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Introduction

• Data often come as (sampling of) metric spaces or sets/spaces endowed with
a similarity measure with, possibly complex, topological/geometric structure.

• Data carrying geometric information are becoming high dimensional.

• Topological Data Analysis (TDA):
- infer relevant topological and geometric features of these spaces.
- take advantage of topol./geom. information for further processing of data
(classification, recognition, learning, clustering, parametrization...).

[Galaxies data]

[Scanned 3D object]

[Shape database]



Introduction

Problem: how to compare
topological properties of close
shapes/data sets?

• Challenges and goals:
→ no direct access to topological/geometric information: need of intermediate
constructions (simplicial complexes);
→ distinguish topological “signal” from noise;
→ topological information may be multiscale;
→ statistical analysis of topological information.



Topological and geometric Inference

Question: Given an approximation C of a geometric object K, is it possible to
reliably estimate the topological and geometric properties of K, knowing only the
approximation C?

Challenges:
- define a relevant class of objects to be considered (no hope to get a positive answer
in full generality);
- define a relevant notion of distance between the objects (approximation);
- topological and geometric properties cannot be directly infered from approxima-
tions.



Two strategies

1. Reconstruction 1. Topological inference

+ Full reconstruction of the underlying
shape.

+ Strong topological and geometric in-
formation.

+ A well-developped theory.

- Strong regularity assumptions.

- Severe practical/algo issues in high
dimensions.

+ Estimation of topological information
without explicit reconstruction.

+ Lighter regularity assumptions.

+ A powerful theory that extends to gen-
eral data.

- Weaker information.

This course



Background mathematical notions

A topology on a set X is a family O of subsets of X that satisfies the three following
conditions:
i) the empty set ∅ and X are elements of O,
ii) any union of elements of O is an element of O,
iii) any finite intersection of elements of O is an element of O.
The set X together with the family O, whose elements are called open sets, is a
topological space. A subset C of X is closed if its complement is an open set.

A map f : X → X ′ between two topological spaces X and X ′ is continuous if and
only if the pre-image f−1(O′) = {x ∈ X : f(x) ∈ O′} of any open set O′ ⊂ X ′ is
an open set of X. Equivalently, f is continuous if and only if the pre-image of any
closed set in X ′ is a closed set in X (exercise).

Topological space

A topological space X is a compact space if any open cover of X admits a finite
subcover, i.e. for any family {Ui}i∈I of open sets such that X = ∪i∈IUi there
exists a finite subset J ⊆ I of the index set I such that X = ∪j∈JUj .



Background mathematical notions

Metric space

A metric (or distance) on X is a map d : X ×X → [0,+∞) such that:
i) for any x, y ∈ X, d(x, y) = d(y, x),
ii) for any x, y ∈ X, d(x, y) = 0 if and only if x = y,
iii) for any x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).
The set X together with d is a metric space.

The smallest topology containing all the open balls B(x, r) = {y ∈ X : d(x, y) < r}
is called the metric topology on X induced by d.

Example: the standard topology in an Euclidean space is the one induced by the
metric defined by the norm: d(x, y) = ‖x− y‖.

Compacity: a metric space X is compact if and only if any sequence in X has a
convergent subsequence. In the Euclidean case, a subset K ⊂ Rd (endowed with
the topology induced from the Euclidean one) is compact if and only if it is closed
and bounded (Heine-Borel theorem).



Background mathematical notions

Shapes and Hausdorff distance

In the first lectures : shape = compact subset of Rd

The distance function to a compact K ⊂ Rd, dK : Rd → R+ is defined by

dK(x) = inf
p∈K
‖x− p‖

The Hausdorf distance between two compact sets K,K ′ ⊂ Rd:

dH(K,K ′) = sup
x∈Rd

|dK(x)− dK′(x)|

Exercise: Show that

dH(K,K′) = max

(
sup
y∈K′

dK(y), sup
z∈K

dK′(z)

)



Distance functions and geometric inference

The distance function to a compact K ⊂ Rd, dK : Rd → R+ is defined by

dK(x) = inf
p∈K
‖x− p‖

The Hausdorf distance between two compact sets K,K ′ ⊂ Rd:

dH(K,K ′) = sup
x∈Rd

|dK(x)− dK′(x)|

• Replace K and C by dK and dC

• Compare the topology of the offsets

Kr = d−1
K ([0, r]) and Cr = d−1

C ([0, r])

The idea:



Comparing topological spaces

Homeomorphy and isotopy

• X and Y are homeomorphic if there exists a bijection h : X → Y s. t. h and
h−1 are continuous.

• X,Y ⊂ Rd are ambient isotopic if there exists a continuous map F : Rd ×
[0, 1] → Rd s. t. F (., 0) = IdRd , F (X, 1) = Y and ∀t ∈ [0, 1], F (., t) is an
homeomorphim of Rd.



Comparing topological spaces

Homotopy, homotopy type

• Two maps f0 : X → Y and f1 : X → Y are homotopic if there exists a
continuous map H : [0, 1] × X → Y s. t. ∀x ∈ X, H(0, x) = f0(x) and
H1(1, x) = f1(x).

• X and Y have the same homotopy type (or are homotopy equivalent) if there
exists continuous maps f : X → Y and g : Y → X s. t. g ◦ f is homotopic
to IdX and f ◦ g is homotopic to IdY .

f0(x) = x

ft(x) = (1− t)x

f1(x) = 0

homotopy equiv.

homotopy equiv.

not homotopy equiv.



Comparing topological spaces

Homotopy, homotopy type

f0(x) = x

ft(x) = (1− t)x

f1(x) = 0

homotopy equiv.

homotopy equiv.

not homotopy equiv.

If X ⊂ Y and if there exists a continuous map H : [0, 1]×X → X s.t.:
i) ∀x ∈ X, H(0, x) = x,
ii) ∀x ∈ X, H(1, x) ∈ Y
iii) ∀y ∈ Y , ∀t ∈ [0, 1], H(t, y) ∈ Y ,
then X and Y are homotopy equivalent. If one replaces condition iii) by ∀y ∈ Y ,
∀t ∈ [0, 1], H(t, y) = y then H is a deformation retract of X onto Y .



Medial axis and critical points

K
x

ΓK(x)

ΓK(x) = {y ∈ K : dK(x) = d(x, y)}

The Medial axis of K:

M(K) = {x ∈ Rd : |ΓK(x)| ≥ 2}

x ∈ Rd is a critical point of dK iff x is contained in
the convex hull of ΓK(x).

Exercise: What is the medial axis of a finite set of point K = {p1, · · · pn} ⊂ Rd?
What are the critical points of dK?



Medial axis and critical points

K
x

ΓK(x)

ΓK(x) = {y ∈ K : dK(x) = d(x, y)}

The Medial axis of K:

M(K) = {x ∈ Rd : |ΓK(x)| ≥ 2}

x ∈ Rd is a critical point of dK iff x is contained in
the convex hull of ΓK(x).

Theorem: [Grove, Cheeger,...] Let K ⊂ Rd be a compact set.

• if r is a regular value of dK , then d−1
K (r) is a topological submanifold of Rd of

codim 1.

• Let 0 < r1 < r2 be such that [r1, r2] does not contain any critical value of dK .
Then all the level sets d−1

K (r), r ∈ [r1, r2] are isotopic and

Kr2 \Kr1 = {x ∈ Rd : r1 < dK(x) ≤ r2}

is homeomorphic to d−1
K (r1)× (r1, r2].



Reach and weak feature size

K

M(K)

wfs(K)

reach(K)

The reach of K, τ(K) is the smallest distance from M(K) to K:

τ(K) = inf
y∈M(K)

dK(y)

The weak feature size of K, wfs(K), is the smallest distance from the set of critical
points of dK to K:

wfs(K) = inf{dK(y) : y ∈ Rd \K and y crit. point of dK}



Reach, µ-reach and geometric inference
(Not considered in this course - see course notes for details)

“Theorem:” Let K ⊂ Rd be such that τ =
τ(K) > 0 and let C ⊂ Rd be such that
dH(K,C) < cτ for some (explicit) constant c.
Then, for well-chosen (and explicit) r, Cr is ho-
motopy equivalent to K.

More generally, for compact sets with positive µ-reach ( wfs(K) ≤ rµ(K) ≤ τ(K) ):

Topological/geometric properties of the offsets of K are stable with respect to
Hausdorff approximation:

1. Topological stability of the offsets of K (CCSL’06, NSW’06).

2. Approximate normal cones (CCSL’08).

3. Boundary measures (CCSM’07), curvature measures (CCSLT’09), Voronoi covariance
measures (GMO’09).
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