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Weak feature size and stability

The weak feature size of a compact K ⊂ Rd:

wfs(K) = inf{c > 0 : c is a critical value of dK}

Proposition: [C-Lieutier’05] Let K,K ′ ⊂ Rd be such that

dH(K,K ′) < ε :=
1

2
min(wfs(K),wfs(K ′))

Then for all 0 < r ≤ 2ε, Kr and K ′r are homotopy equivalent.
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Weak feature size and stability

The weak feature size of a compact K ⊂ Rd:

wfs(K) = inf{c > 0 : c is a critical value of dK}

Proposition: [C-Lieutier’05] Let K,K ′ ⊂ Rd be such that

dH(K,K ′) < ε :=
1

2
min(wfs(K),wfs(K ′))

Then for all 0 < r ≤ 2ε, Kr and K ′r are homotopy equivalent.

Compact set with positive wfs:

• Stability properties

• Large class of compact sets (including sub-
analytic sets)

• K → wfs(K) is not continuous (unstability
of critical points).

K′

K

wfs(K′)



Overcoming the discontinuity of wfs

Proposition: [C-Lieutier’05] Let K,K ′ ⊂ Rd be such that

dH(K,K ′) < ε :=
1

2
min(wfs(K),wfs(K ′))

Then for all 0 < r ≤ 2ε, Kr and K ′r are homotopy equivalent.

K → wfs(K) is not continuous (unstability of
critical points).

Option 1:
Restrict to a smaller class of com-
pact sets with some stability prop-
erties of the critical points.

Option 2:
Try to get topological information
about K without any assumption
on wfs(K ′).



Overcoming the discontinuity of wfs

Proposition: [C-Lieutier’05] Let K,K ′ ⊂ Rd be such that

dH(K,K ′) < ε :=
1

2
min(wfs(K),wfs(K ′))

Then for all 0 < r ≤ 2ε, Kr and K ′r are homotopy equivalent.

K → wfs(K) is not continuous (unstability of
critical points).

Option 1:
Restrict to a smaller class of com-
pact sets with some stability prop-
erties of the critical points.

Option 2:
Try to get topological information
about K without any assumption
on wfs(K ′).

Persistence-based inference

Notion of µ-critical points.
Strong reconstruction re-
sults. (not in this course)



Motivation: getting topological information
without reconstructing

How to determine the number of “cycles” of the underlying shape from the
point cloud approximation?
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Motivation: getting topological information
without reconstructing

How to determine the number of “cycles” of the underlying shape from the
point cloud approximation?

Homology

Persistent homology



Simplices

v0, v1, · · · , vk ∈ Rd are affinely independant if(
k∑
i=0

tivi = 0 and
k∑
i=0

ti = 0

)
⇒ t0 = t1 = · · · = tk = 0

In this case σ = [v0, v1, · · · , vk] is a simplex of dimension d. A simplex
generated by a subset of the vertices v0, v1, · · · , vk of σ is a face of σ.

0-simplex:
vertex

1-simplex:
edge

2-simplex:
triangle

3-simplex:
tetraedron



Simplicial complexes

A (finite) simplicial complex C is a (finite) union of simplices s.t.
i) for any σ ∈ C, all the faces of σ are in C,
ii) the intersection of any two simplices of C is either empty or a simplex which
is their common face of highest dimension.
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Simplicial complexes

A (finite) simplicial complex C is a (finite) union of simplices s.t.
i) for any σ ∈ C, all the faces of σ are in C,
ii) the intersection of any two simplices of C is either empty or a simplex which
is their common face of highest dimension.
Faces: the simplices of C.
j-skeleton: the subcomplex made of the simplices of dimension at most j.
Dimension of C: the maximum of the dimensions of the faces. C is homoge-
nousof dimension n if any of its faces is a face of a n-dimensional simplex.



Abstract simplicial complexes

Let P = {p1, · · · pn} be a (finite) set. An
abstract simplicial complex K with vertex
set P is a set of subsets of P satisfying the
two conditions :

1. The elements of P belong to K.

2. If τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

Let {e1, · · · en} a basis of Rn }. The geometric realization of K is the (geo-
metric) subcomplex |K| of the simplex spanned by e1, · · · en such that:

[ei0 · · · eik ] ∈ |K| iff {pi0 , · · · , pik} ∈ K

|K| is a topological space (subspace of an Euclidean space)!



Abstract simplicial complexes

Let P = {p1, · · · pn} be a (finite) set. An
abstract simplicial complex K with vertex
set P is a set of subsets of P satisfying the
two conditions :

1. The elements of P belong to K.

2. If τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological
spaces (good for top./geom. inference) and as combinatorial objects

(abstract simplicial complexes, good for computations).



Filtrations of simplicial complexes

A filtration of a (finite) simplicial complex K is a sequence of subcomplexes
such that
i) ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
ii) Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.



Example: filtration associated to a function

• f a real valued function defined on the vertices of K

• For σ = [v0, · · · , vk] ∈ K, f(σ) = maxi=0,··· ,k f(vi)

• The simplices of K are ordered according increasing f values (and di-
mension in case of equal values on different simplices).

⇒ The sublevel sets filtration.
Exercise: show that this is a
filtration.
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Example: The Cěch complex

• Let U = (Ui)i∈I be a covering of a topological space X by open sets:
X = ∪i∈IUi.

• The Cěch complex C(U) associated to the covering U is the simplicial
complex defined by:
- the vertex set of C(U) is the set of the open sets Ui
- [Ui0 , · · · , Uik ] is a k-simplex in C(U) iff ∩kj=0Uij 6= ∅.



Example: The Cěch complex

Nerve theorem (Leray): If all the intersections between opens in U are either
empty or contractible then C(U) and X = ∪i∈IUi are homotopy equivalent.

⇒ The combinatorics of the covering (a simplicial complex) carries the
topology of the space.



Example: The Cěch complex

Nerve theorem (Leray): If all the intersections between opens in U are either
empty or contractible then C(U) and X = ∪i∈IUi are homotopy equivalent.

Warning: even when the open sets are euclidean balls, the computation of
the Cěch complex is a very difficult task!

⇒ The combinatorics of the covering (a simplicial complex) carries the
topology of the space.



Example: the Rips complex

σ = [p0p1 · · · pk] ∈ Rα(L) iff ∀i, j ∈ {0, · · · k}, d(pi, pj) ≤ α

The Rips complex Rα(L): for p0, · · · pk ∈ L,

Rips vs Čech

• Easy to compute and fully determined by its 1-skeleton

• Rips-Čech interleaving: for any α > 0,

C α2 (L) ⊆ Rα(L) ⊆ Cα(L) ⊆ R2α(L) ⊆ · · ·

Let L = {p0, · · · pn} be a (finite) point cloud (in a metric space).



Homology of simplicial complexes

• 2 connected components

• Intuitively: 2 cycles

Topological invariants:
- Number of connected components
- Number of cycles: how to define a cycle?
- Number of voids: how to define a void?
- ...

(Simplicial) homology and
Betti numbers

In the following: homology with coefficient in Z/2
Refs: J.R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
A. Hatcher, Algebraic Topology, Cambridge University Press 2002.



The space of k-chains

Let K be a d-dimensional simplicial complex. Let k ∈ {0, 1, · · · , d} and
{σ1, · · · , σp} be the set of k-simplices of K.

k-chain:

c =

p∑
i=1

εiσi with εi ∈ Z/2Z = {0, 1}

Sum of k-chains:

c+ c′ =

p∑
i=1

(εi + ε′i)σi and λ.c =

p∑
i=1

(λε′i)σi

where the sums εi + ε′i and the products λεi are modulo 2.
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The space Ck(K) of k-
chains is a Z/2-vector
space

Geometric interpretation:
k-chain = union of k-simplices

sum c+ c′ = symmetric difference
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The boundary operator

The boundary ∂σ of a k-simplex σ is the sum of its (k − 1)-faces. This is a
(k − 1)-chain.

Ifσ = [v0, · · · , vk] then ∂σ =
k∑
i=0

[v0 · · · v̂i · · · vk]

The boundary operator is the linear map defined by

∂ : Ck(K) → Ck−1(K)
c → ∂c =

∑
σ∈c ∂σ

∂ ∂

0



Fundamental property of the boundary operator

∂∂ := ∂ ◦ ∂ = 0

Proof: by linearity it is just necessary to prove it for a simplex.

∂∂σ = ∂

(
k∑
i=0

[v0 · · · v̂i · · · vk]

)

=
k∑
i=0

∂[v0 · · · v̂i · · · vk]

=
∑
j<i

[v0 · · · v̂j · · · v̂i · · · vk] +
∑
j>i

[v0 · · · v̂i · · · v̂j · · · vk]

= 0



Cycles and boundaries

The chain complex associated to a complex K of dimension d

∅ → Cd(K)
∂→ Cd−1(K)

∂→ · · · Ck+1(K)
∂→ Ck(K)

∂→ · · · C1(K)
∂→ C0(K)

∂→ ∅

k-cycles:

Zk(K) := ker(∂ : Ck → Ck−1) = {c ∈ Ck : ∂c = ∅}

k-boundaries:

Bk(K) := im(∂ : Ck+1 → Ck) = {c ∈ Ck : ∃c′ ∈ Ck+1, c = ∂c′}

Bk(K) ⊂ Zk(K) ⊂ Ck(K)



Cycles and boundaries

Non homologous 1-cycles
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Cycles and boundaries

Non homologous 1-cycles

Two homologous 1-cycles

A 1-boundary



Cycles and boundaries

Non homologous 1-cycles

Two homologous 1-cycles

A 1-boundary

Not a cycle



Homology groups and Betti numbers

Bk(K) ⊂ Zk(K) ⊂ Ck(K)

• The kth homology group of K: Hk(K) = Zk/Bk

• Tout each cycle c ∈ Zk(K) corresponds its homology class c+Bk(K) =
{c+ b : b ∈ Bk(K)}.

• Two cycles c, c′ are homologous if they are in the same homology class:
∃b ∈ Bk(K) s. t. b = c′ − c(= c′ + c).

• The kth Betti number of K: βk(K) = dim(Hk(K)).



Elementary examples

Remark: β0 = number of connected components of K
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Elementary examples

β0 = 2
β1 = 0
β2 = 0

β0 = 1
β1 = 0
β2 = 0

β0 = 1
β1 = 0
β2 = 1 if empty and β2 = 0 if filled
β3 = 0

Remark: β0 = number of connected components of K
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Elementary examples

β0 = 2
β1 = 2
β2 = 1 if empty and β2 = 0 if filled
β3 = 0



Topological invariance and singular homology

Theorem: If K and K ′ are two simplicial complexes with homeomorphic
supports then their homology groups are isomorphic and their Betti numbers
are equal.

β0 = 1, β1 = 2, β2 = 0

• This is a classical result in algebraic topology but the proof is not obvious.

• Rely on the notion of singular homology→ defined for any topological space.



Topological invariance and singular homology

Let ∆k be the standard simplex in Rk. A singular k-simplex in a topological
space X is a continuous map σ : ∆k → X.

(0, 0)

(0, 1)

(1, 0)

σ

X

The same construction as for simplicial homology can be done with singular
complexes → Singular homology

• Singular homology is defined for any topological space X.

• If X is homotopy equivalent to the support of a simplicial complex, then
the singular and simplicial homology coincide!

Important properties:



Topological invariance and singular homology

Let ∆k be the standard simplex in Rk. A singular k-simplex in a topological
space X is a continuous map σ : ∆k → X.

(0, 0)

(0, 1)

(1, 0)

σ

X

Homology and continuous maps:

• if f : X → Y is a continuous map and σ : ∆k → X a simplex in X,
then f ◦ σ : ∆k → Y is a simplex in Y ⇒ f induces a linear maps
between homology groups:

f] : Hk(X)→ Hk(Y )

• if f : X → Y is an homeomorphism or an homotopy equivalence then
f] is an isomorphism.



An algorithm for geometric inference

• X ⊂ Rd be a compact set such that wfs(X) > 0.

• L ⊂ Rd be a finite set such that dH(X,L) < ε for some ε > 0.
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An algorithm for geometric inference

• X ⊂ Rd be a compact set such that wfs(X) > 0.

• L ⊂ Rd be a finite set such that dH(X,L) < ε for some ε > 0.

Theorem: [CL’05 - CSEH’05]
Assume that wfs(X) > 4ε. For α > 0 s.t. α+ 4ε < wfs(X), let i : Lα+ε ↪→
Lα+3ε be the canonical inclusion.For any 0 < r < wfs(X),

Hk(Xr) ∼= im
(
i∗ : Hk(Lα+ε)→ Hk(Lα+3ε)

)

Goal: Compute the Betti numbers of Xr for 0 < r < wfs(X) from L.



An algorithm for geometric inference

Xα ⊆ Lα+ε ⊆ Xα+2ε ⊆ Lα+3ε ⊆ Xα+4ε ⊆ · · ·For any α > 0,

Proof:
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Xα ⊆ Lα+ε ⊆ Xα+2ε ⊆ Lα+3ε ⊆ Xα+4ε ⊆ · · ·For any α > 0,

At homology level:

Hk(Xα)→ Hk(Lα+ε)→ Hk(Xα+2ε)→ Hk(Lα+3ε)→ Hk(Xα+4ε)→ · · ·

Proof:
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isomorphism isomorphism
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An algorithm for geometric inference

Xα ⊆ Lα+ε ⊆ Xα+2ε ⊆ Lα+3ε ⊆ Xα+4ε ⊆ · · ·For any α > 0,

isomorphism isomorphism

rank = dimHk(X
α)

At homology level:

Hk(Xα)→ Hk(Lα+ε)→ Hk(Xα+2ε)→ Hk(Lα+3ε)→ Hk(Xα+4ε)→ · · ·

Cannot be directly com-
puted !

Proof:



Using the Čech complex

for p0, · · · pk ∈ L, σ = [p0p1 · · · pk] ∈ Cα(L) iff
k⋂
i=0

B(pi, α) 6= ∅

The Čech complex Cα(L):
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The Čech complex Cα(L):

Nerve theorem: For any α > 0, Lα and Cα(L) are homotopy equivalent and
the homotopy equivalences can be chosen to commute with inclusions.



Using the Čech complex

for p0, · · · pk ∈ L, σ = [p0p1 · · · pk] ∈ Cα(L) iff
k⋂
i=0

B(pi, α) 6= ∅

The Čech complex Cα(L):

Nerve theorem: For any α > 0, Lα and Cα(L) are homotopy equivalent and
the homotopy equivalences can be chosen to commute with inclusions.

· · · → Hk(Lα+ε) → Hk(Lα+3ε) → · · ·
↓ ↓

· · · → Hk(Cα+ε(L)) → Hk(Cα+3ε(L)) → · · ·

Allow to work with simplicial complexes but... still too difficult to compute



Using the Rips complex

σ = [p0p1 · · · pk] ∈ Rα(L) iff ∀i, j ∈ {0, · · · k}, d(pi, pj) ≤ α
The Rips complex Rα(L): for p0, · · · pk ∈ L,

Rips vs Čech

• Easy to compute and fully determined by its 1-skeleton

• Rips-Čech interleaving: for any α > 0,

C α2 (L) ⊆ Rα(L) ⊆ Cα(L) ⊆ R2α(L) ⊆ · · ·



Using the Rips complex

σ = [p0p1 · · · pk] ∈ Rα(L) iff ∀i, j ∈ {0, · · · k}, d(pi, pj) ≤ α
The Rips complex Rα(L): for p0, · · · pk ∈ L,

Rips vs Čech

Theorem: [C-Oudot’08]
Let X ⊂ Rd be a compact set and L ⊂ Rd a finite set such that dH(X,L) < ε
for some ε < 1

9 wfs(X). Then for all α ∈ [2ε, 1
4 (wfs(X)− ε)] and all

λ ∈ (0,wfs(X))), one has: ∀k ∈ N

βk(Xλ) = dim(Hk(Xλ)) = rk(Rα(L)→ R4α(L))



Using the Rips complex

σ = [p0p1 · · · pk] ∈ Rα(L) iff ∀i, j ∈ {0, · · · k}, d(pi, pj) ≤ α
The Rips complex Rα(L): for p0, · · · pk ∈ L,

Rips vs Čech

Theorem: [C-Oudot’08]
Let X ⊂ Rd be a compact set and L ⊂ Rd a finite set such that dH(X,L) < ε
for some ε < 1

9 wfs(X). Then for all α ∈ [2ε, 1
4 (wfs(X)− ε)] and all

λ ∈ (0,wfs(X))), one has: ∀k ∈ N

βk(Xλ) = dim(Hk(Xλ)) = rk(Rα(L)→ R4α(L))

Easy to compute using per-
sistence algo.



Using the Rips complex

σ = [p0p1 · · · pk] ∈ Rα(L) iff ∀i, j ∈ {0, · · · k}, d(pi, pj) ≤ α
The Rips complex Rα(L): for p0, · · · pk ∈ L,

Rips vs Čech

Theorem: [C-Oudot’08]
Let X ⊂ Rd be a compact set and L ⊂ Rd a finite set such that dH(X,L) < ε
for some ε < 1

9 wfs(X). Then for all α ∈ [2ε, 1
4 (wfs(X)− ε)] and all

λ ∈ (0,wfs(X))), one has: ∀k ∈ N

βk(Xλ) = dim(Hk(Xλ)) = rk(Rα(L)→ R4α(L))

Pb: Choice of α when wfs(X) is unknown?



Multiscale inference

Input: A point cloud W and its pairewise distances {d(w,w′)}w,w′∈W .
→ Maintain a nested pair R4ε(L) ↪→ R16ε(L) where L = L(ε).

Init.: L = ∅; ε = +∞
WHILE L ⊂W
insert p = argmaxw∈W d(w,L) in L
update ε = maxw∈W d(w,L)
update R4ε(L) and R16ε(L)
Persistence( R4ε(L) ↪→ R16ε(L))
END WHILE

Output: Sequence of persistent Betti numbers
of R4ε(L) ↪→ R16ε(L)

Rank of the map in-
duced at homology
level
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Multiscale inference

Theorem: [C-Oudot’08]
If dH(W,X) < δ for δ < 1

18wfs(X), then at every iteration of the algorithm
such that δ < ε < 1

18wfs(X),

βk(Xλ) = dimHk(Xλ) = rk(Hk(R4ε(L))→ Hk(R4ε(L)))

for any λ ∈ (0,wfs(X)) and any k ∈ N.



Multiscale inference

Complexity of the algorithm:

• If X ⊂ Rd is non smooth the running time of the algorithm is

O(833d |W |5)

• If X is a smooth submanifold of Rd dimension m the running time is

O(835m |W |)



Multiscale inference

Complexity of the algorithm:

• If X ⊂ Rd is non smooth the running time of the algorithm is

O(833d |W |5)

• If X is a smooth submanifold of Rd dimension m the running time is

O(835m |W |) Depend on the intrinsic
dimension of X



A synthetic example

[0, 1]× [0, 1] R1000

Non-linear embedding of S1 × S1 in R1000

50, 000 points sampled uniformly at random from a curve drawn on the 2-torus
S1 × S1.



A synthetic example

Output: sequence of Betti numbers on a log-log scale



A synthetic example

Output: sequence of Betti numbers on a log-log scale

Torus

Circle



An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Output: The Betti numbers β0, β1, · · · , βd of K.

β0 = β1 = · · · = βd = 0;
for i = 1 to m
k = dimσi − 1;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1;
else βk = βk − 1;

end if;
end for;
output (β0, β1, · · · , βd);
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An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Output: The Betti numbers β0, β1, · · · , βd of K.

β0 = β1 = · · · = βd = 0;
for i = 1 to m
k = dimσi − 1;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1;
else βk = βk − 1;

end if;
end for;
output (β0, β1, · · · , βd);

Remark: At the ith step of the algorithm, the vector (β0, · · · , βd) stores the
Betti numbers of Ki.



Proof

• If σi is contained in a (k + 1)-cycle in Ki, this cycle is not a boundary
in Ki.

• If σi is contained in a (k+1)-cycle c in Ki, then c cannot be homologous
to a cycle in Ki−1

⇒ βk+1(Ki) ≥ βk+1(Ki−1) + 1

• If σi is not contained in a (k + 1)-cycle c in Ki, then ∂σi is not a
boundary in Ki−1

⇒ βk(Ki) ≤ βk(Ki−1)− 1

• the previous inequalities are equalities.



Positive and negative simplices

Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial complex
K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Definition: A (k+1)-simplex σi is positive if it is contained in a (k+1)-cycle
in Ki. It is negative otherwise.



Positive and negative simplices

Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial complex
K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Definition: A (k+1)-simplex σi is positive if it is contained in a (k+1)-cycle
in Ki. It is negative otherwise.

Create a new (k + 1)-cycle in Ki

Destroy a k-cycle in Ki

βk(K) = ](positive simplices) − ](negative simplices)



Getting more information

Definition: A (k+1)-simplex σi is positive if it is contained in a (k+1)-cycle
in Ki. It is negative otherwise.

Create a new (k + 1)-cycle in Ki

Destroy a k-cycle in Ki

βk(K) = ](positive simplices) − ](negative simplices)

• How to keep track of the evolution of the topology
all along the filtration?

• What are the created/destroyed cycles?

• What is the lifetime of a cycle?

• How to compute rank(Hk(Ki)→ Hk(Kj))?



Getting more information

Definition: A (k+1)-simplex σi is positive if it is contained in a (k+1)-cycle
in Ki. It is negative otherwise.

Create a new (k + 1)-cycle in Ki

Destroy a k-cycle in Ki

βk(K) = ](positive simplices) − ](negative simplices)

• How to keep track of the evolution of the topology
all along the filtration?

• What are the created/destroyed cycles?

• What is the lifetime of a cycle?

• How to compute rank(Hk(Ki)→ Hk(Kj))?

This is where topological persistence comes into
play!



Topological persistence

• a tool to study topological properties of data (represented by real valued
functions on topological spaces).

• A method that allow to separate information from topological noise.

• References:

– H. Edelsbrunner, D. Letscher and A. Zomorodian. Topological
persistence and simplification. Discrete Comput. Geom., 28:511-
533, 2002.

– D. Cohen-Steiner and H. Edelsbrunner and J. Harer, Stability of
Persistence Diagrams, Proc. 21st ACM Sympos. Comput. Geom.
2005.

– F. Chazal and D. Cohen-Steiner and L. J. Guibas and M. Glisse and
S. Y. Oudot, Proximity of Persistence Modules and their Diagrams,
Proc. 25th ACM Sympos. Comput. Geom. 2009.



A simple example

• What is the relevant number of connected components of f−1((−∞, t])?

• More generally, study the topology of the sublevel sets f−1((−∞, t]) as
t varies.



A simple example: filter out topological noise

Persistence
diagrams



Functions defined over higher dimensional spaces

• f : X → R continuous where X is a topological space

• Not only connected components but also cycles, voids, etc... → persis-
tence of homological features / evolution of Hk(f−1((−∞, t]))

Relation between fonctions and filtrations:

• ∀t ≤ t′ ∈ R, f−1((−∞, t]) ⊆ f−1((−∞, t′]) → filtration of X by the
sublevel sets of f .

• If f is defined at the vertices of a simplicial complex K , the sublevel
sets filtration is a filtration of the simplicial complex K.

• For σ = [v0, · · · , vk] ∈ K, f(σ) = maxi=0,··· ,k f(vi)

• The simplices of K are ordered according increasing
f values (and dimension in case of equal values on
different simplices).



Notations

In the following:

• Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

• Zik = the k-cylcles of Ki, Bik = the k-boundaries of Ki and Hi
k = the

kth-homology group of Ki.

• Z0
k ⊆ Z1

k ⊆ · · · ⊆ Zik ⊆ · · · ⊆ Zmk = Zk(K)

• B0
k ⊆ B1

k ⊆ · · · ⊆ Bik ⊆ · · · ⊆ Bmk = Bk(K)



Cycle associated to a positive simplex

Lemma: If σi is a positive k-cycle, then there exists a k-cycle cσ s.t.:
- cσ is not a boundary in Ki,
- cσ contains σi but no other positive k-simplex.
The cycle cσ is unique.

Proof:
By induction on the order of appearence of the simplices in the filtration.



Homology basis

• At the beginning: the basis of H0
k is empty.

• If a basis of Hi−1
k has been built and σi is a positive k-simplex then one

adds the homology class of the cycle ci associated to σi to the basis of
Hi−1
k ⇒ basis of Hi

k.

• If a basis of Hj−1
k has been built and σj is a negative (k + 1)-simplex:

– let ci1 , · · · , cip be the cycles associated to the positive simplices
σi1 , · · · , σip that form a basis of Hj−1

k

– d = ∂σj =
∑p
k=1 εkc

ik + b

– l(j) = max{ik : εk = 1}
– Remove the homology class of cl(j) from the basis of Hj−1

k ⇒
basis of Hj

k.
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Homology basis

• At the beginning: the basis of H0
k is empty.

• If a basis of Hi−1
k has been built and σi is a positive k-simplex then one

adds the homology class of the cycle ci associated to σi to the basis of
Hi−1
k ⇒ basis of Hi

k.

• If a basis of Hj−1
k has been built and σj is a negative (k + 1)-simplex:

– let ci1 , · · · , cip be the cycles associated to the positive simplices
σi1 , · · · , σip that form a basis of Hj−1

k

– d = ∂σj =
∑p
k=1 εkc

ik + b

– l(j) = max{ik : εk = 1}
– Remove the homology class of cl(j) from the basis of Hj−1

k ⇒
basis of Hj

k.

ci1 ci2

σj
∂σj = ci1 + ci2



Pairing simplices

• If a basis of Hj−1
k has been built and σj is a negative (k+ 1)-simplex:

– let ci1 , · · · , cip be the cycles associated to the positive simplices
σi1 , · · · , σip that form a basis of Hj−1

k

– d = ∂σj =
∑p
k=1 εkc

ik + b

– l(j) = max{ik : εk = 1}
– Remove the homology class of cl(j) from the basis of Hj−1

k ⇒
basis of Hj

k.

The simplices σl(j) and σj are paired to form a persistent pair (σl(j), σj).
→ The homology class created by σl(j) in Kl(j) is killed by σj in Kj . The
persistence (or life-time) of this cycle is : j − l(j)− 1.

Remark: filtrations of K can be indexed by increasing sequences αi of real
numbers (useful when working with a function defined on the vertices of a
simplicial complex).



The persistence algorithm: first version

L0 = L1 = · · · = Ld−1 = ∅
For j = 0 to m
k = dimσj − 1;
if σj is a negative simplex
l(j) = highest index of the positive simplices associated to ∂σj ;
Lk = Lk ∪ {(σl(j), σj)};

end if
end for
output L0, L1, · · · , Ld−1 ;

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a
simplicial complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.



The persistence algorithm: first version

L0 = L1 = · · · = Ld−1 = ∅
For j = 0 to m
k = dimσj − 1;
if σj is a negative simplex
l(j) = highest index of the positive simplices associated to ∂σj ;
Lk = Lk ∪ {(σl(j), σj)};

end if
end for
output L0, L1, · · · , Ld−1 ;

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a
simplicial complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

How to test this condition?



The matrix of the boundary operator

• M = (mij)i,j=1,··· ,m with coefficient in Z/2 defined by

mij = 1 if σi is a face of σj and mij = 0 otherwise

• For any column Cj , l(j) is defined by

(i = l(j))⇔ (mij = 1 and mi′j = 0∀i′ > i)



The persistence algorithm: second version

For j = 0 to m
While (there exists j′ < j such that l(j′) == l(j))
Cj = Cj + Cj′ mod(2);

End while
End for
Output the pairs (l(j), j);

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a
simplicial complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Remark: The worst case complexity of the algorithm is O(m3) but much
lower in most practical cases.



A very simple example

Pairs: (2, 3) (4, 5) (7, 7)



Correctness of the second algorithm

Proposition: the second algorithm outputs the persistence pairs.

Proof: follows from the four remarks below.

1. At each step of the algorithm, the column Cj represents a chain of the
form

∂

σj +
∑
i<j

εiσ
i

 with εi ∈ {0, 1}

2. At this end of the algorithm, if j is s.t. l(j) is defined then σl(j) is a
positive simplex.

3. If at the end of the algorithm if the column Cj is zero then σj is positive.

4. If at the end of the algorithm the column Cj is not zero then (σl(j), σj)
is a persistence pair.



Persistence diagrams

1

2

3

4 5

6
7

2 4 60

2

4

6

∞

2 4 60

2

4

6

∞

• each pair (σl(j), σj) is represented by (l(j), j) or (f(σl(j)), f(σj)) ∈ R2

when considering filtrations induced by functions.

• The diagonal {y = x} is added to the persistence diagram.

• Unpaired positive simplex σi → (i,+∞).
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• each pair (σl(j), σj) is represented by (l(j), j) or (f(σl(j)), f(σj)) ∈ R2

when considering filtrations induced by functions.

• The diagonal {y = x} is added to the persistence diagram.

• Unpaired positive simplex σi → (i,+∞).

Warning: in this case, points
may have multiplicity.



Persistence diagrams

1

2

3

4 5

6
7

2 4 60

2

4

6

∞

2 4 60

2

4

6

∞

• each pair (σl(j), σj) is represented by (l(j), j) or (f(σl(j)), f(σj)) ∈ R2

when considering filtrations induced by functions.

• The diagonal {y = x} is added to the persistence diagram.

• Unpaired positive simplex σi → (i,+∞).

Barcodes: an alternative (equivalent) representation where each pair (i, j) is
represented by the interval [i, j]

2 4 60



Distance between persistence diagrams

Let K be a simplicial complex and f, g two functions defined on the vertices
of K. Let Df and Dg be the persistence diagrams of f and g.

The bottleneck distance between Df and Dg is

dB(Df , Dg) = inf
γ∈Γ

sup
p∈Df

‖p− γ(p)‖∞

where Γ is the set of all the bijections between Df and Dg and ‖p− q‖∞ =
max(|xp − xq|, |yp − yq|).

∞



Stability of persistence diagrams

Theorem: Let K be a simplicial complex and let f, g : K → R.

dB(Df , Dg) ≤ ‖f − g‖∞

where ‖f − g‖∞ = supv∈vertices(K) |f(v)− g(v)|.



Stability of persistence diagrams

• Let K and K ′ be two simplicial complexes homeomorphic to a topolog-
ical space X.

• Let φ : K → X and φ′ : K ′ → X be homeomorphisms

• Let f : X → R be a continuous function and Df (K) (resp. Df (K ′))
the persistence diagram of f ◦ φ (resp. f ◦ φ′).

Theorem: Let ε > 0 be such that for any simplex σ ∈ K (resp. ∈ K ′),
supx,y∈σ |f ◦φ(x)−f ◦φ(y)| < ε (resp. supx,y∈σ |f ◦φ′(x)−f ◦φ′(y)| < ε).
Then one has

dB(Df (K), Df (K ′)) ≤ 2ε

Remark: this is a particular (and weaker) version of a much more general
result. See:
- D. Cohen-Steiner and H. Edelsbrunner and J. Harer, Stability of Persistence Diagrams, Proc. 21st ACM Sympos. Comput. Geom. 2005.
- F. Chazal and D. Cohen-Steiner and L. J. Guibas and M. Glisse and S. Y. Oudot, Proximity of Persistence Modules and their Diagrams, Proc.
25th ACM Sympos. Comput. Geom. 2009.



Consequences of the stability

• Persistence diagrams are defined and stable for a large class of contin-
uous functions defined over (pre-)compact metric spaces.

→ definition stable (Gromov-Hausdorff distance) topological signatures for
compact metric spaces.
→ Efficient algorithm to compute signatures.
→ applications to shape classification.

3D shapes database

Ref: F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Mémoli, S. Oudot, Gromov-Hausdorff Stable Signatures for Shapes using Persistence, Computer
GraphicsForum (proc. SGP 2009), pp. 1393-1403, 2009.



Consequences of the stability

• Persistence diagrams can be reliably estimated from data (functions
known through a point cloud data set approximating a topological
space).

Previous approach can be generalized, leading to robust algorithms to compute
the topological persistence of functions defined over point clouds sampled
around unknown shapes

Ref:

• F. Chazal, L. Guibas, S. Oudot, P. Skraba, Analysis of Scalar Fields over Point Cloud Data, proc. ACM Symposium on Discrete
Algorithms 2009.

• F. Chazal, S. Oudot, Toward Persistence-Based Reconstruction in Euclidean Spaces, proc. ACM Symposium on Computational
Geometry 2008.



Consequences of the stability

• Persistence diagrams can be reliably estimated from data (functions
known through a point cloud data set approximating a topological
space).
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Applications to clustering, segmentations, sensor networks,...



Consequences of the stability

• Persistence diagrams can be reliably estimated from data (functions
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Applications to non rigid shapes segmentation


