
Intro_TDA_with_GUDHI_Part_1

November 16, 2018

0.1 MVA 2018-19

To download this notebook or its pdf version:
http://geometrica.saclay.inria.fr/team/Fred.Chazal/MVA2018.html
Documentation for the latest version of Gudhi:
http://gudhi.gforge.inria.fr/python/latest/

1 Simplicial complexes and simplex trees

In Gudhi, (filtered) simplicial complexes are encoded through a data structure called simplex tree.
Here is a very simple example illustrating the use of simplex tree to represent simplicial com-
plexes. See the Gudhi documentation for a complete list of functionalities. Try the following
code and a few other functionalities from the documentation to get used to the Simplex Tree data
structure.

In []: import numpy as np
import gudhi as gd
import random as rd
import matplotlib.pyplot as plt

In []: st = gd.SimplexTree() # Create an empty simplicial complex

Simplicies can be inserted 1 by 1
Vertices are indexed by integers
if st.insert([0,1]):

print("First simplex inserted!")
st.insert([1,2])
st.insert([2,3])
st.insert([3,0])
st.insert([0,2])
st.insert([3,1])

In []: L = st.get_filtration() # Get a list with all simplices
Notice that inserting an edge automatically inserts its vertices, if they were not already in the complex
for simplex in L:

print(simplex)

1

In []: # Insert the 2-skeleton, giving some filtration values to the faces
st.insert([0,1,2],filtration=0.1)
st.insert([1,2,3],filtration=0.2)
st.insert([0,2,3],filtration=0.3)
st.insert([0,1,3],filtration=0.4)

If you add a new simplex with a given filtration value, all its faces that
were not in the complex are inserted with the same filtration value
st.insert([2,3,4],filtration=0.7)
st.get_filtration()

In []: # Many operations can be done on simplicial complexes, see also the Gudhi documentation and examples
print("dimension=",st.dimension())
print("filtration[1,2]=",st.filtration([1,2]))
print("filtration[4,2]=",st.filtration([4,2]))
print("num_simplices=", st.num_simplices())
print("num_vertices=", st.num_vertices())
print("skeleton[2]=", st.get_skeleton(2))
print("skeleton[1]=", st.get_skeleton(1))
print("skeleton[0]=", st.get_skeleton(0))

2 Filtrations and persistence diagrams

In []: # As an example, we assign to each simplex its dimension as filtration value
for splx in st.get_filtration():

st.assign_filtration(splx[0],len(splx[0])-1)
Let the structure know that we have messed with it and an old filtration cache may be invalid.
This is redundant here because get_filtration() does it anyway, but not all functions do.
st.initialize_filtration()
st.get_filtration()

In []: # To compute the persistence diagram of the filtered complex
By default it stops at dimension-1, use persistence_dim_max=True
to compute homology in all dimensions
diag = st.persistence(persistence_dim_max=True)
Display each interval as (dimension, (birth, death))
print(diag)

In []: # Plot a persistence diagram
gd.plot_persistence_diagram(diag)

In []: gd.plot_persistence_barcode(diag)

In []: # To compute the bottleneck distance between diagrams
st2 = gd.SimplexTree()
st2.insert([0,1],filtration=0.0)
st2.insert([1,2],filtration=0.1)
st2.insert([2,0],filtration=0.2)

2

st2.insert([0,1,2],filtration=0.5)
diag2 = st2.persistence()
gd.plot_persistence_diagram(diag2)

In []: diag_0 = st.persistence_intervals_in_dimension(0)
diag2_0 = st2.persistence_intervals_in_dimension(0)
dB0 = gd.bottleneck_distance(diag_0, diag2_0)

diag_1 = st.persistence_intervals_in_dimension(1)
diag2_1 = st2.persistence_intervals_in_dimension(1)
dB1 = gd.bottleneck_distance(diag_1, diag2_1)

print("bottleneck distance in dimension 0:", dB0)
print("bottleneck distance in dimension 1:", dB1)

2.1 Exercise

1. Recall the torus is homeomorphic to the surface obtained by
identifying the opposite sides of a square as illustrated below.

Using Gudhi, con-
struct a triangulation (2-dimensional simplicial complex) of the Torus. Define a filtration on
it, compute its persistence and use it to deduce the Betti numbers of the torus (check that
you get the correct result using the function betti_numbers()).

2. Use Gudhi to compute the Betti numbers of a sphere of dimension 2 and of a sphere of
dimension 3 (hint: the k -dimensional sphere is homeomorphic to the boundary of a (k+1)-

3

dimensional simplex.

3 Stability of persistence for functions

The goal of this exercise is to illustrate the persistence stability theorem for functions on a very
simple example. The code below allows to define a simplicial complex (the so-called -complex)
triangulating a set of random points in the unit square in the plane. Although we are not using it
for this course, note that gudhi also provides the grid-like CubicalComplex, which may be a more
natural choice to represent a function on a square.

In []: n_pts=1000
Build a random set of points in the unit square
X = np.random.rand(n_pts, 2)
Compute the alpha-complex filtration
alpha_complex = gd.AlphaComplex(points=X)
st = alpha_complex.create_simplex_tree()

Let p0 = (0.25, 0.25) and p1 = (0.75, 0.75) be 2 points in the plane R2 and σ = 0.05. 1. Build on
such a complex the sublevelset filtration of the function

f (p) = exp(−∥p − p0∥2

σ
) + 3 exp(−∥p − p1∥2

σ
)

and compute its persistence diagrams in dimensions 0 and 1. 2. Compute the persistence diagrams
of random perturbations of f and compute the Bottleneck distance between these persistence di-
agrams and the perturbated ones. Verify that the persistence stability theorem for functions is
satisfied.

4 Vietoris-Rips and alpha-complex filtrations

These are basic instructions to build Vietoris-Rips and -complex filtrations and compute their per-
sistence.

In []: #Create a random point cloud in 3D
nb_pts=100
pt_cloud = np.random.rand(nb_pts,3)
#Build Rips-Vietoris filtration and compute its persistence diagram
rips_complex = gd.RipsComplex(pt_cloud,max_edge_length=0.5)
simplex_tree = rips_complex.create_simplex_tree(max_dimension=3)
print("Number of simplices in the V-R complex: ",simplex_tree.num_simplices())
diag = simplex_tree.persistence(homology_coeff_field=2, min_persistence=0)
gd.plot_persistence_diagram(diag).show()
#Compute Rips-Vietoris filtration and compute its persistence diagram from
#a pairwise distance matrix
dist_mat = []
for i in range(nb_pts):

ld = []
for j in range(i):

4

ld.append(np.linalg.norm(pt_cloud[i,:]-pt_cloud[j,:]))
dist_mat.append(ld)

rips_complex2 = gd.RipsComplex(distance_matrix=dist_mat,max_edge_length=0.5)
simplex_tree2 = rips_complex2.create_simplex_tree(max_dimension=3)
diag2 = simplex_tree2.persistence(homology_coeff_field=2, min_persistence=0)
gd.plot_persistence_diagram(diag2).show()
#Compute the alpha-complex filtration and compute its persistence
alpha_complex = gd.AlphaComplex(points=pt_cloud)
simplex_tree3 = alpha_complex.create_simplex_tree()
print("Number of simplices in the alpha-complex: ",simplex_tree3.num_simplices())
diag3 = simplex_tree3.persistence(homology_coeff_field=2, min_persistence=0)
gd.plot_persistence_diagram(diag3)

4.1 Exercise

1. Illustrate the stability theorem for persistence diagrams of Vietoris-Rips and -complex filtra-
tions (take into accound that AlphaComplex uses the square of distances as filtration values).

2. What happens to Vietoris-Rips and -complex filtrations when the size of the point cloud
increases? When the ambient dimension increases?

5

	MVA 2018-19
	Simplicial complexes and simplex trees
	Filtrations and persistence diagrams
	Exercise

	Stability of persistence for functions
	Vietoris-Rips and alpha-complex filtrations
	Exercise

