
Intro_TDA_with_GUDHI_Part2

December 2, 2018

0.1 MVA 2018-19

To download this notebook or its pdf version:
http://geometrica.saclay.inria.fr/team/Fred.Chazal/MVA2018.html
Documentation for the latest version of Gudhi:
http://gudhi.gforge.inria.fr/python/latest/

1 Sensor data

Download the data at the following address: http://geometrica.saclay.inria.fr/team/Fred.Chazal/slides/data_acc.dat,
save it as a file named data_acc.dat, and load it using the pickle module:

In [4]: import numpy as np
import pickle as pickle
import gudhi as gd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import manifold
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.cluster import KMeans

f = open("data_acc.dat","rb")
data = pickle.load(f,encoding="latin1")
f.close()
data_A = data[0]
data_B = data[1]
data_C = data[2]
label = data[3]

%matplotlib inline

The walk of 3 persons A, B and C has been recorded using the accelerometer sensor of a smart-
phone in their pocket, giving rise to 3 multivariate time series in R3: each time series represents
the 3 coordinates of the acceleration of the corresponding person in a coordinate system attached
to the sensor (take care that, as the smartphone was carried in a possibly different position for
each person, these time series cannot be compared coordinates by coordinates). Using a sliding

1

http://geometrica.saclay.inria.fr/team/Fred.Chazal/slides/data_acc.dat

window, each series has been split in a list of 100 time series made of 200 consecutive points, that
are now stored in data_A, data_B and data_C.

• Plot a few of the time series to get an idea of the corresponding point clouds in R3. For
example:

In [5]: data_A_sample = data_A[0]
plt.gca(projection='3d')
plt.plot(data_A_sample [:,0],data_A_sample [:,1],data_A_sample [:,2])

Out[5]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x21330e82860>]

• Compute and plot the persistence diagrams of the Vietoris-Rips and the alpha-complex fil-
trations, for a few examples of the time series.

• Compute the 0-dimensional and 1-dimensional persistence diagrams (-shape or Rips-
Vietoris filtration) of all the time series. Compute the matrix of pairwise distances between
the diagrams (as this may take a while, you can just select a subset of all the diagrams where
each of the 3 classes A, B and C are represented). Visualize the pairwise distances via Multi-
dimensional Scaling (use a different color for each class). You can use sklearn for that:

In [6]: # B is the pairwise distance matrix between 0 or 1-dim dgms
#label_color contains the colors corresponding to the class of each dgm
mds = manifold.MDS(n_components=3, max_iter=3000, eps=1e-9, dissimilarity="precomputed", n_jobs=1)
pos1 = mds.fit(B1).embedding_
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(pos1[:,0], pos1[:, 1], pos1[:,2], marker = 'o', color=label_color)

2

NameError Traceback (most recent call last)

<ipython-input-6-9c995588e20e> in <module>()
2 #label_color contains the colors corresponding to the class of each dgm
3 mds = manifold.MDS(n_components=3, max_iter=3000, eps=1e-9, dissimilarity="precomputed", n_jobs=1)

----> 4 pos1 = mds.fit(B1).embedding_
5 fig = plt.figure()
6 ax = fig.add_subplot(111, projection='3d')

NameError: name 'B1' is not defined

• Use the function below to embed the data in dimension 3Œ3 = 9 with a delay equal to 2
(time-delay embedding) and do the same experiments as previously, using the Vietoris-Rips
filtration this time.

In []: def sliding_window_data(x,edim,delay=1):
"""time delay embedding of a d-dim times series into R^{d*edim}
the time series is assumed to be periodic
parameters:

+ x: a list of d lists of same length L or a dxL numpy array
+ edim: the number of points taken to build the embedding in R^{d*edim}
+ delay: embeeding given by (x[i],x[i+delay],...,x[i + (edim-1)*delay])

Default value for delay is 1
"""
ts = np.asarray(x)
if len(np.shape(ts)) == 1:

ts = np.reshape(ts,(1,ts.shape[0]))
ts_d = ts.shape[0]
ts_length = ts.shape[1]
#output = zeros((edim*ts_d,nb_pt))
output = ts
for i in range(edim-1):

output = np.concatenate((output,np.roll(ts,-(i+1)*delay,axis=1)),axis=0)
return output

2 Persistence landscapes

Landscape construction is currently only available in the C++ version of Gudhi. Here is a simple
python implementation you can use for this class.

In []: def landscapes_approx(diag,p_dim,x_min,x_max,nb_nodes,nb_ld):
"""Compute a dicretization of the first nb_ld landscape of a
p_dim-dimensional persistence diagram on a regular grid on the

3

interval [x_min,x_max]. The output is a nb_ld x nb_nodes numpy
array
+ diag: a persistence diagram (in the Gudhi format)
+ p_dim: the dimension in homology to consider
"""
landscape = np.zeros((nb_ld,nb_nodes))
diag_dim = []
for pair in diag: #get persistence points for homology in dimension dim

if (pair[0] == p_dim):
diag_dim.append(pair[1])

step = (x_max - x_min) / (nb_nodes - 1)
#Warning: naive and not the most efficient way to proceed!!!!!
for i in range(nb_nodes):

x = x_min + i * step
t = x / np.sqrt(2)
event_list = []
for pair in diag_dim:

b = pair[0]
d = pair[1]
if b <= t <= d:

if t >= (d+b)/2:
event_list.append((d-t)*np.sqrt(2))

else:
event_list.append((t-b)*np.sqrt(2))

event_list.sort(reverse=True)
event_list = np.asarray(event_list)
for j in range(nb_ld):

if(j<len(event_list)):
landscape[j,i]=event_list[j]

return landscape

• Test the function on a few examples of diagrams and plot the resulting landscapes.

• Compute and store the persistence landscapes of the accelerometer time series. Use the
obtained landscapes to experiment with supervised and non supervised classification on
this data.

In []: # Example of parameters, you don't have to use those
nb_ld = 5 # number of Landscapes
nb_nodes = 500
length_max = 1.0

3 Bootstrap and confidence bands for lanscapes

The goal of this exercise is to implement the bootstrap algorithm below from [F. Chazal, B.T. Fasy,
F. Lecci, A. Rinaldo, L. Wasserman. Stochastic Convergence of Persistence Landscapes and Silhouettes.

4

in Journal of Computational Geometry, 6(2), 140-161, 2015] to compute confidence bands for land-
scapes. As an example compute confidence bands for the expected landscapes for each of the 3
classes in the accelerometer data set.

3.1 The multiplier bootstrap algorithm.

Input: landscapes λ1, . . . , λn; confidence level 1 − α; number of bootstrap samples B
Output: confidence functions ℓn, un : R → R 1. Compute the average λn(t) = 1

n ∑n
i=1 λi(t), for all

t 1. For j = 1 to B: 1. Generate ξ1, . . . , ξn ∼ N(0, 1) 1. Set θ̃j = supt n−1/2|∑n
i=1 ξi (λi(t)−

λn(t))| 1. End for 1. Define Z̃(α) = inf
{

z : 1
B ∑B

j=1 I(θ̃j > z) ≤ α
}

1. Set ℓn(t) = λn(t)− Z̃(α)√
n and

un(t) = λn(t) +
Z̃(α)√

n 1. Return ℓn(t), un(t)

5

	MVA 2018-19
	Sensor data
	Persistence landscapes
	Bootstrap and confidence bands for lanscapes
	The multiplier bootstrap algorithm.

