Sophia-Antipolis, January 2016 Winter School

An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference

Frédéric Chazal
INRIA Saclay - Ile-de-France
frederic.chazal@inria.fr

Some notes related to the course:

J-D. Boissonnat, F. Chazal, M. Yvinec, Computational Geometry and Topology for Data Analysis http://geometrica.saclay.inria.fr/team/Fred.Chazal/

Introduction

- Data often come as (sampling of) metric spaces or sets/spaces endowed with a similarity measure with, possibly complex, topological/geometric structure.
- Data carrying geometric information are becoming high dimensional.
- Topological Data Analysis (TDA):
 - infer relevant topological and geometric features of these spaces.
 - take advantage of topol./geom. information for further processing of data (classification, recognition, learning, clustering, parametrization...).

Introduction

Problem: how to compare topological properties of close shapes/data sets?

- Challenges and goals:
 - \rightarrow no direct access to topological/geometric information: need of intermediate constructions (simplicial complexes);
 - → distinguish topological "signal" from noise;
 - → topological information may be multiscale;
 - \rightarrow statistical analysis of topological information.

Topological and geometric Inference

Question: Given an approximation C of a geometric object K, is it possible to reliably estimate the topological and geometric properties of K, knowing only the approximation C?

Challenges:

- define a relevant class of objects to be considered (no hope to get a positive answer in full generality);
- define a relevant notion of distance between the objects (approximation);
- topological and geometric properties cannot be directly infered from approximations.

Two strategies

1. Reconstruction

- + Full reconstruction of the underlying shape.
- + Strong topological and geometric information.
- + A well-developped theory.
 - Strong regularity assumptions.
- Severe practical/algo issues in high dimensions.

1. Topological inference

- + Estimation of topological information without explicit reconstruction.
- + Lighter regularity assumptions.
- + A powerful theory that extends to general data.
- Weaker information.

This course

Background mathematical notions

Topological space

A topology on a set X is a family \mathcal{O} of subsets of X that satisfies the three following conditions:

- i) the empty set \emptyset and X are elements of \mathcal{O} ,
- ii) any union of elements of \mathcal{O} is an element of \mathcal{O} ,
- iii) any finite intersection of elements of \mathcal{O} is an element of \mathcal{O} .

The set X together with the family \mathcal{O} , whose elements are called open sets, is a topological space. A subset C of X is closed if its complement is an open set.

A map $f: X \to X'$ between two topological spaces X and X' is continuous if and only if the pre-image $f^{-1}(O') = \{x \in X : f(x) \in O'\}$ of any open set $O' \subset X'$ is an open set of X. Equivalently, f is continuous if and only if the pre-image of any closed set in X' is a closed set in X (exercise).

A topological space X is a compact space if any open cover of X admits a finite subcover, i.e. for any family $\{U_i\}_{i\in I}$ of open sets such that $X=\cup_{i\in I}U_i$ there exists a finite subset $J\subseteq I$ of the index set I such that $X=\cup_{j\in J}U_j$.

Background mathematical notions

Metric space

A metric (or distance) on X is a map $d: X \times X \to [0, +\infty)$ such that:

- i) for any $x, y \in X$, d(x, y) = d(y, x),
- ii) for any $x, y \in X$, d(x, y) = 0 if and only if x = y,
- iii) for any $x, y, z \in X$, $d(x, z) \leq d(x, y) + d(y, z)$.

The set X together with d is a metric space.

The smallest topology containing all the open balls $B(x,r) = \{y \in X : d(x,y) < r\}$ is called the metric topology on X induced by d.

Example: the standard topology in an Euclidean space is the one induced by the metric defined by the norm: d(x,y) = ||x - y||.

Compacity: a metric space X is compact if and only if any sequence in X has a convergent subsequence. In the Euclidean case, a subset $K \subset \mathbb{R}^d$ (endowed with the topology induced from the Euclidean one) is compact if and only if it is closed and bounded (Heine-Borel theorem).

Background mathematical notions

Shapes and Hausdorff distance

In the first lectures : shape = compact subset of \mathbb{R}^d

The distance function to a compact $K \subset \mathbb{R}^d$, $d_K : \mathbb{R}^d \to \mathbb{R}_+$ is defined by

$$d_K(x) = \inf_{p \in K} ||x - p||$$

The Hausdorf distance between two compact sets $K, K' \subset \mathbb{R}^d$:

$$d_H(K, K') = \sup_{x \in \mathbb{R}^d} |d_K(x) - d_{K'}(x)|$$

Exercise: Show that

$$d_H(K, K') = \max \left(\sup_{y \in K'} d_K(y), \sup_{z \in K} d_{K'}(z) \right)$$

Distance functions and geometric inference

The distance function to a compact $K \subset \mathbb{R}^d$, $d_K : \mathbb{R}^d \to \mathbb{R}_+$ is defined by

$$d_K(x) = \inf_{p \in K} ||x - p||$$

The Hausdorf distance between two compact sets $K, K' \subset \mathbb{R}^d$:

$$d_H(K, K') = \sup_{x \in \mathbb{R}^d} |d_K(x) - d_{K'}(x)|$$

The idea:

- ullet Replace K and C by d_K and d_C
- Compare the topology of the offsets

$$K^r = d_K^{-1}([0,r])$$
 and $C^r = d_C^{-1}([0,r])$

Comparing topological spaces

Homeomorphy and isotopy

- X and Y are homeomorphic if there exists a bijection $h: X \to Y$ s. t. h and h^{-1} are continuous.
- $X,Y \subset \mathbb{R}^d$ are ambient isotopic if there exists a continuous map $F: \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$ s. t. $F(.,0) = Id_{\mathbb{R}^d}$, F(X,1) = Y and $\forall t \in [0,1]$, F(.,t) is an homeomorphim of \mathbb{R}^d .

Comparing topological spaces

Homotopy, homotopy type

- Two maps $f_0: X \to Y$ and $f_1: X \to Y$ are homotopic if there exists a continuous map $H: [0,1] \times X \to Y$ s. t. $\forall x \in X$, $H(0,x) = f_0(x)$ and $H_1(1,x) = f_1(x)$.
- X and Y have the same homotopy type (or are homotopy equivalent) if there exists continuous maps $f: X \to Y$ and $g: Y \to X$ s. t. $g \circ f$ is homotopic to Id_X and $f \circ g$ is homotopic to Id_Y .

Comparing topological spaces

Homotopy, homotopy type

If $X \subset Y$ and if there exists a continuous map $H : [0,1] \times X \to X$ s.t.:

- i) $\forall x \in X$, H(0, x) = x,
- $ii) \ \forall x \in X, \ H(1,x) \in Y$
- iii) $\forall y \in Y$, $\forall t \in [0,1]$, $H(t,y) \in Y$,

then X and Y are homotopy equivalent. If one replaces condition iii by $\forall y \in Y$, $\forall t \in [0,1]$, H(t,y)=y then H is a deformation retract of X onto Y.

Medial axis and critical points

$$\Gamma_K(x) = \{ y \in K : d_K(x) = d(x, y) \}$$

The Medial axis of K:

$$\mathcal{M}(K) = \{ x \in \mathbb{R}^d : |\Gamma_K(x)| \ge 2 \}$$

 $x \in \mathbb{R}^d$ is a critical point of d_K iff x is contained in the convex hull of $\Gamma_K(x)$.

Exercise: What is the medial axis of a finite set of point $K = \{p_1, \dots, p_n\} \subset \mathbb{R}^d$? What are the critical points of d_K ?

Medial axis and critical points

 $\Gamma_K(x)$

K

$$\Gamma_K(x) = \{ y \in K : d_K(x) = d(x, y) \}$$

The Medial axis of K:

$$\mathcal{M}(K) = \{ x \in \mathbb{R}^d : |\Gamma_K(x)| \ge 2 \}$$

 $x \in \mathbb{R}^d$ is a critical point of d_K iff x is contained in the convex hull of $\Gamma_K(x)$.

Theorem: [Grove, Cheeger,...] Let $K \subset \mathbb{R}^d$ be a compact set.

- if r is a regular value of d_K , then $d_K^{-1}(r)$ is a topological submanifold of \mathbb{R}^d of codim 1.
- Let $0 < r_1 < r_2$ be such that $[r_1, r_2]$ does not contain any critical value of d_K . Then all the level sets $d_K^{-1}(r)$, $r \in [r_1, r_2]$ are isotopic and

$$K^{r_2} \setminus K^{r_1} = \{x \in \mathbb{R}^d : r_1 < d_K(x) \le r_2\}$$

is homeomorphic to $d_K^{-1}(r_1) \times (r_1, r_2]$.

Reach and weak feature size

The reach of K, $\tau(K)$ is the smallest distance from $\mathcal{M}(K)$ to K:

$$\tau(K) = \inf_{y \in \mathcal{M}(K)} d_K(y)$$

The weak feature size of K, wfs(K), is the smallest distance from the set of critical points of d_K to K:

 $\mathsf{wfs}(K) = \inf\{d_K(y) : y \in \mathbb{R}^d \setminus K \text{ and } y \text{ crit. point of } d_K\}$

Reach, μ -reach and geometric inference

(Not considered in this course - see course notes for details)

"Theorem:" Let $K \subset \mathbb{R}^d$ be such that $\tau = \tau(K) > 0$ and let $C \subset \mathbb{R}^d$ be such that $d_H(K,C) < c\tau$ for some (explicit) constant c. Then, for well-chosen (and explicit) r, C^r is homotopy equivalent to K.

More generally, for compact sets with positive μ -reach (wfs $(K) \le r_{\mu}(K) \le \tau(K)$):

Topological/geometric properties of the offsets of K are stable with respect to Hausdorff approximation:

- 1. Topological stability of the offsets of K (CCSL'06, NSW'06).
- 2. Approximate normal cones (CCSL'08).
- **3.** Boundary measures (CCSM'07), curvature measures (CCSLT'09), Voronoi covariance measures (GMO'09).