftaar. A survey on image data augmen-
tation for deep learning. Journal of Big Data, 6(1):60,
2019.

[Torralba et al., 2008] Antonio Torralba, Rob Fergus, and
William T Freeman. 80 million tiny images: A large data
set for nonparametric object and scene recognition. IEEE
transactions on pattern analysis and machine intelligence,
30(11):1958–1970, 2008.

[Turner et al., 2014] Katharine Turner, Yuriy Mileyko,
Sayan Mukherjee, and John Harer. Fréchet means
for distributions of persistence diagrams. Discrete &
Computational Geometry, 52(1):44–70, 2014.

[Van Amersfoort et al., 2020] Joost Van Amersfoort, Lewis
Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estima-
tion using a single deep deterministic neural network. In
ICML, volume 119 of Proceedings of Machine Learning
Research, pages 9690–9700. PMLR, 13–18 Jul 2020.



Supplementary Material for: Topological Uncertainty: Monitoring trained neural
networks through persistence of activation graphs

1 Elements of Topological Data Analysis and
theoretical considerations

1.1 Construction of persistence diagrams for
activation graphs.

In this section, we provide a brief introduction to Topological
Data Analysis (TDA) and refer to [Edelsbrunner and Harer,
2010; Oudot, 2015; Chazal and Michel, 2017] for a more
complete description of this field.

Let X be a topological space and f : X → R be a real-
valued continuous function. The sublevel set of parameter t
of (X, f) is the set Ft := {x ∈ X : f(x) ≤ t} ⊆ X .
As t increases from −∞ to +∞, one gets an increasing se-
quence (i.e., nested with respect to the inclusion) of topo-
logical spaces called the filtration of X by f . Given such
a filtration, persistent homology tracks the times t of appear-
ance and disappearance of topological features (such as con-
nected components, loops, cavities, etc.). For instance, a
new connected component may appear at time t1 in the sub-
level set Ft1 , and may disappear—that is, it may get merged
with an already present, other connected component—at time
t2 ≥ t1. We say that this connected component persists over
the interval [t1, t2] and we store the pairs (t1, t2) as a point
cloud in the Euclidean plane called the persistence diagram
of the sublevel sets of (X, f). Persistence diagrams of the su-
perlevel sets are defined similarly. We refer to Figure 1 for an
illustration.

Now, given a graph G = (V,E) and a weight function
w : E → R, we build a superlevel set persistence diagram
as follows: at t = +∞ (i.e., at the very beginning), we add
all the nodes V . Then, we build a sequence of subgraphs
Gt = {(V,Et)} with Et = {e ∈ E : w(e) ≥ t}, that
is, we add edges in decreasing order with respect to their
weights. In this process, no new connected component can
be created (we never add new vertices), and each new edge
inserted at time t either connects two previously independent
components leading to a point with coordinates (+∞, t) in
the persistence diagram, or creates a new loop in the graph. In
our construction, we propose to only keep track of connected
components (0-dimensional topological features). Since all
points in the persistence diagram have +∞ as first coordi-
nate, we simply discard it and end up with a distribution of
real numbers t1 ≥ · · · ≥ tN , where N = |V | − 1, which
exactly corresponds to the weights of a maximum spanning

tree built on top of G, see for instance [Doraiswamy et al.,
2020, Proof of Lemma 2] for a proof.

Therefore, in our setting, we can compute the persistence
diagram of an activation graph G`(x, F ) connecting two lay-
ers, using the weight function w : e 7→ |W`(i, j)x`(i)|, where
e is the edge connecting the i-th unit of the input layer to the
j-th unit of the output layer.
A comparison with Neural persistence. Given a bipartite
graph, the construction we propose is exactly the one intro-
duced in [Rieck et al., 2019]. The difference between the two
approaches is that loc. cit. works with the network weights
|W`(i, j)| directly, obtaining one graph for each layer of the
network F , while we use activation graphs G`(x, F ) with
weights |W`(i, j)x`(i)|, so that we obtain one graph per ob-
servation x for each layer of the network. Then, both ap-
proaches compute a persistence diagram (MST) on top of
their respective graphs. The second difference is that, in or-
der to make use of their persistence diagrams in a quantita-
tive way, [Rieck et al., 2019] proposes to compute their total
persistence, which is exactly the distance between a given di-
agram and the empty one (forcing to match all the points of
the given diagram onto the diagonal ∆). Taking advantage
of the fact that our diagrams always have the same number
of points (determined by the in- and out-layers sizes), we in-
stead propose to compute distances to a reference diagram,
namely the Fréchet mean of diagrams obtained on the train-
ing set. This allows us to compactly summarize information
contained in the training set and use it to monitor the network
behavior when facing new observations.

1.2 Metrics and Stability results.
Diagram metrics in our setting. Let ∆ = {(t, t) ∈ R2}
denote the diagonal of the Euclidean plane. Let µ, ν be two
diagrams with points X := {x1, . . . , xn} ⊆ R2 and Y :=
{y1, . . . , ym} ⊆ R2, respectively1. Persistence diagrams are
compared using optimal partial matching metrics. Namely,
given a parameter 1 ≤ p ≤ +∞, the p-th diagram metric is
defined by

dp(µ, ν) =

(
inf
γ

∑
x∈X∪∆

‖x− γ(x)‖p1dx

)1/p

,

1In general, two persistence diagrams µ and ν can have different
numbers of points.



3

1

1

3

4
3

2 1

t = +∞Input Graph t = 4 t = 3 t = 2 t ≤ 1

Figure 1: The super-level set filtration of a weighted graph, where we only draw edges that connect two connected components (not those
creating loops). The filtration ends up with a Maximum Spanning Tree of the graph.

∆

x

y

Figure 2: Two persistence diagrams whose points are distributed on
the real line. Since we use ‖ · ‖1 as a ground metric between dia-
gram points, the distance between any two points x and y is always
smaller than or equal to the sum of their distances to the diagonal.
Therefore, an optimal partial matching between the two persistence
diagrams can be obtained by simply matching points in increasing
order (plain lines).

where γ ranges over bijections between X ∪ ∆ and Y ∪ ∆.
Intuitively, it means that one can either match points in X
to points in Y , or match points in X (resp. in Y ) to their
orthogonal projections onto the diagonal ∆. Among all the
possible bijections, the optimal one is selected and used for
computing the distance.

This combinatorial problem is computationally expensive
to solve (a fortiori, so is the one of computing Fréchet means
for this metric). Fortunately, in our setting, where diagrams
are actually one-dimensional, that is, supported on the real
line, and have the same number of points N = d`+d`+1−1,
computing the optimal bijection becomes trivial. Indeed, one
can observe first that, since we use ‖ · ‖1 as our ground
metric on the plane, it is never optimal to match a point
x ∈ X (resp. y ∈ Y ) to the diagonal, since ‖x − y‖1 ≤
‖x− s(x)‖1 + ‖y − s(y)‖1, where s denotes the orthogonal
projection of a point onto the diagonal, see Figure 2. Since
the persistence diagrams (that have to be compared) always
have the same number of points in our setting, we can simply
ignore the diagonal. In this way, we end up with an optimal
matching problem between 1D measures. In that case, it is
well-known that the optimal matching is given by matching
points in increasing order, see for instance [Santambrogio,
2015, §2.1]. Thus, the distance Dist introduced in the article
is equal to the distance d1 up to a normalization term 1/N .
This normalization is meant to prevent large layers from ar-
tificially increasing the distance between diagrams (and thus
the Topological Uncertainty) and helps making distances over
layers more comparable. The same normalization appears in
[Rieck et al., 2019].

Stability. Let G = (V,E) be a graph, and w,w′ : E → R
be two weight functions on its edges. In this context, the
stability theorem (see for instance [Chazal et al., 2016]) in
TDA states that

d∞(Dgm(G,w),Dgm(G,w′)) ≤ sup
e∈E
|w(e)− w′(e)|.

Now, let us consider a (sequential) neural network F with L
layers and assume that all activations map σ` for 1 ≤ ` ≤
L− 1 are 1-Lipschitz2. We now introduce the notation

A` = sup
i`,i`+1

d∑̀
i`=1

|W`(i`, i`+1)|.

2This is typically the case if one considers ReLU or sigmoid ac-
tivation maps, and remains true if those are post-composed with 1-
Lipschitz transformations such as MaxPooling, etc.



Then, the map x` 7→ σ`(W`x` + b`) is an A`-Lipschitz trans-
formation (for the ‖ · ‖∞ norm). Indeed, one has:

sup
1≤i`+1≤d`+1

∥∥∥∥σ`
(

d∑̀
i`=1

W`(i`, i`+1)x`(i`) + b`(i`)

)

− σ`

(
d∑̀
i`=1

W`(i`, i`+1)y`(i`) + b`(i`)

)∥∥∥∥
≤ sup

1≤i`+1≤d`+1

d∑̀
i`=1

|W`(i`, i`+1)||x`(i`)− y`(i`)|

≤A`‖x` − y`‖∞.

Therefore, the map x 7→ x` is Lipschitz with Lipschitz con-
stant A` :=

∏
`′≤`A`′ . Now, using the stability theorem, we

know that for x, y two observations, one has

d∞(D`(x, F ), D`(y, F )) ≤ A`‖x− y‖∞.

Finally, observe that 1
N d1 ≤ d∞, so that the same result

holds using the metric Dist introduced in the main paper.
We end this subsection by highlighting that, contrary to

most applications of TDA, having a low Lipschitz constant
in our stability result is not crucial as we actually want to be
able to separate observations based on their Topological Un-
certainties. Nevertheless, studying and proving results in this
vein is of great importance in order to understand the theoret-
ical properties of Topological Uncertainty, a project that we
left for further work.

2 Complementary experimental details and
results

Implementation. Our implementation relies on
tensorflow 2 [Abadi et al., 2016] for neural net-
work training and on Gudhi [Maria et al., 2014] for
persistence diagrams (MST) computation. Note that instan-
tiating the SimplexTree (representation of the activation
of the graph in Gudhi) from the matrix (|W`(i, j)x`(i)|)ij
is the limiting factor in terms of running time in our current
implementation, taking up to 0.9 second on a 784 × 512
dense matrix for instance3. Using a more suited framework4

to turn a matrix into a MST may drastically improve the
computational efficiency of our approach. As a comparison,
extracting a MST of a graph using Gudhi only takes about
0.03 second.

2.1 Datasets.
Datasets description. The MNIST and FMNIST datasets
[LeCun and Cortes, 2010; Xiao et al., 2017] both consist of
training data and 10, 000 test data that are grey-scaled images
of shape 28×28), separated in 10 classes, representing hand-
written digits and fashion articles, respectively.

3On a Intel(R) Core(TM) i5-8350U CPU 1.70GHz,
average over 100 runs.

4In our experiments, Gudhi appeared however to be faster than
networkx and scipy, two other standard libraries that allow
graph manipulation.

The CIFAR10 dataset [Krizhevsky, 2009] is a set of RGB
images of shape 32 × 32 × 3, separated in 10 classes, repre-
senting natural images (airplanes, horses, etc.).

The SVHN dataset (Street View House Number) [Netzer et
al., 2011] is a dataset of RGB images of shape 32 × 32 × 3,
separated in 10 classes, representing digits taken from natural
images.

The DTD dataset (Describable Texture Dataset) [Cimpoi et
al., 2014] is a set of RGB images whose shape can vary be-
tween 300 × 300 × 3 and 640 × 640 × 3, separated in 47
classes.

Finally, Gaussian and Uniform refers to synthetic
dataset of images of shape 32× 32× 3 where pixels are sam-
pled i.i.d following a normal distribution N (0.5, 0.1) and a
uniform distribution on [0, 1], respectively.

The MUTAG dataset is a small set of graphs (188 graphs)
coming from chemestry, separated in 2 classes. Graphs have
on average 17.9 vertices and and 19.8 edges. They do not
contain nodes or edges attributes and are undirected.

The COX2 dataset is a small set of graphs (467 graphs)
coming from chemestry, separated in 2 classes. Graphs have
on average 41.2 vertices and and 43.7 edges. They do not
contain nodes or edges attributes and are undirected.

Preprocessing. All natural images datasets are rescaled to
have coordinates in [0, 1] (from [0, 255]). The coordinates of
images belonging to the Gaussian dataset are thresholded
to [0, 1]. When feeding a network trained on CIFAR10 with
smaller grey-scaled images (from MNIST and FMNIST), we
pad the smaller images with zeros (by adding two columns
(resp. rows) on the left and on the right of the image) and
repeat the grey-scale matrix along the three channels. Con-
versely, we randomly sub-sample 32 × 32 × 3 patches for
images coming from the DTD dataset, as typically done in
similar experiments.

The preprocessing of graphs datasets is slightly more sub-
tle. In order to describe graphs as Euclidean vectors, we fol-
low a procedure described in [Carrière et al., 2020]. We com-
pute the first 30 eigenvalues of their normalized Laplacian (or
pad with 0s if there is less than 30 eigenvalues). Additionally,
we compute the quantile of the Heat Kernel Signature of the
graphs with parameter t = 10 as suggested in [Carrière et al.,
2020]. This processing was observed to be sufficient to reach
fairly good accuracies on both MUTAG and COX2, namely
∼ 88% on MUTAG and∼ 78% on COX2, about 2−3% below
the state-of-the-art results reported in [Carrière et al., 2020,
Table 2].

2.2 Networks architectures and training.
Depending on the type of data and the dataset difficulty, we
tried our approach on different architectures.

• For MUTAG and COX2, we used a simple network with
one-hidden layer with 32 units and ReLU activation.
The input and the hidden layer are followed by Batch
normalization operations.

• For networks trained on MNIST and FMNIST, we used
the reference architecture described at https://github.

https://github.com/pytorch/examples/tree/master/mnist


com/pytorch/examples/tree/master/mnist (although re-
produced in tensorflow 2). When computing TU
on top of this architecture, we only take the two final
fully-connected layers into account (see the paragraph
Remarks in the main paper).

• For networks trained on CIFAR-10, we used the archi-
tecture in https://www.tensorflow.org/tutorials/images/
cnn.

All networks are trained using the ADAM optimizer [Kingma
and Ba, 2015] (from tensorflow) with its defaults pa-
rameters, except for graph datasets where the learning rate
is taken to be 0.01.

2.3 Complementary experimental results.
We provide in this subsection some complementary experi-
mental results and discussions that aim at putting some per-
spective on our work.
About trained network selection. First, we stress that the
results we obtain using either the TU or the confidence can
probably be improved by a large margin5: if the method
was perfectly reliable, one would expect a ∼ +50% in-
crease between the accuracy obtained by a network with low
TU (resp. high confidence) and the accuracy obtained by a
network with high TU (resp. low confidence). Indeed, this
would indicate that the score clearly separates networks that
perfectly split the input dataset (leading to an accuracy of
∼ 100%) and those which classify all the points in a simi-
lar way (accuracy of 50%).
OOD detection: complementary illustrations. Figure 3
shows the distribution of the TU for a network trained on
the CIFAR-10 datasets (from which we store average per-
sistence diagrams used to compute the TU) and a series of
OOD datasets. Although the results are less conclusive that
those obtained on graph datasets, the distribution of TUs on
training data remains well concentrated around low values
while being more spread for OOD datasets (with the excep-
tion of the DTD dataset, on which our approach indeed per-
forms poorly), still allowing for a decent detection rate. Fig-
ure 4 provides a similar illustration for a network trained on
MNIST using FMNIST as an OOD dataset. On this example,
interestingly, the confidence baseline [Hendrycks and Gim-
pel, 2017] achieves a perfect FPR at 95% TPR of 0% and an
AUC of 64, while our TU baseline achieves a FPR at 95%
of 5% (slightly worse than the confidence baseline) but an
overall good AUC of 98.
Sensitivity to shift under Gaussian blur. Figure 5 illus-
trates the behavior of TU, accuracy, and network confidence
when data from the MNIST are exposed to Gaussian blur of
variance σ ∈ [0, 5] (see the top row for an illustration). The
increase in TU accounts for the shift in the distribution in
a convincing way. Interestingly, on this example, the confi-
dence reflects the shift (and the drop in accuracy) in a satisfac-
tory way, contrary to what happens when using a corruption
shift.

5Our scores are however in the same range as those reported by
[Ramamurthy et al., 2019], namely +10.5% on MNIST and +23%
on Fashion-MNIST in their experimental setting.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Topological Uncertainty

0

50

100

150

200

250

300

350

400

Uniform (OOD)

Gaussian (OOD)

FMNIST (OOD)

MNIST (OOD)

SVHN (OOD)

DTD (OOD)

CIFAR10 (Train)

Figure 3: Distribution of TU for the CIFAR-10 dataset (training
set) and OOD datasets.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(a) Distrib. of TU

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 MNIST (Train)

FMNIST (OOD)

0.0 0.2 0.4 0.6 0.8 1.0

(b) Distrib. of Confidences

0.0

0.2

0.4

0.6

0.8

1.0

MNIST (Train)

FMNIST (OOD)

Figure 4: Distributions of TU and Confidence for a network trained
on the MNIST dataset, using FMNIST as an OOD dataset.

https://github.com/pytorch/examples/tree/master/mnist
https://www.tensorflow.org/tutorials/images/cnn
https://www.tensorflow.org/tutorials/images/cnn


σ = 0.0 σ = 0.5 σ = 1.0 σ = 1.5 σ = 2.0 σ = 2.5 σ = 3.0 σ = 3.5 σ = 4.0 σ = 4.5 σ = 5.0

0 1 2 3 4 5

Shift level σ

5

10

15

20

25

30

35

T
op

ol
og

ic
al

U
n

ce
rt

ai
nt

y median

mean

0 1 2 3 4 5

Shift level σ

0

20

40

60

80

100

N
et

w
or

k
ac

cu
ra

cy
(%

)

0 1 2 3 4 5

Shift level σ

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
co

n
fid

en
ce

median

mean

Figure 5: (Top row) A 0 digit from the MNIST dataset exposed to increasing level of shift (Gaussian blur). (Bottom row), (Left). The TU
(with 0.1 and 0.9 quantiles) of corrupted inputs in the MNIST dataset with respect to the corruption level σ. (middle) The accuracy of the
network on these data (that is, the proportion of observations that are still correctly classified). (right) The confidence of the network in its
predictions.



References

[Abadi et al., 2016] Martı́n Abadi, Paul Barham, Jianmin
Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. Tensorflow: A system for large-scale machine learn-
ing. In 12th USENIX symposium on operating systems de-
sign and implementation (OSDI 16), pages 265–283, 2016.

[Carrière et al., 2020] Mathieu Carrière, Frédéric Chazal,
Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei
Umeda. Perslay: a neural network layer for persistence
diagrams and new graph topological signatures. In AIS-
TATS, pages 2786–2796. PMLR, 2020.

[Chazal and Michel, 2017] Frédéric Chazal and Bertrand
Michel. An introduction to topological data analysis: fun-
damental and practical aspects for data scientists. arXiv
preprint arXiv:1710.04019, 2017.

[Chazal et al., 2016] Frédéric Chazal, Vin De Silva, Marc
Glisse, and Steve Oudot. The structure and stability of
persistence modules. Springer, 2016.

[Cimpoi et al., 2014] Mircea Cimpoi, Subhransu Maji, Ia-
sonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3606–3613, 2014.

[Doraiswamy et al., 2020] Harish Doraiswamy, Julien
Tierny, Paulo JS Silva, Luis Gustavo Nonato, and Claudio
Silva. Topomap: A 0-dimensional homology preserving
projection of high-dimensional data. arXiv preprint
arXiv:2009.01512, 2020.

[Edelsbrunner and Harer, 2010] Herbert Edelsbrunner and
John Harer. Computational topology: an introduction.
American Mathematical Soc., 2010.

[Hendrycks and Gimpel, 2017] Dan Hendrycks and Kevin
Gimpel. A baseline for detecting misclassified and out-
of-distribution examples in neural networks. ICLR, 2017.

[Kingma and Ba, 2015] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. ICLR, 2015.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. Technical report, 2009.

[LeCun and Cortes, 2010] Yann LeCun and Corinna Cortes.
MNIST handwritten digit database. 2010.

[Maria et al., 2014] Clément Maria, Jean-Daniel Boissonnat,
Marc Glisse, and Mariette Yvinec. The gudhi library:
Simplicial complexes and persistent homology. In Inter-
national Congress on Mathematical Software, pages 167–
174. Springer, 2014.

[Netzer et al., 2011] Yuval Netzer, Tao Wang, Adam Coates,
Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learn-
ing. 2011.

[Oudot, 2015] Steve Oudot. Persistence theory: from quiver
representations to data analysis. American Mathematical
Society, 2015.

[Ramamurthy et al., 2019] Karthikeyan Natesan Rama-
murthy, Kush Varshney, and Krishnan Mody. Topological
data analysis of decision boundaries with application to
model selection. In ICML, pages 5351–5360. PMLR,
2019.

[Rieck et al., 2019] Bastian Alexander Rieck, Matteo Togni-
nalli, Christian Bock, Michael Moor, Max Horn, Thomas
Gumbsch, and Karsten Borgwardt. Neural persistence: A
complexity measure for deep neural networks using alge-
braic topology. In ICLR. OpenReview, 2019.

[Santambrogio, 2015] Filippo Santambrogio. Optimal trans-
port for applied mathematicians. Birkäuser, NY, 55(58-
63):94, 2015.

[Xiao et al., 2017] Han Xiao, Kashif Rasul, and Roland
Vollgraf. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.


	Introduction
	Background
	Neural networks
	Activation graphs and topological descriptors

	Topological Uncertainty (TU)
	Experiments
	Trained network selection for unlabeled data
	Detection of Out-Of-Distribution samples
	Sensitivity to shifts in sample distribution

	Conclusion and perspectives
	Elements of Topological Data Analysis and theoretical considerations
	Construction of persistence diagrams for activation graphs.
	Metrics and Stability results.

	Complementary experimental details and results
	Datasets.
	Networks architectures and training.
	Complementary experimental results.


