MVA, Fall 2024

Persistent homology for TDA

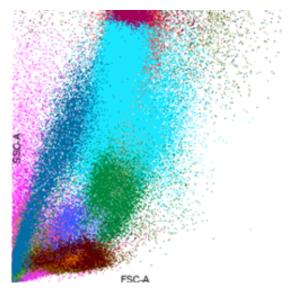
Frédéric Chazal DataShape team Inria & Laboratoire de Mathématiques d'Orsay Institut DATAIA Université Paris-Saclay

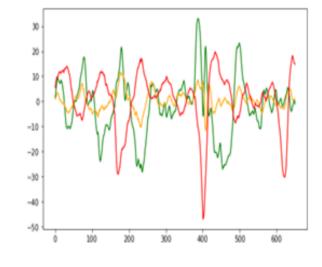
For slides and practical classes:

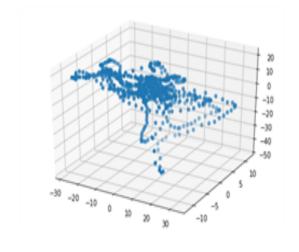
https://geometrica.saclay.inria.fr/team/Fred.Chazal/MVA2024.htm

Ref (for lectures 1 and 2): J.-D. Boissonnat, F. Chazal, M. Yvinec, Geometric and Topological Inference, Cambridge University Press, 2018.

What is Topological Data Analysis (TDA)?







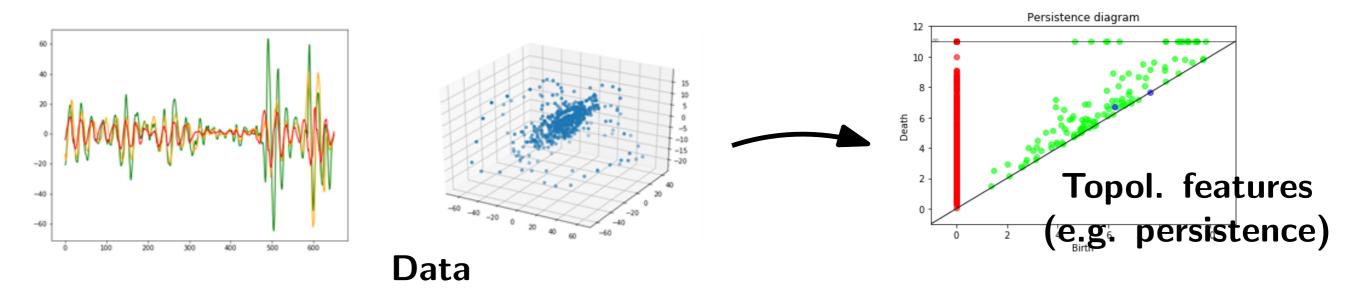
[Cell population cytometry - MetaFora courtesy]

[Porous material (IFPEN courtesy)]

[Sensors (Sysnav courtesy)]

Modern data carry complex, but important, geometric/topological structure!

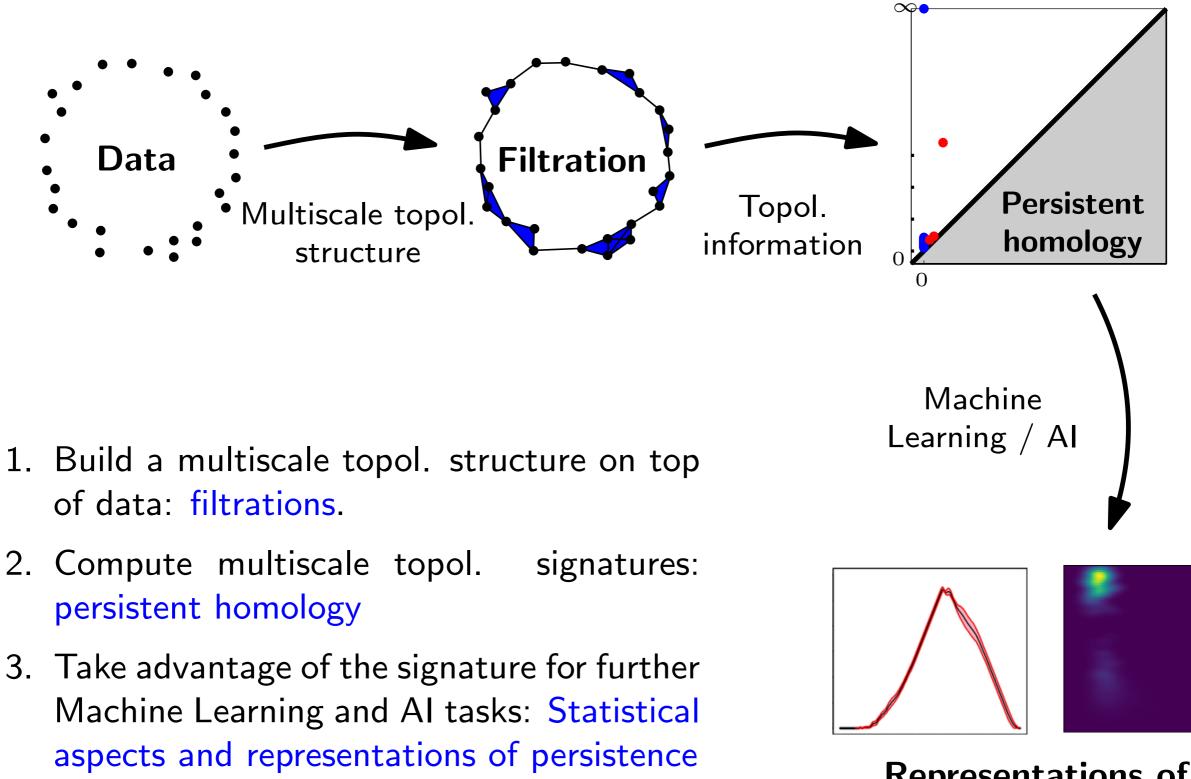
What is Topological Data Analysis (TDA)?



Topological Data Analysis (TDA) is a recent field whose aim is to:

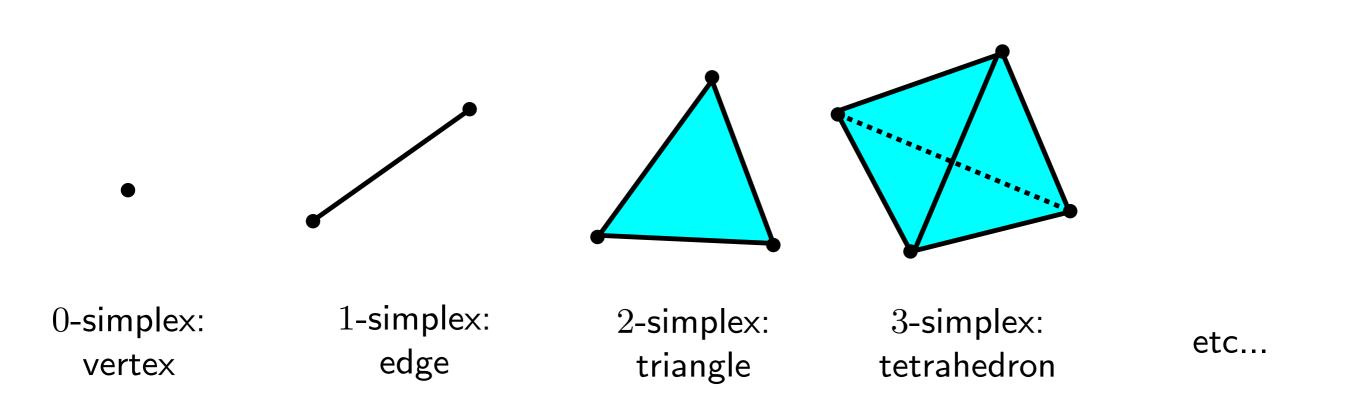
- infer relevant topological and geometric features from complex data,
- take advantage of topological/geometric information for further Data Analysis, Machine Learning and AI tasks:
 - using topological features in ML pipelines,
 - taking advantage of topological information to improve ML pipelines.

A classical TDA pipeline



Representations of persistence

Simplicial complexes

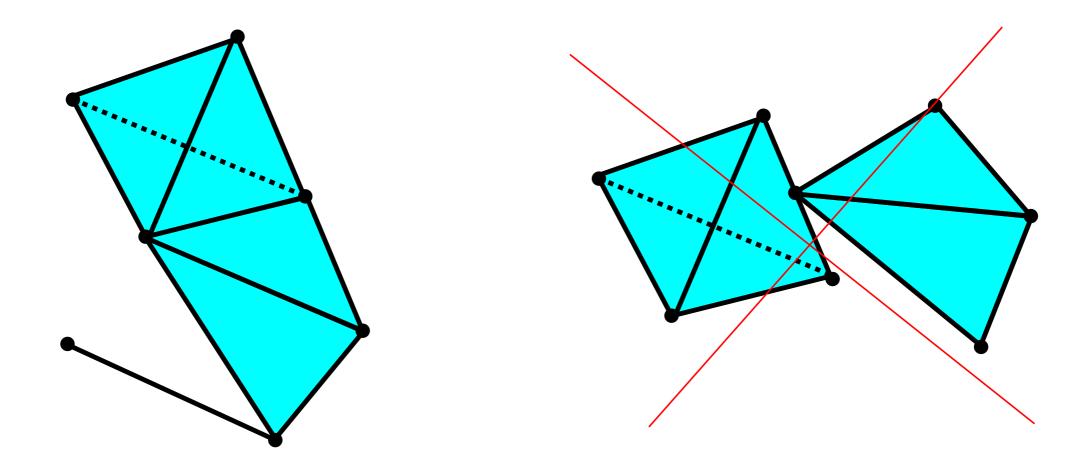


Given a set $P = \{p_0, \ldots, p_k\} \subset \mathbb{R}^d$ of k + 1 affinely independent points, the *k*-dimensional simplex σ , or *k*-simplex for short, spanned by P is the set of convex combinations

$$\sum_{i=0}^{k} \lambda_i p_i, \quad \text{with} \quad \sum_{i=0}^{k} \lambda_i = 1 \quad \text{and} \quad \lambda_i \ge 0.$$

The points p_0, \ldots, p_k are called the vertices of σ .

Simplicial complexes



A (finite) simplicial complex K in \mathbb{R}^d is a (finite) collection of simplices such that:

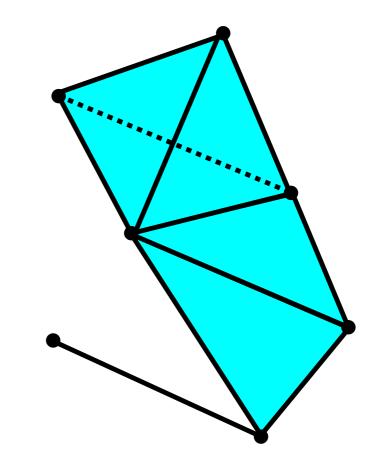
- 1. any face of a simplex of K is a simplex of K,
- 2. the intersection of any two simplices of K is either empty or a common face of both.

The underlying space of K, denoted by $|K| \subset \mathbb{R}^d$ is the union of the simplices of K.

Abstract simplicial complexes

Let P be a set. An abstract simplicial complex K with vertex set P is a set of finite subsets of P satisfying the two conditions :

- 1. The elements of P belong to K.
- 2. If $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K$.

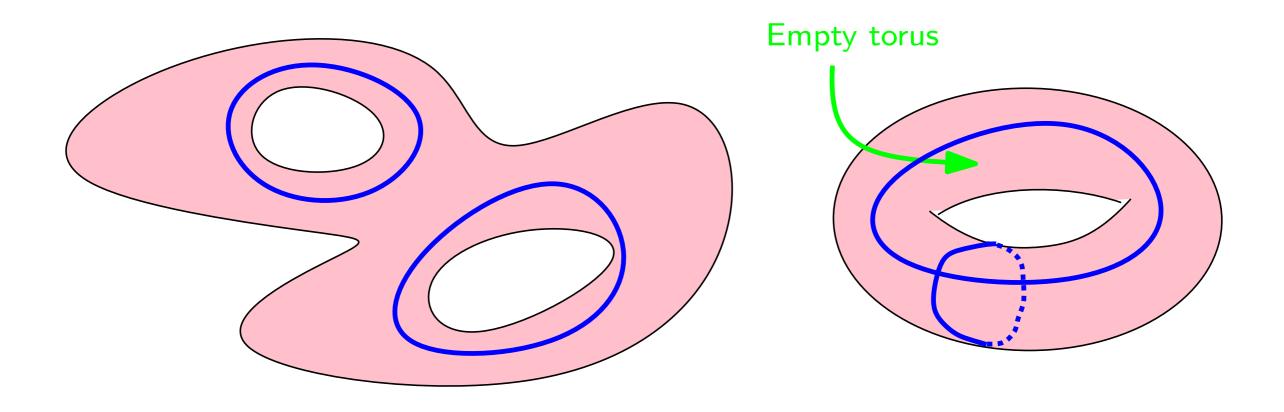


The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces (good for top./geom. inference) and as combinatorial objects (abstract simplicial complexes, good for computations).

Formalize the notion of connected components, cycles/holes, voids... in a topological space (here we will restrict to simplicial complexes).



- 2 connected components (0-dim homology)
- 4 cycles (1-dim homology)
- 1 void (2-dim homology)

The space of k-chains:

Let K be a d-dimensional simplicial complex. Let $k \in \{0, 1, \dots, d\}$ and $\{\sigma_1, \dots, \sigma_p\}$ be the set of k-simplices of K.

k-chain:

$$c = \sum_{i=1}^{p} \varepsilon_i \sigma_i$$
 with $\varepsilon_i \in \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$

Sum of *k*-chains:

$$c + c' = \sum_{i=1}^{p} (\varepsilon_i + \varepsilon'_i) \sigma_i$$
 and $\lambda . c = \sum_{i=1}^{p} (\lambda \varepsilon'_i) \sigma_i$

where the sums $\varepsilon_i + \varepsilon'_i$ and the products $\lambda \varepsilon_i$ are modulo 2.

The boundary operator:

The boundary $\partial \sigma$ of a k-simplex σ is the sum of its (k-1)-faces. This is a (k-1)-chain.

If
$$\sigma = [v_0, \cdots, v_k]$$
 then $\partial_k \sigma = \sum_{i=0}^k (-1)^i [v_0 \cdots \hat{v}_i \cdots v_k]$

The boundary operator is the linear map defined by

$$\begin{array}{rcccc} \partial_k : & \mathcal{C}_k(K) & \to & \mathcal{C}_{k-1}(K) \\ & c & \to & \partial_k c = \sum_{\sigma \in c} \partial_k \sigma \end{array}$$

$$\partial_k \partial_{k+1} := \partial_k \circ \partial_{k+1} = 0$$

Cycles and boundaries:

The chain complex associated to a complex ${\cal K}$ of dimension d

$$\emptyset \to \mathcal{C}_d(K) \xrightarrow{\partial} \mathcal{C}_{d-1}(K) \xrightarrow{\partial} \cdots \mathcal{C}_{k+1}(K) \xrightarrow{\partial} \mathcal{C}_k(K) \xrightarrow{\partial} \cdots \mathcal{C}_1(K) \xrightarrow{\partial} \mathcal{C}_0(K) \xrightarrow{\partial} k$$
-cycles:

$$Z_k(K) := \ker(\partial : \mathcal{C}_k \to \mathcal{C}_{k-1}) = \{c \in \mathcal{C}_k : \partial c = \emptyset\}$$

k-boundaries:

$$B_k(K) := im(\partial : \mathcal{C}_{k+1} \to \mathcal{C}_k) = \{c \in \mathcal{C}_k : \exists c' \in \mathcal{C}_{k+1}, c = \partial c'\}$$

$$B_k(K) \subset Z_k(K) \subset \mathcal{C}_k(K)$$

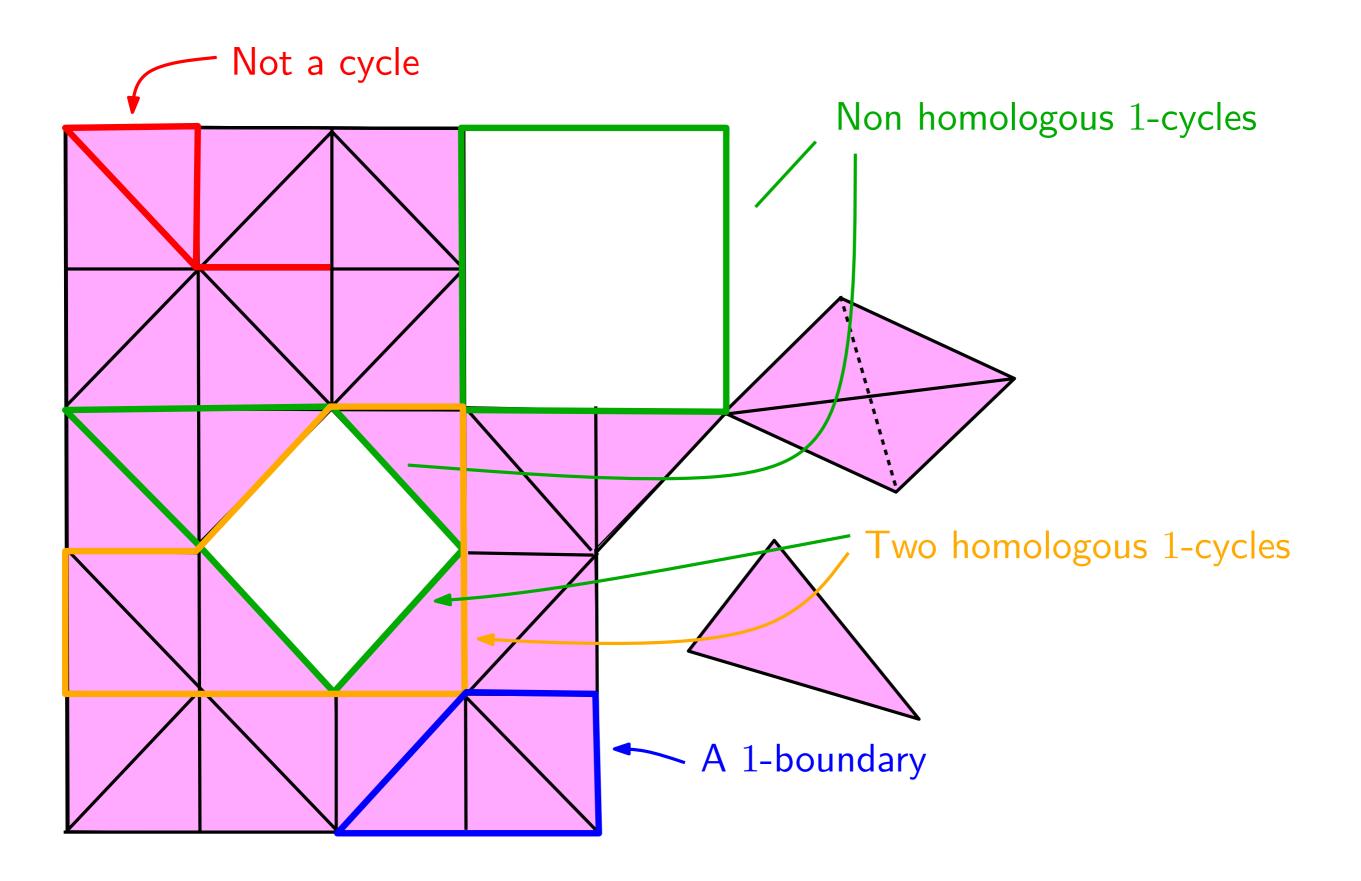
Homology groups and Betti numbers:

 $B_k(K) \subset Z_k(K) \subset \mathcal{C}_k(K)$

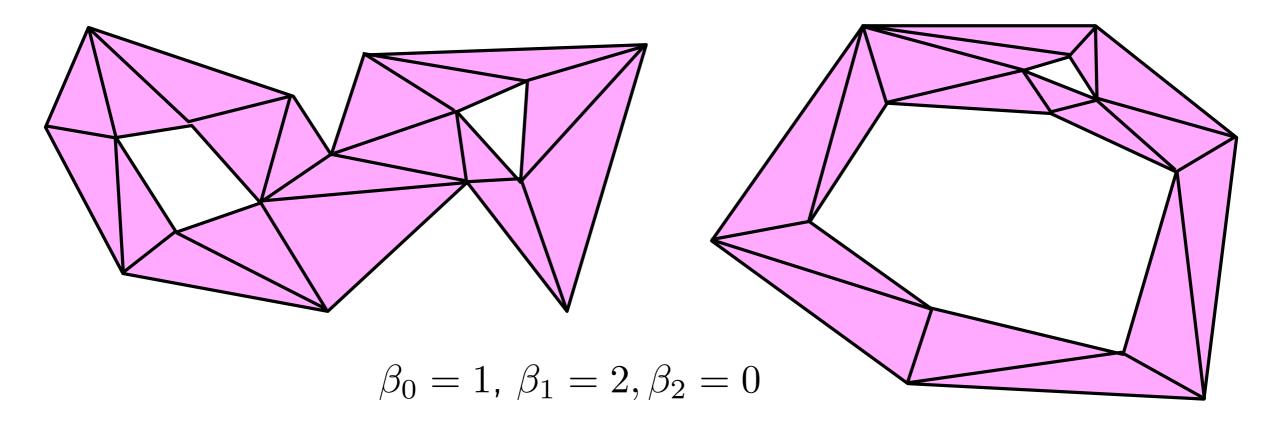
- The k^{th} homology group of K: $H_k(K) = Z_k/B_k$
- Tout each cycle $c \in Z_k(K)$ corresponds its homology class $c+B_k(K) = \{c+b : b \in B_k(K)\}.$
- Two cycles c, c' are homologous if they are in the same homology class: $\exists b \in B_k(K)$ s. t. b = c' - c(=c'+c).
- The k^{th} Betti number of K: $\beta_k(K) = \dim(H_k(K))$.

Remark: $\beta_0(K) =$ number of connected components of K.

Cycles and boundaries



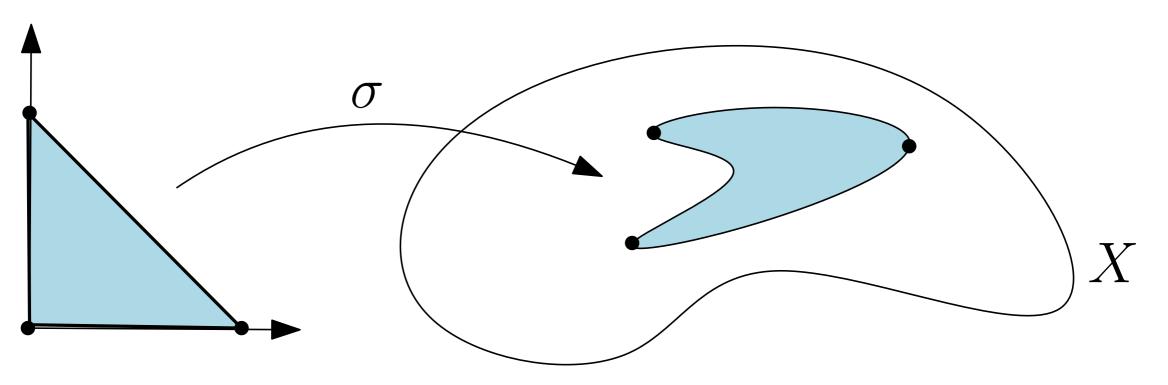
Topological invariance and singular homology



Theorem: If K and K' are two simplicial complexes with homeomorphic supports then their homology groups are isomorphic and their Betti numbers are equal.

- This is a classical result in algebraic topology but the proof is not obvious.
- Rely on the notion of singular homology \rightarrow defined for any topological space.

Topological invariance and singular homology



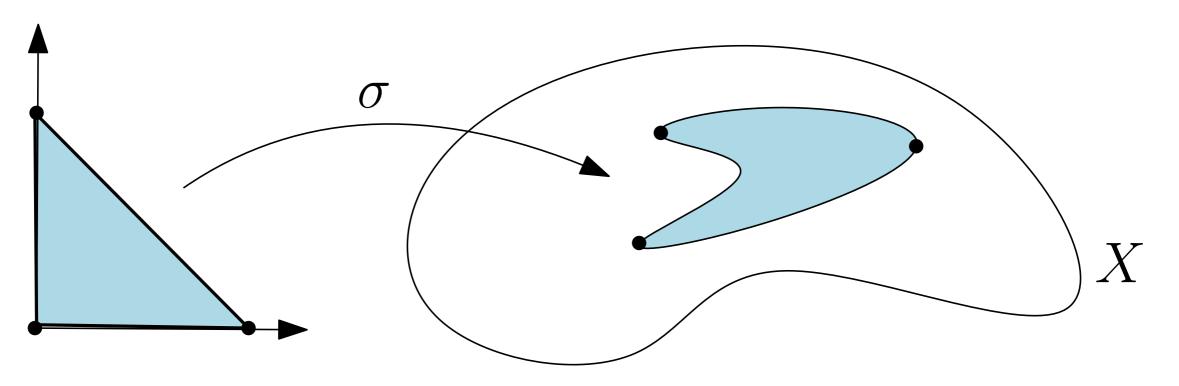
Let Δ_k be the standard simplex in \mathbb{R}^k . A singular k-simplex in a topological space X is a continuous map $\sigma : \Delta_k \to X$.

The same construction as for simplicial homology can be done with singular complexes \rightarrow Singular homology

Important properties:

- Singular homology is defined for any topological space X.
- If X is homotopy equivalent to the support of a simplicial complex, then the singular and simplicial homology coincide!

Topological invariance and singular homology



Homology and continuous maps:

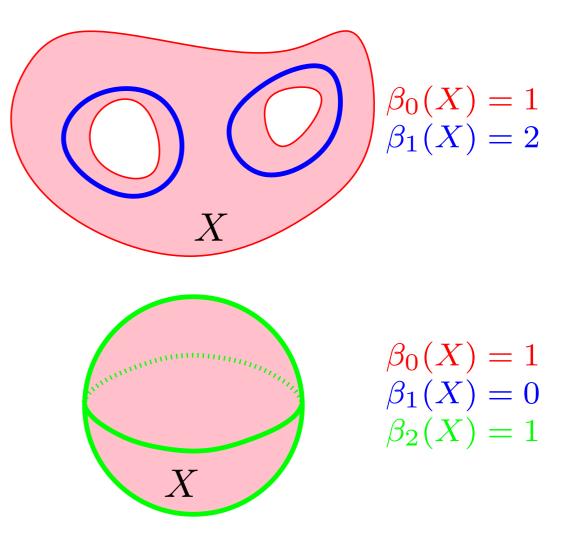
• if $f: X \to Y$ is a continuous map and $\sigma: \Delta_k \to X$ a simplex in X, then $f \circ \sigma: \Delta_k \to Y$ is a simplex in $Y \Rightarrow f$ induces a linear maps between homology groups:

$$f_{\sharp}: H_k(X) \to H_k(Y)$$

 if f : X → Y is an homeomorphism or an homotopy equivalence then f[‡] is an isomorphism.

Homology (to summarize)

- X a topological space + K (e.g. K = Z/2, Z/p, R...) a field + k a non-negative integer.
- The k-th homology group H_k(X, K) : a vector space with coefficients in K.
- Elements of $H_k(X, \mathbb{K})$: represent the kdimensional cycles in X.
- Betti numbers: $\beta_k(X) = \dim(H_k(X, \mathbb{K})).$



(Some) properties:

- $\beta_0(X) =$ number of connected components of X.
- If $f: X \to Y$ is continuous, then f induces a linear map $f_{\sharp}: H_k(X) \to H_k(Y)$.
- In particular, if $X \subset Y$, then the inclusion map $i : X \to Y$ induces a linear map $H_k(X) \to H_k(Y)$.

Filtrations of simplicial complexes

- A filtered simplicial complex (or a filtration) K built on top of a set X is a family (K_a | a ∈ T), T ⊆ R, of subcomplexes of some fixed simplicial complex K with vertex set X s. t. K_a ⊆ K_b for any a ≤ b.
- More generaly, filtration = nested family of topological spaces indexed by T.

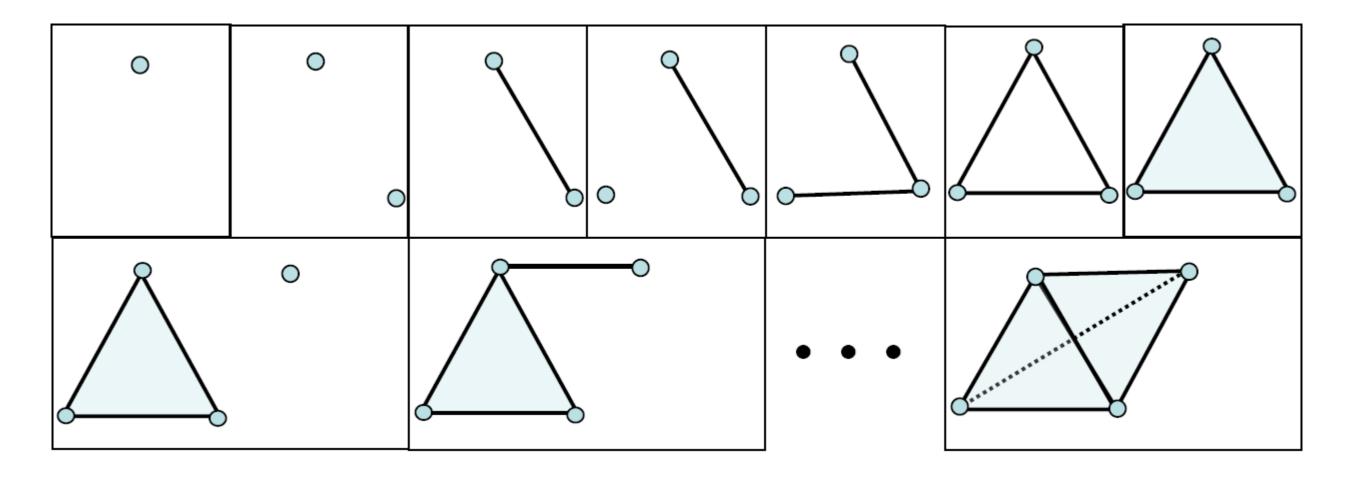
Persistent homology of a filtered simplicial complexe encodes the evolution of the homology of the subcomplexes.

Filtrations of simplicial complexes

- A filtered simplicial complex (or a filtration) K built on top of a set X is a family (K_a | a ∈ T), T ⊆ R, of subcomplexes of some fixed simplicial complex K with vertex set X s. t. K_a ⊆ K_b for any a ≤ b.
- More generaly, filtration = nested family of topological spaces indexed by T.

Many examples and ways to design filtrations depending on the application and targeted objectives : sublevel and upperlevel sets, Čech complex,...

Filtrations of simplicial complexes



A filtration of a (finite) simplicial complex K is a sequence of subcomplexes such that i) $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$, ii) $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

There are many ways to build filtrations - see next lesson.

An algorithm to compute (simplicial) homology

Input: A filtration of a simplicial complex $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$, s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Output: The Betti numbers $\beta_0, \beta_1, \cdots, \beta_d$ of K.

$$\begin{split} \beta_0 &= \beta_1 = \dots = \beta_d = 0; \\ \text{for } i &= 1 \text{ to } m \\ k &= \dim \sigma^i - 1; \\ \text{if } \sigma^i \text{ is contained in a } (k+1)\text{-cycle in } K^i \\ \text{then } \beta_{k+1} &= \beta_{k+1} + 1; \\ \text{else } \beta_k &= \beta_k - 1; \\ \text{end if;} \\ \text{end for;} \\ \text{output } (\beta_0, \beta_1, \dots, \beta_d); \end{split}$$

An algorithm to compute (simplicial) homology

Input: A filtration of a simplicial complex $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$, s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Output: The Betti numbers $\beta_0, \beta_1, \cdots, \beta_d$ of K.

$$\begin{split} \beta_0 &= \beta_1 = \cdots = \beta_d = 0; \\ \text{for } i = 1 \text{ to } m \\ k &= \dim \sigma^i - 1; \\ \text{if } \sigma^i \text{ is contained in a } (k+1)\text{-cycle in } K^i \\ \text{then } \beta_{k+1} &= \beta_{k+1} + 1; \\ \text{else } \beta_k &= \beta_k - 1; \\ \text{end if;} \\ \text{end for;} \\ \text{output } (\beta_0, \beta_1, \cdots, \beta_d); \end{split}$$

Remark: At the i^{th} step of the algorithm, the vector $(\beta_0, \dots, \beta_d)$ stores the Betti numbers of K^i .

Proof

- If σ^i is contained in a (k+1)-cycle in K^i , this cycle is not a boundary in K^i .
- If σ^i is contained in a (k+1)-cycle c in K^i , then c cannot be homologous to a cycle in K^{i-1}

$$\Rightarrow \beta_{k+1}(K^i) \ge \beta_{k+1}(K^{i-1}) + 1$$

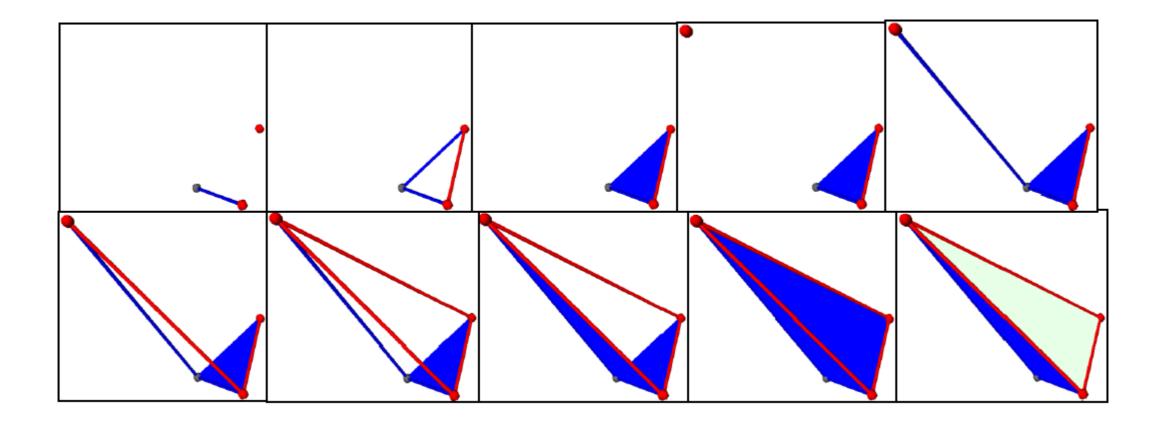
• If σ^i is not contained in a (k+1)-cycle c in $K^i\text{, then }\partial\sigma^i$ is not a boundary in K^{i-1}

$$\Rightarrow \beta_k(K^i) \le \beta_k(K^{i-1}) - 1$$

• the previous inequalities are equalities.

Positive and negative simplicies

Let $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ be a filtration of a simplicial complex K s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.



Definition: A (k+1)-simplex σ^i is positive if it is contained in a (k+1)-cycle in K^i . It is negative otherwise. Create a new (k+1)-cycle in K^i

 \blacktriangleright Destroy a k-cycle in K^i

 $\beta_k(K) = \sharp$ (positive simplices) - \sharp (negative simplices)

Getting more information

Definition: A (k+1)-simplex σ^i is positive if it is contained in a (k+1)-cycle in K^i . It is negative otherwise. Create a new (k+1)-cycle in K^i

- Destroy a k-cycle in K^i

 $\beta_k(K) = \sharp$ (positive simplices) - \sharp (negative simplices)

- How to keep track of the evolution of the topology all along the filtration?
- What are the created/destroyed cycles?
- What is the lifetime of a cycle?
- How to compute $\operatorname{rank}(H_k(K^i) \to H_k(K^j))$?

Getting more information

Definition: A (k+1)-simplex σ^i is positive if it is contained in a (k+1)-cycle in K^i . It is negative otherwise. Create a new (k+1)-cycle in K^i

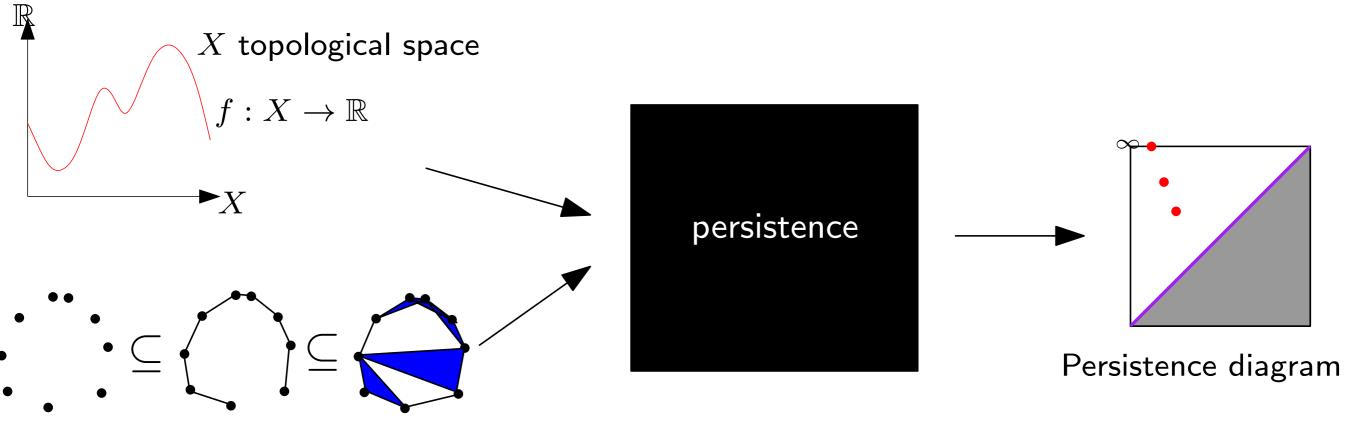
 \checkmark Destroy a k-cycle in K^i

 $\beta_k(K) = \sharp$ (positive simplices) - \sharp (negative simplices)

- How to keep track of the evolution of the topology all along the filtration?
- What are the created/destroyed cycles?
- What is the lifetime of a cycle?
- How to compute $\operatorname{rank}(H_k(K^i) \to H_k(K^j))$?

This is where persistent homology comes into play!

Persistent homology



Nested spaces

- A general mathematical framework to encode the evolution of the topology (homology) of families of nested spaces (filtered complex, sublevel sets,...).
- Formalized in its present form by H. Edelsbrunner (2002) et al and G. Carlsson et al (2005) wide development during the last two decades.
- Multiscale topological information.
- Barcodes/persistence diagrams can be efficiently computed.
- Stability properties

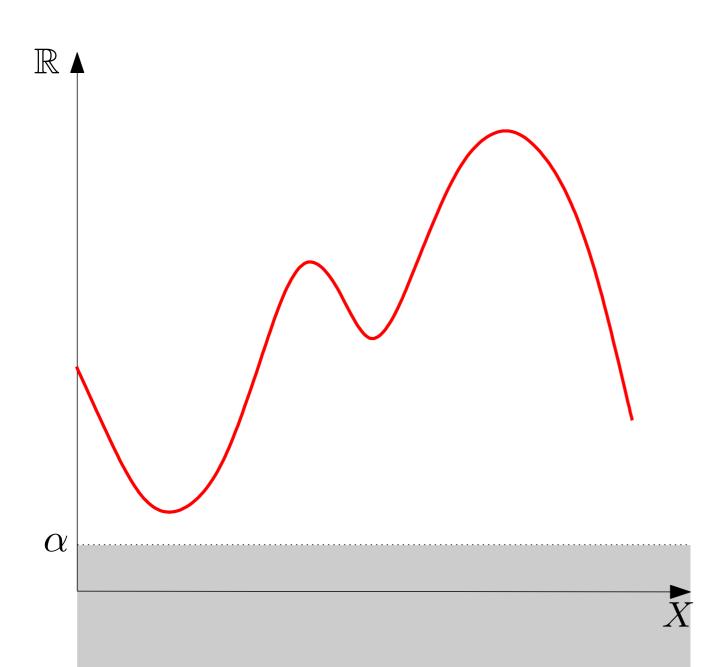
The theory of persistence

A general mathematical framework to encode the evolution of the topology (homology) of families of nested spaces (filtrations).

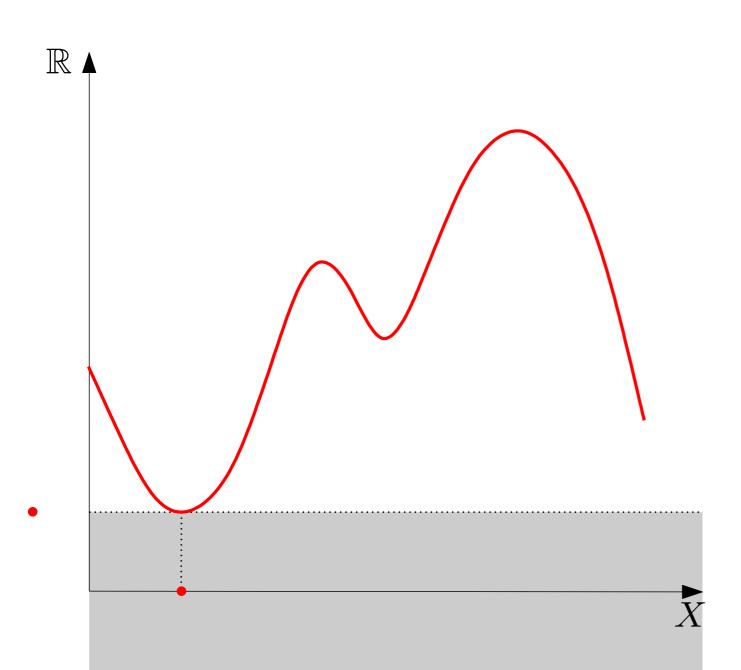
Historical landmarks:

- 90's: size theory (P. Frosini et al), framed Morse complex and stability (S.A. Barannikov).
- 2002 2005: persistent homology (H. Edelsbrunner et al, Carlsson et al).
- 2005: stability of persistence for continuous functions (D. Cohen-Steiner et al).
- 2009 2012: algebraic stability of persistence modules (F.C. et al).
- 2014: the GUDHI software plateform (J.-D. Boissonnat et al). Also several other softs since 2005: Dionysus, (J)Plex, PHAT,...
- Last 5 years: statistical aspects of persistence and machine learning.

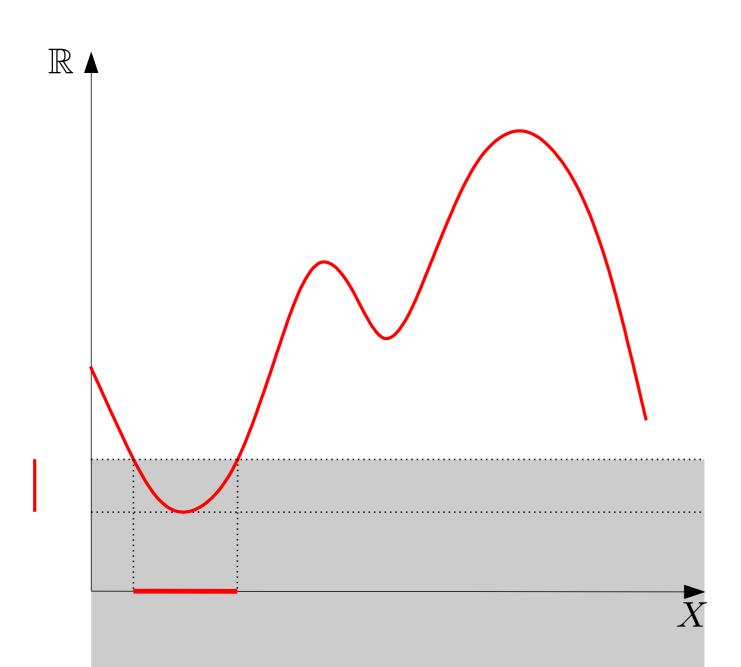
• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



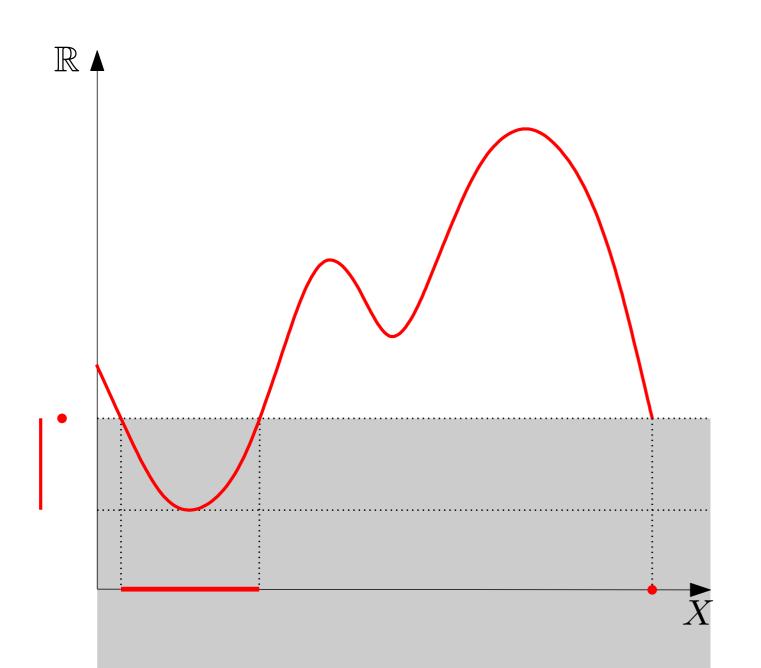
• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



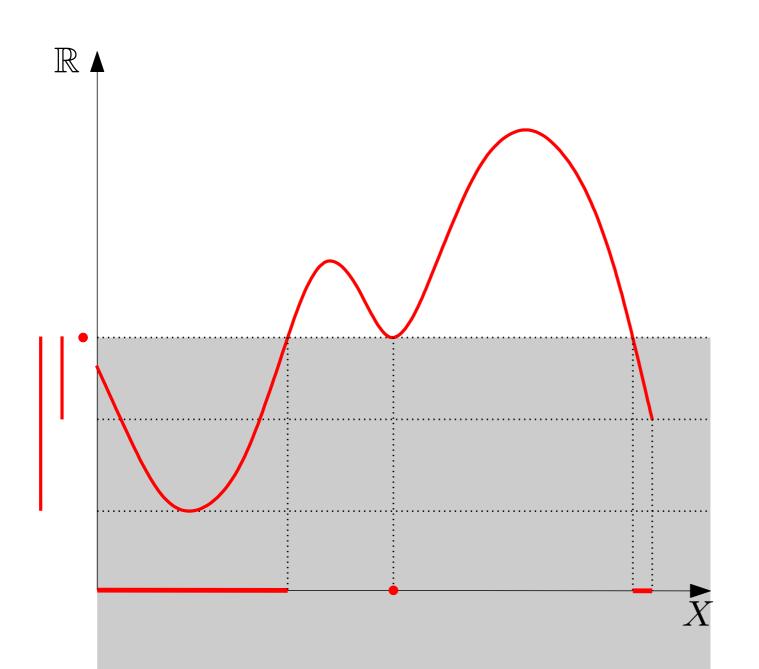
• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



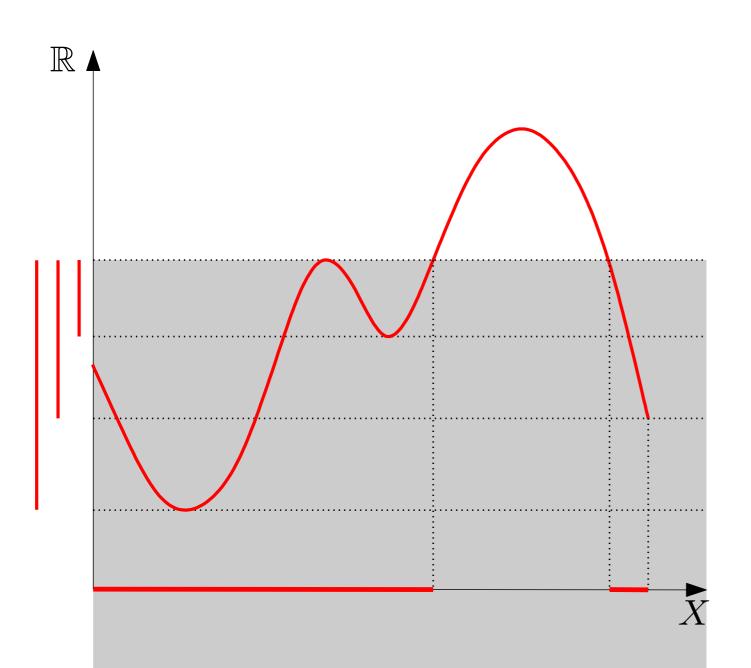
• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



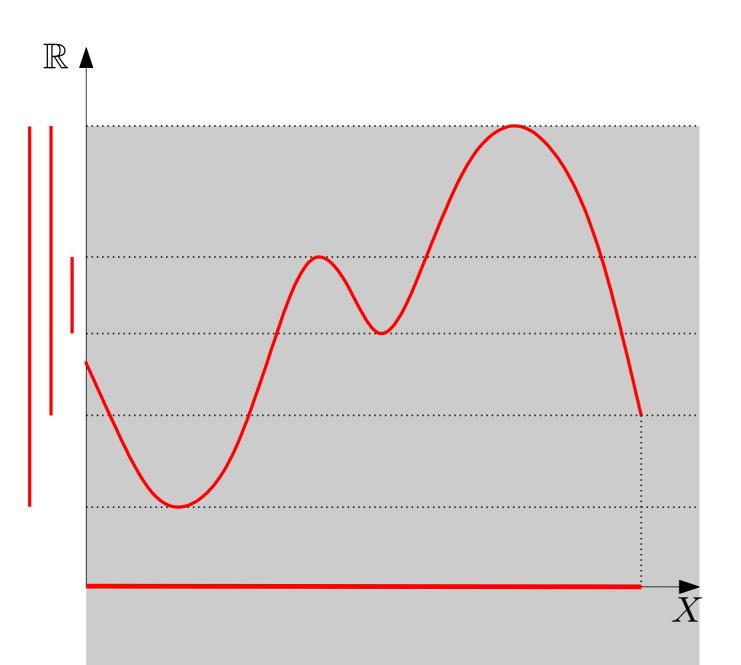
• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function

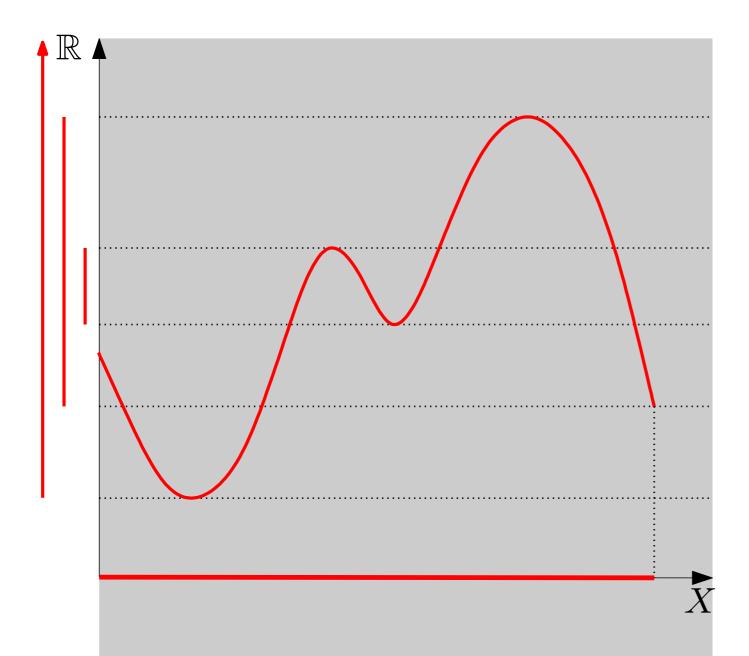


• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function

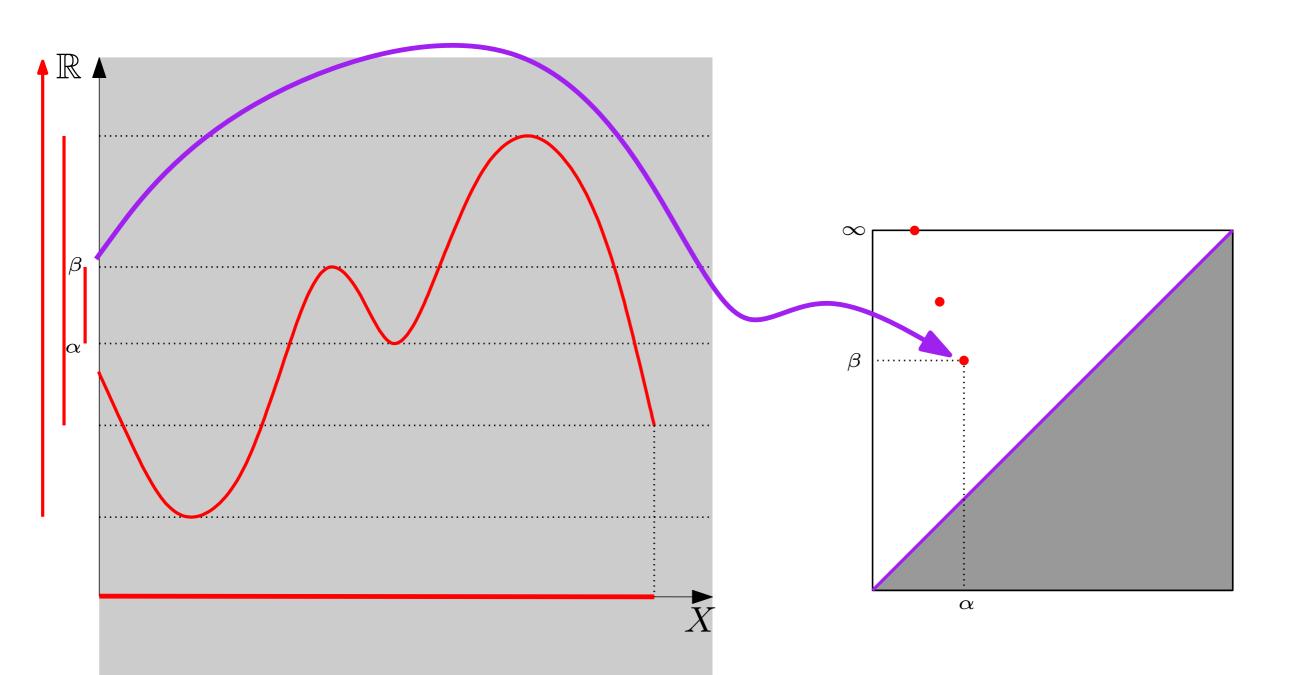


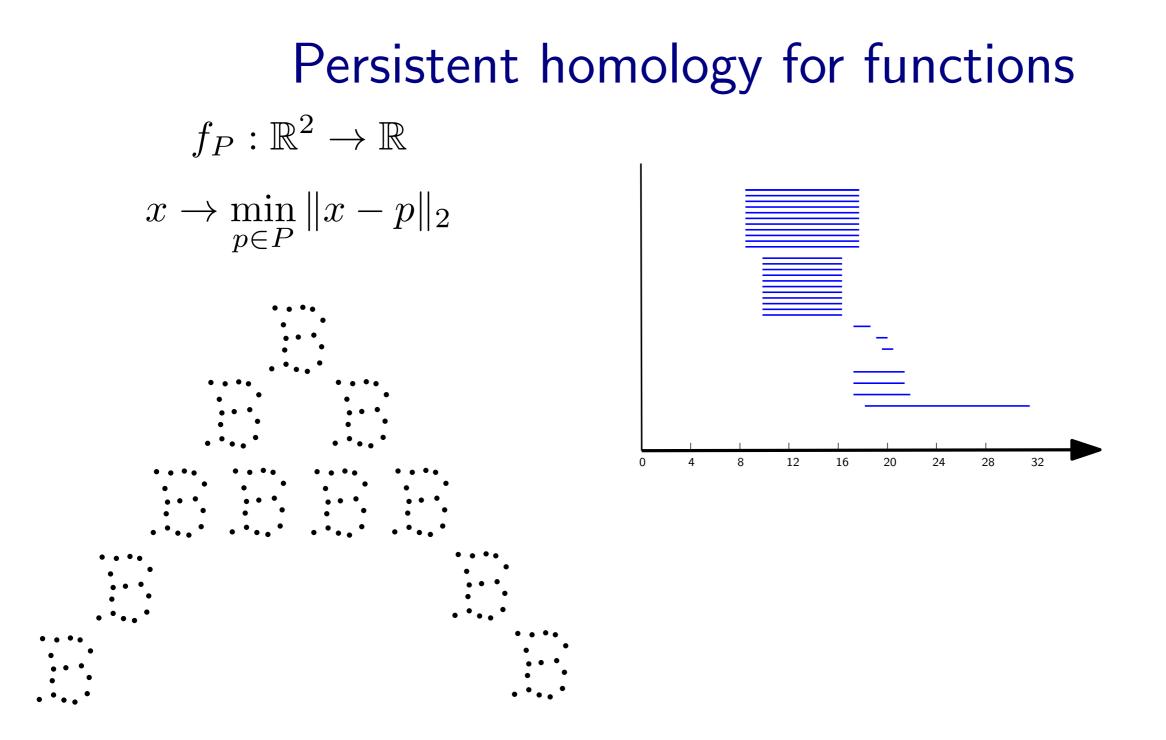


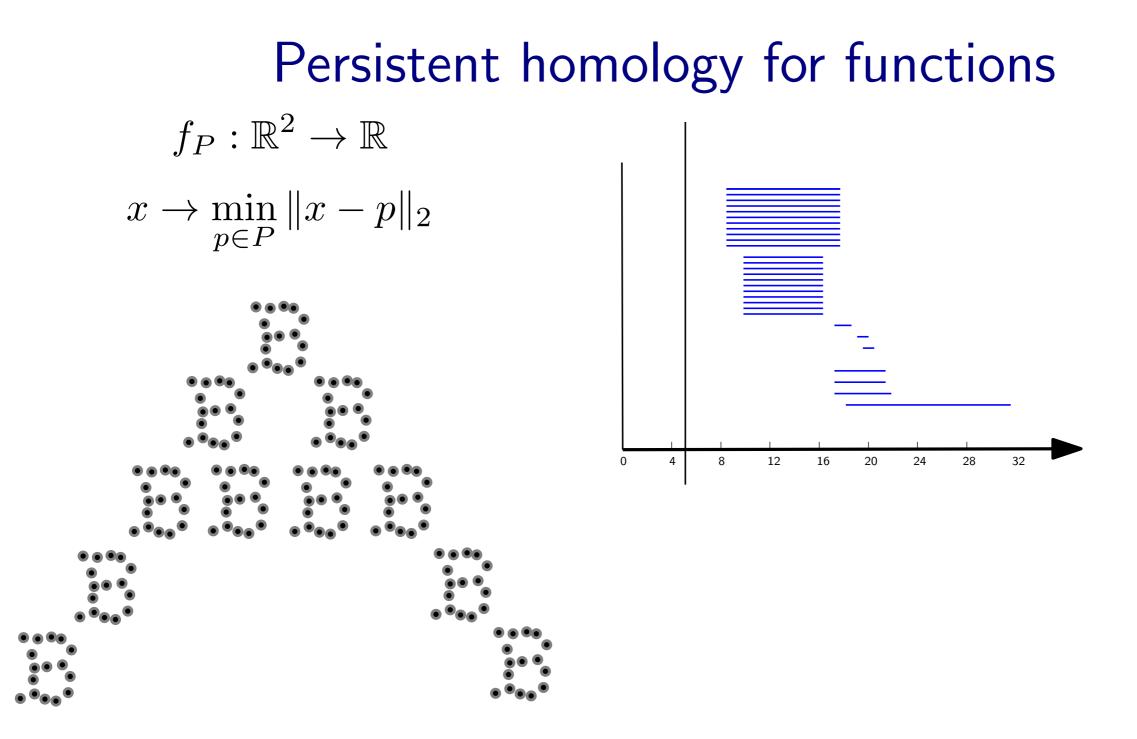
Persistent homology for functions

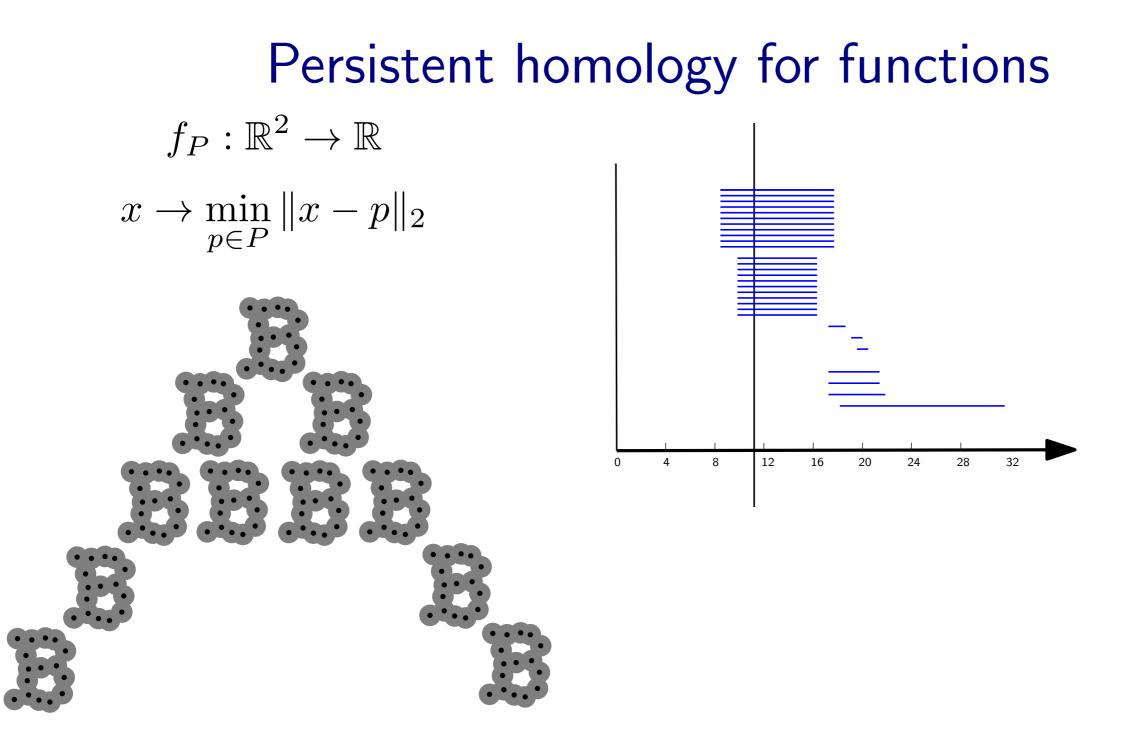
• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function

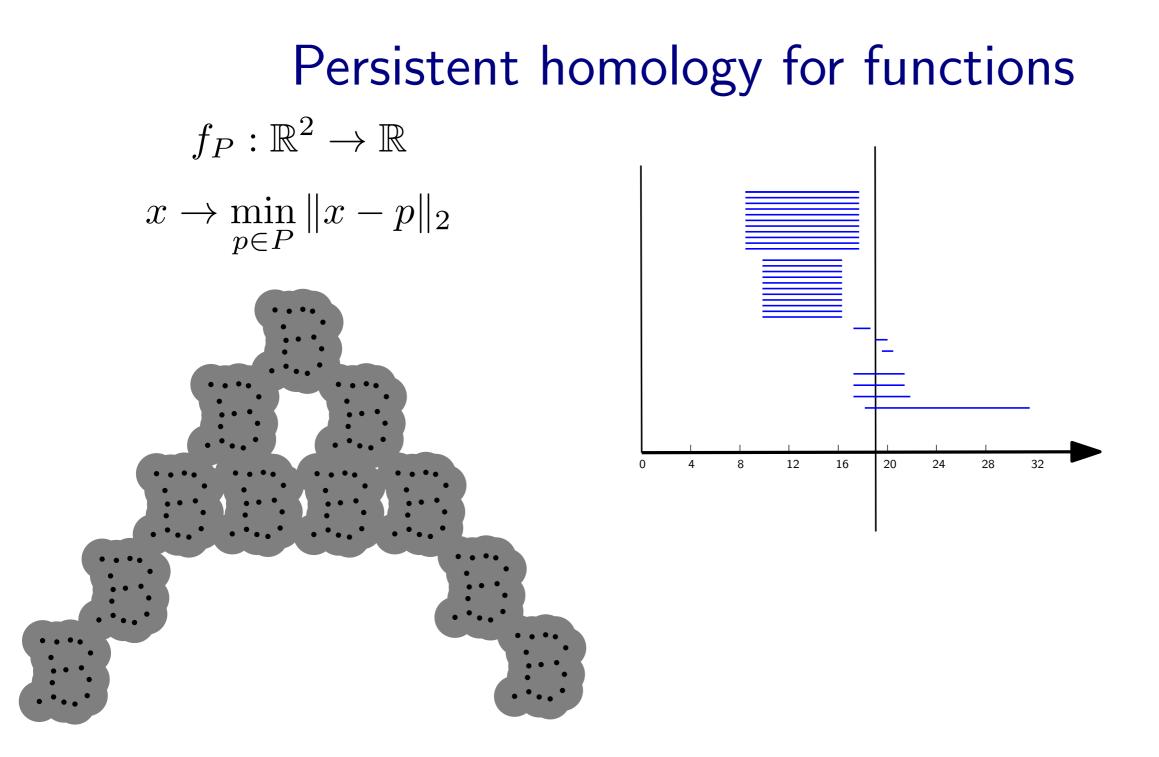
• The family of sublevel sets of a function is an example of filtration.

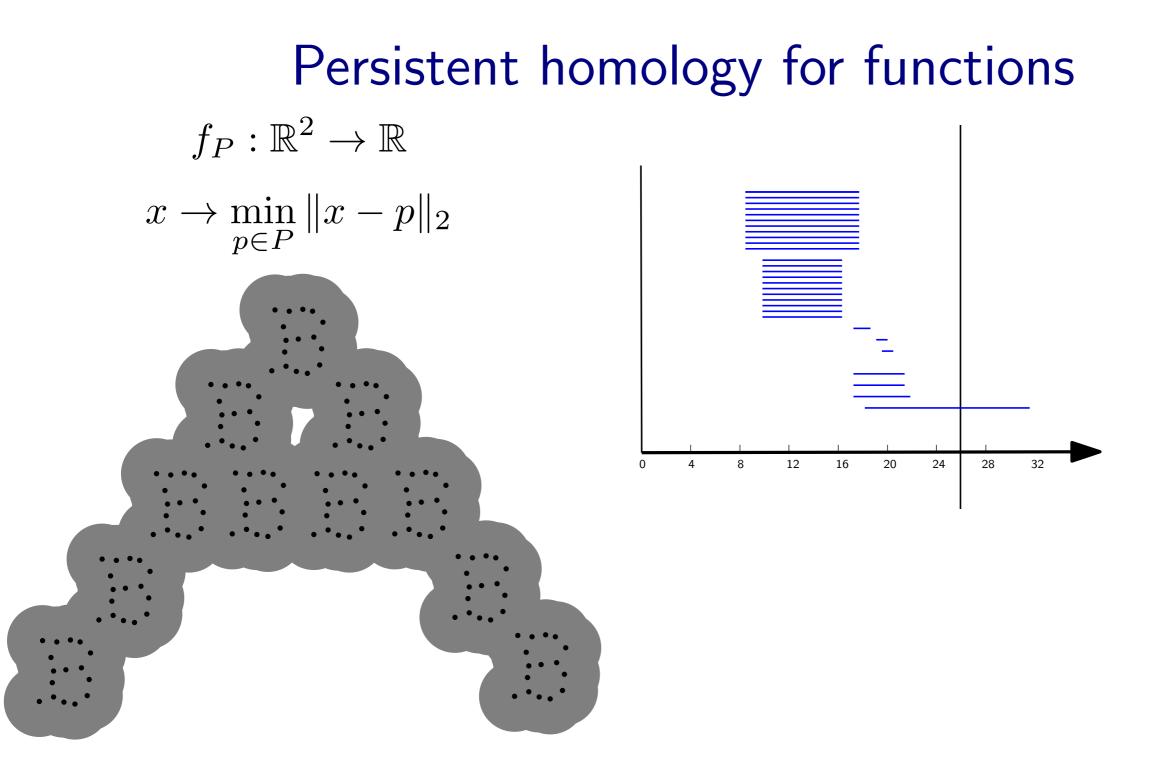


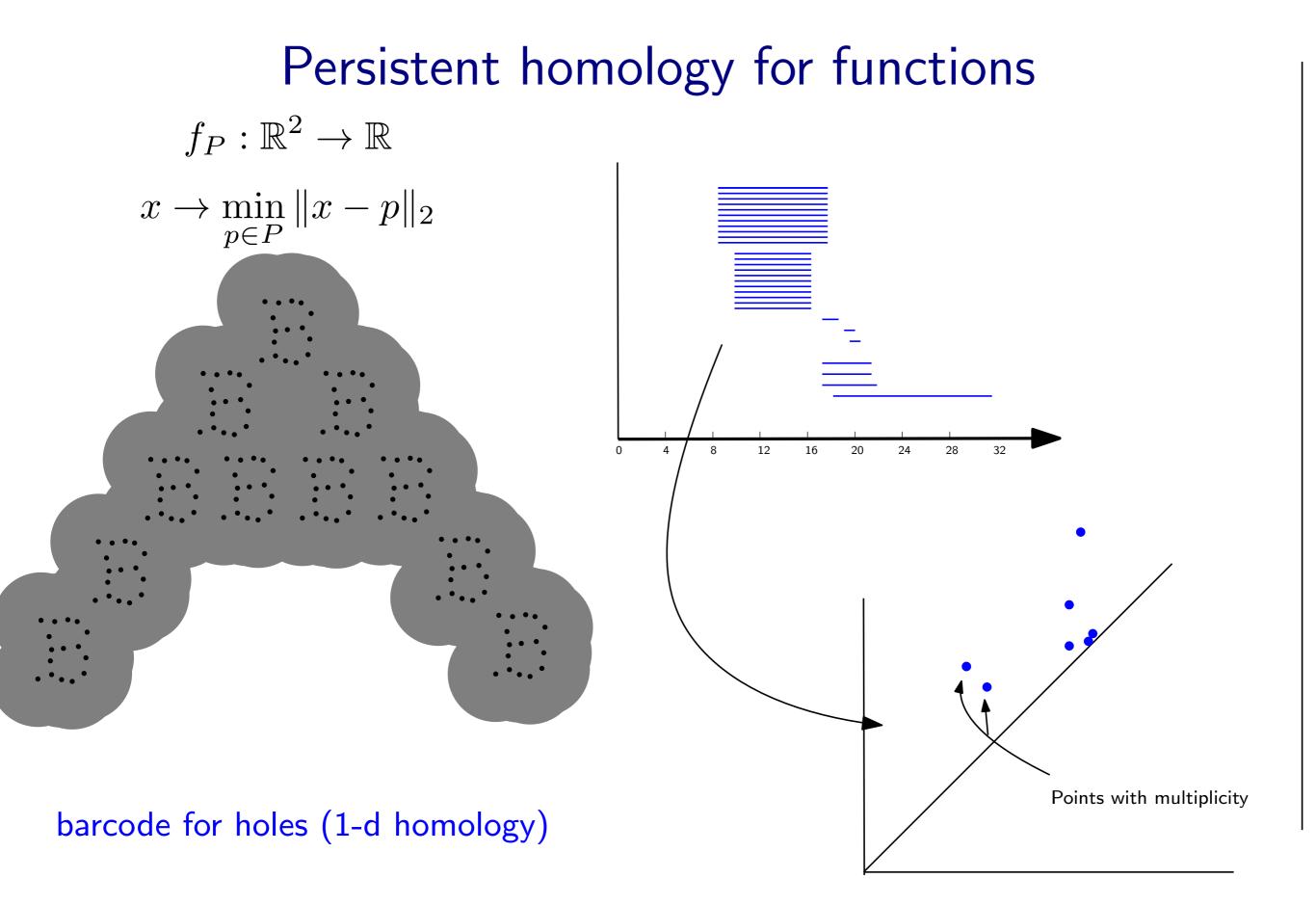




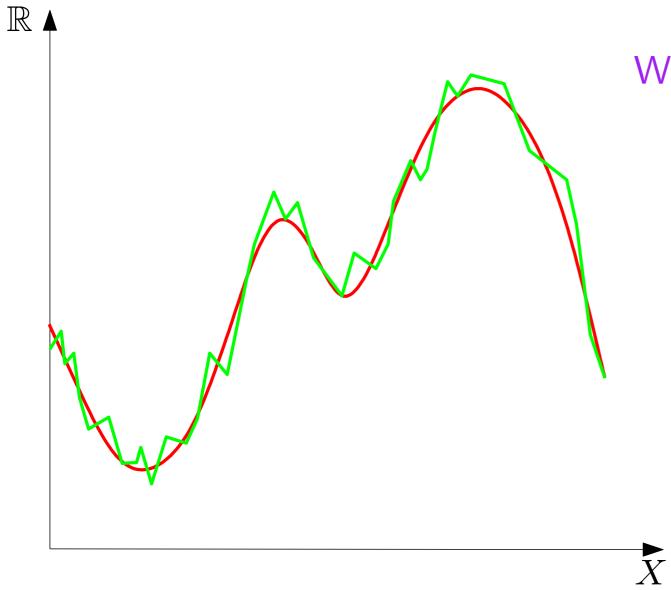




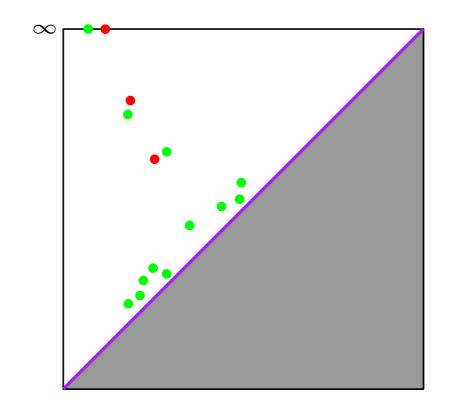




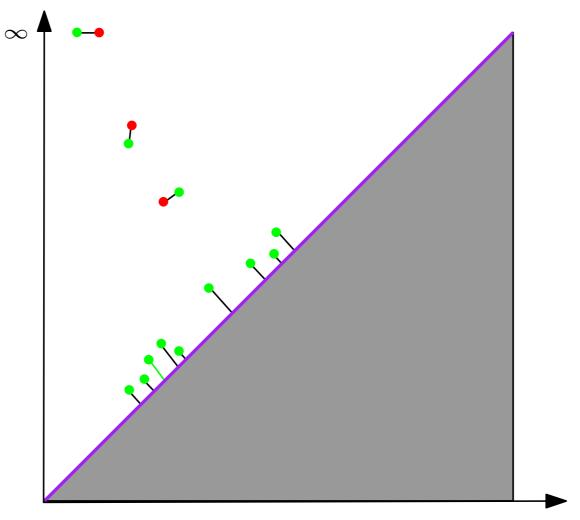
Stability properties



What if f is slightly perturbed?



Distance between persistence diagrams



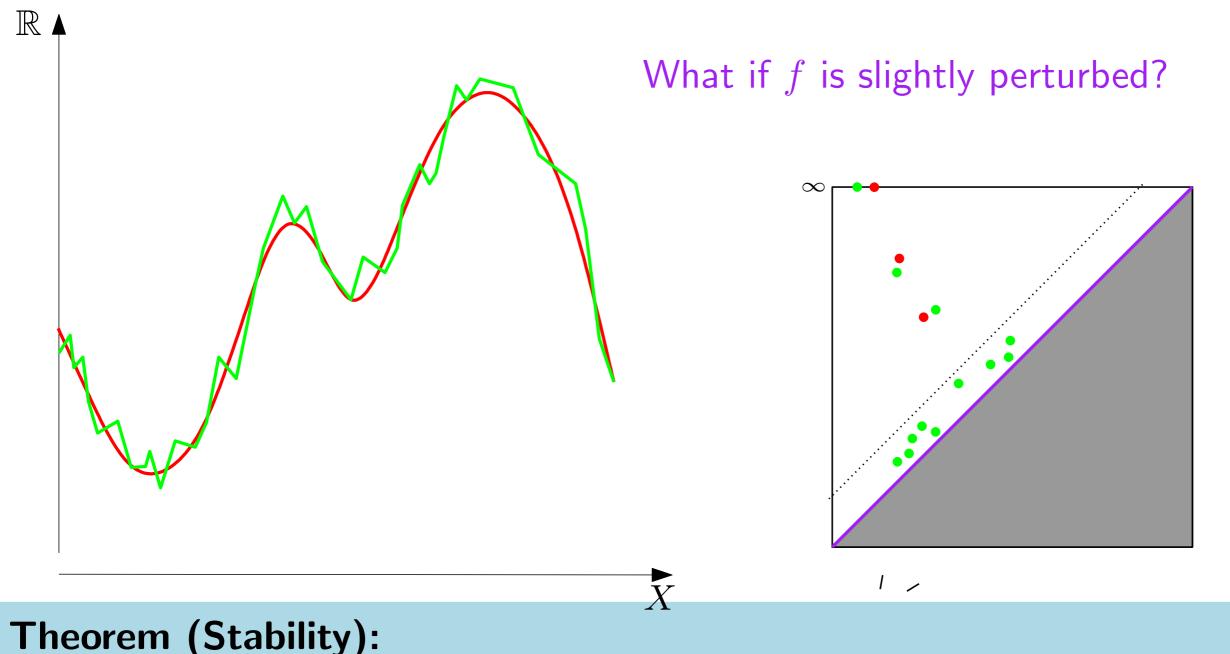
The bottleneck distance between two diagrams D_1 and D_2 is

$$d_B(D_1, D_2) = \inf_{\gamma \in \Gamma} \sup_{p \in D_1} \|p - \gamma(p)\|_{\infty}$$

where Γ is the set of all the bijections between D_1 and D_2 and $||p - q||_{\infty} = \max(|x_p - x_q|, |y_p - y_q|).$

Important Remark: There is one persistence diagram per homology dimension. In general, are compared diagrams corresponding to same homology dim.

Stability properties



For any *tame* functions $f, g : \mathbb{X} \to \mathbb{R}$, $d_B(D_f, D_g) \le ||f - g||_{\infty}$.

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG 09], [C., de Silva, Glisse, Oudot 12]

Important Remark: if $\phi : \mathbb{X} \to \mathbb{X}$ is an homeomorphism, then $D_{f \circ \phi} = D_f$.

Persistent homology of filtered complexes

Let $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ be a filtration of a simplicial complex K s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Persistent homology of filtered complexes

Let $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ be a filtration of a simplicial complex K s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Relation between sublevel sets filtrations and filtered simplicial complexes:

- ∀t ≤ t' ∈ ℝ, f⁻¹((-∞, t]) ⊆ f⁻¹((-∞, t']) → filtration of X by the sublevel sets of f.
- If f is defined at the vertices of a simplicial complex K, the sublevel sets filtration is a filtration of the simplicial complex K.
 - For $\sigma = [v_0, \cdots, v_k] \in K$, $f(\sigma) = \max_{i=0,\cdots,k} f(v_i)$
 - The simplices of K are ordered according increasing f values (and dimension in case of equal values on different simplices).

Persistent homology of filtered complexes

Let $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ be a filtration of a simplicial complex K s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

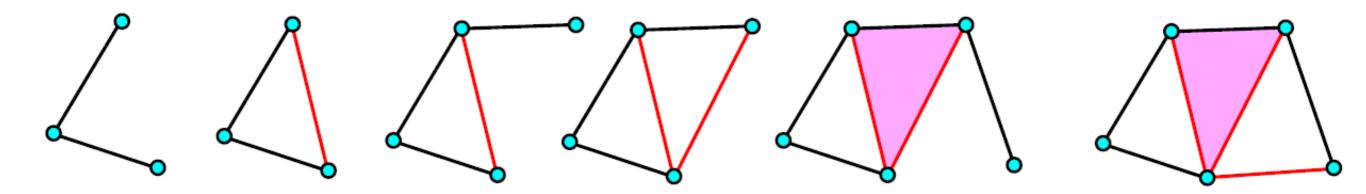
Algorithm to compute the Betti numbers $\beta_0, \beta_1, \cdots, \beta_d$ of K:

$$\begin{array}{ll} \beta_0 = \beta_1 = \cdots = \beta_d = 0;\\ \text{for } i = 1 \text{ to } m\\ k = \dim \sigma^i - 1;\\ \text{if } \sigma^i \text{ is contained in a } (k+1)\text{-cycle in } K^i\\ \text{then } \beta_{k+1} = \beta_{k+1} + 1;\\ \text{else } \beta_k = \beta_k - 1;\\ \text{end if;} & \text{The algorik}\\ \text{end for;} & \text{positive sind}\\ \text{output } (\beta_0, \beta_1, \cdots, \beta_d); & \text{logical class} \end{array}$$

The algorithm can be easily adapted to keep track of an homology basis and pairs positive simplices (birth of a new homological class) to negative simplices (death of an existing homology class).

Notation: $H_k^i = H_k(K^i)$

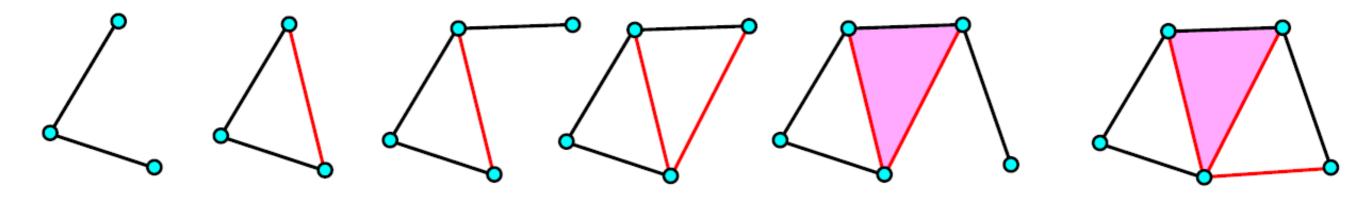
Cycle associated to a positive simplex



Lemma: If σ^i is a positive k-simplex, then there exists a k-cycle c_σ s.t.: - c_σ is not a boundary in K^i , - c_σ contains σ^i but no other positive k-simplex. The cycle c^σ is unique.

Proof:

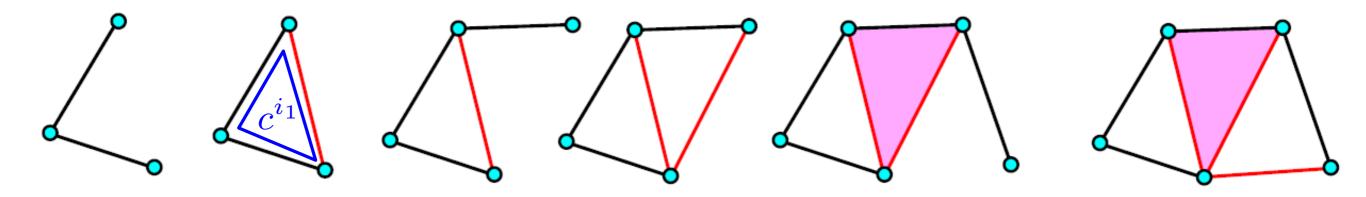
By induction on the order of appearence of the simplices in the filtration.



- At the beginning: the basis of H_k^0 is empty.
- If a basis of Hⁱ⁻¹_k has been built and σⁱ is a positive k-simplex then one adds the homology class of the cycle cⁱ associated to σⁱ to the basis of Hⁱ⁻¹_k ⇒ basis of Hⁱ_k.
- If a basis of H_k^{j-1} has been built and σ^j is a negative (k+1)-simplex:
 - let c^{i_1}, \cdots, c^{i_p} be the cycles associated to the positive simplices $\sigma^{i_1}, \cdots, \sigma^{i_p}$ that form a basis of H_k^{j-1}

-
$$d = \partial \sigma^j = \sum_{k=1}^p \varepsilon_k c^{i_k} + b$$

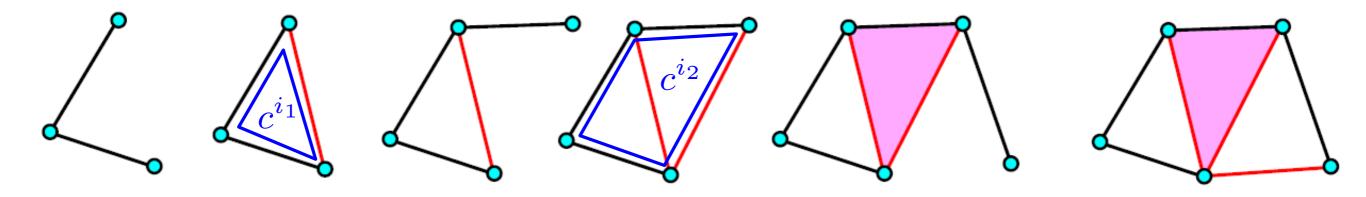
- $l(j) = \max\{i_k : \varepsilon_k = 1\}$
- Remove the homology class of $c^{l(j)}$ from the basis of $H_k^{j-1} \Rightarrow$ basis of $H_k^j.$



- At the beginning: the basis of H_k^0 is empty.
- If a basis of Hⁱ⁻¹_k has been built and σⁱ is a positive k-simplex then one adds the homology class of the cycle cⁱ associated to σⁱ to the basis of Hⁱ⁻¹_k ⇒ basis of Hⁱ_k.
- If a basis of H_k^{j-1} has been built and σ^j is a negative (k+1)-simplex:
 - let c^{i_1}, \cdots, c^{i_p} be the cycles associated to the positive simplices $\sigma^{i_1}, \cdots, \sigma^{i_p}$ that form a basis of H_k^{j-1}

-
$$d = \partial \sigma^j = \sum_{k=1}^p \varepsilon_k c^{i_k} + b$$

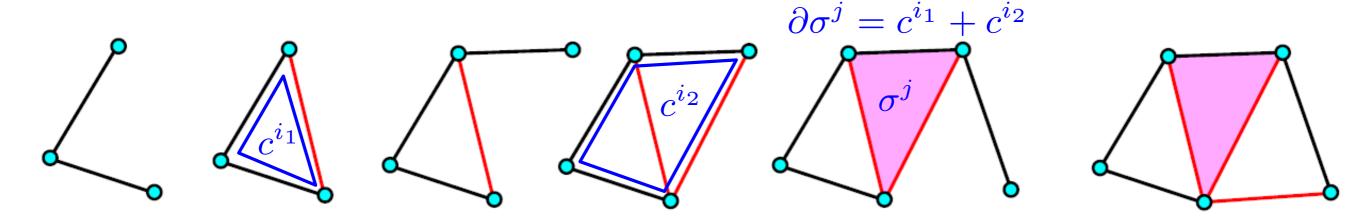
- $l(j) = \max\{i_k : \varepsilon_k = 1\}$
- Remove the homology class of $c^{l(j)}$ from the basis of $H_k^{j-1} \Rightarrow$ basis of $H_k^j.$



- At the beginning: the basis of H_k^0 is empty.
- If a basis of Hⁱ⁻¹_k has been built and σⁱ is a positive k-simplex then one adds the homology class of the cycle cⁱ associated to σⁱ to the basis of Hⁱ⁻¹_k ⇒ basis of Hⁱ_k.
- If a basis of H_k^{j-1} has been built and σ^j is a negative (k+1)-simplex:
 - let c^{i_1}, \cdots, c^{i_p} be the cycles associated to the positive simplices $\sigma^{i_1}, \cdots, \sigma^{i_p}$ that form a basis of H_k^{j-1}

-
$$d = \partial \sigma^j = \sum_{k=1}^p \varepsilon_k c^{i_k} + b$$

- $l(j) = \max\{i_k : \varepsilon_k = 1\}$
- Remove the homology class of $c^{l(j)}$ from the basis of $H_k^{j-1} \Rightarrow$ basis of $H_k^j.$



- At the beginning: the basis of H_k^0 is empty.
- If a basis of H_k^{i-1} has been built and σ^i is a positive k-simplex then one adds the homology class of the cycle c^i associated to σ^i to the basis of $H_k^{i-1} \Rightarrow$ basis of H_k^i .
- If a basis of H_k^{j-1} has been built and σ^j is a negative (k+1)-simplex:
 - let c^{i_1}, \cdots, c^{i_p} be the cycles associated to the positive simplices $\sigma^{i_1}, \cdots, \sigma^{i_p}$ that form a basis of H_k^{j-1}

-
$$d = \partial \sigma^j = \sum_{k=1}^p \varepsilon_k c^{i_k} + b$$

- $l(j) = \max\{i_k : \varepsilon_k = 1\}$
- Remove the homology class of $c^{l(j)}$ from the basis of $H_k^{j-1} \Rightarrow$ basis of $H_k^j.$

Pairing simplices

- If a basis of H_k^{j-1} has been built and σ^j is a negative (k+1)-simplex:
 - let c^{i_1}, \cdots, c^{i_p} be the cycles associated to the positive simplices $\sigma^{i_1}, \cdots, \sigma^{i_p}$ that form a basis of H_k^{j-1}

$$- d = \partial \sigma^j = \sum_{k=1}^p \varepsilon_k c^{i_k} + b$$

$$- l(j) = \max\{i_k : \varepsilon_k = 1\}$$

- Remove the homology class of $c^{l(j)}$ from the basis of $H_k^{j-1} \Rightarrow$ basis of H_k^j .

The simplices $\sigma^{l(j)}$ and σ^j are paired to form a persistent pair $(\sigma^{l(j)}, \sigma^j)$. \rightarrow The homology class created by $\sigma^{l(j)}$ in $K^{l(j)}$ is killed by σ^j in K^j . The persistence (or life-time) of this cycle is : j - l(j) - 1.

Remark: filtrations of K can be indexed by increasing sequences α_i of real numbers (useful when working with a function defined on the vertices of a simplicial complex).

Persistence algorithm: first version

Input: $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ a *d*-dimensional filtration of a simplicial complex K s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

$$\begin{split} &L_0 = L_1 = \dots = L_{d-1} = \emptyset \\ &\text{For } j = 0 \text{ to } m \\ &k = \dim \sigma^j - 1; \\ &\text{ if } \sigma^j \text{ is a negative simplex} \\ &l(j) = \text{ highest index of the positive simplices associated to } \partial \sigma^j; \\ &L_k = L_k \cup \{(\sigma^{l(j)}, \sigma^j)\}; \\ &\text{ end if} \\ &\text{ end for} \\ &\text{ output } L_0, L_1, \cdots, L_{d-1}; \end{split}$$

Persistence algorithm: first version

Input: $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ a *d*-dimensional filtration of a simplicial complex K s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

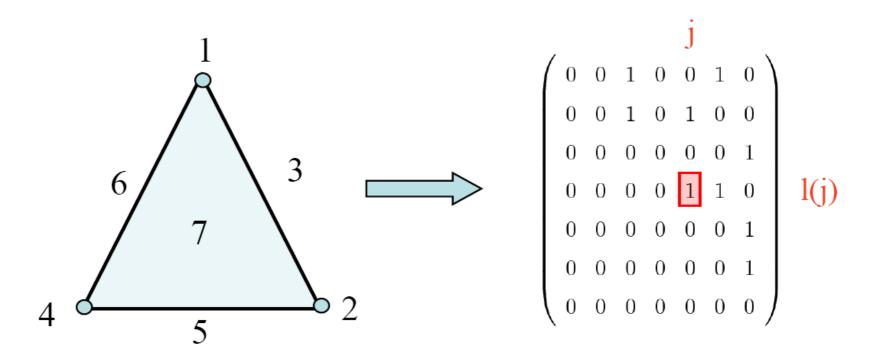
$$L_{0} = L_{1} = \cdots = L_{d-1} = \emptyset$$

For $j = 0$ to m
 $k = \dim \sigma^{j} - 1$;
if σ^{j} is a negative simplex
 $l(j) =$ highest index of the positive simplices associated to $\partial \sigma^{j}$;
 $L_{k} = L_{k} \cup \{(\sigma^{l(j)}, \sigma^{j})\};$
end if
end for
output $L_{0}, L_{1} \cdots, L_{d-1}$;
How to test this condition?

The persistence algorithm: matrix version

Input: $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ a *d*-dimensional filtration of a simplicial complex K s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

The matrix of the boundary operator:



• $M = (m_{ij})_{i,j=1,\cdots,m}$ with coefficient in $\mathbb{Z}/2$ defined by

 $m_{ij} = 1$ if σ^i is a face of σ^j and $m_{ij} = 0$ otherwise

• For any column C_j , l(j) is defined by

$$(i = l(j)) \Leftrightarrow (m_{ij} = 1 \text{ and } m_{i'j} = 0 \quad \forall i' > i)$$

The persistence algorithm: matrix version

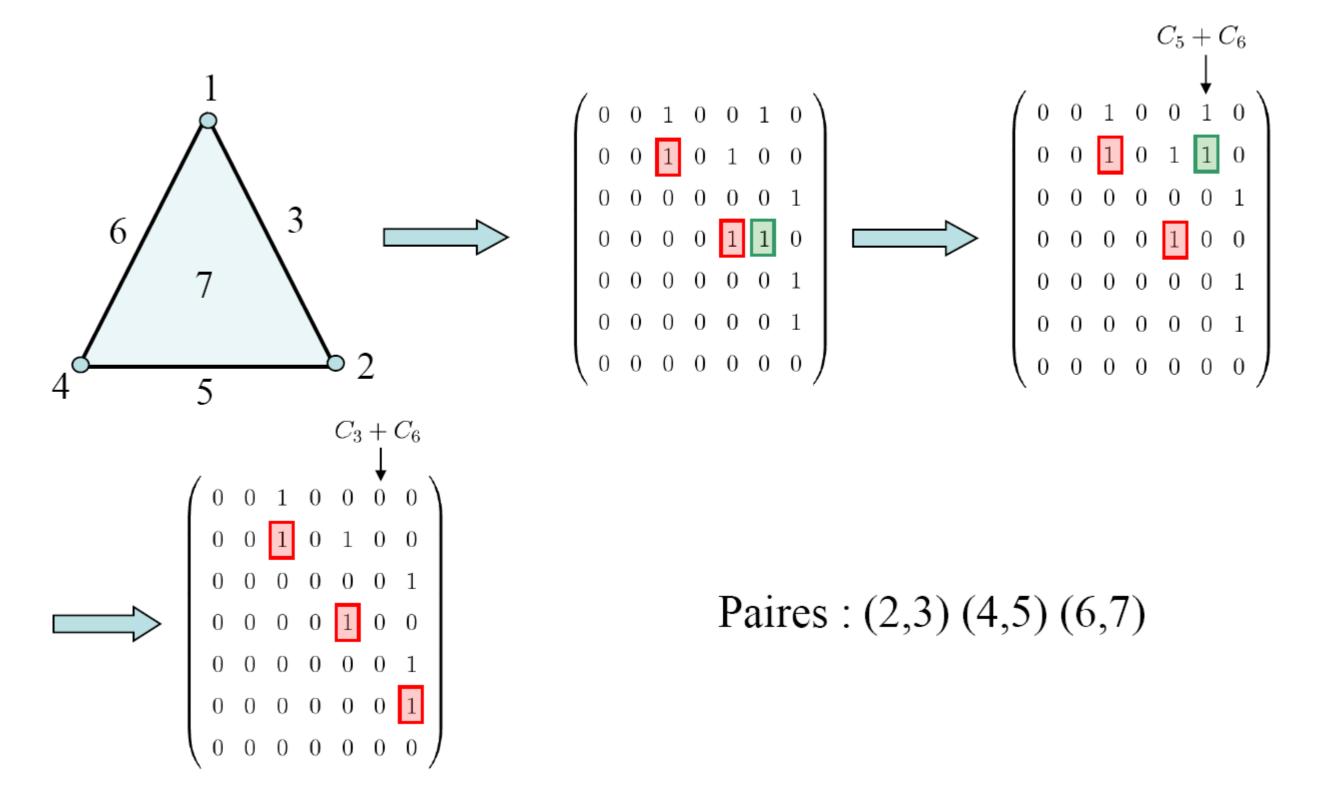
Input: $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ a *d*-dimensional filtration of a simplicial complex K s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Compute the matrix of the boundary operator MFor j = 0 to mWhile (there exists j' < j such that l(j') == l(j)) $C_j = C_j + C_{j'} \mod(2)$; End while End for Output the pairs (l(j), j);

Remark: The worst case complexity of the algorithm is $O(m^3)$ but much lower in most practical cases.

The persistence algorithm: matrix version

A simple example:



Correctness of the algorithm

Proposition: the second algorithm (matrix version) outputs the persistence pairs.

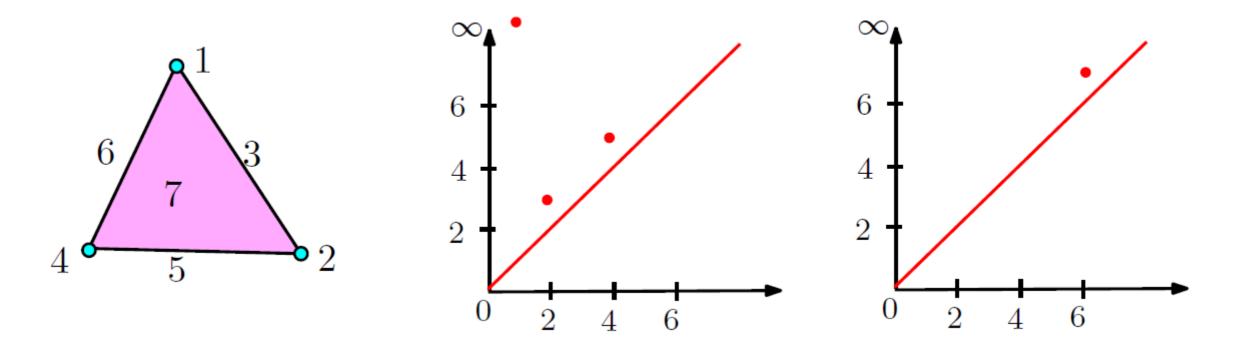
Proof: follows from the four remarks below.

1. At each step of the algorithm, the column C_j represents a chain of the form

$$\partial \left(\sigma^j + \sum_{i < j} \varepsilon_i \sigma^i \right) \text{ with } \varepsilon_i \in \{0, 1\}$$

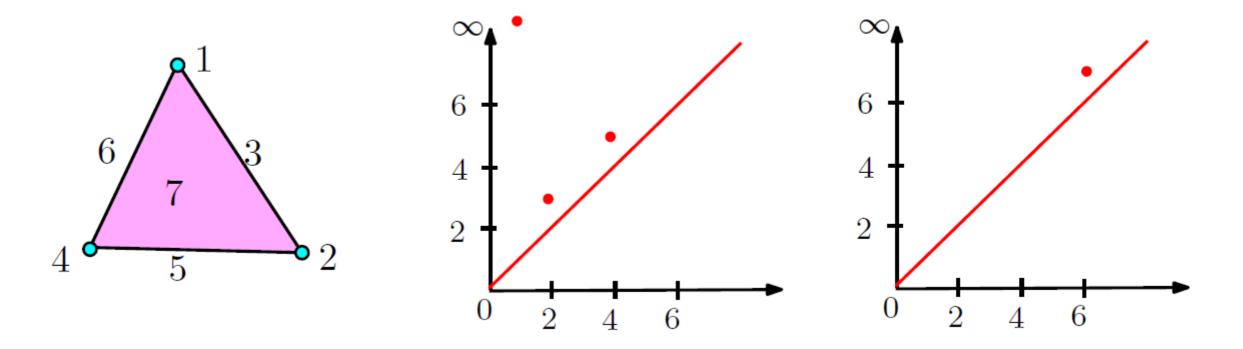
- 2. At the end of the algorithm, if j is s.t. l(j) is defined then $\sigma^{l(j)}$ is a positive simplex.
- 3. If at the end of the algorithm the column C_j is zero then σ^j is positive.
- 4. If at the end of the algorithm the column C_j is not zero then $(\sigma^{l(j)}, \sigma^j)$ is a persistence pair.

Persistence diagram



- each pair $(\sigma^{l(j)}, \sigma^j)$ is represented by (l(j), j) or $(f(\sigma^{l(j)}), f(\sigma^j)) \in \mathbb{R}^2$ when considering filtrations induced by functions, or $(\alpha_{l(j)}, \alpha_j)$ if the filtration is induced by a real valued sequence $(\alpha_i)_{i \in I}$.
- The diagonal $\{y = x\}$ is added to the persistence diagram.
- Unpaired positive simplex $\sigma^i \to (i, +\infty)$.

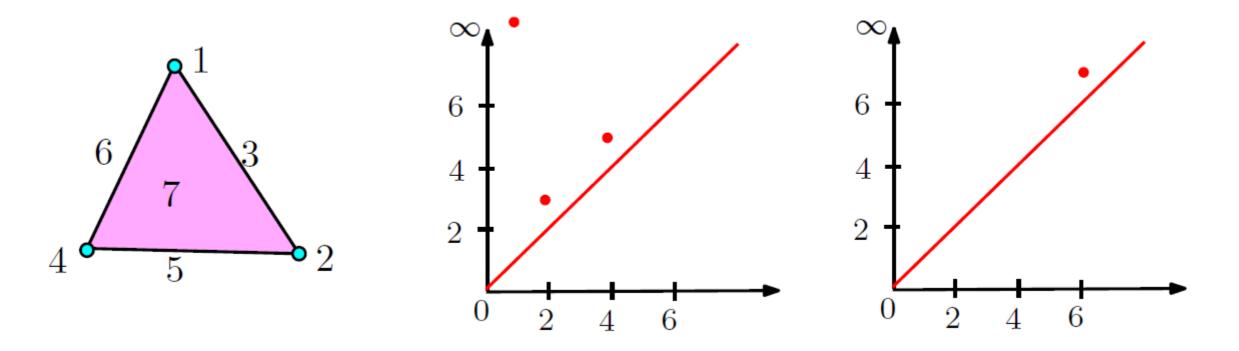
Persistence diagram



- each pair $(\sigma^{l(j)}, \sigma^j)$ is represented by (l(j), j) or $(f(\sigma^{l(j)}), f(\sigma^j)) \in \mathbb{R}^2$ when considering filtrations induced by functions, or $(\alpha_{l(j)}, \alpha_j)$ if the filtration is induced by a real valued sequence $(\alpha_i)_{i \in I}$.
- The diagonal $\{y = x\}$ is added to the persistence diagram.
- Unpaired positive simplex $\sigma^i \to (i, +\infty)$.

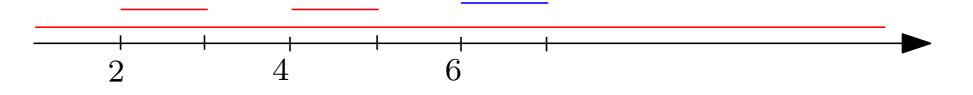
Points may have multiplicity

Persistence diagram

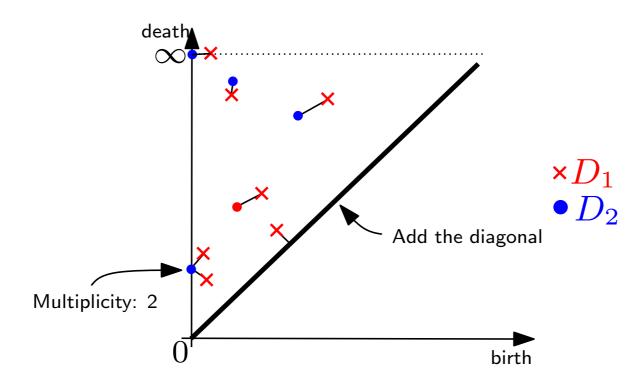


- each pair $(\sigma^{l(j)}, \sigma^j)$ is represented by (l(j), j) or $(f(\sigma^{l(j)}), f(\sigma^j)) \in \mathbb{R}^2$ when considering filtrations induced by functions, or $(\alpha_{l(j)}, \alpha_j)$ if the filtration is induced by a real valued sequence $(\alpha_i)_{i \in I}$.
- The diagonal $\{y = x\}$ is added to the persistence diagram.
- Unpaired positive simplex $\sigma^i \to (i, +\infty)$.

Barcodes: an alternative (equivalent) representation where each pair (i, j) is represented by the interval [i, j]



Distances between persistence diagrams



The bottleneck distance between two diagrams D_1 and D_2 is

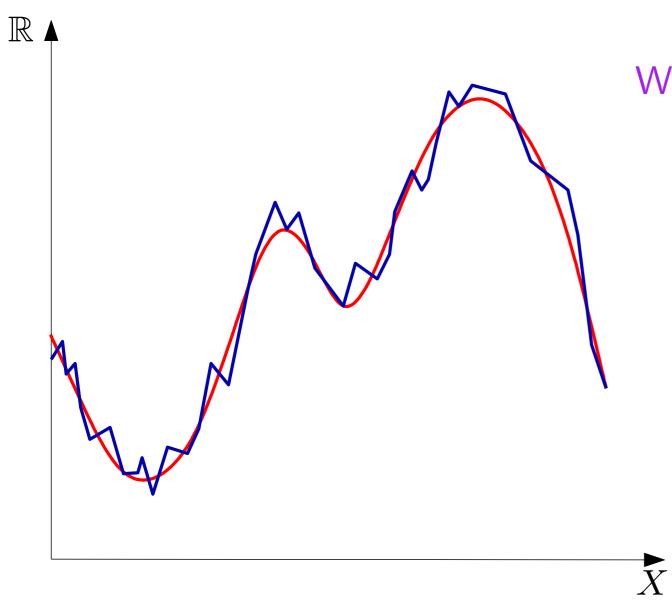
$$d_B(D_1, D_2) = \inf_{\gamma \in \Gamma} \sup_{p \in D_1} \|p - \gamma(p)\|_{\infty}$$

and the "p-Wasserstein" distance ($p \ge 1$) is

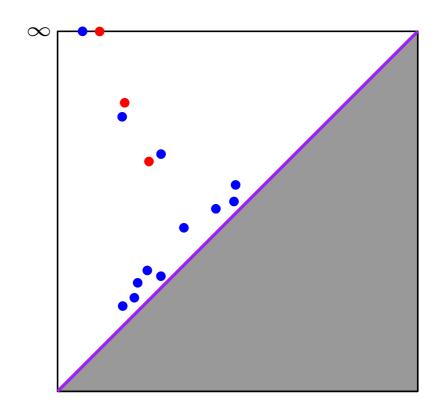
$$W_p(D_1, D_2) = \inf_{\gamma \in \Gamma} \left(\sum_{p \in D_1} \|p - \gamma(p)\|_p^p \right)^{\frac{1}{p}}$$

where Γ is the set of all the bijections between D_1 and D_2 and $||p-q||_{\infty} = \max(|x_p - x_q|, |y_p - y_q|).$

Stability properties



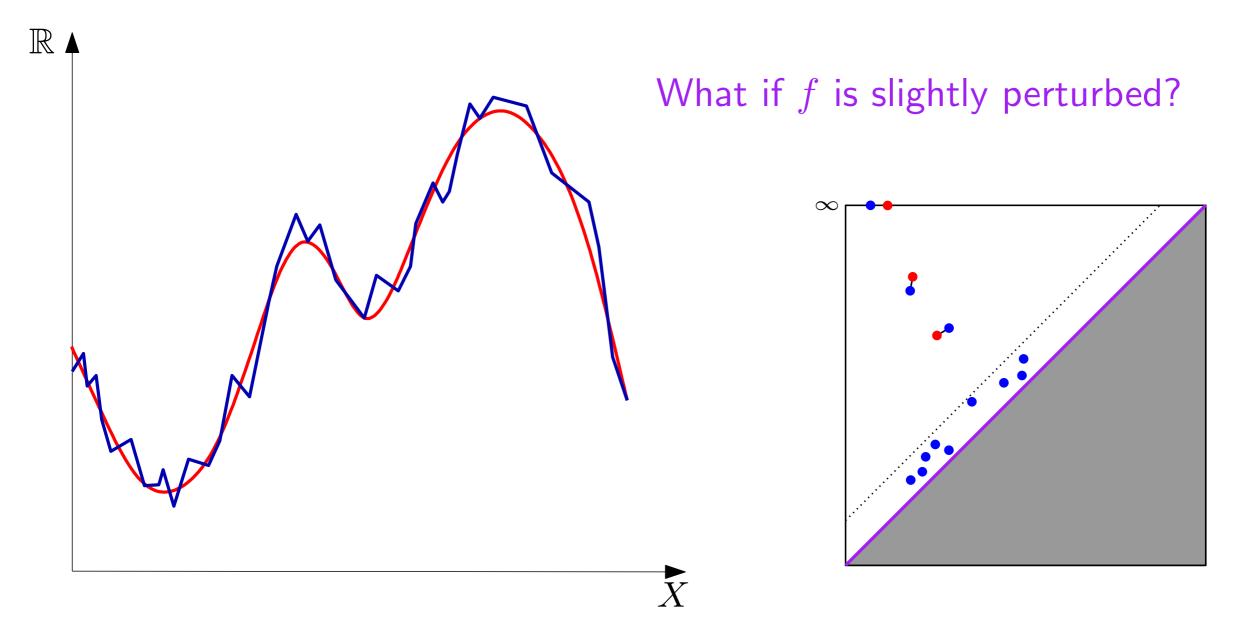
What if f is slightly perturbed?



Stability properties

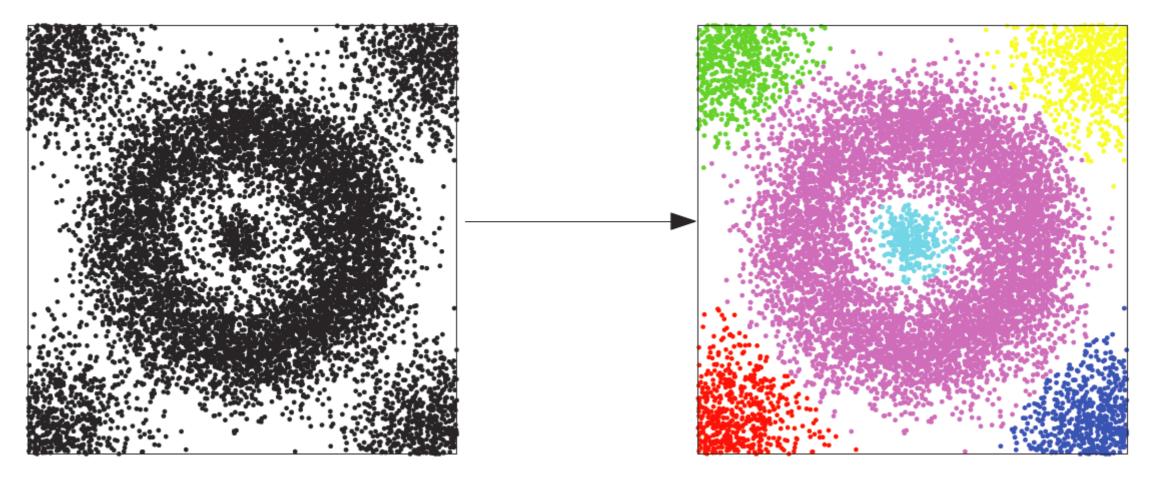
Theorem (Stability): For any *tame* functions $f, g : \mathbb{X} \to \mathbb{R}$, $d_{B}^{\infty}(D_{f}, D_{g}) \leq ||f - g||_{\infty}$.

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG 09], [C., de Silva, Glisse, Oudot 12]



Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]



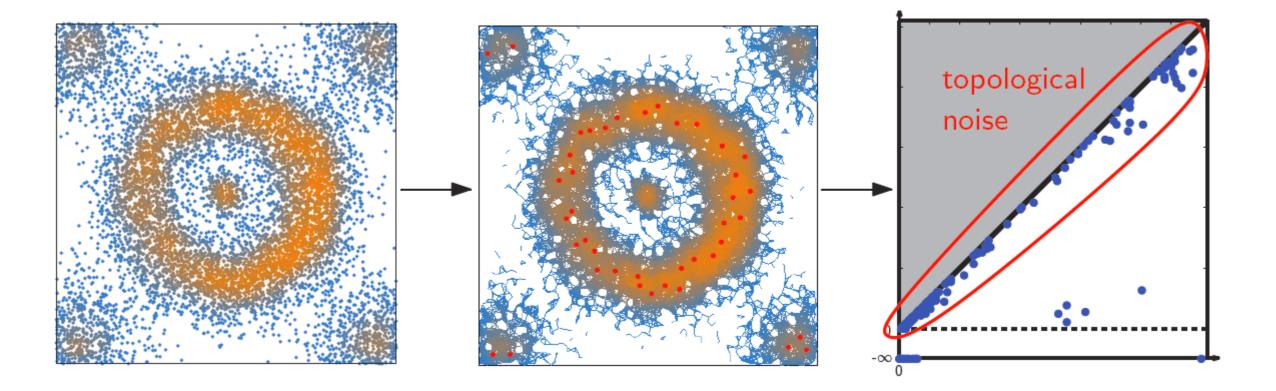
Input:

1. A finite set X of observations (point cloud with coordinates or pairwise distance matrix),

2. A real valued function f defined on the observations (e.g. density estimate).

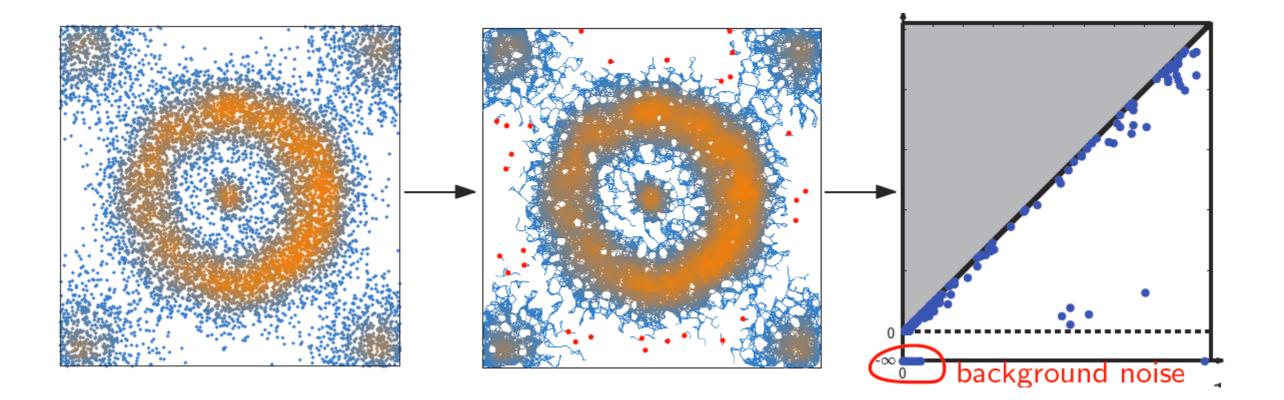
Goal: Partition the data according to the basins of attraction of the peaks of f

Combine a mode seeking approach with (0-dim) persistence computation. [C.,Guibas,Oudot,Skraba - J. ACM 2013]



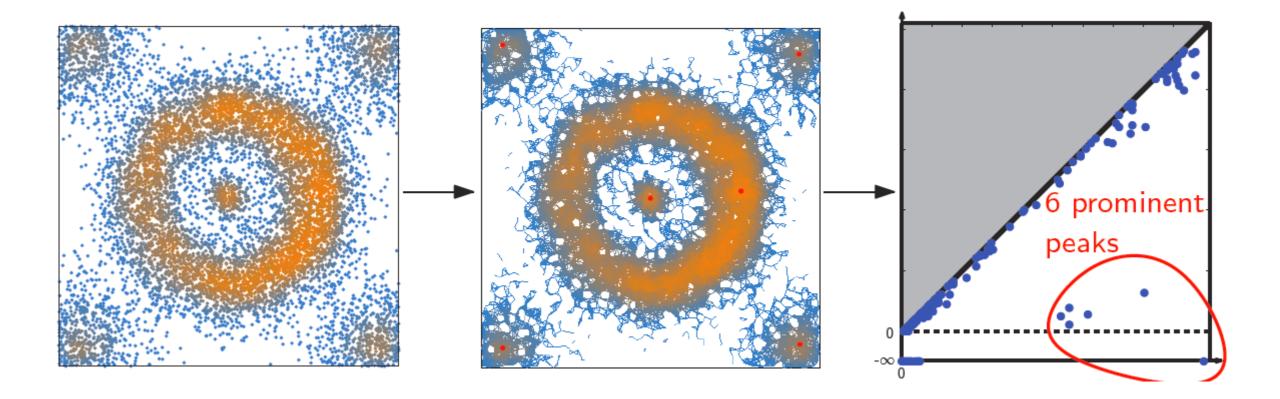
- 1. Build a neighborhing graph G on top of X.
- 2. Compute the (0-dim) persistence of f to identify prominent peaks \rightarrow number of clusters (union-find algorithm).

Combine a mode seeking approach with (0-dim) persistence computation. [C.,Guibas,Oudot,Skraba - J. ACM 2013]



- 1. Build a neighborhing graph G on top of X.
- 2. Compute the (0-dim) persistence of f to identify prominent peaks \rightarrow number of clusters (union-find algorithm).

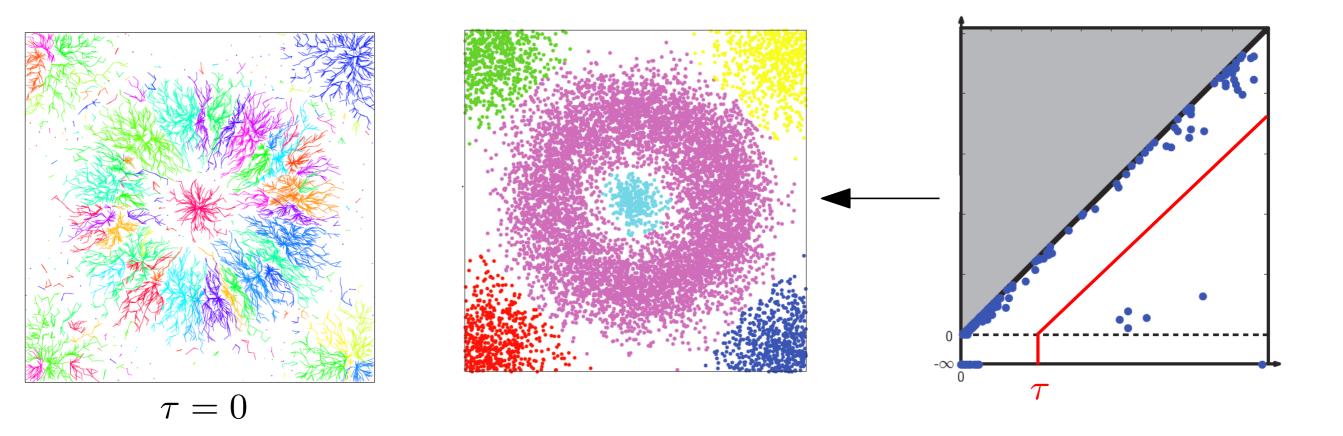
Combine a mode seeking approach with (0-dim) persistence computation. [C.,Guibas,Oudot,Skraba - J. ACM 2013]



- 1. Build a neighborhing graph G on top of X.
- 2. Compute the (0-dim) persistence of f to identify prominent peaks \rightarrow number of clusters (union-find algorithm).

Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]



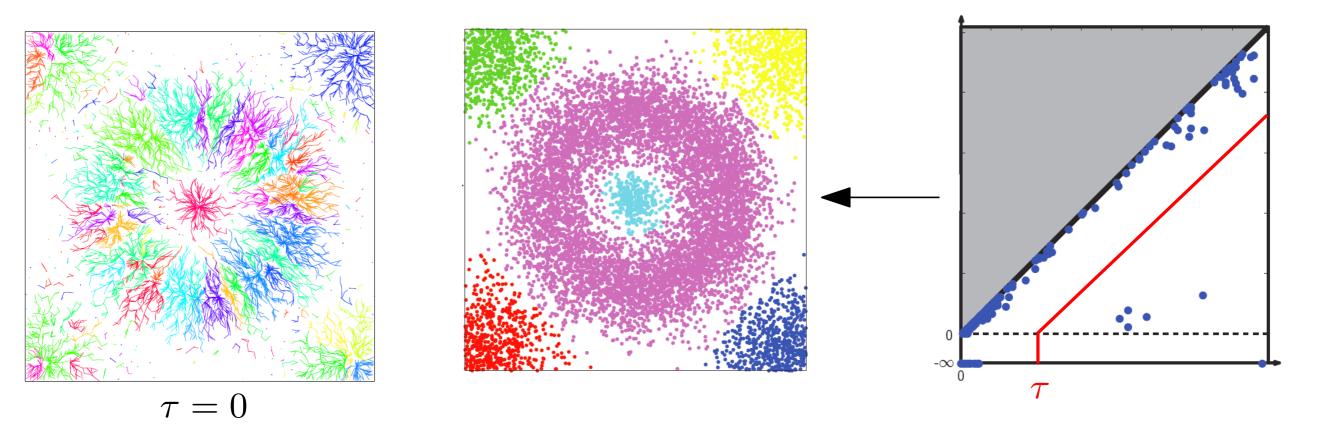
- 1. Build a neighborhing graph G on top of X.
- 2. Compute the (0-dim) persistence of f to identify prominent peaks \rightarrow number of clusters (union-find algorithm).

3. Chose a threshold $\tau > 0$ and use the persistence algorithm to merge components with prominence less than τ .

Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]



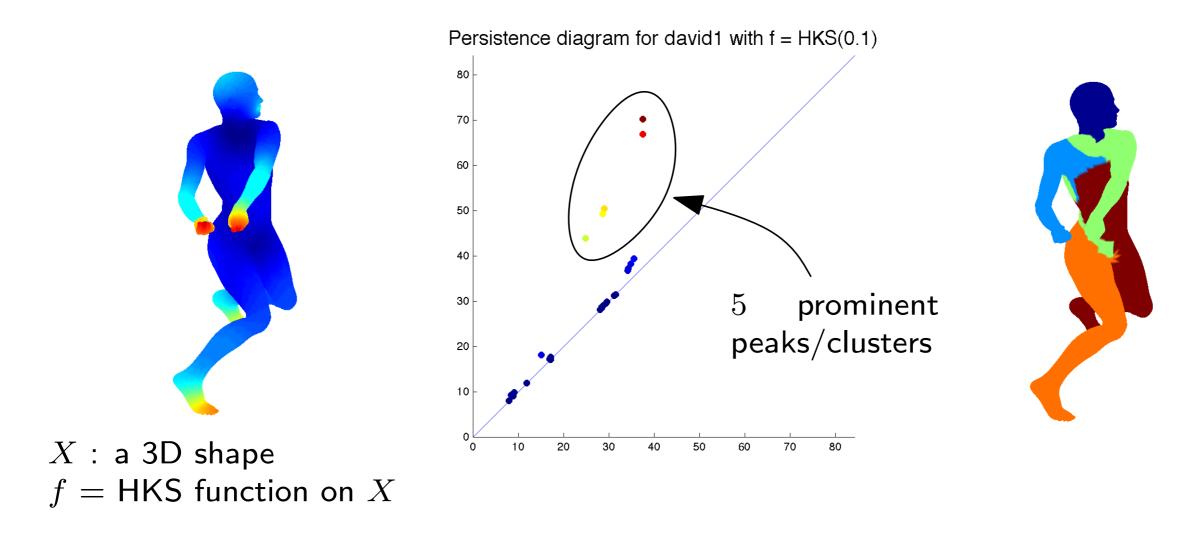
Complexity of the algorithm: $O(n \log n)$

Theoretical guarantees:

- Stability of the number of clusters (w.r.t. perturbations of X and f).
- Partial stability of clusters: well identified stable parts in each cluster.

Application to non-rigid shape segmentation

[Skraba, Ovsjanikov, C., Guibas, NORDIA 10]



Problem: some part of clusters are unstable \rightarrow dirty segments

Application to non-rigid shape segmentation

[Skraba, Ovsjanikov, C., Guibas, NORDIA 10]

Problem: some part of clusters are unstable \rightarrow dirty segments

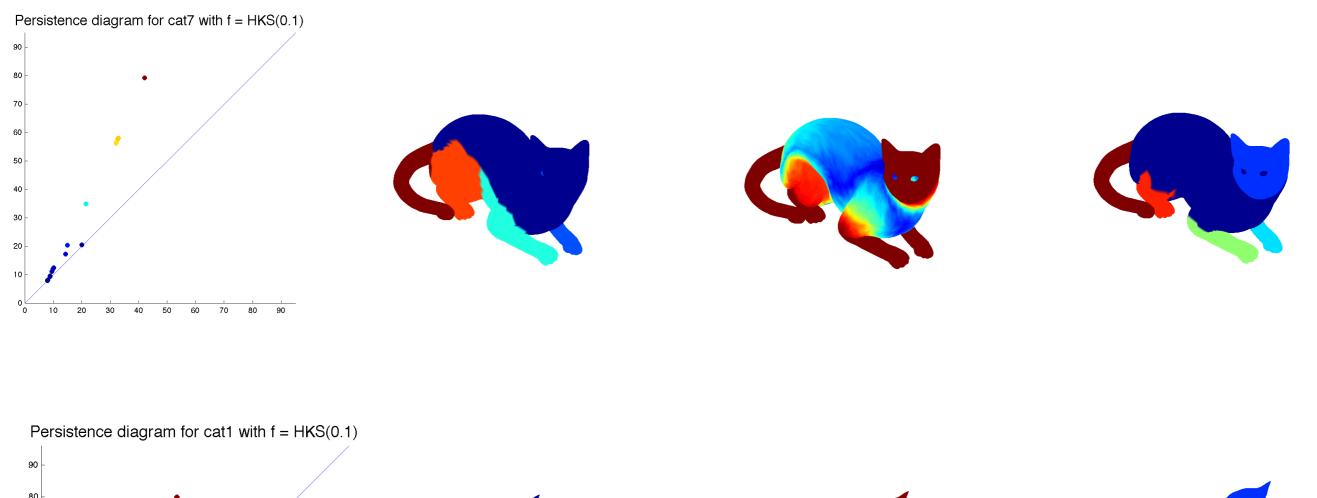
Idea:

- Run the persistence based algorithm several times on random perturbations of f (size bounded by the "persistence" gap).

- Partial stability of clusters allows to establish correspondences between clusters across the different runs \rightarrow for any $x \in X$, a vector giving the probability for x to belong to each cluster.

Application to non-rigid shape segmentation

[Skraba, Ovsjanikov, C., Guibas, NORDIA 10]

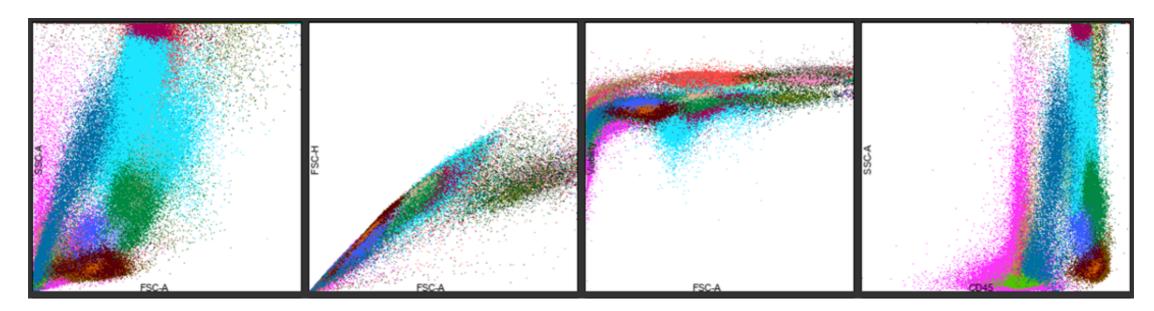


An example of application

Topology-based unsupervised classification [C, Guibas, Oudot, Skraba 2013] Segmentation of cytometry data for medical diagnosis

[M. Glisse, L. Pujol et al 2020]

An innovative start-up specialized in biological diagnosis from cytometry data.

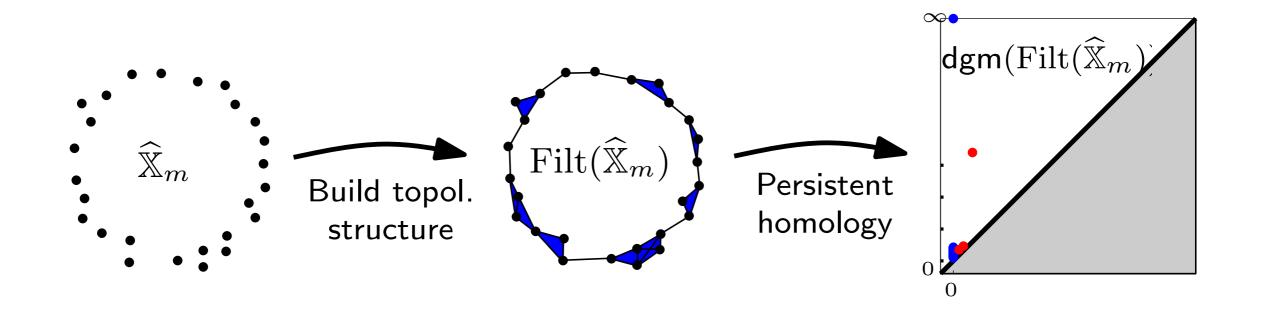


Objective: unsupervised learning in large point clouds (several millions) in medium/high dimensions ($\approx 4 \to 80$)

Applications: medical diagnosis from blood samples (1 point = 1 blood cell)

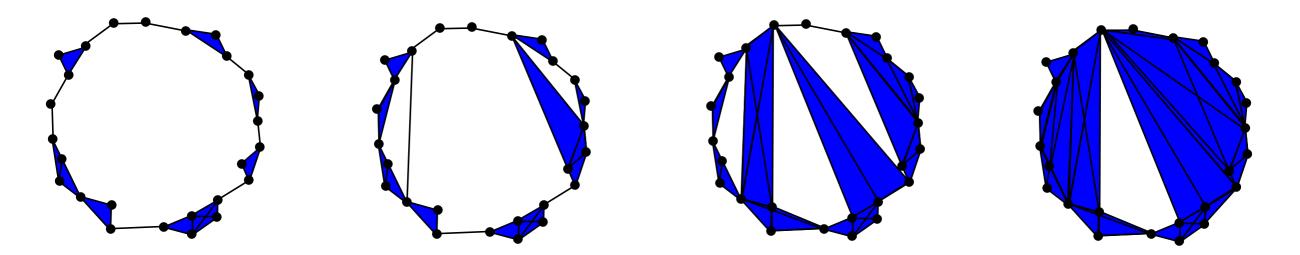
Methodology: Persistence-based clustering to robustly identify relevant clusters.

Persistent homology for (point cloud) data



- Build a geometric filtered simplicial complex on top of $\widehat{\mathbb{X}}_m \to$ multiscale topol. structure.
- Compute the persistent homology of the complex \rightarrow multiscale topol. signature.
- Compare the signatures of "close" data sets \rightarrow robustness and stability results.
- Statistical properties of signatures

Filtered complexes and filtrations



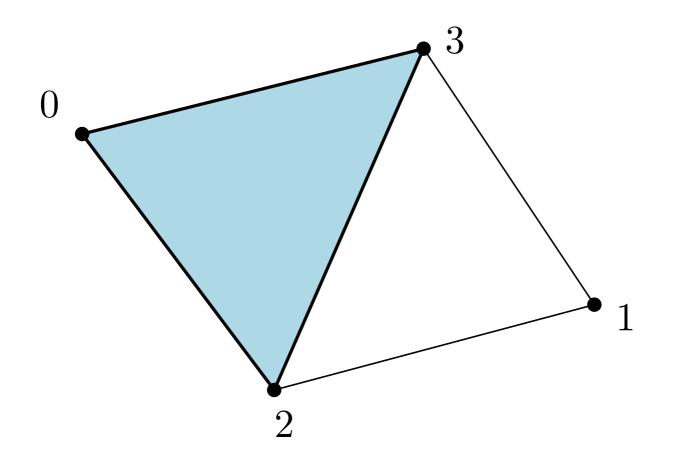
A filtered simplicial complex S built on top of a set X is a family $(S_a \mid a \in \mathbf{R})$ of subcomplexes of some fixed simplicial complex \overline{S} with vertex set X s. t. $S_a \subseteq S_b$ for any $a \leq b$.

A filtration \mathbb{F} of a space \mathbb{X} is a nested family $(\mathbb{F}_a \mid a \in \mathbb{R})$ of subspaces of \mathbb{X} such that $\mathbb{F}_a \subseteq \mathbb{F}_b$ for any $a \leq b$.

► Example: If $f : \mathbb{X} \to \mathbf{R}$ is a function, then the sublevelsets of f, $\mathbb{F}_a = f^{-1}((-\infty, a])$ define the sublevel set filtration associated to f.

Example: Rips and Cech filtrations

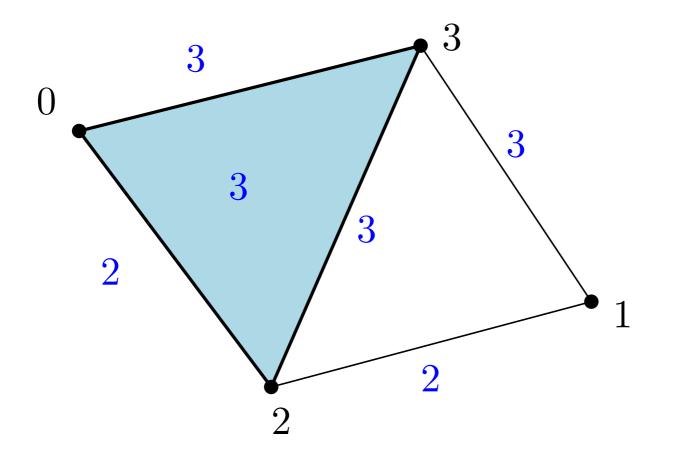
Sublevel set filtration associated to a function



- $\bullet~f$ a real valued function defined on the vertices of K
- For $\sigma = [v_0, \cdots, v_k] \in K$, $f(\sigma) = \max_{i=0, \cdots, k} f(v_i)$
- The simplices of K are ordered according increasing f values (and dimension in case of equal values on different simplices).

Exercise: show that this is a filtration

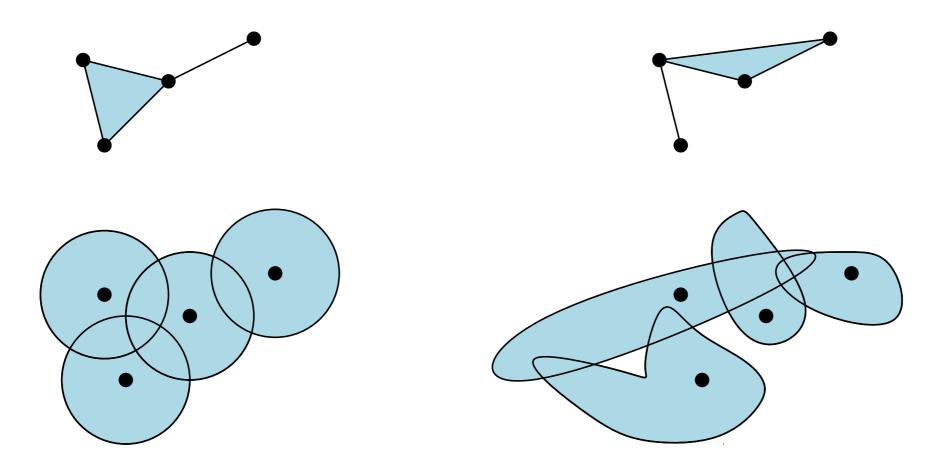
Sublevel set filtration associated to a function



- $\bullet~f$ a real valued function defined on the vertices of K
- For $\sigma = [v_0, \cdots, v_k] \in K$, $f(\sigma) = \max_{i=0, \cdots, k} f(v_i)$
- The simplices of K are ordered according increasing f values (and dimension in case of equal values on different simplices).

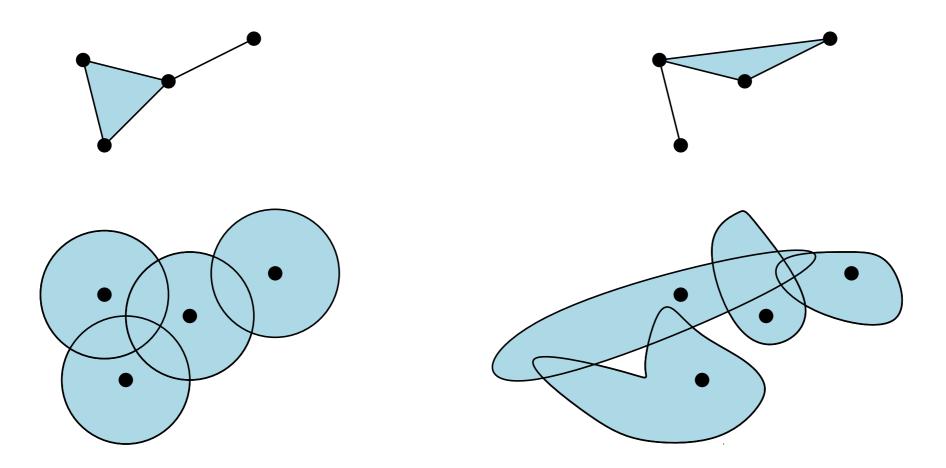
Exercise: show that this is a filtration

The Čech complex and filtration



- Let $\mathcal{U} = (U_i)_{i \in I}$ be a cover of a topological space X by open sets: $X = \bigcup_{i \in I} U_i$.
- The Cěch complex $C(\mathcal{U})$ associated to the covering \mathcal{U} is the simplicial complex defined by:
 - the vertex set of $C(\mathcal{U})$ is the set of the open sets U_i
 - $[U_{i_0}, \cdots, U_{i_k}]$ is a k-simplex in $C(\mathcal{U})$ iff $\bigcap_{j=0}^k U_{i_j} \neq \emptyset$.

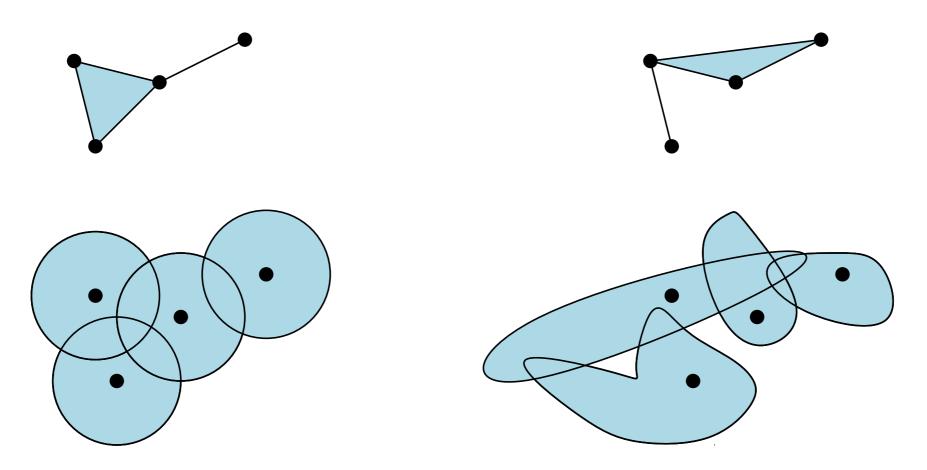
The Čech complex and filtration



Nerve theorem (Leray): If all the intersections between opens in \mathcal{U} are either empty or contractible then $C(\mathcal{U})$ and $X = \bigcup_{i \in I} U_i$ are homotopy equivalent.

 \Rightarrow The combinatorics of the covering (a simplicial complex) carries the topology of the space.

The Čech complex and filtration

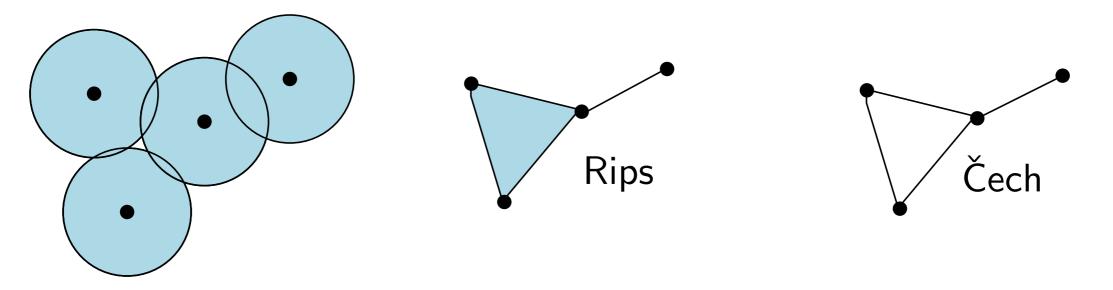


Let V be a point cloud (in a metric space).

The Čech complex $\operatorname{\check{C}ech}(V)$ is the filtered simplicial complex indexed by \mathbb{R} whose vertex set is V and defined by:

$$\sigma = [p_0 p_1 \cdots p_k] \in \operatorname{\check{C}ech}(V, \alpha) \quad \text{iff} \quad \cap_{i=0}^k B(p_i, \alpha) \neq \emptyset$$

The Vietoris-Rips filtration



Let V be a point cloud (in a metric space (X, d)).

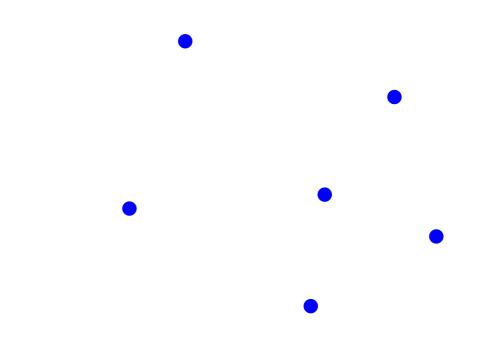
The Vietoris-Rips complex $\operatorname{Rips}(V)$ is the filtered simplicial complex indexed by \mathbb{R} whose vertex set is V and defined by:

$$\sigma = [p_0 p_1 \cdots p_k] \in \operatorname{Rips}(V, \alpha) \text{ iff } \forall i, j \in \{0, \cdots, k\}, \ d(p_i, p_j) \le \alpha$$

- Easy to compute and fully determined by its 1-skeleton
- Rips-Čech interleaving: for any $\alpha > 0$,

$$\check{\operatorname{Cech}}(L,\frac{\alpha}{2}) \subseteq \operatorname{Rips}(L,\alpha) \subseteq \check{\operatorname{Cech}}(L,\alpha)$$

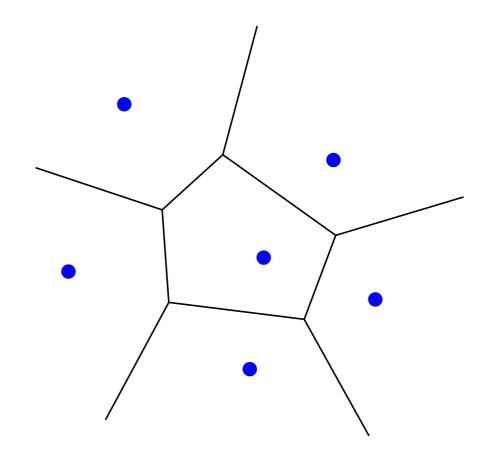
 $P = \{p_1, \cdots, p_n\} \in \mathbb{R}^d$



 $P = \{p_1, \cdots, p_n\} \in \mathbb{R}^d$

Voronoï cells:

 $Vor(p_i) = \{x \in \mathbb{R}^d : \forall j, ||x - p_i|| \le ||x - p_j||\}$

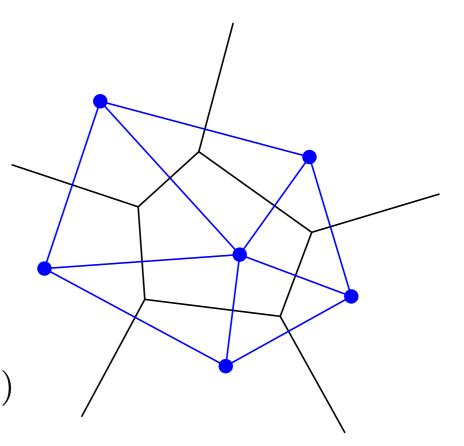


 $P = \{p_1, \cdots, p_n\} \in \mathbb{R}^d$

Voronoï cells:

$$Vor(p_i) = \{x \in \mathbb{R}^d : \forall j, ||x - p_i|| \le ||x - p_j||\}$$

Delaunay complex $\mathcal{D}(P)$: nerve of the cover made by the Voronoï cells $Vor(p_i)$



 $P = \{p_1, \cdots, p_n\} \in \mathbb{R}^d$

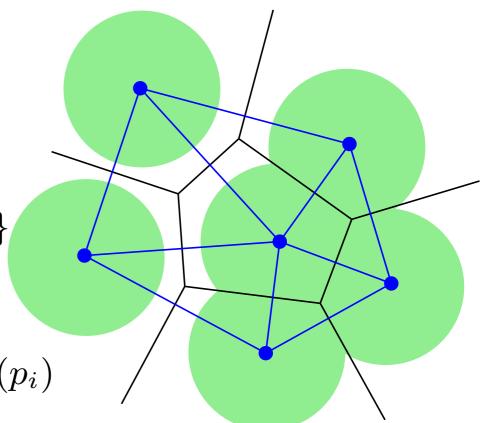
Voronoï cells:

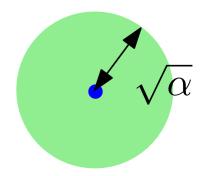
$$Vor(p_i) = \{x \in \mathbb{R}^d : \forall j, ||x - p_i|| \le ||x - p_j||\}$$

Delaunay complex $\mathcal{D}(P)$: nerve of the cover made by the Voronoï cells $Vor(p_i)$

Alpha complex $\mathcal{A}(P, \alpha)$: For $\alpha \geq 0$, nerve of the family

 $(Vor(p_i) \cap B(p_i, \sqrt{\alpha}))_{i=1, \cdots, n}$





 $P = \{p_1, \cdots, p_n\} \in \mathbb{R}^d$

Voronoï cells:

$$Vor(p_i) = \{x \in \mathbb{R}^d : \forall j, ||x - p_i|| \le ||x - p_j||\}$$

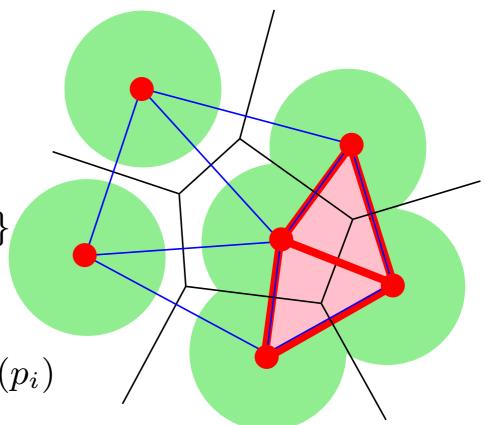
Delaunay complex $\mathcal{D}(P)$: nerve of the cover made by the Voronoï cells $Vor(p_i)$

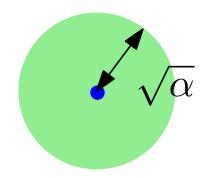
Alpha complex $\mathcal{A}(P, \alpha)$: For $\alpha \geq 0$, nerve of the family

$$(Vor(p_i) \cap B(p_i, \sqrt{\alpha}))_{i=1, \cdots, n}$$

Theorem:

 $\mathcal{A}(P,\alpha)$ is homotopy equivalent to $\cup_{i=1}^{n} B(p_i,\sqrt{\alpha})$.

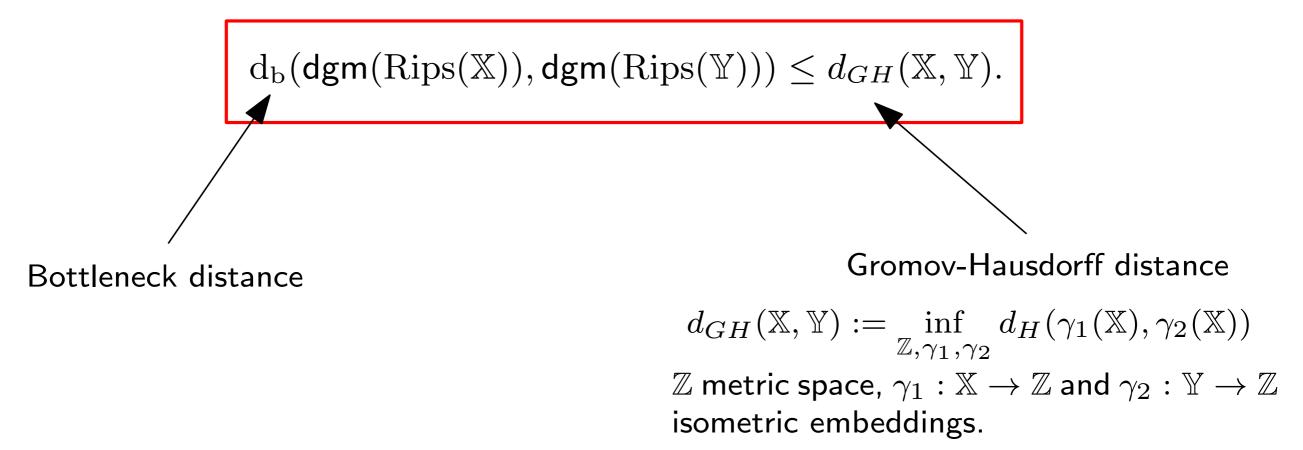




Stability properties

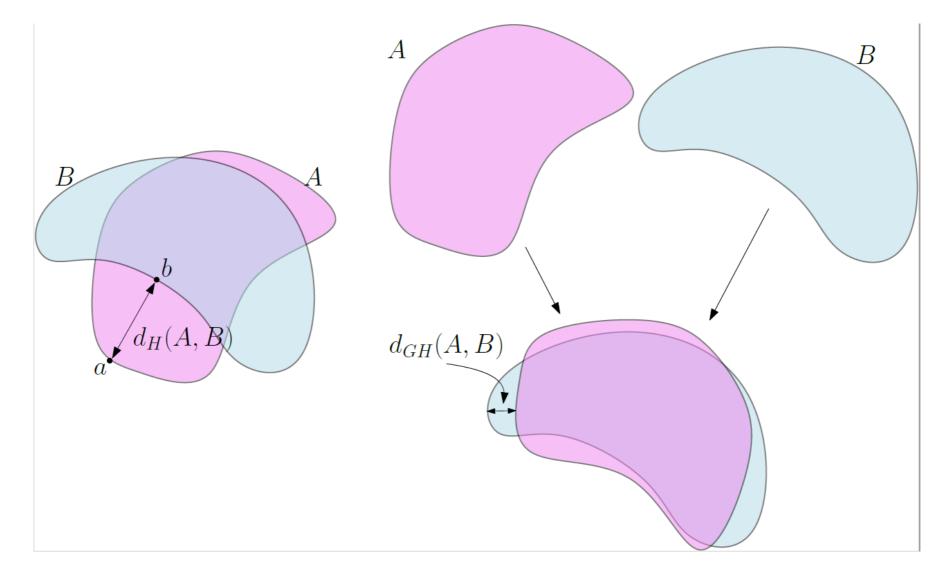
"Stability theorem": Close spaces/data sets have close persistence diagrams! [C., de Silva, Oudot - Geom. Dedicata 2013].

If $\mathbb X$ and $\mathbb Y$ are pre-compact metric spaces, then



Rem: This result also holds for other families of filtrations (particular case of a more general theorem).

Hausdorff distance



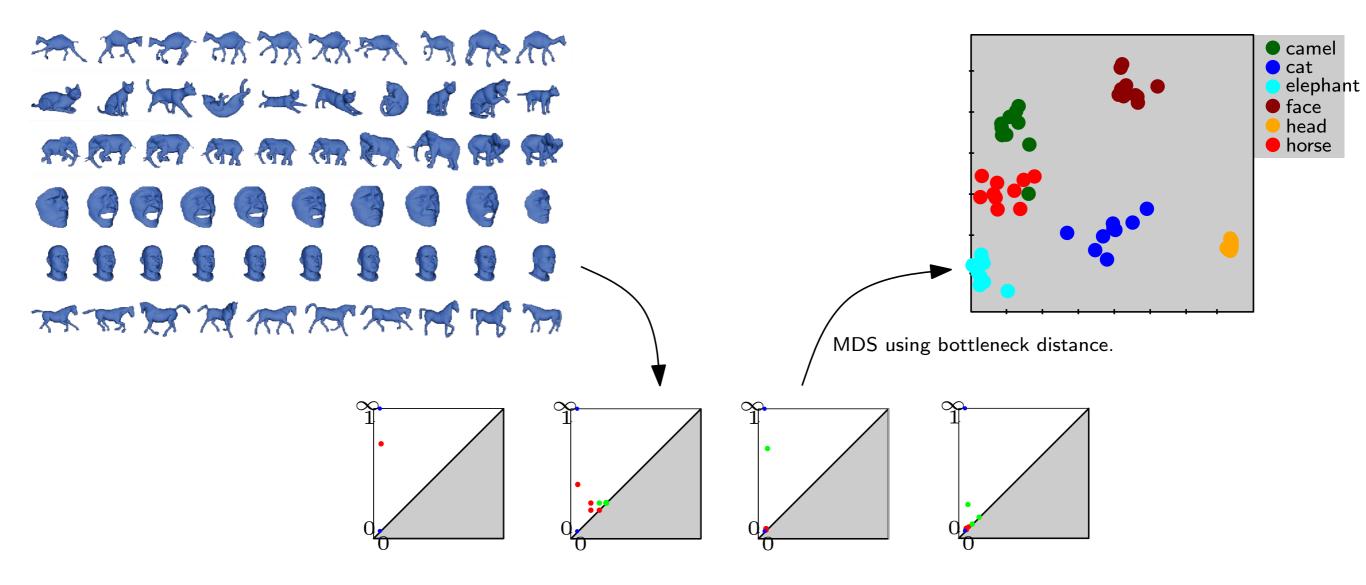
Let $A, B \subset M$ be two compact subsets of a metric space (M, d)

$$d_H(A,B) = \max\{\sup_{b\in B} d(b,A), \sup_{a\in A} d(a,B)\}$$

where $d(b, A) = \sup_{a \in A} d(b, a)$.

Application: non rigid shape classification

[C., Cohen-Steiner, Guibas, Mémoli, Oudot - SGP '09]



- Non rigid shapes in a same class are almost isometric, but computing Gromov-Hausdorff distance between shapes is extremely expensive.
- Compare diagrams of sampled shapes instead of shapes themselves.

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Examples:

- Let S be a filtered simplicial complex. If V_a = H(S_a) and v^b_a : H(S_a) → H(S_b) is the linear map induced by the inclusion S_a → S_b then (H(S_a) | a ∈ R) is a persistence module.
- Given a metric space (X, d_X) , H(Rips(X)) is a persistence module.
- If f : X → R is a function, then the filtration defined by the sublevel sets of f, F_a = f⁻¹((-∞, a]), induces a persistence module at homology level.

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

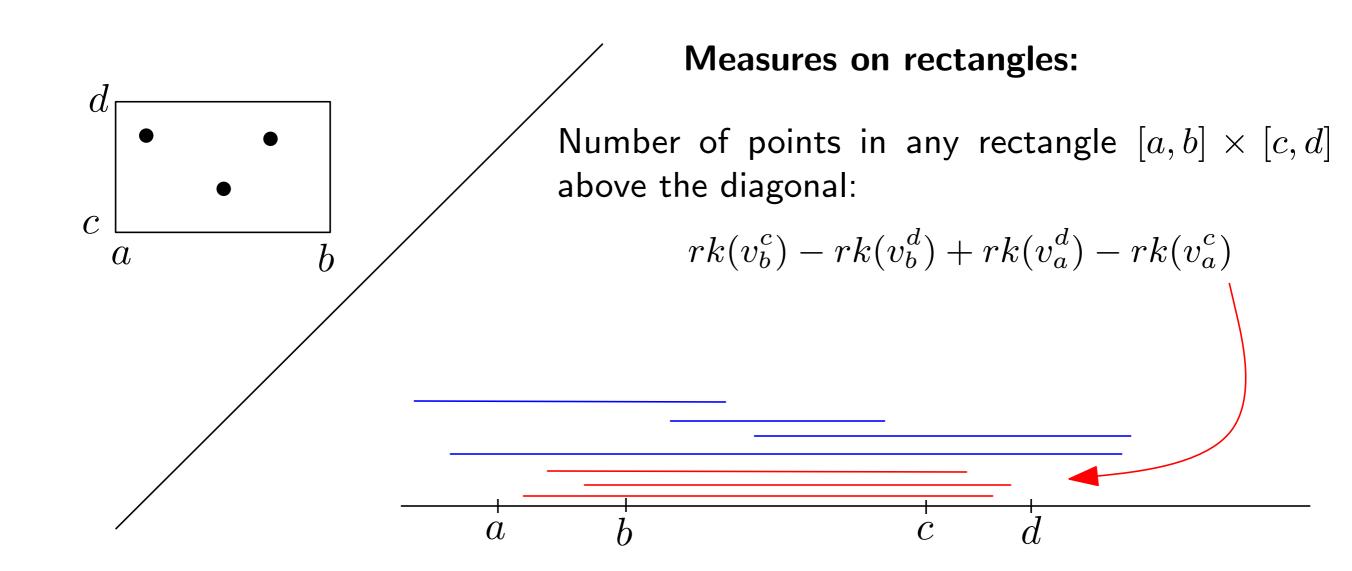
Definition: A persistence module \mathbb{V} is q-tame if for any a < b, v_a^b has a finite rank.

Theorem: [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG'09], [C., de Silva, Glisse, Oudot 12]

q-tame persistence modules have well-defined persistence diagrams.

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

An idea about the definition of persistence diagrams:



Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Definition: A persistence module \mathbb{V} is q-tame if for any a < b, v_a^b has a finite rank.

Theorem: [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG'09], [C., de Silva, Glisse, Oudot 12]

q-tame persistence modules have well-defined persistence diagrams.

Exercise: Let X be a precompact metric space. Then H(Rips(X)) and H(Cech(X)) are q-tame.

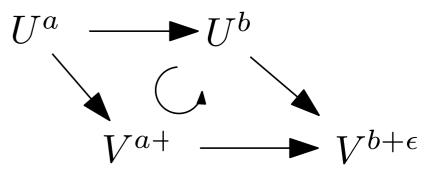
Recall that a metric space (X, ρ) is precompact if for any $\epsilon > 0$ there exists a finite subset $F_{\epsilon} \subset X$ such that $d_{H}(X, F_{\epsilon}) < \epsilon$ (i.e. $\forall x \in X, \exists p \in F_{\epsilon} \text{ s.t. } \rho(x, p) < \epsilon$).

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

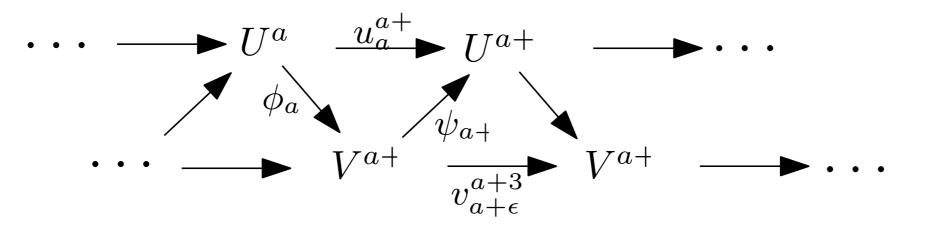
A homomorphism of degree ϵ between two persistence modules $\mathbb U$ and $\mathbb V$ is a collection Φ of linear maps

$$(\phi_a: U_a \to V_{a+\epsilon} \mid a \in \mathbf{R})$$

such that $v_{a+\epsilon}^{b+\epsilon} \circ \phi_a = \phi_b \circ u_a^b$ for all $a \leq b$.



An ε -interleaving between \mathbb{U} and \mathbb{V} is specified by two homomorphisms of degree ϵ $\Phi : \mathbb{U} \to \mathbb{V}$ and $\Psi : \mathbb{V} \to \mathbb{U}$ s.t. $\Phi \circ \Psi$ and $\Psi \circ \Phi$ are the "shifts" of degree 2ϵ between \mathbb{U} and \mathbb{V} .



Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Stability Thm: [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse Oudot 12] If U and V are q-tame and ϵ -interleaved for some $\epsilon \geq 0$ then

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Stability Thm: [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse Oudot 12] If U and V are q-tame and ϵ -interleaved for some $\epsilon \geq 0$ then

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$

Exercise: Show the stability theorem for (tame) functions :

let X be a topological space and let $f, g : X \to \mathbb{R}$ be two *tame* functions. Then

$$\mathsf{d}_{\mathrm{B}}(\mathrm{D}_f,\mathrm{D}_g) \le \|f-g\|_{\infty}.$$

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Stability Thm: [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse Oudot 12]

If $\mathbb U$ and $\mathbb V$ are q-tame and $\epsilon\text{-interleaved}$ for some $\epsilon\geq 0$ then

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$

Strategy: build filtrations that induce **q-tame** homology persistence modules and that turn out to be ϵ -interleaved when the considered spaces/functions are $O(\epsilon)$ -close.

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Stability Thm: [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse Oudot 12]

If $\mathbb U$ and $\mathbb V$ are q-tame and $\epsilon\text{-interleaved}$ for some $\epsilon\geq 0$ then

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$

Strategy: build filtrations that induce **q-tame** homology persistence modules and that turn out to be ϵ -interleaved when the considered spaces/functions are $O(\epsilon)$ -close.

Exercise: Prove the stability theorem for functions.

Multivalued maps and correspondences C X C^T

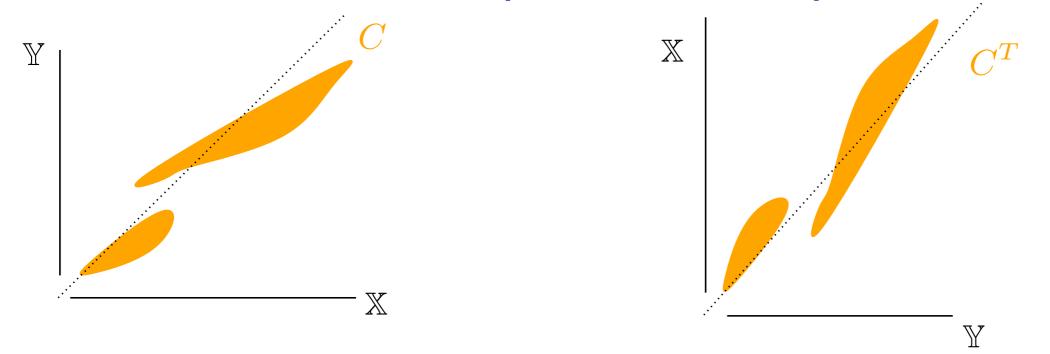
 \mathbb{X}

Y

A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ from a set \mathbb{X} to a set \mathbb{Y} is a subset of $\mathbb{X} \times \mathbb{Y}$, also denoted C, that projects surjectively onto \mathbb{X} through the canonical projection $\pi_{\mathbb{X}} : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$. The image $C(\sigma)$ of a subset σ of \mathbb{X} is the canonical projection onto \mathbb{Y} of the preimage of σ through $\pi_{\mathbb{X}}$.

Y

Multivalued maps and correspondences

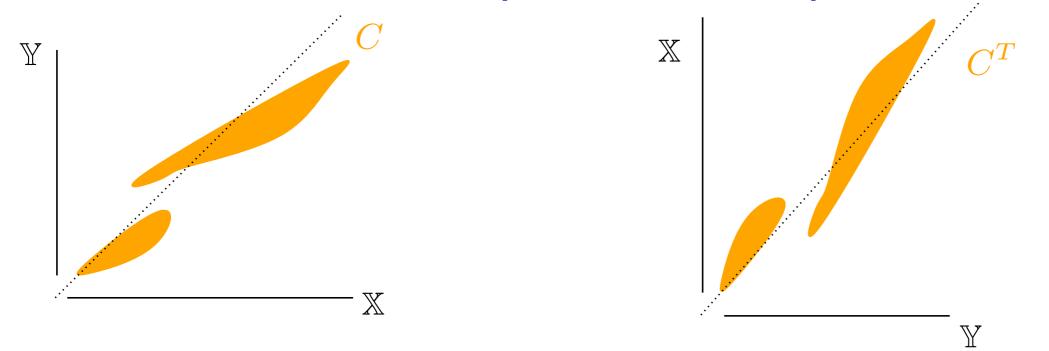


A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ from a set \mathbb{X} to a set \mathbb{Y} is a subset of $\mathbb{X} \times \mathbb{Y}$, also denoted C, that projects surjectively onto \mathbb{X} through the canonical projection $\pi_{\mathbb{X}} : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$. The image $C(\sigma)$ of a subset σ of \mathbb{X} is the canonical projection onto \mathbb{Y} of the preimage of σ through $\pi_{\mathbb{X}}$.

The transpose of C, denoted C^T , is the image of C through the symmetry map $(x, y) \mapsto (y, x)$.

A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is a correspondence if C^T is also a multivalued map.

Multivalued maps and correspondences



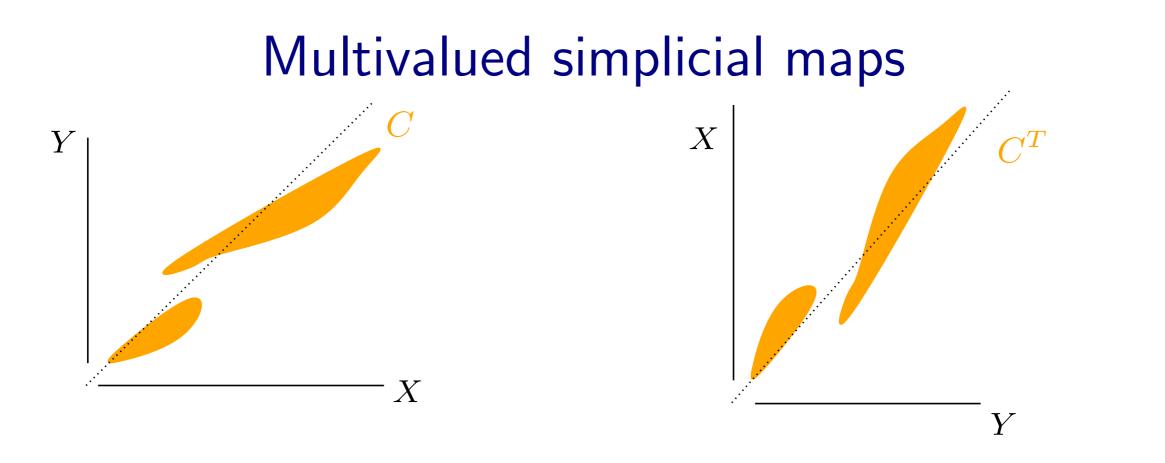
A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ from a set \mathbb{X} to a set \mathbb{Y} is a subset of $\mathbb{X} \times \mathbb{Y}$, also denoted C, that projects surjectively onto \mathbb{X} through the canonical projection $\pi_{\mathbb{X}} : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$. The image $C(\sigma)$ of a subset σ of \mathbb{X} is the canonical projection onto \mathbb{Y} of the preimage of σ through $\pi_{\mathbb{X}}$.

Example: *c*-correspondence and Gromov-Hausdorff distance.

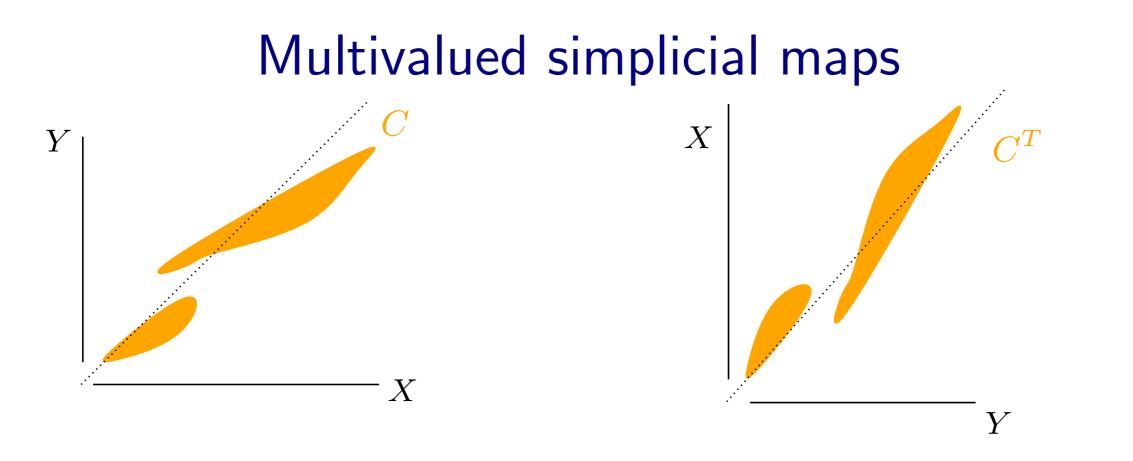
Let $(\mathbb{X}, \rho_{\mathbb{X}})$ and $(\mathbb{Y}, \rho_{\mathbb{Y}})$ be compact metric spaces. A correspondence $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is an ϵ -correspondence if $\forall (x, y), (x', y') \in C$, $|\rho_{\mathbb{X}}(x, x') - \rho_{\mathbb{Y}}(y, y')| \leq \varepsilon$.

 $(x,y), (x',y') \in C, |\rho_{\mathbb{X}}(x,x') - \rho_{\mathbb{Y}}(y,y')| \leq \varepsilon.$ $y = \frac{1}{2} \inf\{\varepsilon \geq 0 : \text{there exists an } \varepsilon\text{-correspondence between } \mathbb{X} \text{ and } \mathbb{Y}\}$

 \boldsymbol{y}



Let \mathbb{S} and \mathbb{T} be two filtered simplicial complexes with vertex sets \mathbb{X} and \mathbb{Y} respectively. A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is ε -simplicial from \mathbb{S} to \mathbb{T} if for any $a \in \mathbb{R}$ and any simplex $\sigma \in \mathbb{S}_a$, every finite subset of $C(\sigma)$ is a simplex of $\mathbb{T}_{a+\varepsilon}$.



Let \mathbb{S} and \mathbb{T} be two filtered simplicial complexes with vertex sets \mathbb{X} and \mathbb{Y} respectively. A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is ε -simplicial from \mathbb{S} to \mathbb{T} if for any $a \in \mathbb{R}$ and any simplex $\sigma \in \mathbb{S}_a$, every finite subset of $C(\sigma)$ is a simplex of $\mathbb{T}_{a+\varepsilon}$.

Proposition: Let \mathbb{S} , \mathbb{T} be filtered complexes with vertex sets \mathbb{X} , \mathbb{Y} respectively. If $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is a correspondence such that C and C^T are both ε -simplicial, then together they induce a canonical ε -interleaving between $H(\mathbb{S})$ and $H(\mathbb{T})$.

The example of the Rips and Čech filtrations

Proposition: Let $(\mathbb{X}, \rho_{\mathbb{X}})$, $(\mathbb{Y}, \rho_{\mathbb{Y}})$ be metric spaces. For any $\epsilon > 2d_{GH}(\mathbb{X}, \mathbb{Y})$ the persistence modules $H(\operatorname{Rips}(\mathbb{X}))$ and $H(\operatorname{Rips}(\mathbb{Y}))$ are ϵ -interleaved.

The example of the Rips and Čech filtrations

Proposition: Let (X, ρ_X) , (Y, ρ_Y) be metric spaces. For any $\epsilon > 2d_{GH}(X, Y)$ the persistence modules H(Rips(X)) and H(Rips(Y)) are ϵ -interleaved.

Proof: Let $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ be a correspondence with distortion at most ϵ . If $\sigma \in \operatorname{Rips}(\mathbb{X}, a)$ then $\rho_{\mathbb{X}}(x, x') \leq a$ for all $x, x' \in \sigma$. Let $\tau \subseteq C(\sigma)$ be any finite subset. For any $y, y' \in \tau$ there exist $x, x' \in \sigma$ s. t. $y \in C(x)$, $y' \in C(x')$ so

 $\rho_{\mathbb{Y}}(y, y') \le \rho_{\mathbb{X}}(x, x') + \epsilon \le a + \epsilon \text{ and } \tau \in \operatorname{Rips}(\mathbb{Y}, a + \epsilon)$

 $\Rightarrow C \text{ is } \epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{X}) \text{ to } \operatorname{Rips}(\mathbb{Y}).$ Symetrically, C^T is $\epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{Y}) \text{ to } \operatorname{Rips}(\mathbb{X}).$

The example of the Rips and Čech filtrations

Proposition: Let (X, ρ_X) , (Y, ρ_Y) be metric spaces. For any $\epsilon > 2d_{GH}(X, Y)$ the persistence modules H(Rips(X)) and H(Rips(Y)) are ϵ -interleaved.

Proof: Let $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ be a correspondence with distortion at most ϵ . If $\sigma \in \operatorname{Rips}(\mathbb{X}, a)$ then $\rho_{\mathbb{X}}(x, x') \leq a$ for all $x, x' \in \sigma$. Let $\tau \subseteq C(\sigma)$ be any finite subset. For any $y, y' \in \tau$ there exist $x, x' \in \sigma$ s. t. $y \in C(x), y' \in C(x')$ so

 $\rho_{\mathbb{Y}}(y, y') \le \rho_{\mathbb{X}}(x, x') + \epsilon \le a + \epsilon \text{ and } \tau \in \operatorname{Rips}(\mathbb{Y}, a + \epsilon)$

 $\Rightarrow C \text{ is } \epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{X}) \text{ to } \operatorname{Rips}(\mathbb{Y}).$ Symetrically, C^T is $\epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{Y}) \text{ to } \operatorname{Rips}(\mathbb{X}).$

Proposition: Let $(\mathbb{X}, \rho_{\mathbb{X}}), (\mathbb{Y}, \rho_{\mathbb{Y}})$ be metric spaces. For any $\epsilon > 2d_{GH}(\mathbb{X}, \mathbb{Y})$ the persistence modules $H(\operatorname{\check{C}ech}(\mathbb{X}))$ and $H(\operatorname{\check{C}ech}(\mathbb{Y}))$ are ϵ -interleaved.

The example of the Rips and Čech filtrations

Proposition: Let (X, ρ_X) , (Y, ρ_Y) be metric spaces. For any $\epsilon > 2d_{GH}(X, Y)$ the persistence modules H(Rips(X)) and H(Rips(Y)) are ϵ -interleaved.

Proof: Let $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ be a correspondence with distortion at most ϵ . If $\sigma \in \operatorname{Rips}(\mathbb{X}, a)$ then $\rho_{\mathbb{X}}(x, x') \leq a$ for all $x, x' \in \sigma$. Let $\tau \subseteq C(\sigma)$ be any finite subset. For any $y, y' \in \tau$ there exist $x, x' \in \sigma$ s. t. $y \in C(x), y' \in C(x')$ so

 $\rho_{\mathbb{Y}}(y, y') \le \rho_{\mathbb{X}}(x, x') + \epsilon \le a + \epsilon \text{ and } \tau \in \operatorname{Rips}(\mathbb{Y}, a + \epsilon)$

 $\Rightarrow C \text{ is } \epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{X}) \text{ to } \operatorname{Rips}(\mathbb{Y}).$ Symetrically, C^T is $\epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{Y}) \text{ to } \operatorname{Rips}(\mathbb{X}).$

Proposition: Let $(\mathbb{X}, \rho_{\mathbb{X}}), (\mathbb{Y}, \rho_{\mathbb{Y}})$ be metric spaces. For any $\epsilon > 2d_{GH}(\mathbb{X}, \mathbb{Y})$ the persistence modules $H(\operatorname{\check{C}ech}(\mathbb{X}))$ and $H(\operatorname{\check{C}ech}(\mathbb{Y}))$ are ϵ -interleaved.

Remark: Similar results for witness complexes (fixed landmarks)

Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Cech(X)) are q-tame.

As a consequence dgm(H(Rips(X))) and dgm($H(\check{Cech}(X))$) are well-defined!

Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Cech(X)) are q-tame.

As a consequence dgm(H(Rips(X))) and dgm($H(\check{Cech}(X))$) are well-defined!

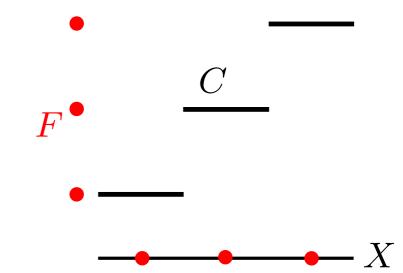
Proof: show that I_a^b : $H(Rips(X, a)) \to H(Rips(X, b))$ has finite rank whenever a < b.

Let $\epsilon = (b-a)/2$ and let $F \subset X$ be finite s. t. $d_H(X,F) \leq \epsilon/2$.

Then $C = \{(x, f) \in X \times F | d(x, f) \le \epsilon/2\}$ is an ϵ -correspondence.

Using the interleaving map, I_a^b factorizes as

 $\mathbf{H}\operatorname{Rips}(X, a) \to \mathbf{H}\operatorname{Rips}(F, a + \varepsilon) \to \mathbf{H}\operatorname{Rips}(X, a + 2\varepsilon) = \mathbf{H}\operatorname{Rips}(X, b)$ finite dimensional



Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Cech(X)) are q-tame.

As a consequence dgm(H(Rips(X))) and dgm($H(\check{Cech}(X))$) are well-defined!

Theorem: Let \mathbb{X}, \mathbb{Y} be compact metric spaces. Then

 $d_{\mathrm{b}}(\mathsf{dgm}(\mathrm{H}(\check{\mathrm{Cech}}(\mathbb{X}))),\mathsf{dgm}(\mathrm{H}(\check{\mathrm{Cech}}(\mathbb{Y})))) \leq 2d_{\mathrm{GH}}(\mathbb{X},\mathbb{Y}),$

 $d_{b}(\mathsf{dgm}(H(\operatorname{Rips}(\mathbb{X}))),\mathsf{dgm}(H(\operatorname{Rips}(\mathbb{Y})))) \leq 2d_{\operatorname{GH}}(\mathbb{X},\mathbb{Y}).$

Remark: The proofs never use the triangle inequality! The previous approch and results easily extend to other settings like, e.g. spaces endowed with a similarity measure.

Why persistence

Even when X is compact, H_p(Rips(X, a)), p ≥ 1, might be infinite dimensional for some value of a:

X a

It is also possible to build such an example with the open Rips t_{t} complex:

 $[x_0, x_1, \cdots, x_k] \in \operatorname{Rips}(X, a^-) \Leftrightarrow d_X(x_i, x_j) < a, \text{ for all } i, j$

Why persistence

• Even when X is compact, $H_p(Rips(X, a))$, $p \ge 1$, might be infinite dimensional for some value of a:

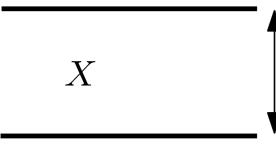
It is also possible to build such an example with the open Rips complex:

 $[x_0, x_1, \cdots, x_k] \in \operatorname{Rips}(X, a^-) \Leftrightarrow d_X(x_i, x_j) < a, \text{ for all } i, j$

• For any $\alpha, \beta \in \mathbf{R}$ such that $0 < \alpha \leq \beta$ and any integer k there exists a compact metric space X such that for any $a \in [\alpha, \beta]$, $H_k(\operatorname{Rips}(X, a))$ has a non countable infinite dimension (can be embedded in \mathbf{R}^4 [Droz 2013]).

Why persistence

Even when X is compact, H_p(Rips(X, a)), p ≥ 1, might be infinite dimensional for some value of a:



It is also possible to build such an example with the open Rips a complex:

 $[x_0, x_1, \cdots, x_k] \in \operatorname{Rips}(X, a^-) \Leftrightarrow d_X(x_i, x_j) < a, \text{ for all } i, j$

- For any $\alpha, \beta \in \mathbf{R}$ such that $0 < \alpha \leq \beta$ and any integer k there exists a compact metric space X such that for any $a \in [\alpha, \beta]$, $H_k(\operatorname{Rips}(X, a))$ has a non countable infinite dimension (can be embedded in \mathbf{R}^4 [Droz 2013]).
- If X is compact, then dim H₁(Čech(X, a)) < +∞ for all a ([Smale-Smale, C.-de Silva]).
- If X is geodesic, then $\dim H_1(\operatorname{Rips}(X, a)) < +\infty$ for all a > 0 and $\operatorname{Dgm}(H_1(\operatorname{Rips}(X)))$ is contained in the vertical line x = 0.
- If X is a geodesic δ -hyperbolic space then $Dgm(H_2(Rips(X)))$ is contained in a vertical band of width $O(\delta)$.

Computational issues and robustness to noise A statistical perspective

Some weaknesses

If \mathbb{X} and \mathbb{Y} are pre-compact metric spaces, then

 $d_{b}(\mathsf{dgm}(\operatorname{Rips}(\mathbb{X})), \mathsf{dgm}(\operatorname{Rips}(\mathbb{Y}))) \leq 2d_{GH}(\mathbb{X}, \mathbb{Y}).$

 \rightarrow Vietoris-Rips (or Cech, witness) filtrations quickly become prohibitively large as the size of the data increases ($O(|X|^d)$), making the computation of persistence practically almost impossible.

 \rightarrow Persistence diagrams of Rips-Vietoris (and Cěch, witness,..) filtrations and Gromov-Hausdorff distance are very sensitive to noise and outliers.

Statistical setting

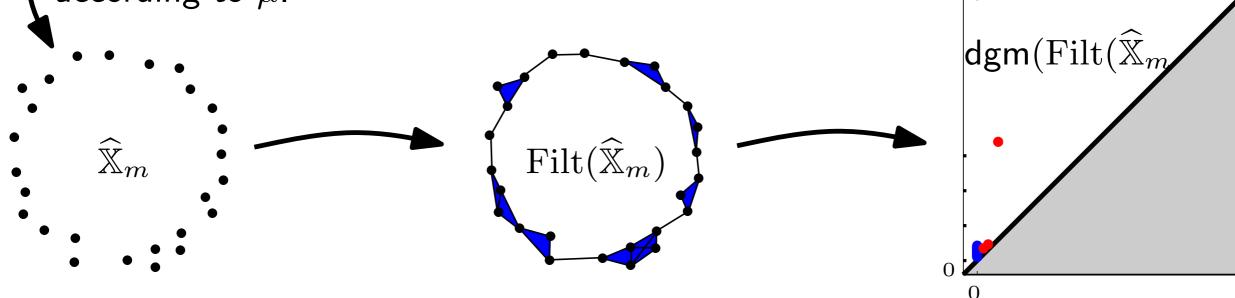
 (\mathbb{M},ρ) metric space

 μ a probability measure with compact support $\mathbb{X}_{\mu}.$

Sample m points according to μ .

Examples:

- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{Rips}_{\alpha}(\widehat{\mathbb{X}}_m)$
- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{\check{Cech}}_{\alpha}(\widehat{\mathbb{X}}_m)$
- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{sublevelset} \operatorname{filtration} \operatorname{of} \rho(., \mathbb{X}_\mu).$



Questions:

• Statistical properties of dgm(Filt($\widehat{\mathbb{X}}_m$)) ? dgm(Filt($\widehat{\mathbb{X}}_m$)) \rightarrow ? as $m \rightarrow +\infty$?

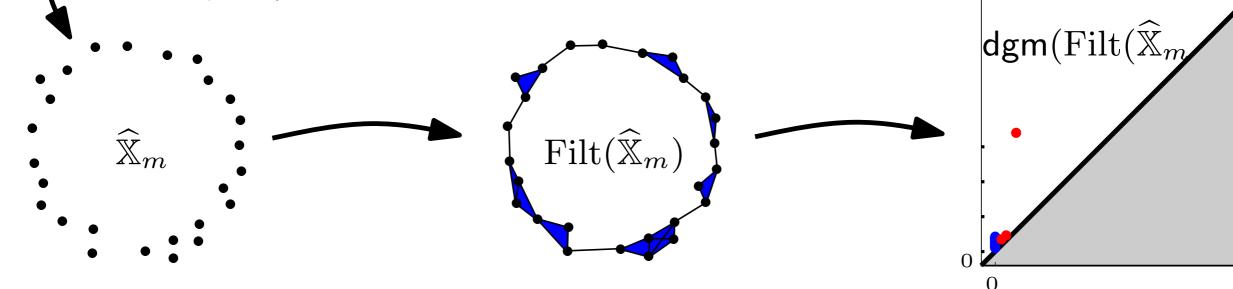
Statistical setting

 μ a probability measure with compact support $\mathbb{X}_{\mu}.$

Sample m points according to μ .

Examples:

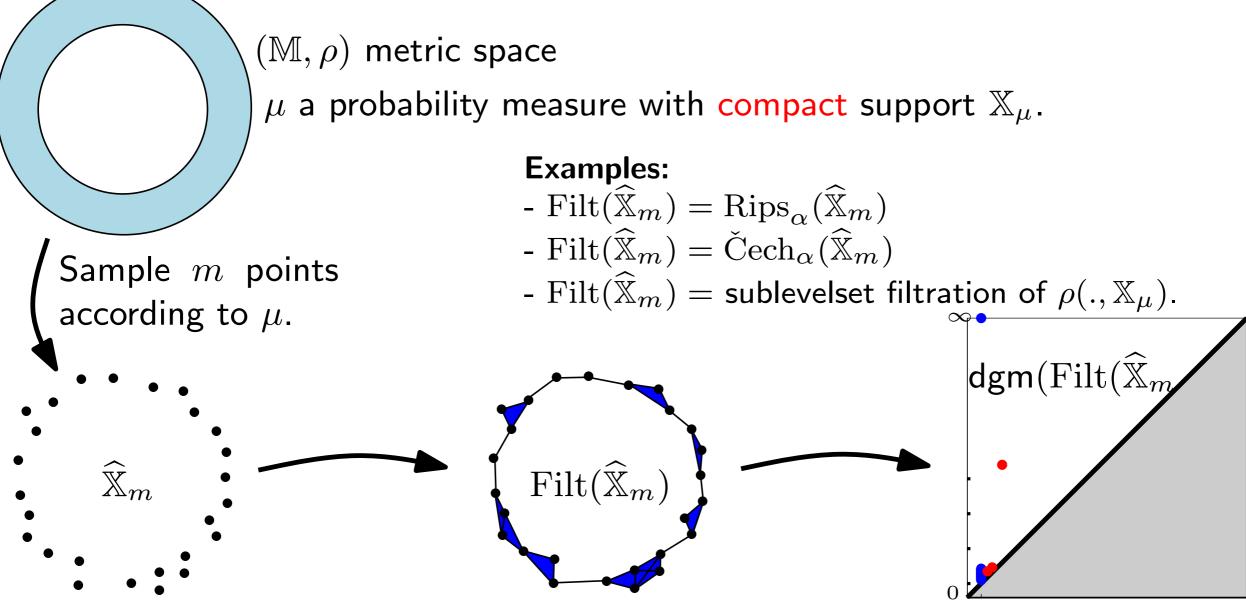
- $\operatorname{Filt}(\widetilde{\mathbb{X}}_m) = \operatorname{Rips}_{\alpha}(\widetilde{\mathbb{X}}_m)$
- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{\check{C}ech}_{\alpha}(\widehat{\mathbb{X}}_m)$
- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{sublevelset} \operatorname{filtration} \operatorname{of} \rho(., \mathbb{X}_\mu).$



Questions:

- Statistical properties of dgm(Filt($\widehat{\mathbb{X}}_m$)) ? dgm(Filt($\widehat{\mathbb{X}}_m$)) \rightarrow ? as $m \rightarrow +\infty$?
- Can we do more statistics with persistence diagrams?

Statistical setting

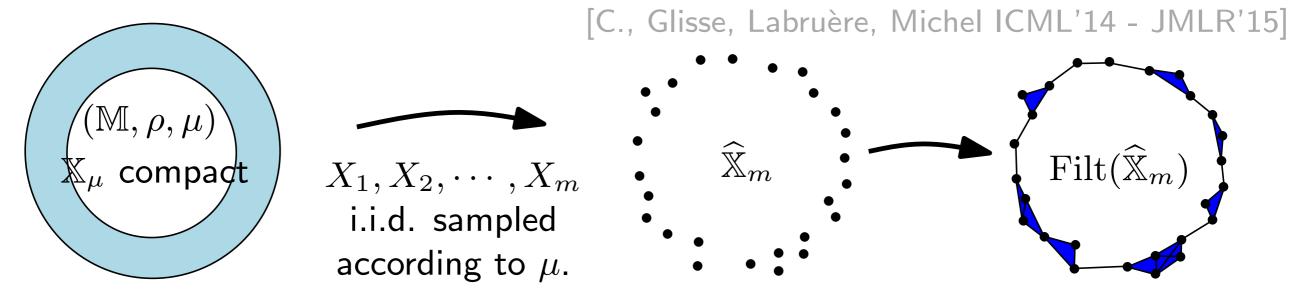


0

Stability thm: $d_b(dgm(Filt(\mathbb{X}_{\mu})), dgm(Filt(\widehat{\mathbb{X}}_m))) \leq 2d_{GH}(\mathbb{X}_{\mu}, \widehat{\mathbb{X}}_m)$

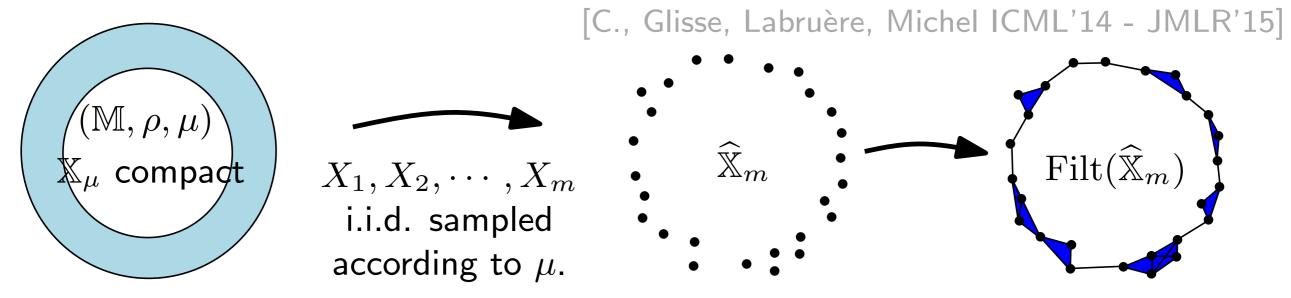
So, for any $\varepsilon > 0$, $\mathbb{P}\left(\mathrm{d}_{\mathrm{b}}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{m}))\right) > \varepsilon\right) \leq \mathbb{P}\left(d_{GH}(\mathbb{X}_{\mu}, \widehat{\mathbb{X}}_{m}) > \frac{\varepsilon}{2}\right)$

Deviation inequality



For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in \mathbb{X}_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

Deviation inequality



For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in \mathbb{X}_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

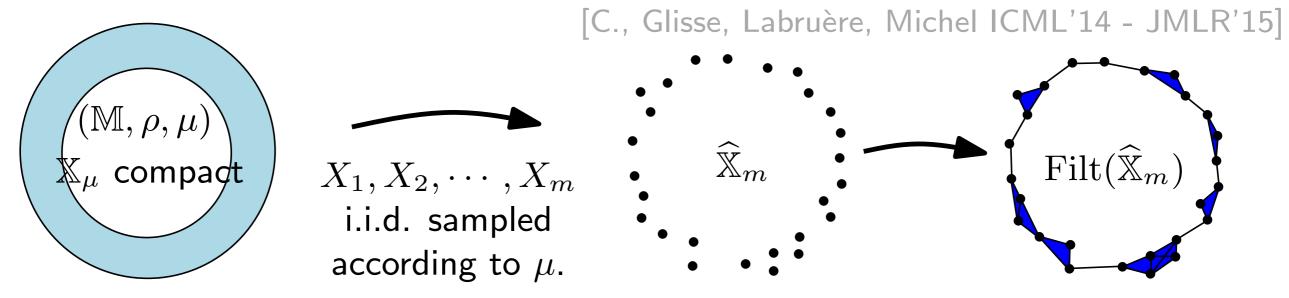
Theorem: If μ satisfies the (a, b)-standard assumption, then for any $\varepsilon > 0$:

$$\mathbb{P}\left(\mathrm{d}_{\mathrm{b}}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{m}))\right) > \varepsilon\right) \le \min(\frac{8^{b}}{a\varepsilon^{b}}\exp(-ma\varepsilon^{b}), 1).$$

Moreover
$$\lim_{n \to \infty} \mathbb{P}\left(\mathrm{d}_{\mathrm{b}}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{m})) \right) \leq C_{1}\left(\frac{\log m}{m} \right)^{1/b} \right) = 1$$

where C_1 is a constant only depending on a and b.

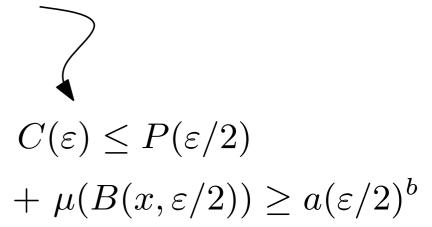
Deviation inequality



For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in \mathbb{X}_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

Sketch of proof:

- 1. Upperbound $\mathbb{P}\left(d_H(\mathbb{X}_{\mu}, \widehat{\mathbb{X}}_m) > \frac{\varepsilon}{2}\right)$.
- 2. (a, b) standard assumption \Rightarrow an explicit upperbound for the covering number of \mathbb{X}_{μ} (by balls of radius $\varepsilon/2$).
- 3. Apply "union bound" argument.



Minimax rate of convergence

[C., Glisse, Labruère, Michel ICML'14 - JMLR'15]

Let $\mathcal{P}(a, b, \mathbb{M})$ be the set of all the probability measures on the metric space (\mathbb{M}, ρ) satisfying the (a, b)-standard assumption on \mathbb{M} :

Minimax rate of convergence

[C., Glisse, Labruère, Michel ICML'14 - JMLR'15]

Let $\mathcal{P}(a, b, \mathbb{M})$ be the set of all the probability measures on the metric space (\mathbb{M}, ρ) satisfying the (a, b)-standard assumption on \mathbb{M} :

Theorem: Let $\mathcal{P}(a, b, \mathbb{M})$ be the set of (a, b)-standard proba measures on \mathbb{M} . Then:

$$\sup_{\mu \in \mathcal{P}(a,b,\mathbb{M})} \mathbb{E}\left[\mathrm{d}_{\mathrm{b}}(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{m})))\right] \leq C\left(\frac{\ln m}{m}\right)^{1/b}$$

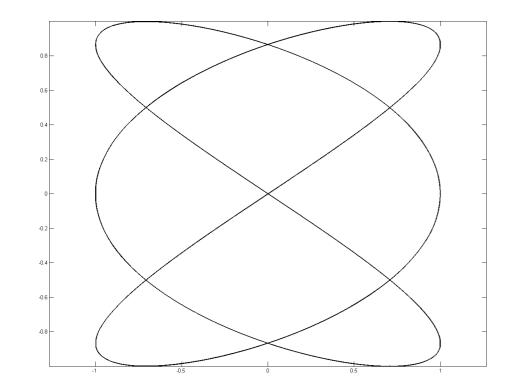
where the constant C only depends on a and b (not on $\mathbb{M}!$). Assume moreover that there exists a non isolated point x in \mathbb{M} and let x_m be a sequence in $\mathbb{M} \setminus \{x\}$ such that $\rho(x, x_m) \leq (am)^{-1/b}$. Then for any estimator $\widehat{\operatorname{dgm}}_m$ of $\operatorname{dgm}(\operatorname{Filt}(\mathbb{X}_\mu))$:

$$\liminf_{m \to \infty} \rho(x, x_m)^{-1} \sup_{\mu \in \mathcal{P}(a, b, \mathbb{M})} \mathbb{E}\left[\mathrm{d}_{\mathrm{b}}(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \widehat{\mathsf{dgm}}_m) \right] \ge C'$$

where C' is an absolute constant.

Remark: we can obtain slightly better bounds if \mathbb{X}_{μ} is a submanifold of \mathbb{R}^{D} - see [Genovese, Perone-Pacifico, Verdinelli, Wasserman 2011, 2012]

Numerical illustrations



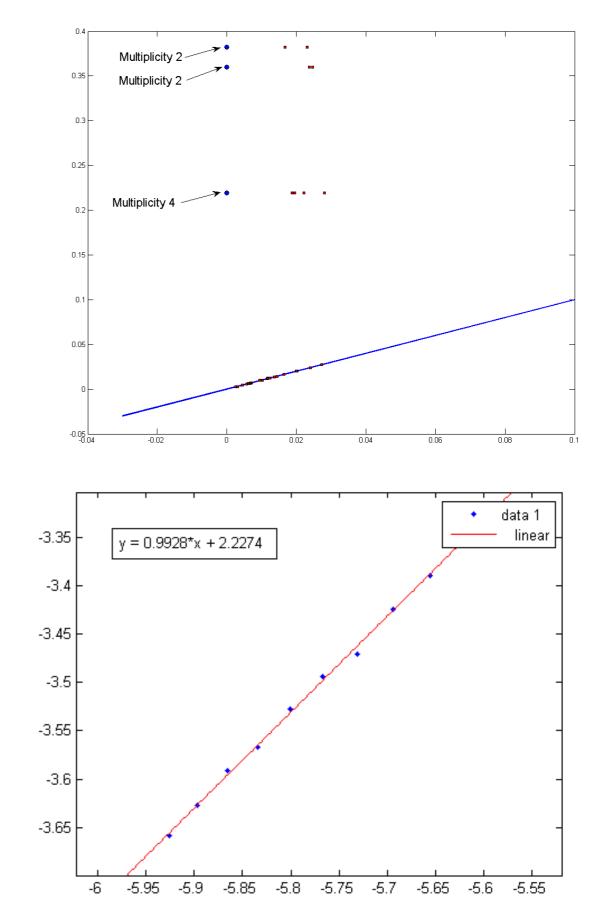
- μ : unif. measure on Lissajous curve \mathbb{X}_{μ} . - Filt: distance to \mathbb{X}_{μ} in \mathbb{R}^2 .

- sample k = 300 sets of m points for m = [2100:100:3000].

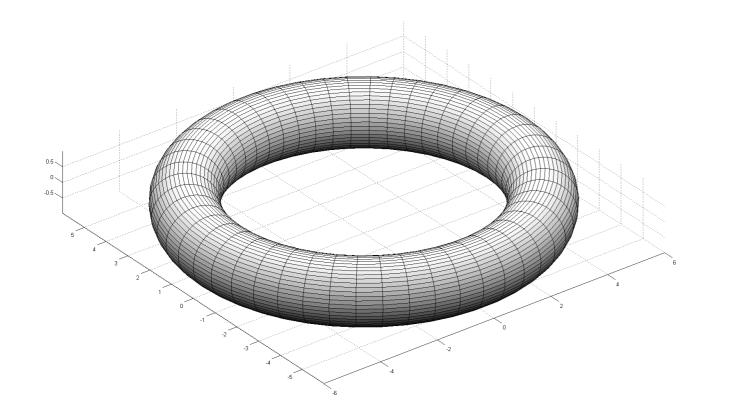
- compute

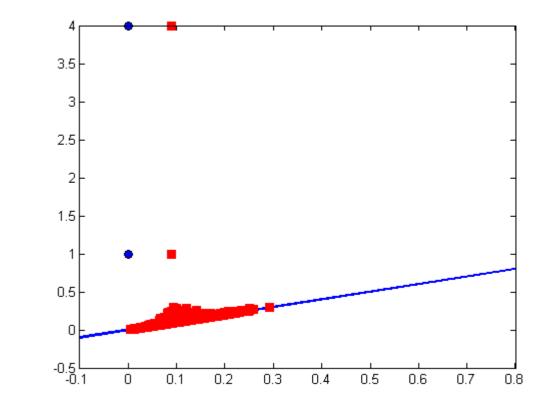
$$\widehat{\mathbb{E}}_m = \widehat{\mathbb{E}}[d_B(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_\mu)), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}_n})))]$$

- plot $\log(\widehat{\mathbb{E}}_m)$ as a function of $\log(\log(m)/m)$.



Numerical illustrations

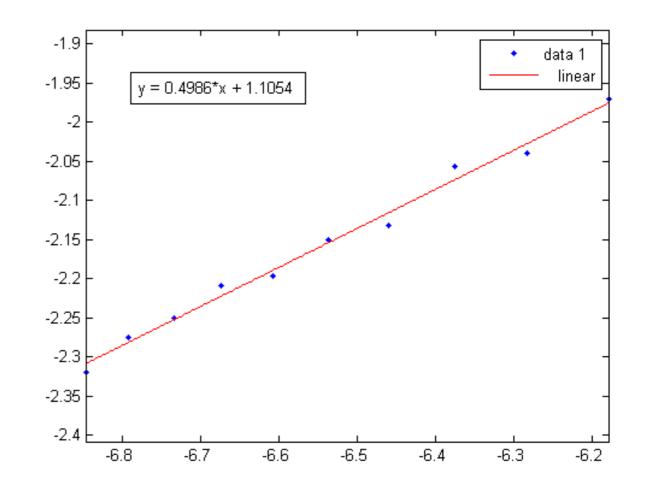




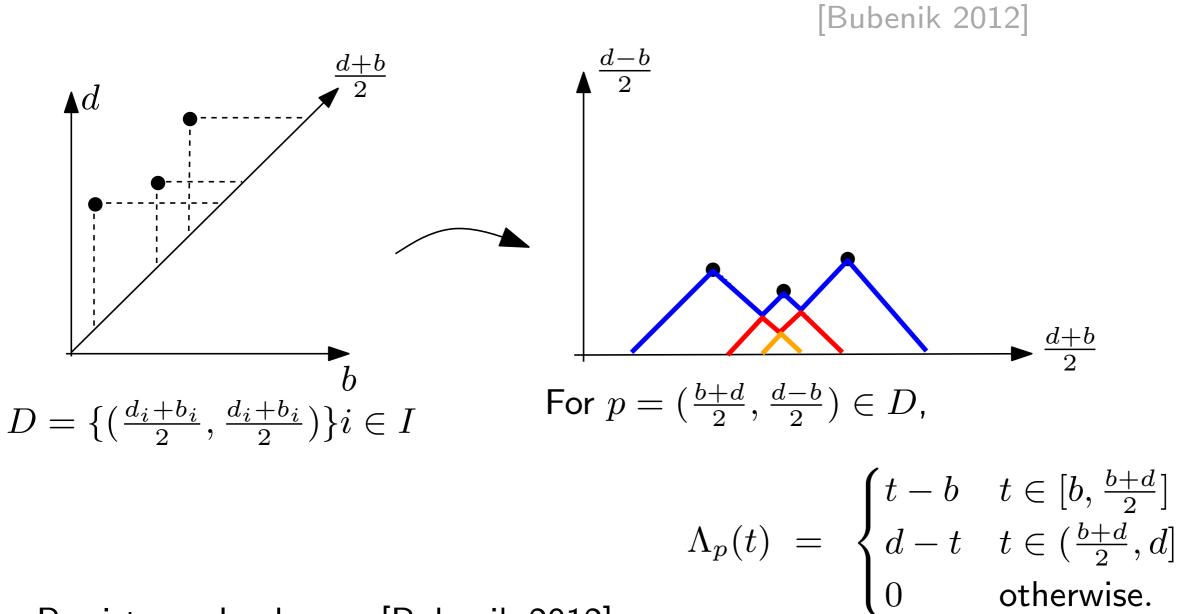
- μ: unif. measure on a torus X_μ.
 Filt: distance to X_μ in R³.
 sample k = 300 sets of n points for m = [12000 : 1000 : 21000].
- compute

$$\widehat{\mathbb{E}}_m = \widehat{\mathbb{E}}[d_B(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_\mu)), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}_m})))]$$

- plot $\log(\widehat{\mathbb{E}}_m)$ as a function of $\log(\log(m)/m)$.



Persistence landscapes

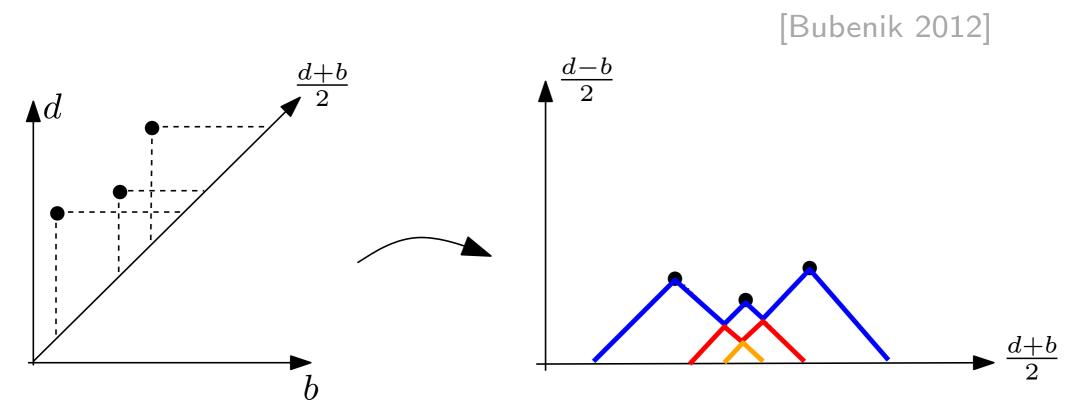


Persistence landscape [Bubenik 2012]:

$$\lambda_D(k,t) = \underset{p \in \mathsf{dgm}}{\mathsf{kmax}} \Lambda_p(t), \quad t \in \mathbb{R}, k \in \mathbb{N},$$

where kmax is the kth largest value in the set.

Persistence landscapes



Persistence landscape [Bubenik 2012]:

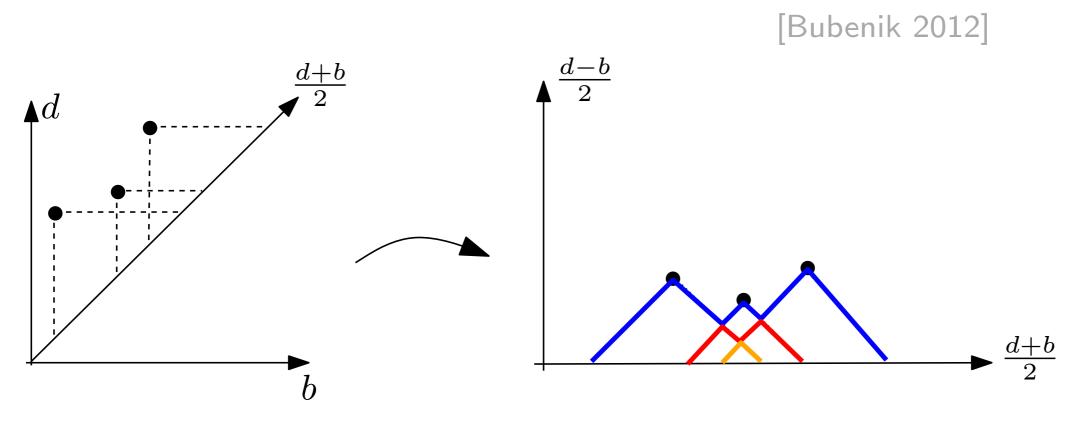
$$\lambda_D(k,t) = \underset{p \in \mathsf{dgm}}{\mathsf{kmax}} \Lambda_p(t), \quad t \in \mathbb{R}, k \in \mathbb{N},$$

Properties

- For any $t \in \mathbb{R}$ and any $k \in \mathbb{N}$, $0 \leq \lambda_D(k, t) \leq \lambda_D(k+1, t)$.
- For any $t \in \mathbb{R}$ and any $k \in \mathbb{N}$, $|\lambda_D(k,t) \lambda_{D'}(k,t)| \leq d_B(D,D')$ where $d_B(D,D')$ denotes the bottleneck distance between D and D'.

stability properties of persistence landscapes

Persistence landscapes



- Persistence encoded as an element of a functional space (vector space!).
- Expectation of distribution of landscapes is well-defined and can be approximated from average of sampled landscapes.
- Process point of view: convergence results and convergence rates \rightarrow confidence intervals can be computed using bootstrap.

[C., Fasy, Lecci, Rinaldo, Wasserman SoCG 2014] Provide a convenient way to process persistence information in deep neural networks. [Kim, Kim, Zaheer, Kim, C., Wasserman NeurIPS 2020,

Carrière, C., Ike, Lacombe, Royer, Umeda AISTAT 2020]

Weak convergence of landscapes

Let \mathcal{L}_T be the space of landscapes with support contained in [0, T].

Let P be a probability distribution on \mathcal{L}_T , and let $\lambda_1, \ldots, \lambda_n \sim P$. Let μ be the mean landscape:

$$\mu(t) = \mathbb{E}[\lambda_i(t)], \quad t \in [0, T].$$

We estimate μ with the sample average

$$\overline{\lambda}_n(t) = \frac{1}{n} \sum_{i=1}^n \lambda_i(t), \quad t \in [0, T].$$

Since $\mathbb{E}(\overline{\lambda}_n(t)) = \mu(t)$, $\overline{\lambda}_n$ is a point-wise unbiased estimator of μ .

For fixed t: pointwise convergence of $\lambda_n(t)$ to $\mu(t) + CLT$

Here, convergence of the process

$$\left\{\sqrt{n}\left(\overline{\lambda}_n(t) - \mu(t)\right)\right\}_{t \in [0,T]}$$

Weak convergence of landscapes

Let

 $\mathcal{F} = \{f_t\}_{0 \le t \le T}$

where $f_t : \mathcal{L}_T \to \mathbb{R}$ is defined by $f_t(\lambda) = \lambda(t)$. Empirical process indexed by $f_t \in \mathcal{F}$:

$$\mathbb{G}_n(t) = \mathbb{G}_n(f_t) := \sqrt{n} \left(\overline{\lambda}_n(t) - \mu(t)\right) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \left(f_t(\lambda_i) - \mu(t)\right) = \sqrt{n} (P_n - P)(f_t)$$

Theorem [Weak convergence of landscapes]. Let \mathbb{G} be a Brownian bridge with covariance function $\kappa(t,s) = \int f_t(\lambda) f_s(\lambda) dP(\lambda) - \int f_t(\lambda) dP(\lambda) \int f_s(\lambda) dP(\lambda)$, for $t,s \in [0,T]$. Then $\mathbb{G}_n \rightsquigarrow \mathbb{G}$.

Weak convergence of landscapes

Let

 $\mathcal{F} = \{f_t\}_{0 \le t \le T}$

where $f_t : \mathcal{L}_T \to \mathbb{R}$ is defined by $f_t(\lambda) = \lambda(t)$. Empirical process indexed by $f_t \in \mathcal{F}$:

$$\mathbb{G}_n(t) = \mathbb{G}_n(f_t) := \sqrt{n} \left(\overline{\lambda}_n(t) - \mu(t) \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \left(f_t(\lambda_i) - \mu(t) \right) = \sqrt{n} (P_n - P) (f_t)$$

For $t \in [0,T]$, let $\sigma(t)$ be the standard deviation of $\sqrt{n}\,\overline{\lambda}_n(t)$, i.e. $\sigma(t) = \sqrt{N \operatorname{Var}(\overline{\lambda}_n(t))} = \sqrt{\operatorname{Var}(f_t(\lambda_1))}.$

Theorem [Uniform CLT]. Suppose that $\sigma(t) > c > 0$ in an interval $[t_*, t^*] \subset [0, T]$, for some constant c. Then there exists a random variable $W \stackrel{d}{=} \sup_{t \in [t_*, t^*]} |\mathbb{G}(f_t)|$ such that

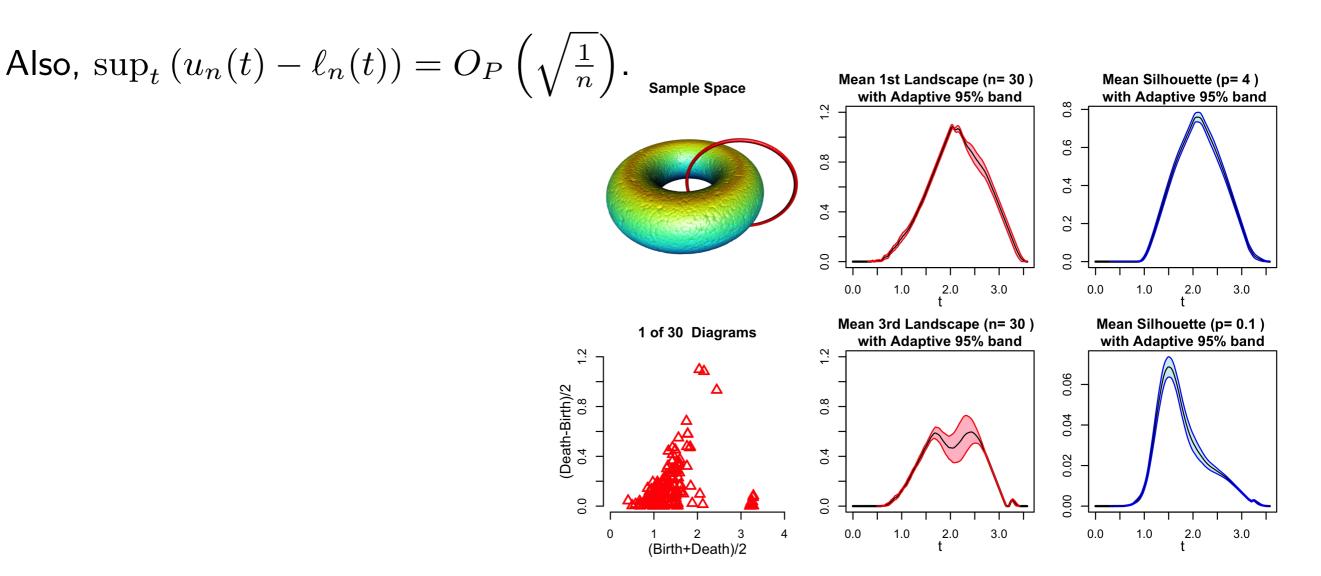
$$\sup_{z \in \mathbb{R}} \left| \mathbb{P}\left(\sup_{t \in [t_*, t^*]} \left| \mathbb{G}_n(t) \right| \le z \right) - \mathbb{P}\left(W \le z \right) \right| = O\left(\frac{\left(\log n \right)^{7/8}}{n^{1/8}} \right).$$

Some consequences

Bootstrap for landscapes \rightarrow confidence bands for landscapes.

Theorem. Suppose that $\sigma(t) > c > 0$ in an interval $[t_*, t^*] \subset [0, T]$, for some constant c. Then, given a confidence level $1 - \alpha$, one can construct confidence functions $\ell_n(t)$ and $u_n(t)$ such that

$$\mathbb{P}\Big(\ell_n(t) \le \mu(t) \le u_n(t) \text{ for all } t \in [t_*, t^*]\Big) \ge 1 - \alpha - O\left(\frac{(\log n)^{7/8}}{n^{1/8}}\right)$$

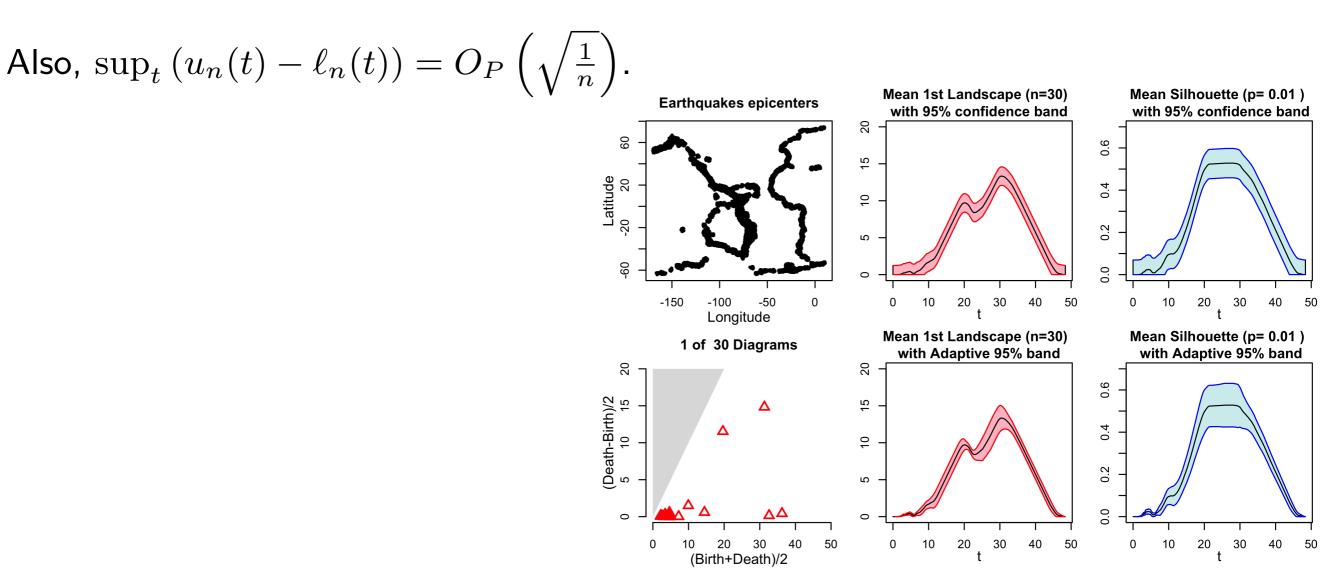


Some consequences

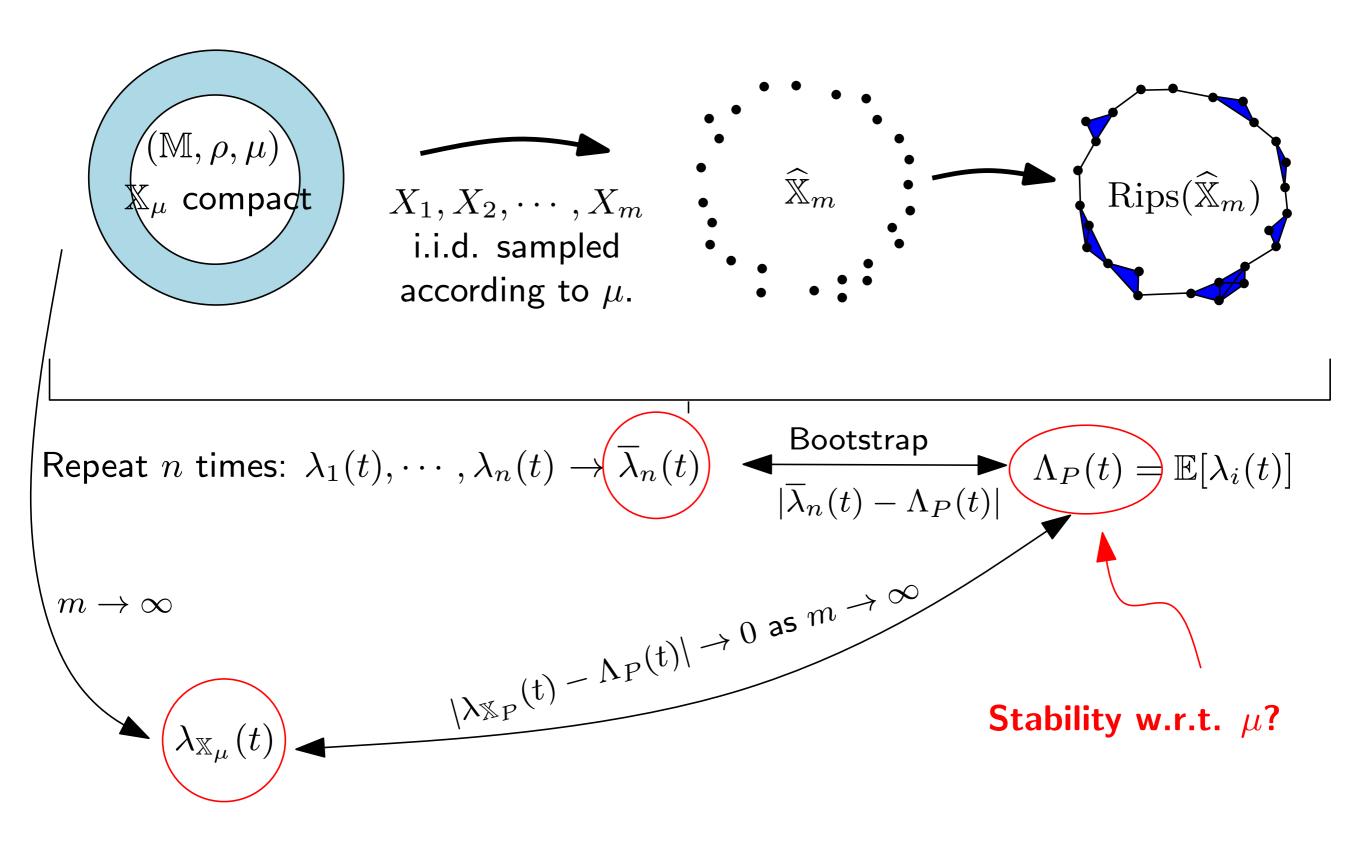
Bootstrap for landscapes \rightarrow confidence bands for landscapes.

Theorem. Suppose that $\sigma(t) > c > 0$ in an interval $[t_*, t^*] \subset [0, T]$, for some constant c. Then, given a confidence level $1 - \alpha$, one can construct confidence functions $\ell_n(t)$ and $u_n(t)$ such that

$$\mathbb{P}\Big(\ell_n(t) \le \mu(t) \le u_n(t) \text{ for all } t \in [t_*, t^*]\Big) \ge 1 - \alpha - O\left(\frac{(\log n)^{7/8}}{n^{1/8}}\right)$$



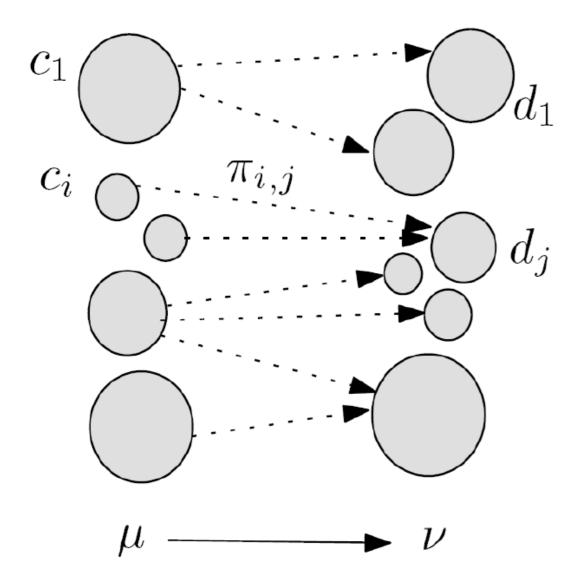
To summarize



Wasserstein distance

Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probability measures on \mathbb{M} with finite p-moments ($p \ge 1$).

"The" Wasserstein distance $W_p(\mu, \nu)$ quantifies the optimal cost of pushing μ onto ν , the cost of moving a small mass dx from x to y being $\rho(x, y)^p dx$.

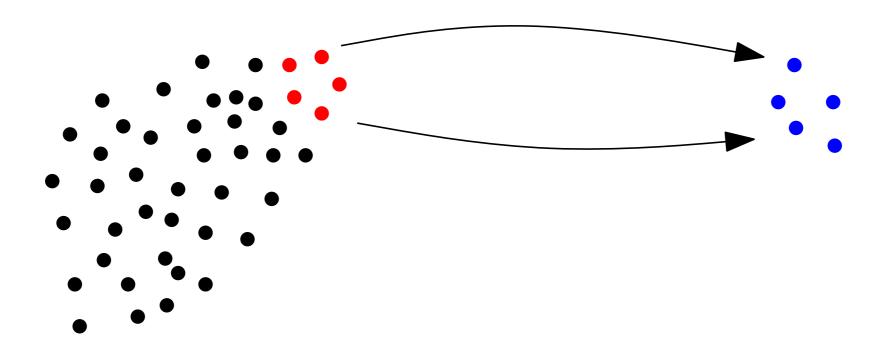


- Transport plan: Π a proba measure on $M \times M$ such that $\Pi(A \times \mathbb{R}^d) = \mu(A)$ and $\Pi(\mathbb{R}^d \times B) = \nu(B)$ for any borelian sets $A, B \subset M$.
- Cost of a transport plan:

$$C(\Pi) = \left(\int_{M \times M} \rho(x, y)^p d\Pi(x, y)\right)^{\frac{1}{p}}$$

• $W_p(\mu,\nu) = \inf_{\Pi} C(\Pi)$

Wasserstein distance



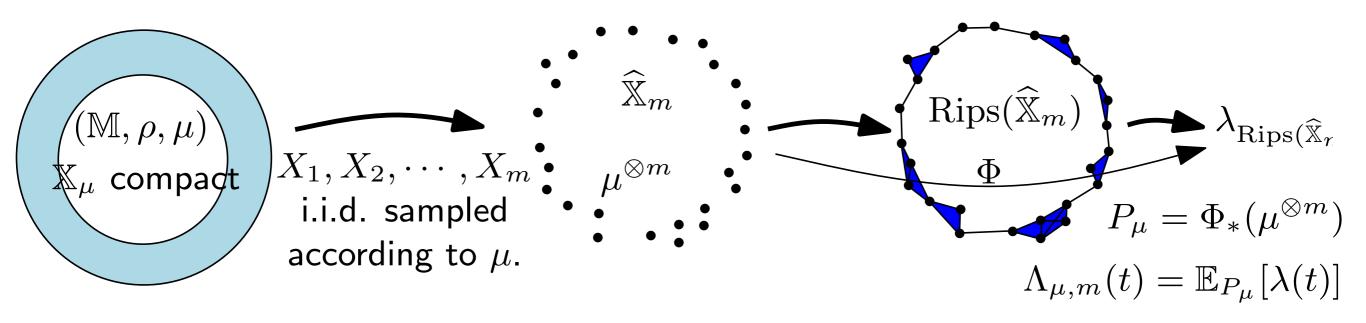
Example:

• If $P = \{p_1, \ldots, p_n\}$ is a point cloud, and $P' = \{p_1, \ldots, p_{n-k-1}, o_1, \ldots, o_k\}$ with $d(o_i, P) = R$, then

$$d_H(C, C') \ge R$$
 but $W_2(\mu_C, \mu_{C'}) \le \sqrt{\frac{k}{n}}(R + \operatorname{diam}(C))$

(Sub)sampling and stability of expected landscapes

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probal measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

where W_p denotes the Wasserstein distance with cost function $\rho(x, y)^p$.

Remarks:

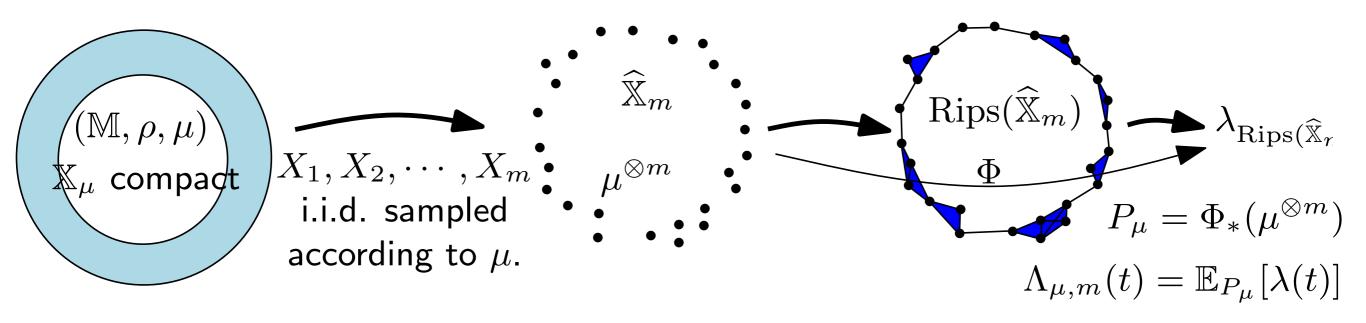
- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distributions, not for expectations) ;

- also work with "Gromov-Wasserstein" metric;

- $m^{\overline{p}}$ cannot be replaced by a constant.

(Sub)sampling and stability of expected landscapes

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probal measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

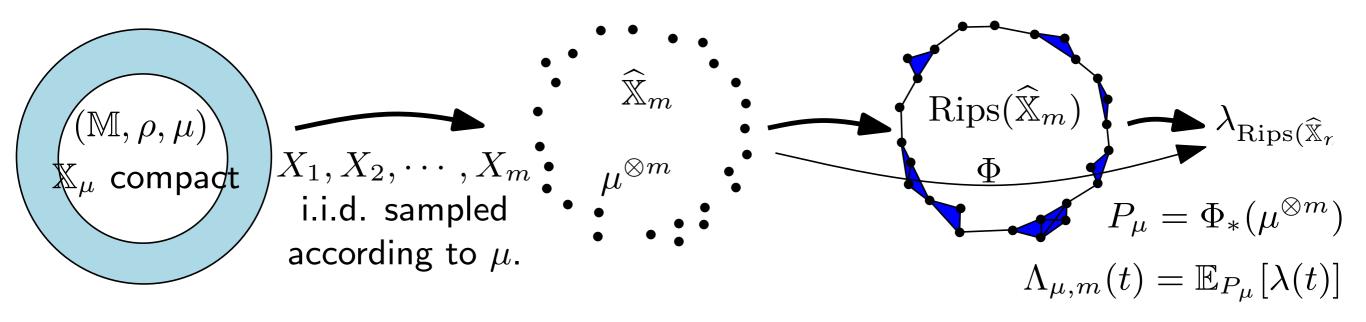
where W_p denotes the Wasserstein distance with cost function $\rho(x, y)^p$.

Consequences:

- Subsampling: efficient and easy to parallelize algorithm to infer topol. information from huge data sets.
- Robustness to outliers.
- R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/

(Sub)sampling and stability of expected landscapes

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probal measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

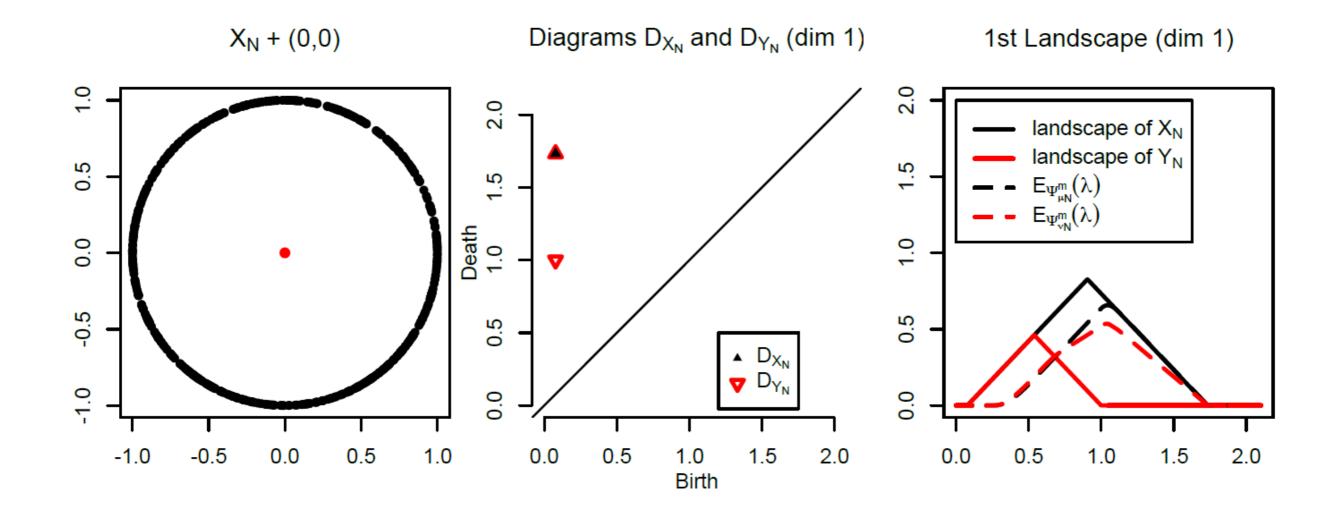
where W_p denotes the Wasserstein distance with cost function $\rho(x, y)^p$. **Proof:**

1.
$$W_p(\mu^{\otimes m}, \nu^{\otimes m}) \le m^{\frac{1}{p}} W_p(\mu, \nu)$$

- 2. $W_p(P_\mu, P_\nu) \le W_p(\mu^{\otimes m}, \nu^{\otimes m})$ (stability of persistence!)
- 3. $\|\Lambda_{\mu,m} \Lambda_{\nu,m}\|_{\infty} \leq W_p(P_\mu, P_\nu)$ (Jensen's inequality)

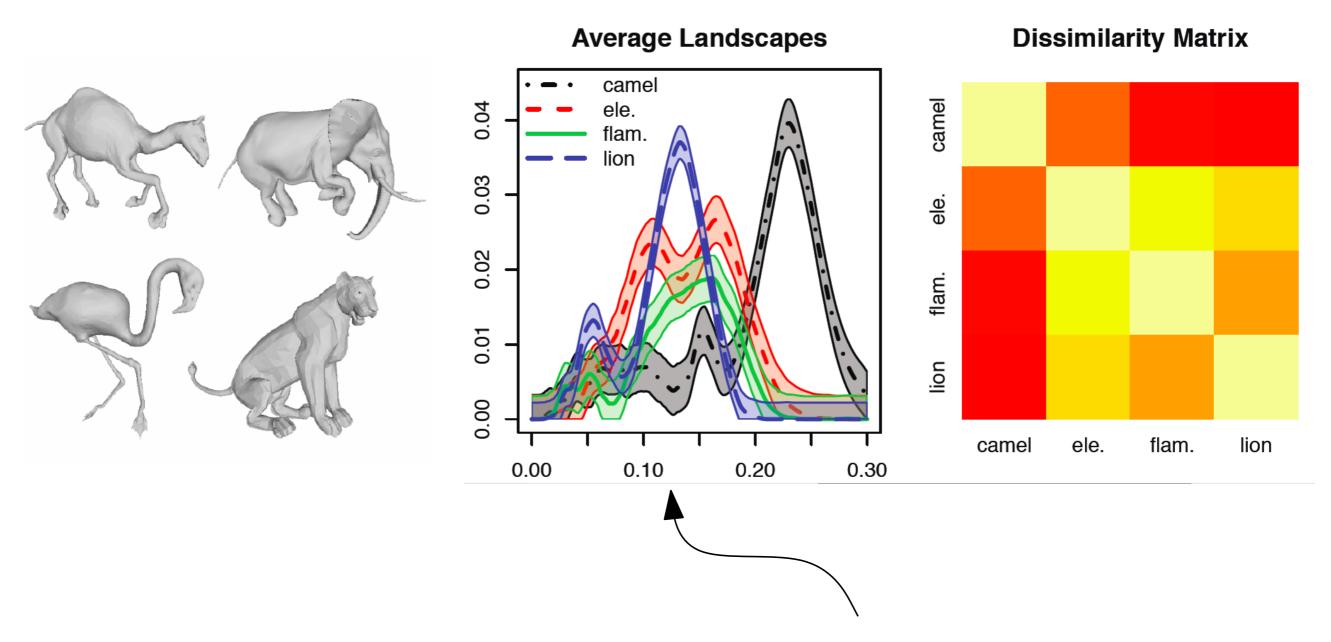
(Sub)sampling and stability of expected landscapes [C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Example: Circle with one outlier.



(Sub)sampling and stability of expected landscapes [C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

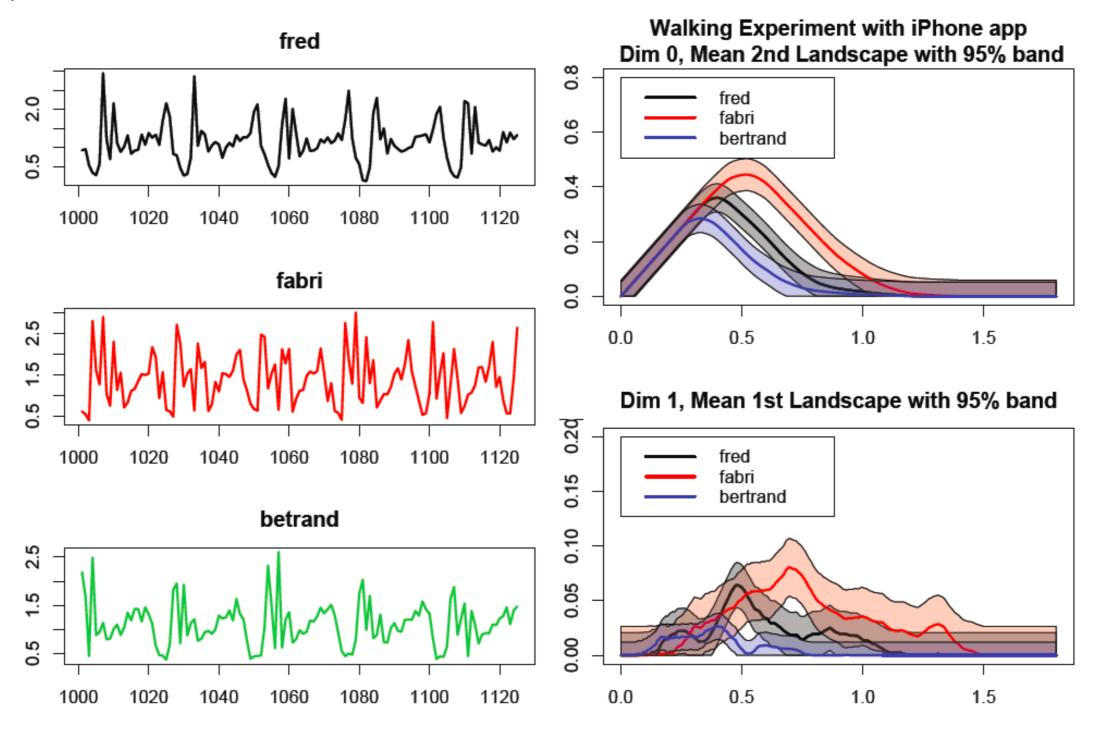
Example: 3D shapes



From n = 100 subsamples of size m = 300

(Sub)sampling and stability of expected landscapes [C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

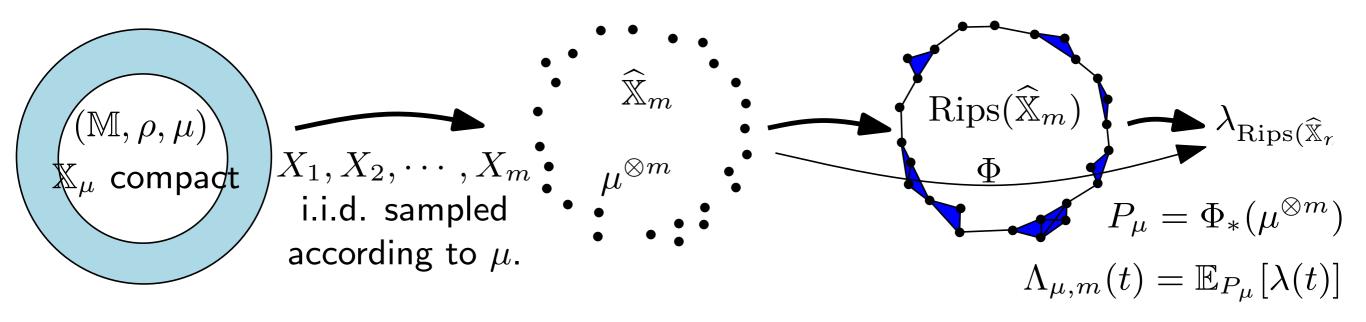
(Toy) Example: Accelerometer data from smartphone.



spatial time series (accelerometer data from the smarphone of users).
 no registration/calibration preprocessing step needed to compare!

(Sub)sampling and stability of expected landscapes

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probal measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

where W_p denotes the Wasserstein distance with cost function $\rho(x, y)^p$. **Proof:**

1.
$$W_p(\mu^{\otimes m}, \nu^{\otimes m}) \le m^{\frac{1}{p}} W_p(\mu, \nu)$$

- 2. $W_p(P_\mu, P_\nu) \le W_p(\mu^{\otimes m}, \nu^{\otimes m})$ (stability of persistence!)
- 3. $\|\Lambda_{\mu,m} \Lambda_{\nu,m}\|_{\infty} \leq W_p(P_\mu, P_\nu)$ (Jensen's inequality)

Proof

Lemma 1: For any $\mu, \nu \in \mathcal{P}(\mathbb{M})$,

$$W_p(\mu^{\otimes m}, \nu^{\otimes m}) \le m^{\frac{1}{p}} W_p(\mu, \nu)$$

where the metric ρ_m in \mathbb{M}^m is any metric satisfying for any $X = (x_1, \cdots x_m)$, $Y = (y_1, \cdots y_m)$,

$$\rho_m(X,Y) \le \left(\sum_{i=1}^m \rho(x_i,y_i)^p\right)^{\frac{1}{p}}$$

Proof: If $\Pi \in \mathcal{P}(\mathbb{M} \times \mathbb{M})$ is a transport plan between μ and ν , then $\Pi^{\otimes m}$ is a transport plan between $\mu^{\otimes m}$ and $\nu^{\otimes m}$ (up to reordering the comp. of \mathbb{M}^{2m} and

$$\int_{\mathbb{M}^{2m}} \rho_m(X,Y)^p d\Pi^{\otimes m}(X,Y) \leq \int_{\mathbb{M}^m \times \mathbb{M}^m} \sum_{i=1}^m \rho(x_i,y_i)^p d\Pi(x_1,y_1) \cdots d\Pi(x_m,y_m)$$
$$= m \int_{\mathbb{M} \times \mathbb{M}} \rho(x_1,y_1)^p d\Pi(x_1,y_1).$$

Proof

Lemma 2:

$$W_p(\phi^m_\mu, \phi^m_\nu) \le W_p(\mu^{\otimes m}, \nu^{\otimes m})$$

where $\phi^m : \mathbb{M}^m \to \mathcal{D}$, $\phi^m(X) = \operatorname{dgm}(\operatorname{Filt}(X))$, \mathcal{D} is the space of persistence diagrams endowed with the bottleneck distance and $\phi^m_\mu = (\phi^m)_* \mu$, $\phi^m_\nu = (\phi^m)_* \nu$.

Notations:

-
$$\Lambda_m : \mathbb{M}^m \times \mathbb{M}^m \to \mathcal{D} \times \mathcal{D}, \ \Lambda_m(X, Y) = (\psi(\phi^m(X)), \psi(\phi^m(X))).$$

Proof: if $\Pi \in \mathcal{P}(\mathbb{M}^m \times \mathbb{M}^m)$ is a transport plan between $\mu^{\otimes m}$ and $\nu^{\otimes m}$ then $\Lambda_{m,*}\Pi$ is a transport plan between Φ^m_{μ} and Φ^m_{ν} and

$$\int_{\mathcal{D}_T^2} d_b (D_X, D_Y)^p d\Lambda_{m,*} \Pi(D_X, D_Y) = \int_{\mathbb{M}^{2m}} d_b (\phi_m(X), \phi_m(Y))^p d\Pi(X, Y)$$

$$\leq \int_{\mathbb{M}^{2m}} d_H (X, Y)^p d\Pi(X, Y) \text{ (stab.thm)}$$

$$\leq \int_{\mathbb{M}^{2m}} \rho_m (X, Y)^p d\Pi(X, Y).$$

Proof

Notations:

- \mathcal{L} : space of landscapes (with sup. norm)
- $\psi : \mathcal{D} \to \mathcal{L}, \ \psi(D) = \lambda_D$ - $\Psi^m_\mu = \psi_* \phi^m_\mu, \ \Psi^m_\nu = \psi_* \phi^m_\nu$

Lemma 3: Let $\lambda_X \sim \Psi^m_\mu$ and $\lambda_Y \sim \Psi^m_\nu$. Then

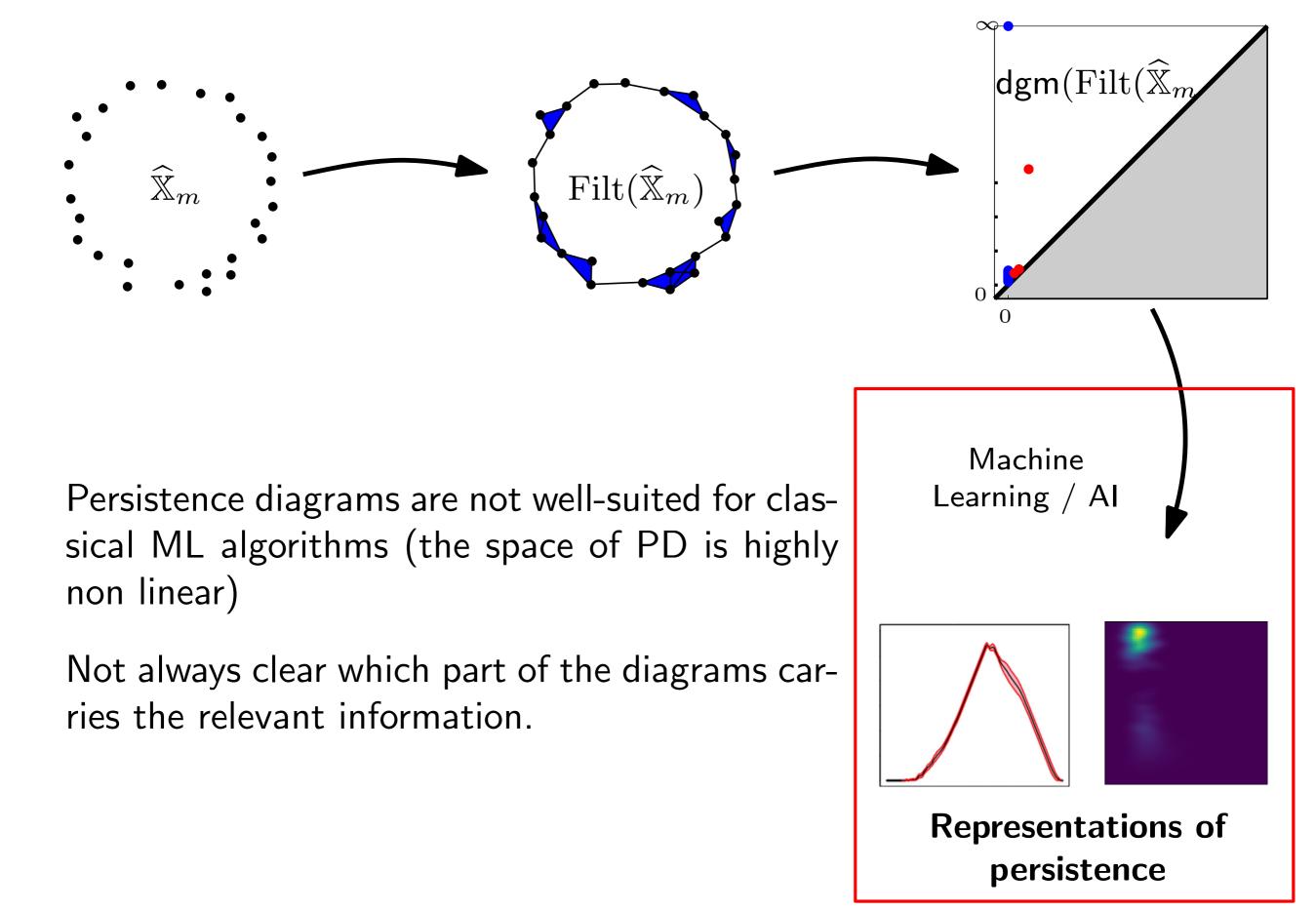
$$\left\| \mathbb{E}_{\Psi^m_{\mu}}[\lambda_X] - \mathbb{E}_{\Psi^m_{\nu}}[\lambda_Y] \right\|_{\infty} \leq W_{d_b,p} \left(\Phi^m_{\mu}, \ \Phi^m_{\nu} \right).$$

Proof: Let Π be a transport plan between Φ^m_μ and Φ^m_ν . For any $t \in \mathbb{R}$ we have

$$\begin{aligned} \left| \mathbb{E}_{\Psi_{\mu}^{m}} [\lambda_{X}](t) - \mathbb{E}_{\Psi_{\nu}^{m}} [\lambda_{Y}](t) \right|^{p} &= \left| \mathbb{E} [\lambda_{X}(t) - \lambda_{Y}(t)] \right|^{p} \\ &\leq \mathbb{E} \left[|\lambda_{X}(t) - \lambda_{Y}(t)|^{p} \right] \quad \text{(Jensen inequality)} \\ &\leq \mathbb{E} \left[d_{b} (D_{X}, D_{Y})^{p} \right] \quad \text{(Stability of landscapes)} \\ &= \int_{\mathcal{D}_{T} \times \mathcal{D}_{T}} d_{b} (D_{X}, D_{Y})^{p} d\Pi(D_{X}, D_{Y}) \end{aligned}$$

TDA and Machine Learning The problem of representation of persistent homology

The problem of representation of persistence



A zoo of representations of persistence

(non exhaustive list - see also Gudhi representations)

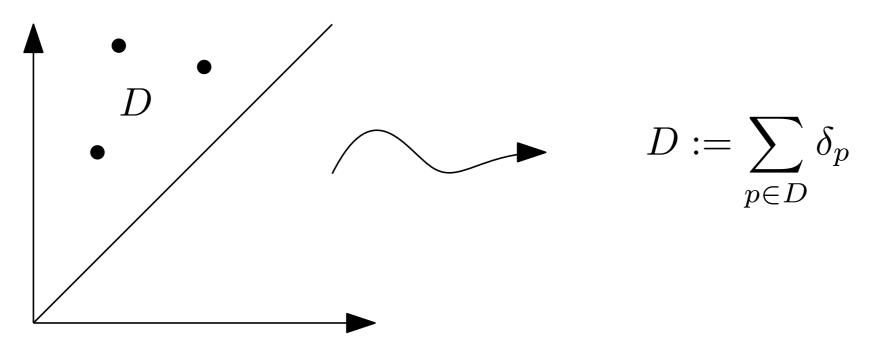
• Collections of 1D functions

- \rightarrow landscapes [Bubenik 2012]
- \rightarrow Betti curves [Umeda 2017]
- discrete measures: (interesting statistical properties [Chazal, Divol 2018])
 - \rightarrow persistence images [Adams et al 2017]

 \rightarrow convolution with Gaussian kernel [Reininghaus et al. 2015] [Chepushtanova et al. 2015] [Kernel [Reininghaus et al. 2016]

- al. 2015] [Kusano Fukumisu Hiraoka 2016-17] [Le Yamada 2018]
- \rightarrow sliced on lines [Carrière Oudot Cuturi 2017]
- finite metric spaces [Carrière Oudot Ovsjanikov 2015]
- polynomial roots or evaluations [Di Fabio Ferri 2015] [Kališnik 2016]

Persistence diagrams as discrete measures

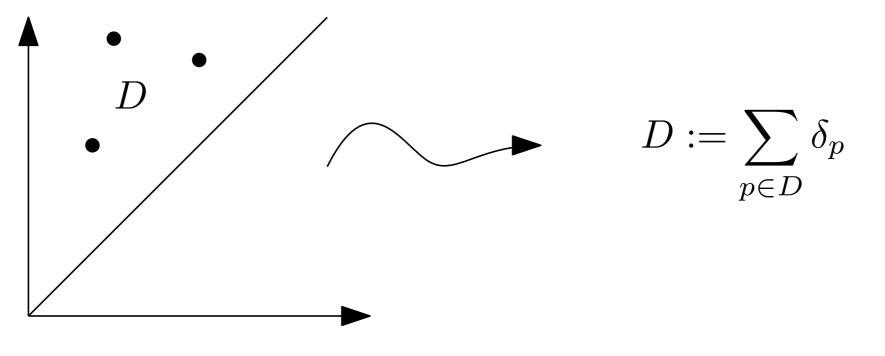


Motivations:

- The space of measures is much nicer that the space of P. D. !
- In the general algebraic persistence theory, persistence diagrams naturally appears as discrete measures in the plane.
 [C., de Silva, Glisse, Oudot 16]
- Many persistence representations can be expressed as

$$D(f) = \sum_{p \in D} f(p) = \int f dD$$

Persistence diagrams as discrete measures



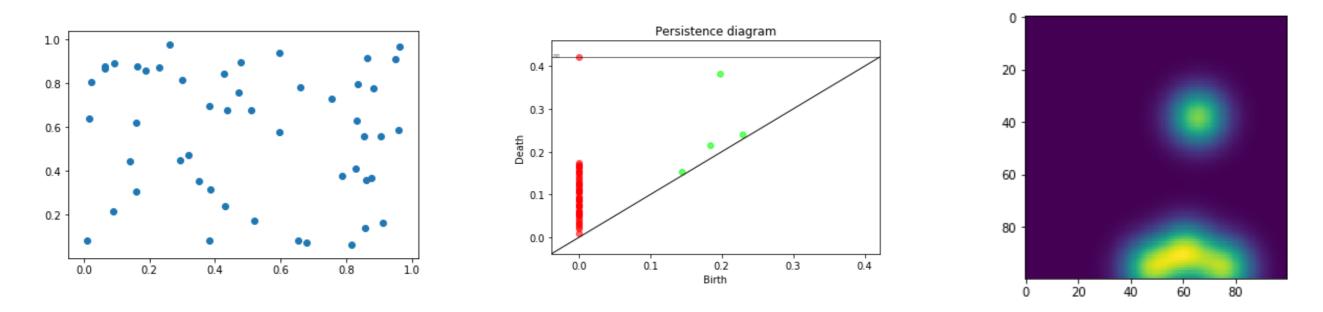
Benefits:

- Interesting statistical properties
- Data-driven selection of well-adapted representations (supervised and unsupervised, coming with guarantees)
- Optimisation of persistence-based functions

Many tools available and implemented in the GUDHI library

Persistence images

[Adams et al, JMLR 2017]



For $K : \mathbb{R}^2 \to \mathbb{R}$ a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for $u \in \mathbb{R}^2$, $K_H(u) = |H|^{-1/2} K(H^{-1/2} \cdot u)$

For $D = \sum_i \delta_{p_i}$ a diagram, $K : \mathbb{R}^2 \to \mathbb{R}$ a kernel, H a bandwidth matrix and $w : \mathbb{R}^2 \to \mathbb{R}_+$ a weight function, one defines the persistence surface of Dwith kernel K and weight function w by:

$$\forall u \in \mathbb{R}^2, \ \rho(D)(u) = \sum_i w(p_i) K_H(u - p_i) = D(wK_H(u - \cdot))$$

A zoo of representations of persistence

(non exhaustive list - see also Gudhi representations)

• Collections of 1D functions

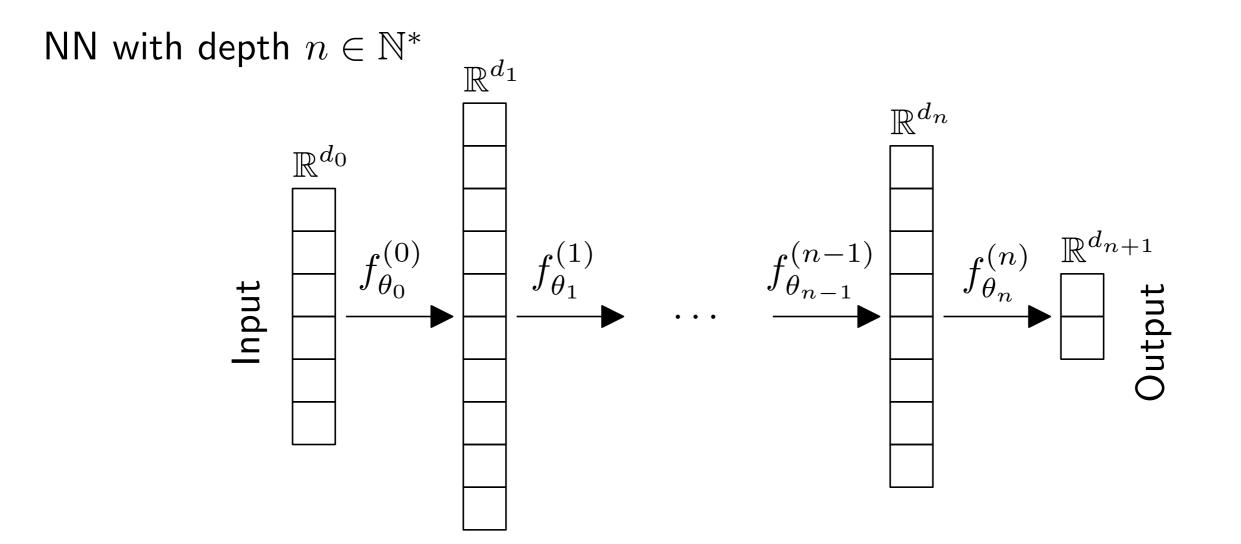
- \rightarrow landscapes [Bubenik 2012]
- \rightarrow Betti curves [Umeda 2017]
- discrete measures: (interesting statistical properties [Chazal, Divol 2018])
 - \rightarrow persistence images [Adams et al 2017]

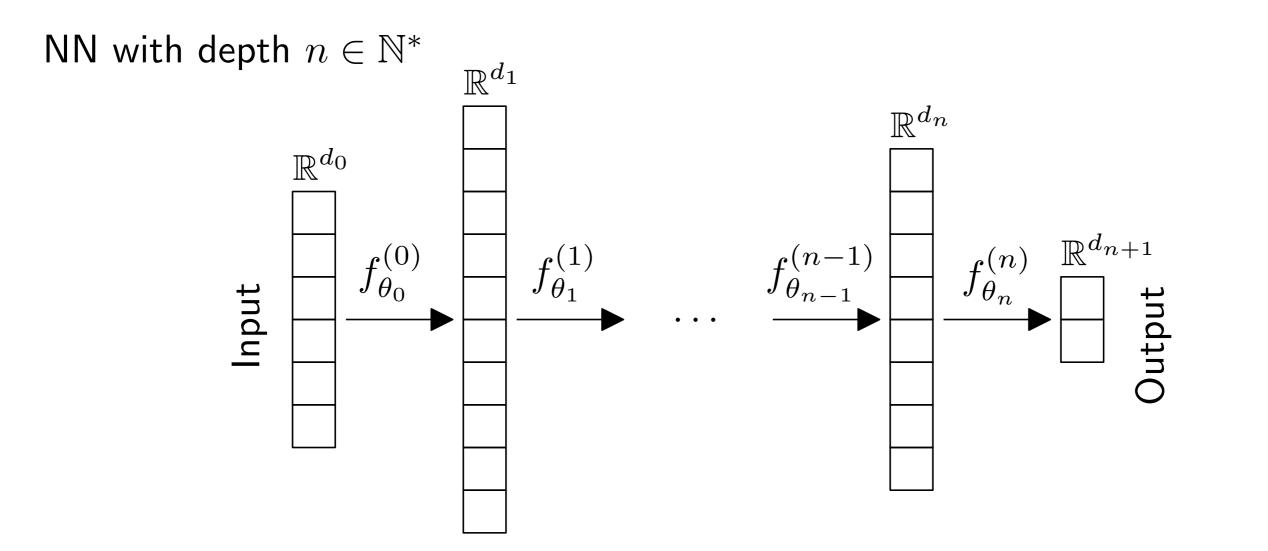
 \rightarrow convolution with Gaussian kernel [Reininghaus et al. 2015] [Chepushtanova et al. 2015] [Kusano Fukumisu Hiraoka 2016-17] [Le Yamada 2018]

 \rightarrow sliced on lines [Carrière Oudot Cuturi 2017]

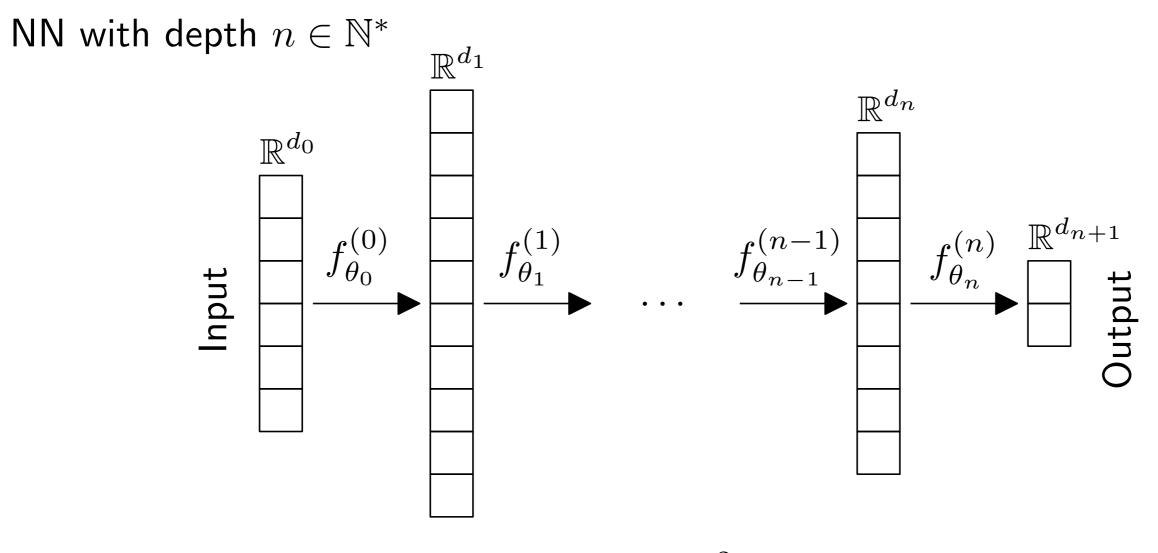
- finite metric spaces [Carrière Oudot Ovsjanikov 2015]
- polynomial roots or evaluations [Di Fabio Ferri 2015] [Kališnik 2016]

Problem: How to chose the right representation?

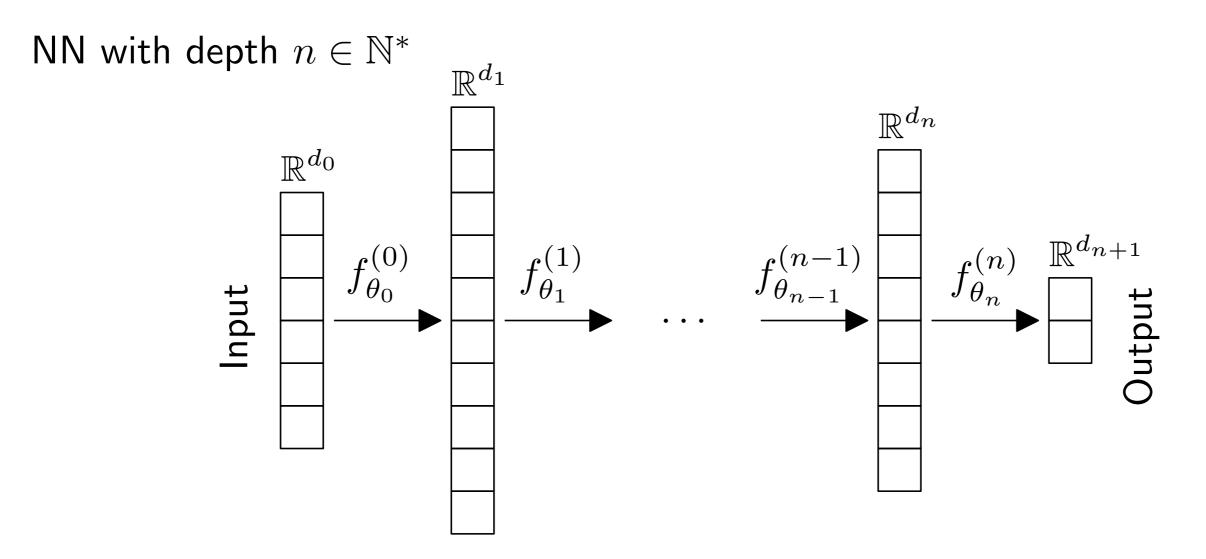




 $\theta_k = (W_k \in \mathbb{R}^{d_{k+1} \times d_k}, \ b_k \in \mathbb{R}^{d_{k+1}}), \quad \sigma : x \mapsto \max(0, x) \text{ or } (1 + e^{-x})^{-1}$ $f_{\theta_k}^{(k)} : x \in \mathbb{R}^{d_k} \mapsto \sigma(W_k \cdot x + b_k) \in \mathbb{R}^{d_{k+1}}$ Final classifier: $F_{\theta} = f_{\theta_n}^{(n)} \circ \cdots \circ f_{\theta_0}^{(0)}$



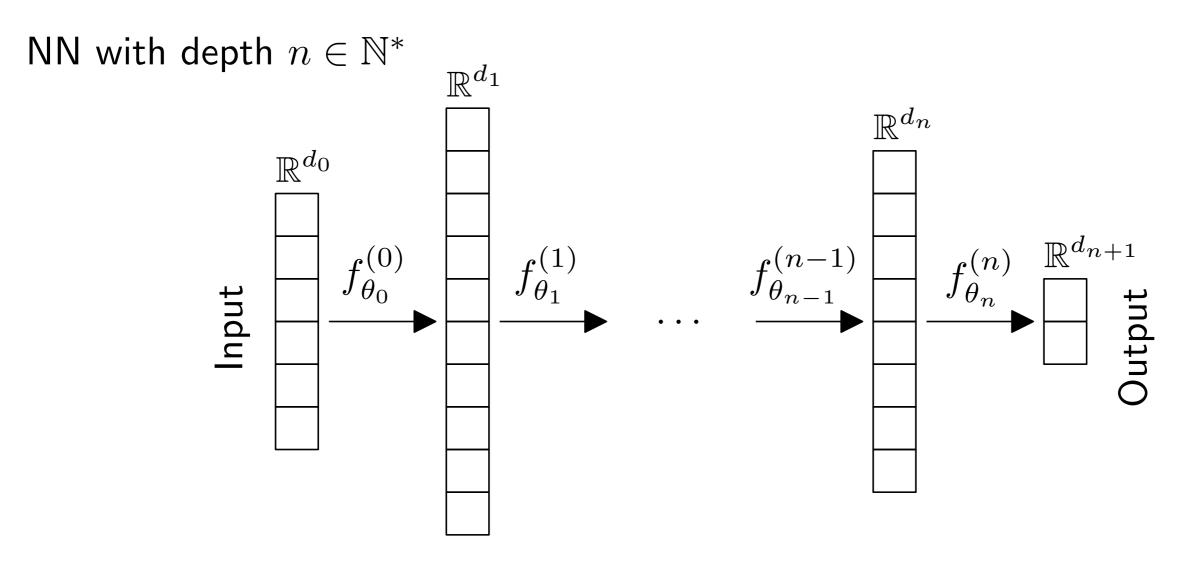
Goal: Minimize $\ell(\theta) = \sum_i \|f_{\theta}(x_i) - y_i\|_2^2$ w.r.t. θ



Goal: Minimize $\ell(\theta) = \sum_i \|f_{\theta}(x_i) - y_i\|_2^2$ w.r.t. θ

Backpropagation: for each k:

1. compute $\nabla \ell(\theta_k)$ with chain rule 2. update $\theta_k := \theta_k - \eta \nabla \ell(\theta_k)$



Goal: Minimize $\ell(\theta) = \sum_i \|f_{\theta}(x_i) - y_i\|_2^2$ w.r.t. θ

Backpropagation: for each k:

1. compute $\nabla \ell(\theta_k)$ with chain rule 2. update $\theta_k := \theta_k - \eta \nabla \ell(\theta_k)$ **Requirement:** $f_{\theta_k}^{(k)}$ needs to be differentiable w.r.t. θ_k and x

Deep Set Architecture

Originally defined in [Zaheer et al. 2017]

Tailored to handle sets instead of finite dimensional vectors

Input: $\{x_1, ..., x_n\} \subset \mathbb{R}^d$ instead of $x \in \mathbb{R}^d$

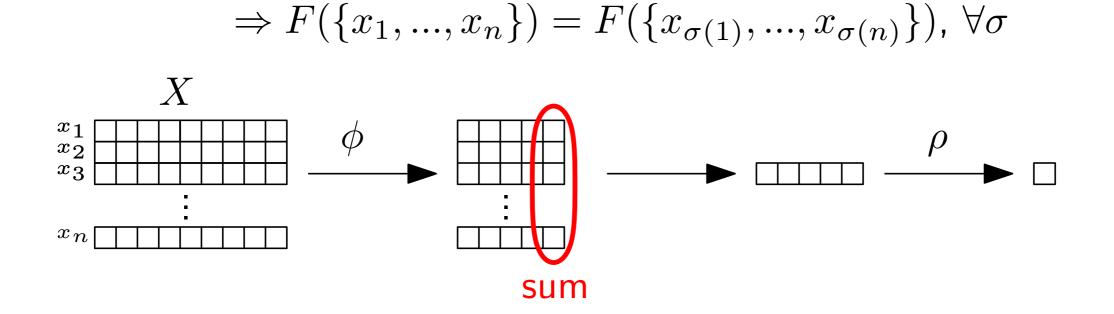
Deep Set Architecture

Originally defined in [Zaheer et al. 2017]

Tailored to handle sets instead of finite dimensional vectors

Input: $\{x_1, ..., x_n\} \subset \mathbb{R}^d$ instead of $x \in \mathbb{R}^d$

Network is *permutation invariant*: $F(X) = \rho(\sum_{i} \phi(x_i))$



In practice: $\phi(x_i) = W \cdot x_i + b$

Deep Set Architecture

Originally defined in [Zaheer et al. 2017]

Tailored to handle sets instead of finite dimensional vectors

Input: $\{x_1, ..., x_n\} \subset \mathbb{R}^d$ instead of $x \in \mathbb{R}^d$

Network is *permutation invariant*: $F(X) = \rho(\sum_{i} \phi(x_i))$

Universality theorem

Th: [Zaheer et al. 2017]

A function f is permutation invariant iif $f(X) = \rho(\sum_i \phi(x_i))$ for some ρ and ϕ , whenever X is included in a *countable* space

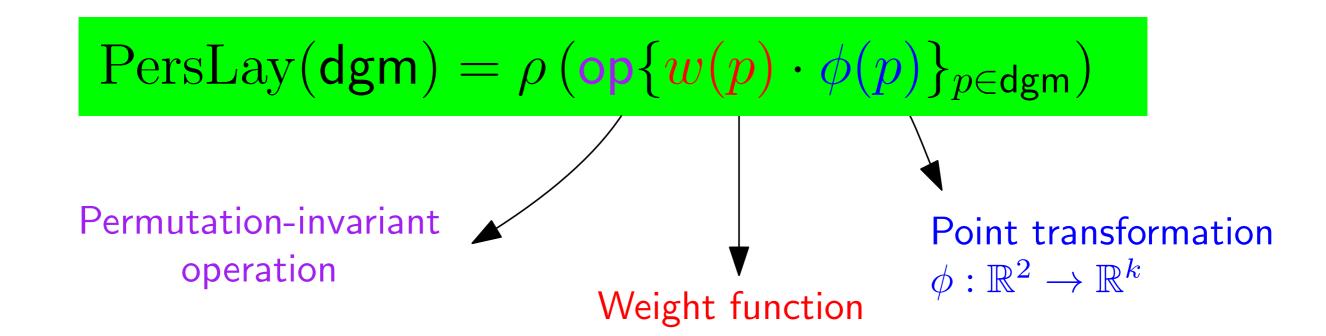
[Carrière et al 2019]

Permutation invariant layers generalize several TDA approaches

ightarrow persistence images ightarrow silhouettes ightarrow Betti curves

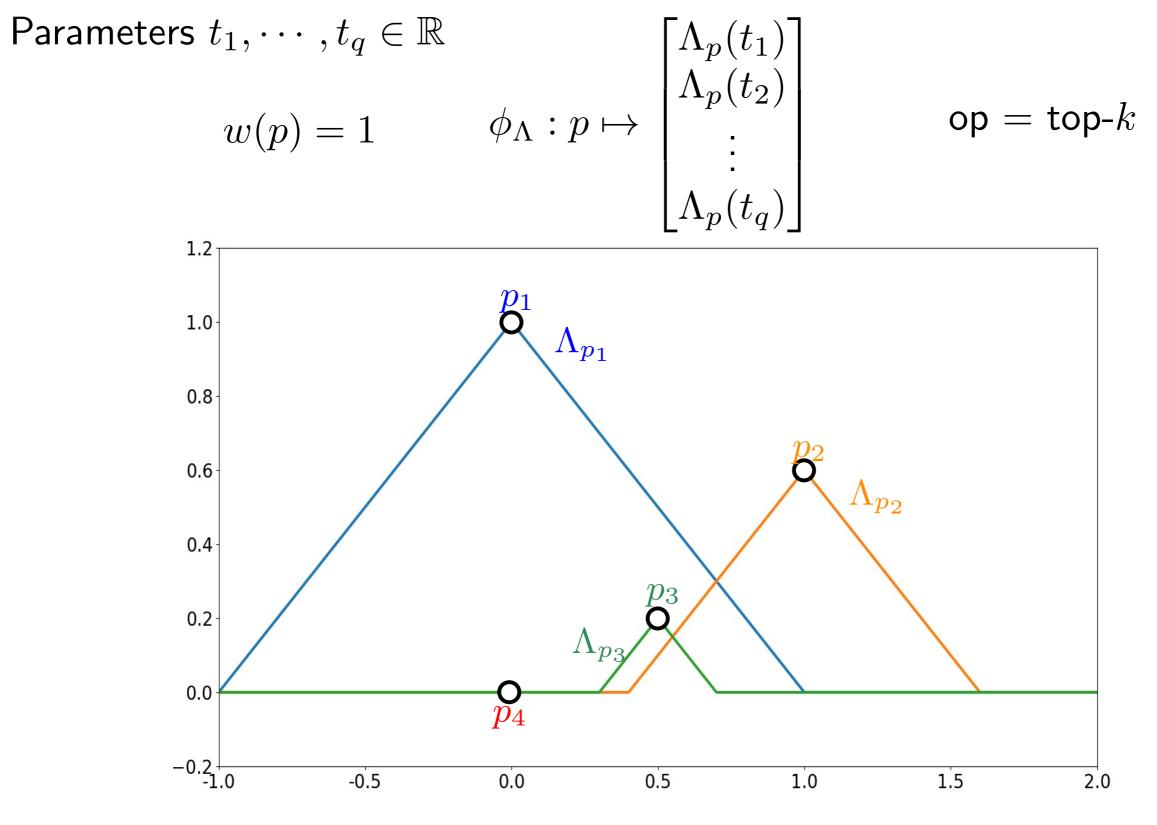
But not all of them since \mathbb{R}^2 is not countable

Using any permutation invariant operation (such as max, min, kth largest value) allows to generalize other TDA approaches



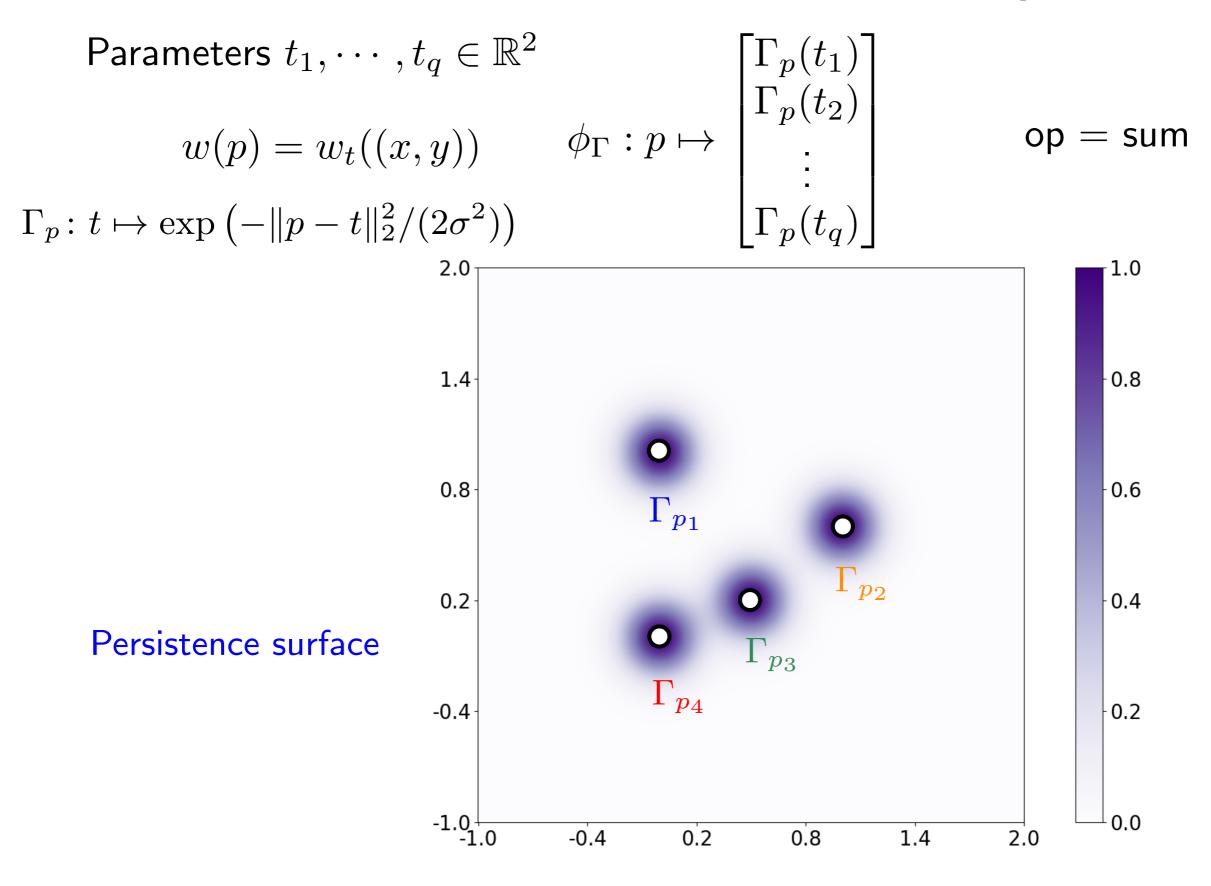
https://github.com/MathieuCarriere/perslay (will be released in gudhi in a near future)

[Carrière et al 2019]

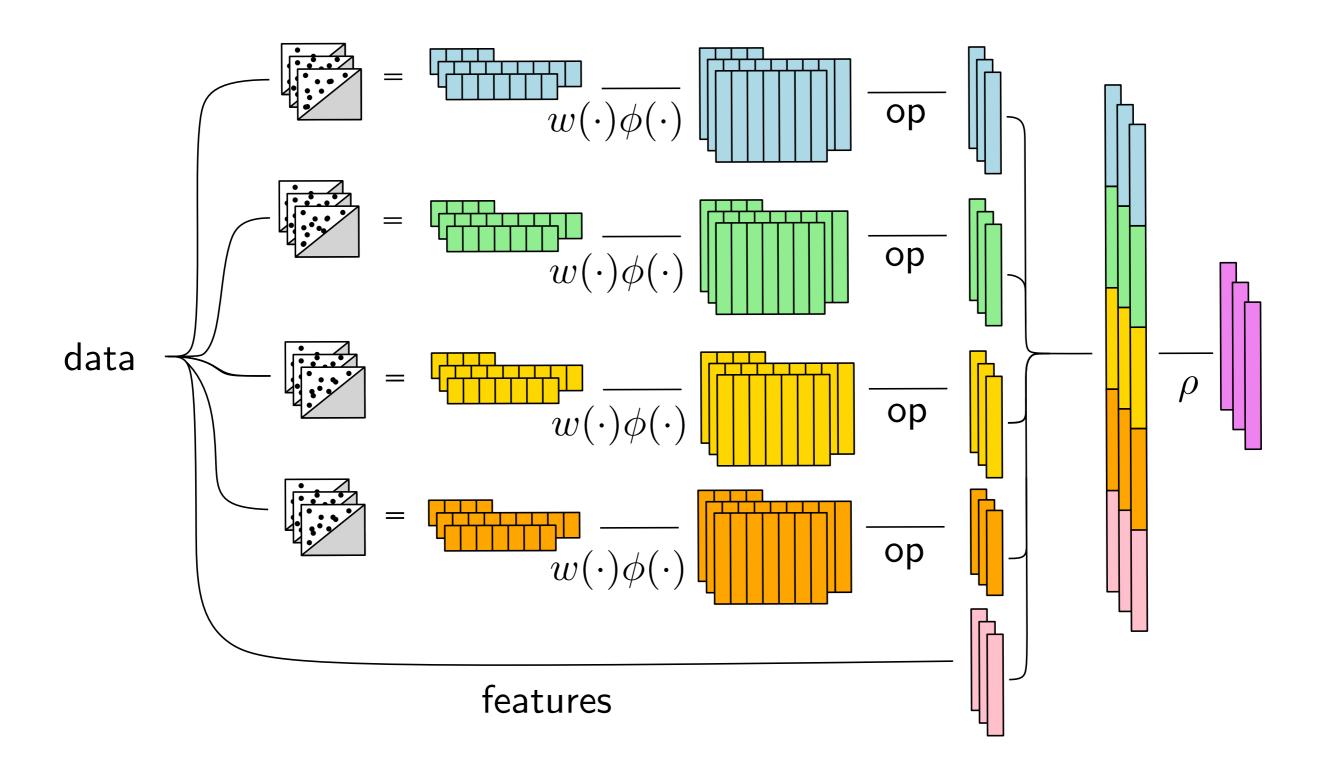


Persistence landscape

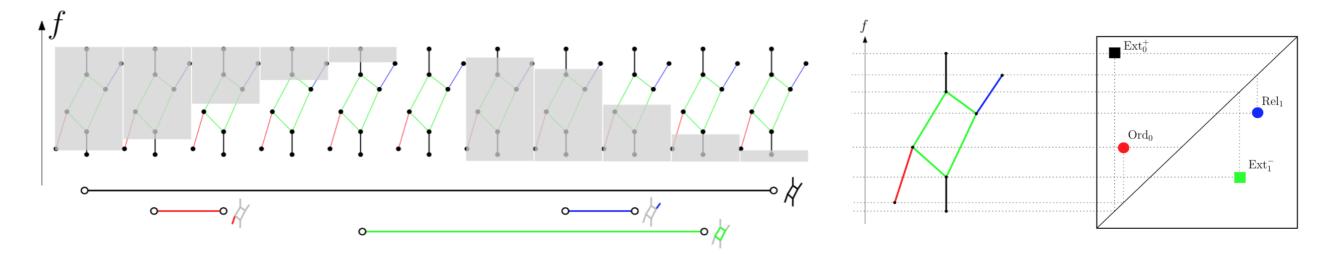
[Carrière et al 2019]



Adaptation to persistence diagrams [Carrière et al 2019]



[Carrière et al 2019]



Dataset	ScaleVariant ¹	RetGK1 * ²	RetGK11 * ²	FGSD ³	GCNN ⁴	Spectral + HKS ⁵	PersLay
REDDIT5K		56.1(±0.5)	55.3(±0.3)	47.8	52.9	49.7(±0.3)	56.6 (±0.3)
REDDIT12K		48.7 (±0.2)	47.1(±0.3)		46.6	39.7(±0.1)	47.7(±0.2)
COLLAB		81.0 (±0.3)	$80.6(\pm 0.3)$	80.0	79.6	67.8(±0.2)	76.4(±0.4)
IMDB-B	72.9	$71.9(\pm 1.0)$	72.3(±0.6)	73.6	73.1	67.6(±0.6)	70.9(±0.7)
IMDB-M	50.3	$47.7(\pm 0.3)$	$48.7(\pm 0.6)$	52.4	50.3	$44.5(\pm 0.4)$	48.7(±0.6)
BZR *	86.6					$80.8(\pm 0.8)$	87.2(±0.7)
COX2 *	78.4	$80.1(\pm 0.9)$	$81.4(\pm 0.6)$			78.2(±1.3)	81.6 (±1.0)
DHFR *	78.4	81.5(±0.9)	82.5(±0.8)			$69.5(\pm 1.0)$	81.8(±0.8)
MUTAG *	88.3	$90.3(\pm 1.1)$	90.1(±1.0)	92.1	86.7	85.8(±1.3)	89.8(±0.9)
PROTEINS *	72.6	$75.8(\pm 0.6)$	75.2(±0.3)	73.4	76.3	$73.5(\pm 0.3)$	74.8(±0.3)
NCI1 *	71.6	84.5(±0.2)	83.5(±0.2)	79.8	78.4	$65.3(\pm 0.2)$	72.8(±0.3)
NCI109 *	70.5			78.8		64.9(±0.2)	71.7(±0.3)
FRANKENSTEIN	69.4	—	—			62.9(±0.1)	70.7(±0.4)

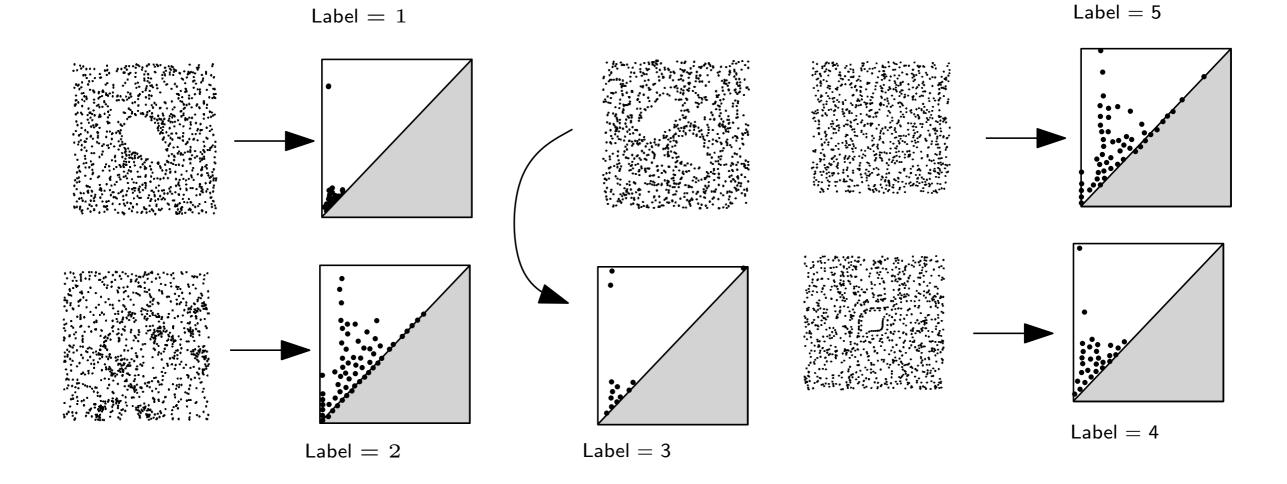
Average scores from 10 times 10-folds cross-validation

[Carrière et al 2019]

Goal: classify orbits of *linked twisted map*

Orbits described by (depending on parameter r):

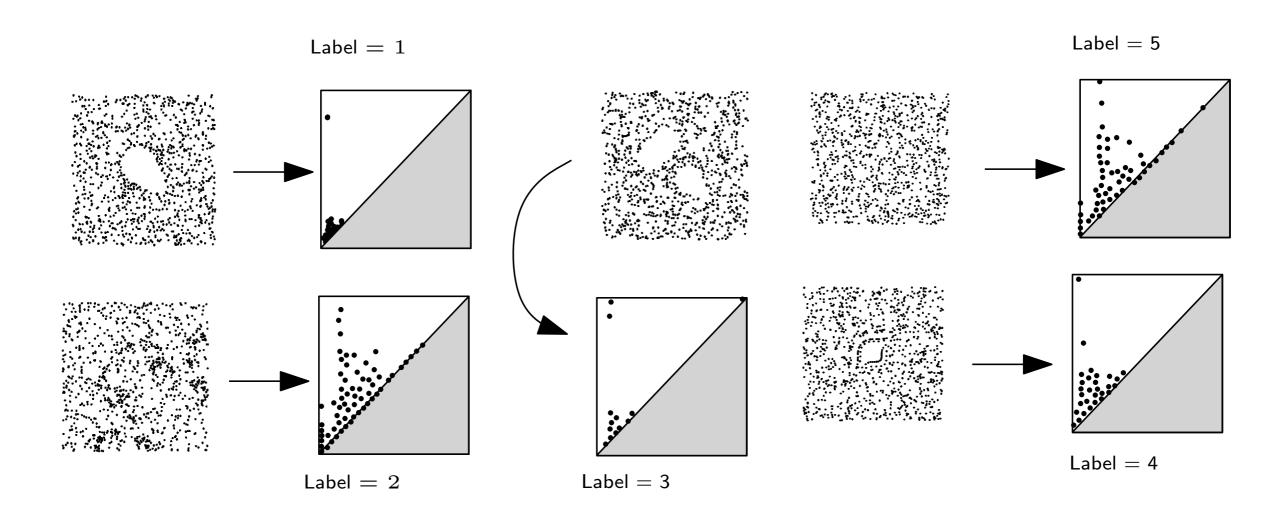
$$\begin{cases} x_{n+1} = x_n + r y_n (1 - y_n) \mod 1 \\ y_{n+1} = y_n + r x_{n+1} (1 - x_{n+1}) \mod 1 \end{cases}$$



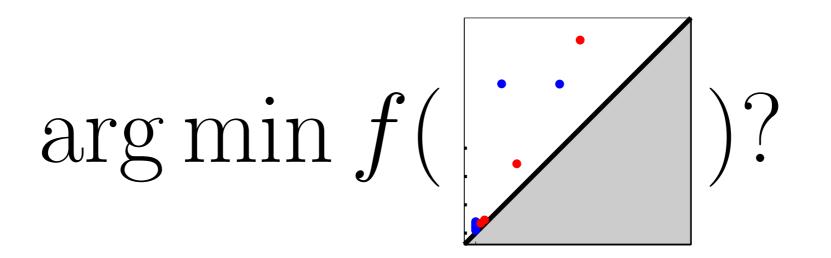
[Carrière et al 2019]

Goal: classify orbits of *linked twisted map*

Dataset	PSS-K	PWG-K	SW-K	PF-K	PersLay
ORBIT5K	$72.38(\pm 2.4)$	76.63(±0.7)	83.6(±0.9)	85.9(±0.8)	87.7(±1.0)
ORBIT100K					89.2(±0.3)

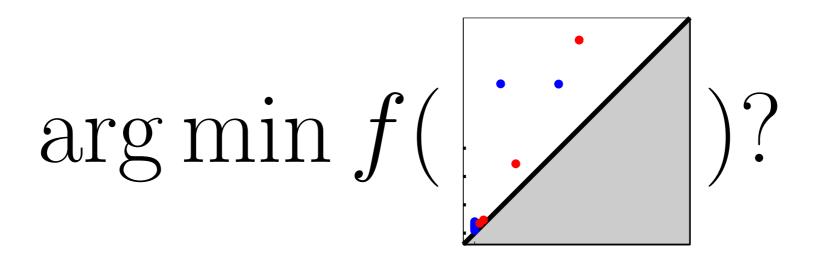


A general question



How to minimize functions depending of persistence diagrams (e.g. total persistence)?

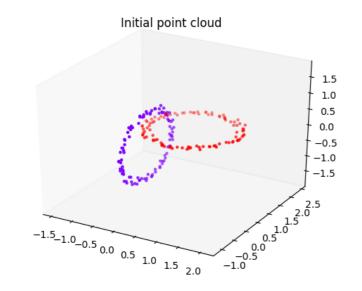
A general question

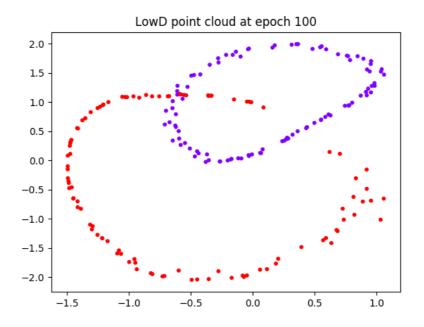


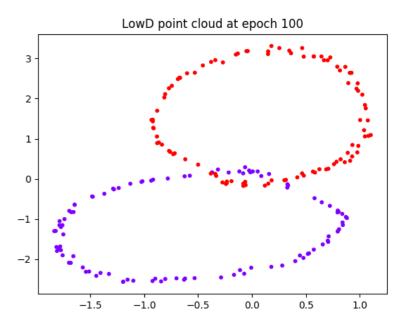
How to minimize functions depending of persistence diagrams (e.g. total persistence)?

 \rightarrow Need to understand the ''differentiability of persistence''

Example: dimensionality reduction







Input: 2 sampled circles in \mathbb{R}^9 (3D view)

Dim reduction in \mathbb{R}^2 without topol. constraint Dim reduction in \mathbb{R}^2 with topol. constraint

The minimization problem

$$\arg\min f(f) = f(f)$$

A "long-standing" question in Topological Data Analysis

[*Continuation of point clouds via persistence diagrams*, Gameiro, Hiraoka, Obayashi, Physica D, 2015]

[*Topological Function Optimization for Continuous Shape Matching*, Poulenard, Skraba, Ovsjanikov, SGP, 2018]

[*A topology layer for machine learning*, Brüel-Gabrielsson et al., AISTATS, 2020]

[Topological Autoencoders, Moor et al., ICML, 2020]

The minimization problem

$$\arg\min f($$
)?

A "long-standing" question in Topological Data Analysis

[*Continuation of point clouds via persistence diagrams*, Gameiro, Hiraoka, Obayashi, Physica D, 2015] Point cloud data

[<i>Topological Function Optimization for Continuous Shape</i> <i>Matching</i> , Poulenard, Skraba, Ovsjanikov, SGP, 2018]	Dettleneel, dieteneeleee
<i>Matching</i> , Poulenard, Skraba, Ovsjanikov, SGP, 2018]	Bottleneck distance loss

[*A topology layer for machine learning*, Brüel-Gabrielsson et al., AISTATS, 2020]

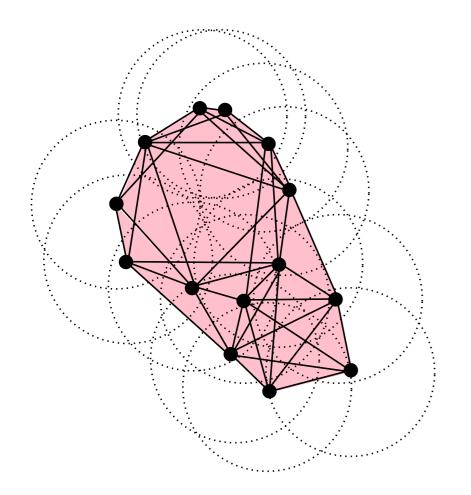
[Topological Autoencoders, Moor et al., ICML, 2020]

Total persistence loss

Vietoris-Rips filtration

All restricted to specific data type / loss function / filtration!

Simplicial complexes and filtrations

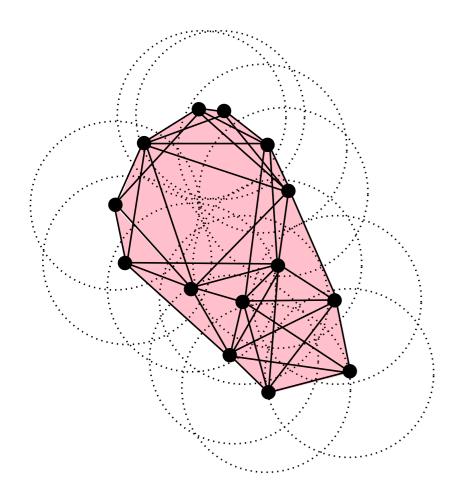


Given a set V, a simplicial complex K is a collection of finite subsets of V s. t.

- $\{v\} \in K$ for any $v \in V$,
- if $\sigma \in K$ and $\tau \subseteq \sigma$ then $\tau \in K$.

Given K and $R \subseteq \mathbb{R}$, a filtration of K is an increasing sequence $(K_r)_{r \in R}$ of subcomplexes of K with respect to the inclusion such that $\bigcup_{r \in R} K_r = K$.

Simplicial complexes and filtrations



Given a set V, a simplicial complex K is a collection of finite subsets of V s. t.

- $\{v\} \in K$ for any $v \in V$,
- if $\sigma \in K$ and $\tau \subseteq \sigma$ then $\tau \in K$.

Given K and $R \subseteq \mathbb{R}$, a filtration of K is an increasing sequence $(K_r)_{r \in R}$ of subcomplexes of K with respect to the inclusion such that $\bigcup_{r \in R} K_r = K$.

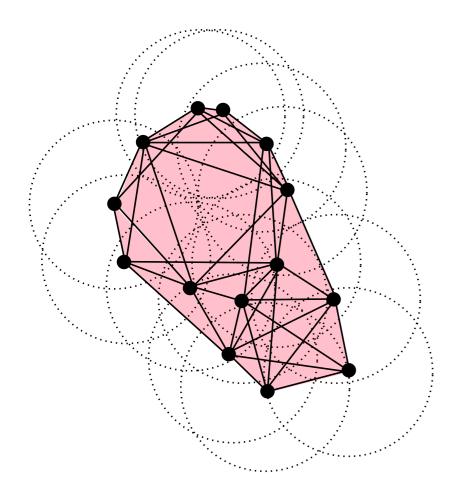
To $\sigma \in K$, one can associate $\Phi_{\sigma} = \inf\{r \in R : \sigma \in K_r\}$

 \Rightarrow A filtration of K is a |K|-dimensional vector

$$\Phi = (\Phi_{\sigma})_{\sigma \in K} \in \mathbb{R}^{|K|} \text{ s. t. } \tau \subseteq \sigma \Rightarrow \Phi_{\tau} \leq \Phi_{\sigma}$$

The set $\operatorname{Filt}_K \subset \mathbb{R}^{|K|}$ of the vectors in $\mathbb{R}^{|K|}$ defining a filtration on K is semi-algebraic.

Simplicial complexes and filtrations



Given a set V, a simplicial complex K is a collection of finite subsets of V s. t.

- $\{v\} \in K$ for any $v \in V$,
- if $\sigma \in K$ and $\tau \subseteq \sigma$ then $\tau \in K$.

Given K and $R \subseteq \mathbb{R}$, a filtration of K is an increasing sequence $(K_r)_{r \in R}$ of subcomplexes of K with respect to the inclusion such that $\bigcup_{r \in R} K_r = K$.

Definition: Let K be a simplicial complex and A a set. A map $\Phi: A \to \mathbb{R}^{|K|}$ is said to be a parametrized family of filtrations if for any $x \in A$ and $\sigma, \tau \in K$ with $\tau \subseteq \sigma$, one has $\Phi_{\tau}(x) \leq \Phi_{\sigma}(x)$.

Let K be a finite filtered simplicial complex and let $\sigma_1 \preceq \cdots \preceq \sigma_{|K|}$ the simplices of K ordered according the increasing entries of $\Phi = (\Phi_{\sigma})_{\sigma \in K} \in \mathbb{R}^{|K|}$

Let K be a finite filtered simplicial complex and let $\sigma_1 \preceq \cdots \preceq \sigma_{|K|}$ the simplices of K ordered according the increasing entries of $\Phi = (\Phi_{\sigma})_{\sigma \in K} \in \mathbb{R}^{|K|}$

Process the simplices according to their order of entrance in the filtration:

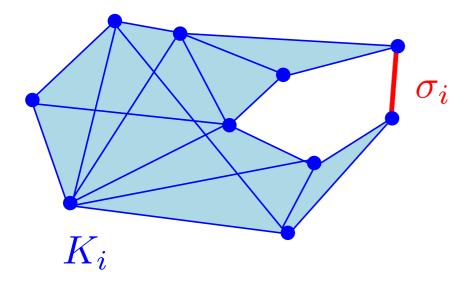
Let $k = \dim \sigma_i$ and denote $K_{i-1} = \bigcup_{l=1}^{i-1} \sigma_l$

Let K be a finite filtered simplicial complex and let $\sigma_1 \preceq \cdots \preceq \sigma_{|K|}$ the simplices of K ordered according the increasing entries of $\Phi = (\Phi_{\sigma})_{\sigma \in K} \in \mathbb{R}^{|K|}$

Process the simplices according to their order of entrance in the filtration:

Let $k = \dim \sigma_i$ and denote $K_{i-1} = \bigcup_{l=1}^{i-1} \sigma_l$

Case 1: adding σ_i to K_{i-1} creates a new k-dimensional topological feature in K_i (new homology class in H_k).



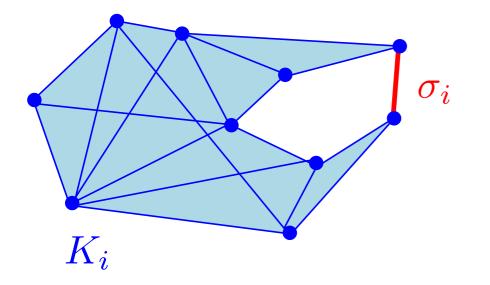
 \Rightarrow the birth of a k-dim feature is registered.

Let K be a finite filtered simplicial complex and let $\sigma_1 \preceq \cdots \preceq \sigma_{|K|}$ the simplices of K ordered according the increasing entries of $\Phi = (\Phi_{\sigma})_{\sigma \in K} \in \mathbb{R}^{|K|}$

Process the simplices according to their order of entrance in the filtration:

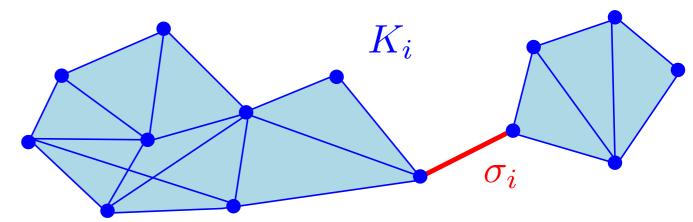
Let $k = \dim \sigma_i$ and denote $K_{i-1} = \bigcup_{l=1}^{i-1} \sigma_l$

Case 1: adding σ_i to K_{i-1} creates a new k-dimensional topological feature in K_i (new homology class in H_k).

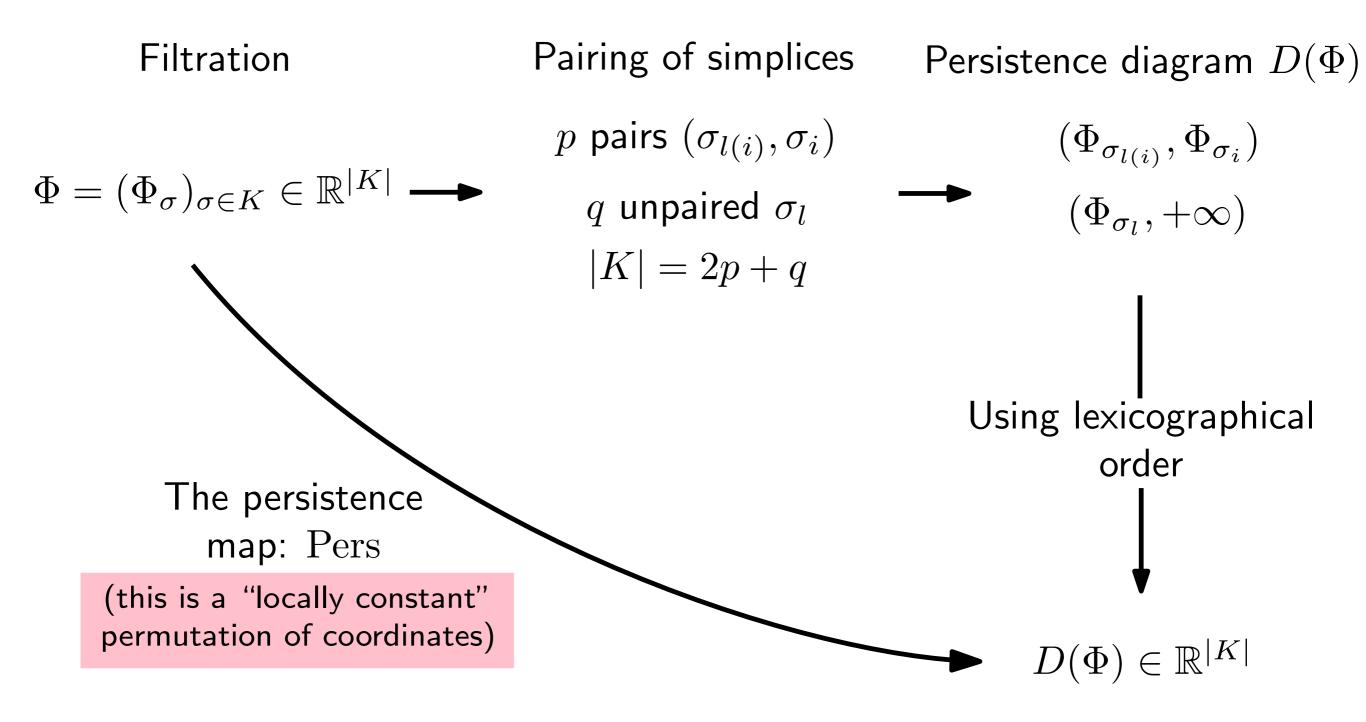


 \Rightarrow the birth of a k-dim feature is registered.

Case 2: adding σ_i to K_{i-1} kills a (k-1)-dimensional topological feature in K_i (homology class in H_{k-1}).



 \Rightarrow persistence algo. pairs the simplex σ_i to the simplex $\sigma_{l(i)}$ that gave birth to the killed feature.



The persistence map is semi-algebraic

Proposition: Given a simplicial complex K, the map

```
Pers: Filt<sub>K</sub> \subseteq \mathbb{R}^{|K|} \to \mathbb{R}^{|K|}
```

is semi-algebraic, (and thus definable in any o-minimal structure). Moreover, there exists a semi-algebraic partition of $Filt_K$ such that the restriction of Pers to each element of this partition is a Lipschitz map.

Corollary: Let K be a simplicial complex and $\Phi: A \to \mathbb{R}^{|K|}$ be a semialgebraic (or definable in a given o-minimal structure) parametrized family of filtrations. The map $\operatorname{Pers} \circ \Phi: A \to \mathbb{R}^{|K|}$ is semi-algebraic (definable).

The persistence map is semi-algebraic

Proposition: Let K be a simplicial complex and $\Phi: A \to \mathbb{R}^{|K|}$ a definable parametrized family of filtrations, where $\dim A = m$. Then there exists a finite definable partition of A, $A = S \sqcup O_1 \sqcup \cdots \sqcup O_k$ such that $\dim S < \dim A := m$ and, for any $i = 1, \ldots, k$, O_i is a definable manifold of dimension m and $\operatorname{Pers} \circ \Phi: O_i \to \mathbb{R}^{|K|}$ is differentiable.

This is an immediate consequence of finiteness and stratifiability properties of definable sets

Semi-algebraic sets and maps

A semialgebraic subset of \mathbb{R}^n is a subset defined as a finite unions and intersections of polynomial equations and inequations with real coefficients. In other words, the set of semialgebraic subsets of \mathbb{R}^n is the smallest class \mathcal{SA}_n of subsets of \mathbb{R}^n satisfaying:

- 1. if $P \in \mathbb{R}[X_1, \dots, X_n]$ is a polynomial, $\{x \in \mathbb{R}^n : P(x) = 0\} \in SA_n$ and $\{x \in \mathbb{R}^n : P(x) > 0\} \in SA_n$.
- 2. If $A, B \in SA_n$, then $A \cup B$, $A \cap B$ and $\mathbb{R}^n \setminus A$ belong to SA_n .

Given $A \subseteq \mathbb{R}^n$ and $A \subseteq \mathbb{R}^m$ two semialgebraic sets, a map $\Phi : A \to B$, where A and B is a semialgebraic map if its graph

$$G_{\Phi} = \{(x, \Phi(x)) : x \in A\} \subseteq A \times B$$

is a semialgebraic subset of $\mathbb{R}^n \times \mathbb{R}^m$.

o-minimal structures

An o-minimal structure on the field of real numbers \mathbb{R} is a collection $(S_n)_{n \in \mathbb{N}}$, where each S_n is a set of subsets of \mathbb{R}^n such that:

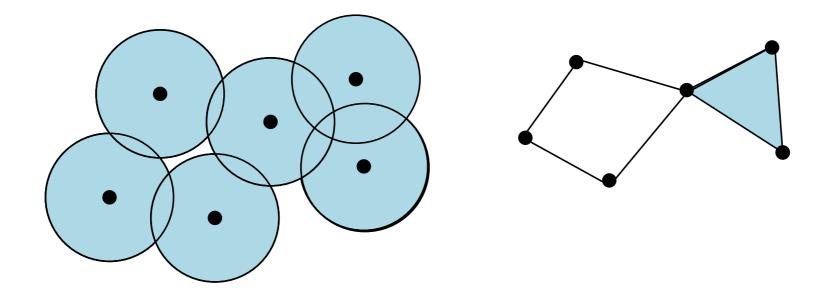
- 1. S_1 is exactly the collection of finite unions of points and intervals;
- 2. all algebraic subsets of \mathbb{R}^n are in S_n ;
- 3. S_n is a Boolean subalgebra of \mathbb{R}^n for any $n \in \mathbb{N}$;
- 4. if $A \in S_n$ and $B \in S_m$, then $A \times B \in S_{n+m}$;
- 5. if $\pi \colon \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the linear projection onto the first n coordinates and $A \in S_{n+1}$, then $\pi(A) \in S_n$.
- $A \in S_n$ is called a definable set in the o-minimal structure.

For $A \subseteq \mathbb{R}^n$, a map $f \colon A \to \mathbb{R}^m$ is a definable map if its graph is a definable set in \mathbb{R}^{n+m} .

Example: Semi-algebraic sets define an o-minimal structure.

Important property: Definable sets admit finite (Whitney) stratification.

Example: the Vietoris-Rips filtration

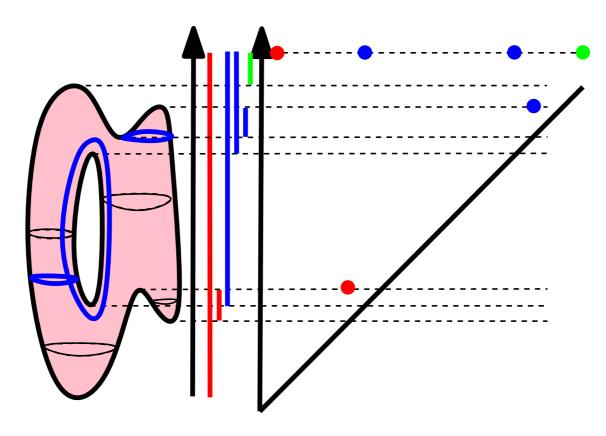


$$\Phi \colon A = (\mathbb{R}^d)^n \to \mathbb{R}^{|\Delta_n|} = \mathbb{R}^{2^n - 1}$$

where Δ_n is the simplicial complex made of all the faces of the (n-1)-dimensional simplex and, for any $x = (x_1, \ldots, x_n) \in A$ and any simplex $\sigma \subseteq \{1, \ldots, n\}$,

$$\Phi_{\sigma}(x) = \max_{i,j\in\sigma} \|x_i - x_j\|.$$

Example: sublevel sets filtrations



K a simplicial complex with n vertices v_1, \ldots, v_n .

Any real-valued function f defined on the vertices of K can be represented as a vector $(f(v_1), \ldots, f(v_n)) \in \mathbb{R}^n$.

$$\Phi \colon A = \mathbb{R}^n \to \mathbb{R}^{|K|}$$

where for any $f = (f_1, \ldots, f_n) \in A$ and any simplex $\sigma \subseteq \{1, \ldots, n\}$,

$$\Phi_{\sigma}(f) = \max_{i \in \sigma} f_i$$

Functions of persistence

Definition: A function

$$E: \mathbb{R}^{|K|} = (\mathbb{R}^2)^p \times \mathbb{R}^q \to \mathbb{R}$$

is a function of persistence if it is invariant to permutations of the points of the persistence diagram: for any $(p_1, \ldots, p_p, e_1, \ldots, e_q) \in (\mathbb{R}^2)^p \times \mathbb{R}^q$ and any permutations α, β of the sets $\{1, \ldots, p\}$ and $\{1, \ldots, q\}$, respectively, one has

$$E(p_{\alpha(1)}, \dots, p_{\alpha(p)}, e_{\beta(1)}, \dots, e_{\beta(q)}) = E(p_1, \dots, p_p, e_1, \dots, e_q).$$

Functions of persistence

Definition: A function

$$E: \mathbb{R}^{|K|} = (\mathbb{R}^2)^p \times \mathbb{R}^q \to \mathbb{R}$$

is a function of persistence if it is invariant to permutations of the points of the persistence diagram: for any $(p_1, \ldots, p_p, e_1, \ldots, e_q) \in (\mathbb{R}^2)^p \times \mathbb{R}^q$ and any permutations α, β of the sets $\{1, \ldots, p\}$ and $\{1, \ldots, q\}$, respectively, one has

$$E(p_{\alpha(1)},\ldots,p_{\alpha(p)},e_{\beta(1)},\ldots,e_{\beta(q)})=E(p_1,\ldots,p_p,e_1,\ldots,e_q).$$

Properties:

If E is locally Lipschitz, then the composition $E \circ Pers$ is also locally Lipschitz.

If E and $\Phi: A \subseteq \mathbb{R}^d \to \mathbb{R}^{|K|}$ are semi-algebraic (or definable), then $\mathcal{L} = E \circ \operatorname{Pers} \circ \Phi: A \to \mathbb{R}$ has a well-defined Clarke subdifferential $\partial \mathcal{L}(z) := \operatorname{Conv} \{\lim_{z_i \to z} \nabla \mathcal{L}(z_i) : \mathcal{L} \text{ is differentiable at } z_i \}.$

Examples

Total persistence.

$$E(D) = \sum_{i=1}^{p} |d_i - b_i|, \text{ for } D = ((b_1, d_1), \dots, (b_p, d_p), e_1, \dots, e_q).$$

 ${\cal E}$ is semi-algebraic and Lipschitz.

Examples

Total persistence.

$$E(D) = \sum_{i=1}^{p} |d_i - b_i|, \text{ for } D = ((b_1, d_1), \dots, (b_p, d_p), e_1, \dots, e_q).$$

 ${\cal E}$ is semi-algebraic and Lipschitz.

Bottleneck distance.

$$E(D) = d_B(D, D^*) = \min_{m} \max_{(p, p^*) \in m} ||p - p^*||_{\infty}$$

where denoting $\Delta = \{(x,x) : x \in \mathbb{R}\}$ the diagonal in \mathbb{R}^2 , m is a partial matching between D and D^* , i.e., a subset of $(D \cup \Delta) \times (D^* \cup \Delta)$ such that every point of $D \setminus \Delta$ and $D^* \setminus \Delta$, appears exactly once in m. E is semi-algebraic and Lipschitz.

Minimization via stochastic (sub-)gradient descent

If E and $\Phi: A \subseteq \mathbb{R}^d \to \mathbb{R}^{|K|}$ are semi-algbraic (or definable), then $\mathcal{L} = E \circ \operatorname{Pers} \circ \Phi: A \to \mathbb{R}$ has a well-defined Clarke subdifferential $\partial \mathcal{L}(z) := \operatorname{Conv} \{\lim_{z_i \to z} \nabla \mathcal{L}(z_i) : \mathcal{L} \text{ is differentiable at } z_i \}.$

Minimization of ${\mathcal L}$ through the differential inclusion

$$\frac{dz}{dt} \in -\partial \mathcal{L}(z(t)) \quad \text{for almost every } t.$$

Standard stochastic subgradient algorithm

$$x_{k+1} = x_k - \alpha_k (y_k + \zeta_k), \ y_k \in \partial \mathcal{L}(x_k),$$

where the sequence $(\alpha_k)_k$ is the learning rate and $(\zeta_k)_k$ is a sequence of random variables.

Minimization via stochastic (sub-)gradient descent

If E and $\Phi: A \subseteq \mathbb{R}^d \to \mathbb{R}^{|K|}$ are semi-algbraic (or definable), then $\mathcal{L} = E \circ \operatorname{Pers} \circ \Phi: A \to \mathbb{R}$ has a well-defined Clarke subdifferential $\partial \mathcal{L}(z) := \operatorname{Conv} \{\lim_{z_i \to z} \nabla \mathcal{L}(z_i) : \mathcal{L} \text{ is differentiable at } z_i \}.$

Minimization of ${\mathcal L}$ through the differential inclusion

$$\frac{dz}{dt} \in -\partial \mathcal{L}(z(t)) \quad \text{for almost every } t.$$

Standard stochastic subgradient algorithm

$$x_{k+1} = x_k - \alpha_k (y_k + \zeta_k), \ y_k \in \partial \mathcal{L}(x_k),$$

where the sequence $(\alpha_k)_k$ is the learning rate and $(\zeta_k)_k$ is a sequence of random variables.

Question: convergence of the algorithm?

Convergence

Convergence follows from [Davis et al, Stochastic subgradient method converges on tame functions. Found. Comp. Math. 2020].

Standard stochastic subgradient algorithm

$$x_{k+1} = x_k - \alpha_k (y_k + \zeta_k), \ y_k \in \partial \mathcal{L}(x_k),$$

where the sequence $(\alpha_k)_k$ is the learning rate and $(\zeta_k)_k$ is a sequence of random variables.

Technical (but classical) assumptions:

- 1. for any $k, \ \alpha_k \ge 0, \ \sum_{k=1}^{\infty} \alpha_k = +\infty$ and, $\sum_{k=1}^{\infty} \alpha_k^2 < +\infty;$
- 2. $\sup_k ||x_k|| < +\infty$, almost surely;
- 3. denoting by \mathcal{F}_k the increasing sequence of σ -algebras $\mathcal{F}_k = \sigma(x_j, y_j, \zeta_j, j < k)$, there exists a function $p \colon \mathbb{R}^d \to \mathbb{R}$ which is bounded on bounded sets such that almost surely, for any k,

$$\mathbb{E}[\zeta_k | \mathcal{F}_k] = 0$$
 and $\mathbb{E}[\|\zeta_k\|^2 | \mathcal{F}_k] < p(x_k).$

Convergence

Convergence follows from [Davis et al, Stochastic subgradient method converges on tame functions. Found. Comp. Math. 2020].

Standard stochastic subgradient algorithm

$$x_{k+1} = x_k - \alpha_k (y_k + \zeta_k), \ y_k \in \partial \mathcal{L}(x_k),$$

where the sequence $(\alpha_k)_k$ is the learning rate and $(\zeta_k)_k$ is a sequence of random variables.

Theorem:

Let K be a simplicial complex, $A \subseteq \mathbb{R}^d$, and $\Phi: A \to \mathbb{R}^{|K|}$ a parametrized family of filtrations of K that is definable in an o-minimal structure. Let $E: \mathbb{R}^{|K|} \to \mathbb{R}$ be a definable function of persistence such that $\mathcal{L} = E \circ \text{Pers} \circ \Phi$ is locally Lipschitz. Then, under the above assumptions 1, 2, and 3, almost surely the limit points of the sequence $(x_k)_k$ obtained from the iterations of the algo. are critical points of \mathcal{L} and the sequence $(\mathcal{L}(x_k))_k$ converges.

Numerical illustration

The differential of persistence map is obvious to compute \rightarrow easy implementation (soon available in GUDHI)

Point cloud optimization

Input: a point cloud X sampled uniformly from the unit square $S=[0,1]^2$

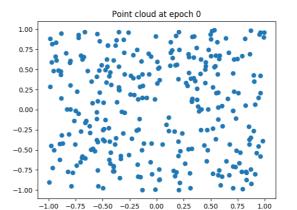
Loss: $\mathcal{L}(X) = P(X) + T(X)$ where

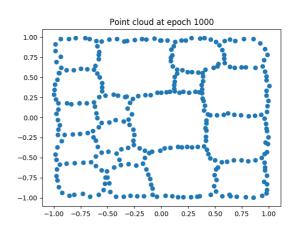
$$T(X) := -\sum_{p \in D} \|p - \pi_{\Delta}(p)\|_{\infty}^2$$

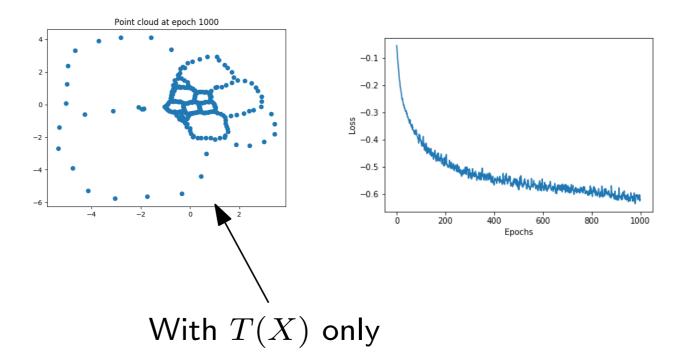
with D is the 1-dimensional persistence diagram associated to the Vietoris-Rips filtration of X, π_{Δ} stands for the projection onto the diagonal Δ , and

$$P(X) := \sum_{x \in X} d(x, S)$$

is a penalty term ensuring that the point coordinates stay in the unit square.

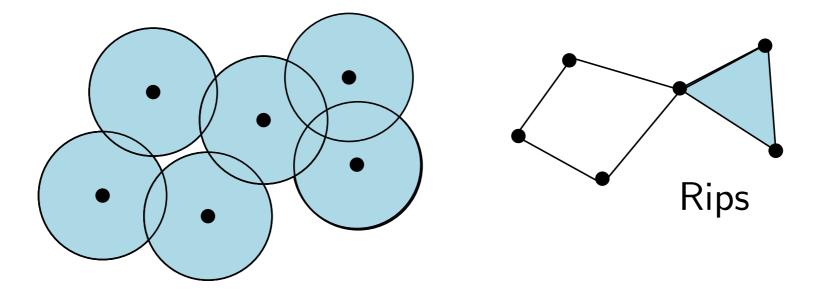






Another example: The density of expected persistence diagrams

Reminder: the Vietoris-Rips filtration



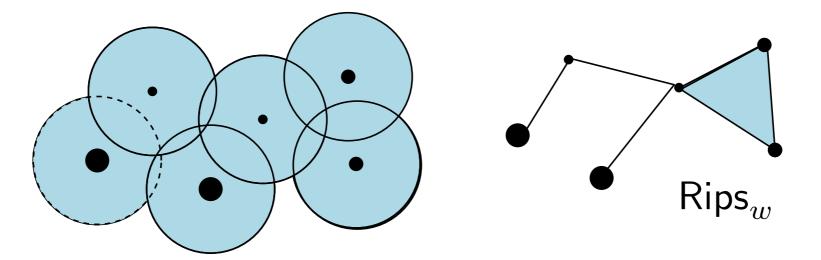
Let V be a point cloud (in a metric space (X, d)).

The Vietoris-Rips complex $\operatorname{Rips}(V)$ is the filtered simplicial complex indexed by \mathbb{R} whose vertex set is V and defined by:

 $\sigma = [p_0 p_1 \cdots p_k] \in \operatorname{Rips}(V, \alpha) \text{ iff } \forall i, j \in \{0, \cdots, k\}, \ d(p_i, p_j) \le \alpha$

Easy to compute and fully determined by its 1-skeleton

The weighted Vietoris-Rips filtration



Let V be a weighted point cloud (in a metric space (X, d)): $V \subset X$ and $w: V \to \mathbb{R}$.

The weighted Vietoris-Rips complex $\operatorname{Rips}_w(V)$ is the filtered simplicial complex indexed by \mathbb{R} whose vertex set is V and defined by:

$$\sigma = [p_0 p_1 \cdots p_k] \in \mathsf{Rips}_w(V, \alpha)$$

iff

 $\forall i, j \in \{0, \cdots, k\}, \ d(p_i, p_j) \le \alpha \text{ and } \forall i \in \{0, \cdots, k\}, \ w(p_i) \le \alpha$

Let $\mathbb{S} = (\mathbb{S}_a \mid a \in \mathbf{R})$ be a finite filtered simplicial complex with N simplices and let $\mathbb{S}_{a_1} \subset \mathbb{S}_{a_2} \subset \cdots \subset \mathbb{S}_{a_N}$ be the discrete filtration induced by the entering times of the simplices: $\mathbb{S}_{a_i} \setminus \mathbb{S}_{a_{i-1}} = \sigma_{a_i}$.

Let $\mathbb{S} = (\mathbb{S}_a \mid a \in \mathbf{R})$ be a finite filtered simplicial complex with N simplices and let $\mathbb{S}_{a_1} \subset \mathbb{S}_{a_2} \subset \cdots \subset \mathbb{S}_{a_N}$ be the discrete filtration induced by the entering times of the simplices: $\mathbb{S}_{a_i} \setminus \mathbb{S}_{a_{i-1}} = \sigma_{a_i}$.

Process the simplices according to their order of entrance in the filtration:

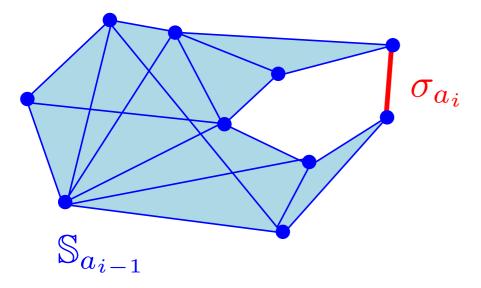
Let $k = \dim \sigma_{a_i}$ (ie. $\sigma_{a_i} = [v_0, \cdots, v_k]$)

Let $\mathbb{S} = (\mathbb{S}_a \mid a \in \mathbf{R})$ be a finite filtered simplicial complex with N simplices and let $\mathbb{S}_{a_1} \subset \mathbb{S}_{a_2} \subset \cdots \subset \mathbb{S}_{a_N}$ be the discrete filtration induced by the entering times of the simplices: $\mathbb{S}_{a_i} \setminus \mathbb{S}_{a_{i-1}} = \sigma_{a_i}$.

Process the simplices according to their order of entrance in the filtration:

Let $k = \dim \sigma_{a_i}$ (ie. $\sigma_{a_i} = [v_0, \cdots, v_k]$)

Case 1: adding σ_{a_i} to $\mathbb{S}_{a_{i-1}}$ creates a new k-dimensional topological feature in \mathbb{S}_{a_i} (new homology class in H_k).



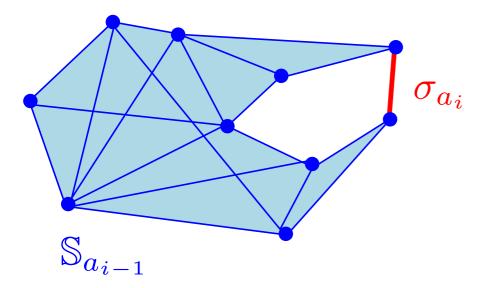
 \Rightarrow the birth of a k-dim feature is registered.

Let $\mathbb{S} = (\mathbb{S}_a \mid a \in \mathbf{R})$ be a finite filtered simplicial complex with N simplices and let $\mathbb{S}_{a_1} \subset \mathbb{S}_{a_2} \subset \cdots \subset \mathbb{S}_{a_N}$ be the discrete filtration induced by the entering times of the simplices: $\mathbb{S}_{a_i} \setminus \mathbb{S}_{a_{i-1}} = \sigma_{a_i}$.

Process the simplices according to their order of entrance in the filtration:

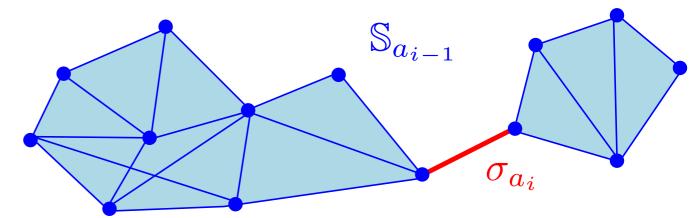
Let $k = \dim \sigma_{a_i}$ (ie. $\sigma_{a_i} = [v_0, \cdots, v_k]$)

Case 1: adding σ_{a_i} to $\mathbb{S}_{a_{i-1}}$ creates a new k-dimensional topological feature (in \mathbb{S}_{a_i} (new homology class in H_k).



 \Rightarrow the birth of a k-dim feature is registered.

Case 2: adding σ_{a_i} to $\mathbb{S}_{a_{i-1}}$ kills a (k-1)-dimensional topological feature in \mathbb{S}_{a_i} (homology class in H_{k-1}).

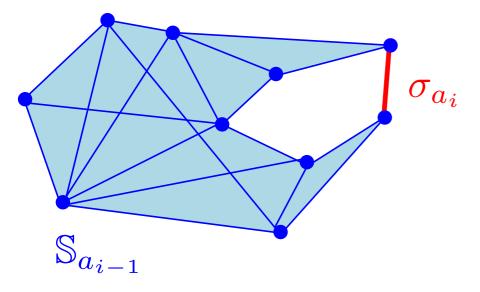


 \Rightarrow persistence algo. pairs the simplex σ_{a_i} to the simplex σ_{a_j} that gave birth to the killed feature.

Process the simplices according to their order of entrance in the filtration:

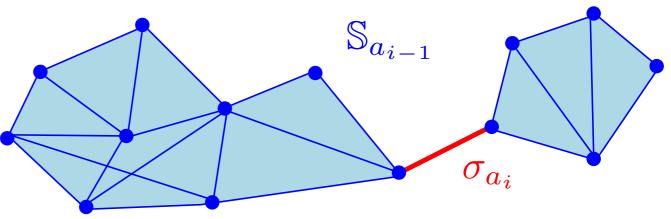
Let
$$k = \dim \sigma_{a_i}$$
 (ie. $\sigma_{a_i} = [v_0, \cdots, v_k]$)

Case 1: adding σ_{a_i} to $\mathbb{S}_{a_{i-1}}$ creates a new k-dimensional topological feature in \mathbb{S}_{a_i} (new homology class in H_k).



 \Rightarrow the birth of a k-dim feature is registered.

Case 2: adding σ_{a_i} to $\mathbb{S}_{a_{i-1}}$ kills a (k-1)-dimensional topological feature in \mathbb{S}_{a_i} (homology class in H_{k-1}).



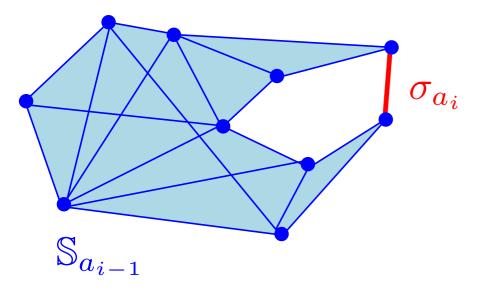
 \Rightarrow persistence algo. pairs the simplex σ_{a_i} to the simplex σ_{a_j} that gave birth to the killed feature.

- $\rightarrow (\sigma_{a_j}, \sigma_{a_i})$: persistence pair
- → $(a_j, a_i) \in \mathbb{R}^2$: point in the persistence diagram

Process the simplices according to their order of entrance in the filtration:

Let
$$k = \dim \sigma_{a_i}$$
 (ie. $\sigma_{a_i} = [v_0, \cdots, v_k]$)

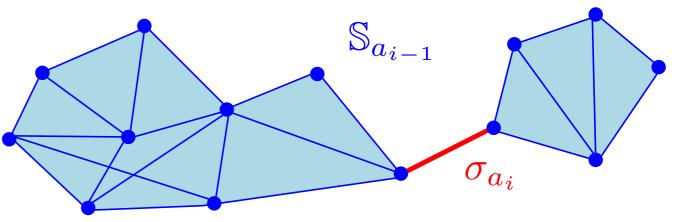
Case 1: adding σ_{a_i} to $\mathbb{S}_{a_{i-1}}$ creates a new k-dimensional topological feature in \mathbb{S}_{a_i} (new homology class in H_k).



 \Rightarrow the birth of a k-dim feature is registered.

Important to remember: the persistence pairs are determined by the order on the simplices; the corresponding $\rightarrow (a_i, a_i) \in \mathbb{R}^2$: point in the perpoints in the diagrams are determined by the indices.

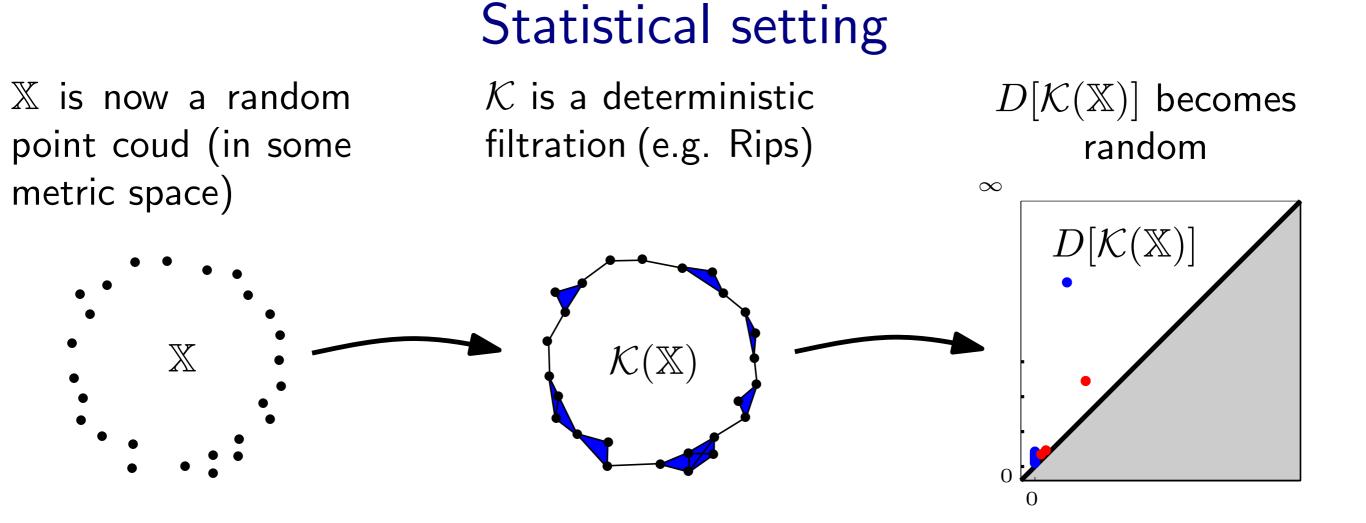
Case 2: adding σ_{a_i} to $\mathbb{S}_{a_{i-1}}$ kills a (k-1)-dimensional topological feature in \mathbb{S}_{a_i} (homology class in H_{k-1}).

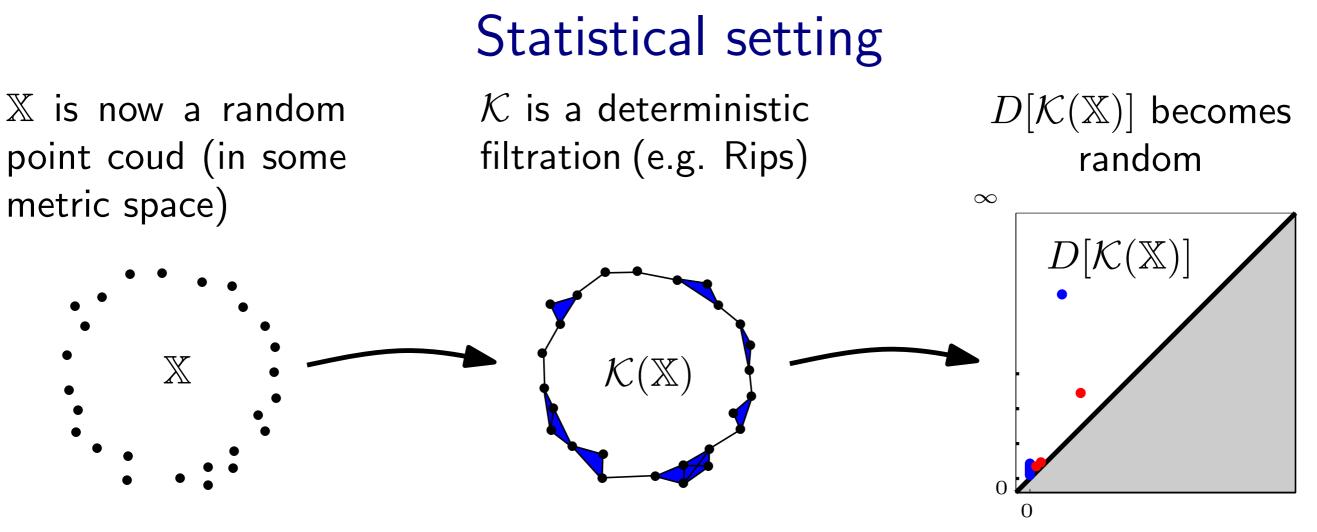


 \Rightarrow persistence algo. pairs the simplex σ_{a_i} to the simplex σ_{a_i} that gave birth to the killed feature.

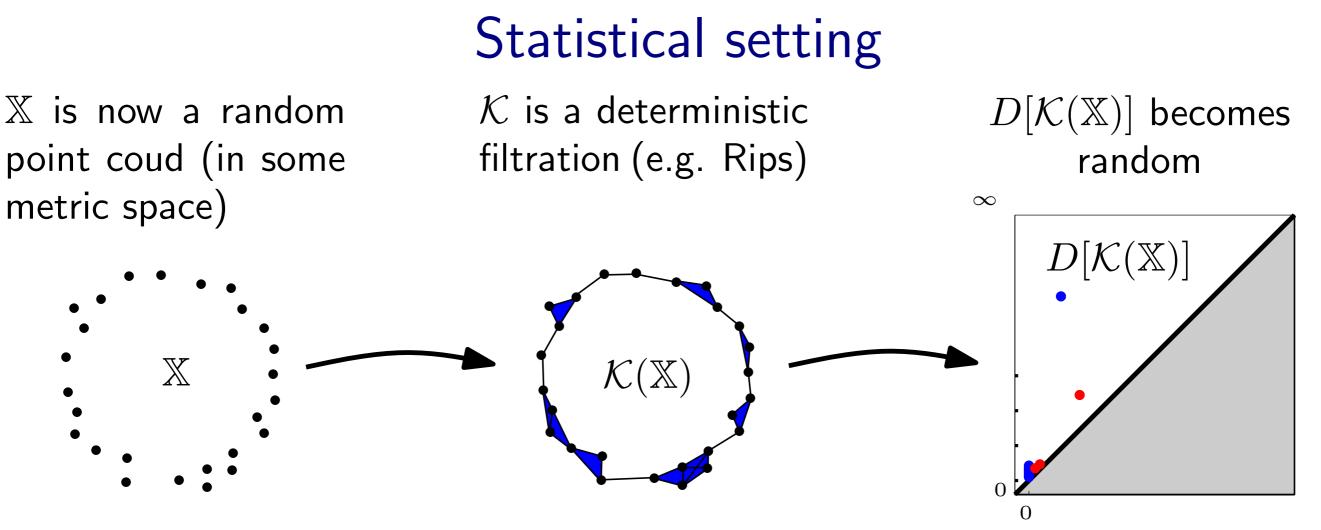
 $\rightarrow (\sigma_{a_i}, \sigma_{a_i})$: persistence pair

sistence diagram





What can be said about the distribution of diagrams $D[\mathcal{K}(\mathbb{X})]$?



What can be said about the distribution of diagrams $D[\mathcal{K}(X)]$?

- \bullet Stability properties \Rightarrow asymptotic properties, confidence bands, Wasserstein stability,...
- Other representation of persistence (landscapes, Betti curves, pers. images, kernels,...)

Goal: understand the structure of $E[D[\mathcal{K}(X)]]$ in the non asymptotic setting (|X| = n is fixed, or bounded)

Filtrations revisited

Let n > 0 be an integer,

 \mathcal{F}_n : the collection of non-empty subsets of $\{1,\ldots,n\}$,

M: a real analytic compact d-dim. connected manifold (poss. with boundary).

Filtering function:

$$\varphi = (\varphi[J])_{J \in \mathcal{F}_n} : M^n \to \mathbb{R}^{|\mathcal{F}_n|}$$

satisfiying the following conditions:

(K2) Invariance by permutation: For $J \in \mathcal{F}_n$ and for $(x_1, \ldots, x_n) \in M^n$, if τ is a permutation of the entries having support included in J, then $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$

(K3) Monotony: For $J \subset J' \in \mathcal{F}_n$, $\varphi[J] \leq \varphi[J']$.

Given $x = (x_1, \dots, x_n)$, $\varphi(x)$ induces an order on the faces of the simplex with n vertices that is a filtration $\mathcal{K}(x)$:

$$\forall J \in \mathcal{F}_n, \ J \in \mathcal{K}(x,r) \Longleftrightarrow \varphi[J](x) \leq r.$$

Filtrations revisited

Not: for $x = (x_1, \ldots, x_n) \in M^n$ and for J a simplex, $x(J) := (x_j)_{j \in J}$

- (K1) Absence of interaction: For $J \in \mathcal{F}_n$, $\varphi[J](x)$ only depends on x(J).
- (K2) Invariance by permutation: For $J \in \mathcal{F}_n$ and for $(x_1, \ldots, x_n) \in M^n$, if τ is a permutation of the entries having support included in J, then $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony: For $J \subset J' \in \mathcal{F}_n$, $\varphi[J] \leq \varphi[J']$.
- (K4) Compatibility: For a simplex $J \in \mathcal{F}_n$ and for $j \in J$, if $\varphi[J](x_1, \ldots, x_n)$ is not a function of x_j on some open set U of M^n , then $\varphi[J] \equiv \varphi[J \setminus \{j\}]$ on U.
- (K5) *Smoothness:* The function φ is subanalytic and the gradient of each of its entries (which is defined a.s.e.) is non vanishing a.s.e..

The example of the Vietoris-Rips filtration

 $\varphi[J](x) = \max_{i,j \in J} d(x_i, x_j)$

- (K1) Absence of interaction: For $J \in \mathcal{F}_n$, $\varphi[J](x)$ only depends on x(J).
- (K2) Invariance by permutation: For $J \in \mathcal{F}_n$ and for $(x_1, \ldots, x_n) \in M^n$, if τ is a permutation of the entries having support included in J, then $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony: For $J \subset J' \in \mathcal{F}_n$, $\varphi[J] \leq \varphi[J']$.
- (K4) Compatibility: For a simplex $J \in \mathcal{F}_n$ and for $j \in J$, if $\varphi[J](x_1, \ldots, x_n)$ is not a function of x_j on some open set U of M^n , then $\varphi[J] \equiv \varphi[J \setminus \{j\}]$ on U.
- (K5') Smoothness: The function φ is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for $J = \{j\}$, $\varphi[\{j\}] \equiv 0$.

The example of the Vietoris-Rips filtration

 $\varphi[J](x) = \max_{i,j \in J} d(x_i, x_j)$

- (K1) Absence of interaction: For $J \in \mathcal{F}_n$, $\varphi[J](x)$ only depends on x(J).
- (K2) Invariance by permutation: For $J \in \mathcal{F}_n$ and for $(x_1, \ldots, x_n) \in M^n$, if τ is a permutation of the entries having support included in J, then $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony: For $J \subset J' \in \mathcal{F}_n$, $\varphi[J] \leq \varphi[J']$.
- (K4) Compatibility: For a simplex $J \in \mathcal{F}_n$ and for $j \in J$, if $\varphi[J](x_1, \ldots, x_n)$ is not a function of x_j on some open set U of M^n , then $\varphi[J] \equiv \varphi[J \setminus \{j\}]$ on U.
- (K5') Smoothness: The function φ is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for $J = \{j\}$, $\varphi[\{j\}] \equiv 0$.

 $\varphi[J](x) = \max_{i,j\in J} d(x_i, x_j)$

- (K1) Absence of interaction: For $J \in \mathcal{F}_n$, $\varphi[J](x)$ only depends on x(J).
- (K2) Invariance by permutation: For $J \in \mathcal{F}_n$ and for $(x_1, \ldots, x_n) \in M^n$, if τ is a permutation of the entries having support included in J, then $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony: For $J \subset J' \in \mathcal{F}_n$, $\varphi[J] \leq \varphi[J']$.
- (K4) Compatibility: For a simplex $J \in \mathcal{F}_n$ and for $j \in J$, if $\varphi[J](x_1, \ldots, x_n)$ is not a function of x_j on some open set U of M^n , then $\varphi[J] \equiv \varphi[J \setminus \{j\}]$ on U.
- (K5') Smoothness: The function φ is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for $J = \{j\}$, $\varphi[\{j\}] \equiv 0$.

 $\varphi[J](x) = \max_{i,j\in J} d(x_i, x_j)$

- (K1) Absence of interaction: For $J \in \mathcal{F}_n$, $\varphi[J](x)$ only depends on x(J).
- (K2) Invariance by permutation: For $J \in \mathcal{F}_n$ and for $(x_1, \ldots, x_n) \in M^n$, if τ is a permutation of the entries having support included in J, then $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony: For $J \subset J' \in \mathcal{F}_n$, $\varphi[J] \leq \varphi[J']$.
- (K4) Compatibility: For a simplex $J \in \mathcal{F}_n$ and for $j \in J$, if $\varphi[J](x_1, \ldots, x_n)$ is not a function of x_j on some open set U of M^n , then $\varphi[J] \equiv \varphi[J \setminus \{j\}]$ on U.
- (K5') Smoothness: The function φ is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for $J = \{j\}, \varphi[\{j\}] \equiv 0$.

 $\varphi[J](x) = \max_{i,j\in J} d(x_i, x_j)$

- (K1) Absence of interaction: For $J \in \mathcal{F}_n$, $\varphi[J](x)$ only depends on x(J).
- (K2) Invariance by permutation: For $J \in \mathcal{F}_n$ and for $(x_1, \ldots, x_n) \in M^n$, if τ is a permutation of the entries having support included in J, then $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony: For $J \subset J' \in \mathcal{F}_n$, $\varphi[J] \leq \varphi[J']$.
- (K4) Compatibility: For a simplex $J \in \mathcal{F}_n$ and for $j \in J$, if $\varphi[J](x_1, \ldots, x_n)$ is not a function of x_j on some open set U of M^n , then $\varphi[J] \equiv \varphi[J \setminus \{j\}]$ on U.
- (K5') Smoothness: The function φ is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for $J = \{j\}$, $\varphi[\{j\}] \equiv 0$.

 $\varphi[J](x) = \max_{i,j \in J} d(x_i, x_j)$

- (K1) Absence of interaction: For $J \in \mathcal{F}_n$, $\varphi[J](x)$ only depends on x(J).
- (K2) Invariance by permutation: For $J \in \mathcal{F}_n$ and for $(x_1, \ldots, x_n) \in M^n$, if τ is a permutation of the entries having support included in J, then $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony: For $J \subset J' \in \mathcal{F}_n$, $\varphi[J] \leq \varphi[J']$.
- (K4) Compatibility: For a simplex $J \in \mathcal{F}_n$ and for $j \in J$, if $\varphi[J](x_1, \ldots, x_n)$ is not a function of x_j on some open set U of M^n , then $\varphi[J] \equiv \varphi[J \setminus \{j\}]$ on U.
- (K5') Smoothness: The function φ is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for $J = \{j\}, \varphi[\{j\}] \equiv 0$.

Theorem: Fix $n \ge 1$. Assume that:

- $\bullet~M$ is a real analytic compact $d\mbox{-dimensional}$ connected submanifold possibly with boundary,
- X is a random variable on M^n having a density with respect to the Haussdorf measure \mathcal{H}_{dn} ,
- \mathcal{K} satisfies the assumptions (K1)-(K5).

Then, for $s \ge 0$, $E[D_s[\mathcal{K}(X)]]$ has a density with respect to the Lebesgue measure on the half plane $\Delta = \{(b, d) \in \mathbb{R}^2 : b \le d\}.$

Theorem: Fix $n \ge 1$. Assume that:

- $\bullet~M$ is a real analytic compact $d\mbox{-dimensional}$ connected riemannian manifold possibly with boundary,
- X is a random variable on M^n having a density with respect to the Haussdorf measure \mathcal{H}_{dn} ,
- \mathcal{K} satisfies the assumptions (K1)-(K4) and (K5').

Then, for $s \ge 1$, $E[D_s[\mathcal{K}(X)]]$ has a density with respect to the Lebesgue measure on Δ . Moreover, $E[D_0[\mathcal{K}(X)]]$ has a density with respect to the Lebesgue measure on the vertical line $\{0\} \times [0, \infty)$.

Technical assumption (related to finiteness properties of subanalytic sets) that can be discarded in most cases.

Theorem: Fix $n \ge 1$. Assume that:

- *M* is a real analytic compact *d*-dimensional connected riemannian manifold possibly with boundary,
- X is a random variable on M^n having a density with respect to the Haussdorf measure \mathcal{H}_{dn} ,
- \mathcal{K} satisfies the assumptions (K1)-(K4) and (K5').

Then, for $s \ge 1$, $E[D_s[\mathcal{K}(X)]]$ has a density with respect to the Lebesgue measure on Δ . Moreover, $E[D_0[\mathcal{K}(X)]]$ has a density with respect to the Lebesgue measure on the vertical line $\{0\} \times [0, \infty)$.

Technical assumption (related to finiteness properties of subanalytic sets) that can be discarded in most cases.

Theorem: Fix $n \ge 1$. Assume that:

- *M* is a real analytic compact *d*-dimensional connected riemannian manifold possibly with boundary,
- X is a random variable on M^n having a density with respect to the Haussdorf measure \mathcal{H}_{dn} ,
- \mathcal{K} satisfies the assumptions (K1)-(K4) and (K5').

Then, for $s \ge 1$, $E[D_s[\mathcal{K}(X)]]$ has a density with respect to the Lebesgue measure on Δ . Moreover, $E[D_0[\mathcal{K}(X)]]$ has a density with respect to the Lebesgue measure on the vertical line $\{0\} \times [0, \infty)$.

Theorem [smoothness]: Under the assumption of previous theorem, if moreover $\mathbb{X} \in M^n$ has a density of class C^k with respect to \mathcal{H}_{nd} . Then, for $s \ge 0$, the density of $E[D_s[\mathcal{K}(\mathbb{X})]]$ is of class C^k .

The Hausdorff measure and the co-area formula

Definition: Let k be a non-negative number. For $A \subset \mathbb{R}^D$, and $\delta > 0$, consider

$$\mathcal{H}_k^{\delta}(A) := \inf \left\{ \sum_i \operatorname{diam}(U_i)^k, A \subset \bigcup_i U_i \text{ and } \operatorname{diam}(U_i) < \delta \right\}.$$

The *k*-dimensional Haussdorf measure on \mathbb{R}^D of A is defined by $\mathcal{H}_k(A) := \lim_{\delta \to 0} \mathcal{H}_k^{\delta}(A)$.

Theorem [Co-area formula]: Let M (resp. N) be a smooth Riemannian manifold of dimension m (resp n). Assume that $m \ge n$ and let $\Phi : M \to N$ be a differentiable map. Denote by $D\Phi$ the differential of Φ . The Jacobian of Φ is defined by $J\Phi = \sqrt{\det((D\Phi) \times (D\Phi)^t)}$. For $f : M \to \mathbb{R}_+$ a positive measurable function, the following equality holds:

$$\int_{M} f(x) J\Phi(x) d\mathcal{H}_{m}(x) = \int_{N} \left(\int_{x \in \Phi^{-1}(\{y\})} f(x) d\mathcal{H}_{m-n}(x) \right) d\mathcal{H}_{n}(y).$$

Let $M \subset \mathbb{R}^D$ be a connected real analytic submanifold (poss. with boundary), of dim. d.

• $X \subset M$ is *semianalytic* if any $p \in M$ has a neighbourhood U_p such that

$$X \cap U_p = \bigcup_{i=1}^p \bigcap_{j=1}^q X_{ij},$$

where X_{ij} is either $f_{ij}^{-1}(\{0\})$ or $f_{ij}^{-1}((0,\infty))$ for some analytic functions $f_{ij}: U \to \mathbb{R}$.

• $X \subseteq M$ is *subanalytic* if for each point of M, there exists a neighborhood U of this point, a real analytic manifold N and A, a relatively compact semianalytic set of $N \times M$, such that $X \cap U$ is the projection of A on M.

• $f: X \to \mathbb{R}$ is subanalytic if its graph is subanalytic in $M \times \mathbb{R}$. The set of real-valued subanalytic functions on X is denoted by $\mathcal{S}(X)$.

Let $M \subset \mathbb{R}^D$ be a connected real analytic submanifold (poss. with boundary), of dim. d.

- $x \in X \subseteq M$ is smooth of dimension k if, in some neighbourhood of x in M, X is an analytic submanifold (of dimension k).
- The dimension of X is the maximal dimension of a smooth point of X.
- $\operatorname{Reg}(X)$: regular points of X, i.e. smooth points of X of dimension d.
- Sing(X): sigular points of X, i.e. the non-regular points.
- $\operatorname{Reg}(X)$ is an open subset of M, possibly empty.

Let $M \subset \mathbb{R}^D$ be a connected real analytic submanifold (poss. with boundary), of dim. d.

Lemma: For $f \in S(M)$, the set A(f) on which f is analytic is an open subanalytic set of M. Its complement is a subanalytic set of dimension smaller than d.

Lemma: Let X be a subanalytic subset of M and let $f,g: X \to \mathbb{R}$ be subanalytic such that the image of a bounded set is bounded. Then

- fg and f + g are subanalytic,
- the sets $f^{-1}(\{0\})$ and $f^{-1}((0,\infty))$ are subanalytic in M.

Lemma: Let X be a subanalytic subset of M. If the dimension of X is smaller than d, then $\mathcal{H}_d(X) = 0$.

Let $M \subset \mathbb{R}^D$ be a connected real analytic submanifold (poss. with boundary), of dim. d.

Lemma: For $f \in S(M)$, the set A(f) on which f is analytic is an open subanalytic set of M. Its complement is a subanalytic set of dimension smaller than d.

Lemma: Let X be a subanalytic subset of M and let $f,g:X\to\mathbb{R}$ be subanalytic such that the image of a bounded set is bounded. Then

- fg and f + g are subanalytic,
- the sets $f^{-1}(\{0\})$ and $f^{-1}((0,\infty))$ are subanalytic in M.

Lemma: Let X be a subanalytic subset of M. If the dimension of X is smaller than d, then $\mathcal{H}_d(X) = 0$.

Consequences:

- $\mathcal{H}_d(X) = \mathcal{H}_d(\operatorname{Reg}(X))$,
- for any $f \in S(M)$, the gradient ∇f is defined everywhere but on some subanalytic set of dimension smaller than d (of zero Hausdorff measure).

Sketch of proof

1. There exists a partition of the complement of a (subanalytic) set of measure 0 in M^n by open sets V_1, \dots, V_R such that :

- the order of the simplices of $\mathcal{K}(x)$ is constant on each V_r ,
- for any $r=1,\cdots,R$, and any $x\in V_r$,

$$D_s[\mathcal{K}(x)] = \sum_{i=1}^{N_r} \delta_{\mathbf{r}_i}$$

with $\mathbf{r}_i = (\varphi[J_{i_1}](x), \varphi[J_{i_2}](x))$ where N_r , J_{i_1}, J_{i_2} only depends on V_r .

• J_{i_1}, J_{i_2} can be chosen so that the differential of

$$\Phi_{ir}: x \in V_r \to \mathbf{r}_i = (\varphi[J_{i_1}](x), \varphi[J_{i_2}](x))$$

has maximal rank (2).

Sketch of proof

2. The expected diagram can be written as

$$E[D_s[\mathcal{K}(\mathbb{X})]] = \sum_{r=1}^R E\left[\mathbb{1}\{\mathbb{X} \in V_r\} D_s[\mathcal{K}(\mathbb{X})]\right] = \sum_{r=1}^R E\left[\mathbb{1}\{\mathbb{X} \in V_r\} \sum_{i=1}^{N_r} \delta_{\mathbf{r}_i}\right]$$
$$= \sum_{r=1}^R \sum_{i=1}^{N_r} E\left[\mathbb{1}\{\mathbb{X} \in V_r\} \delta_{\mathbf{r}_i}\right]$$

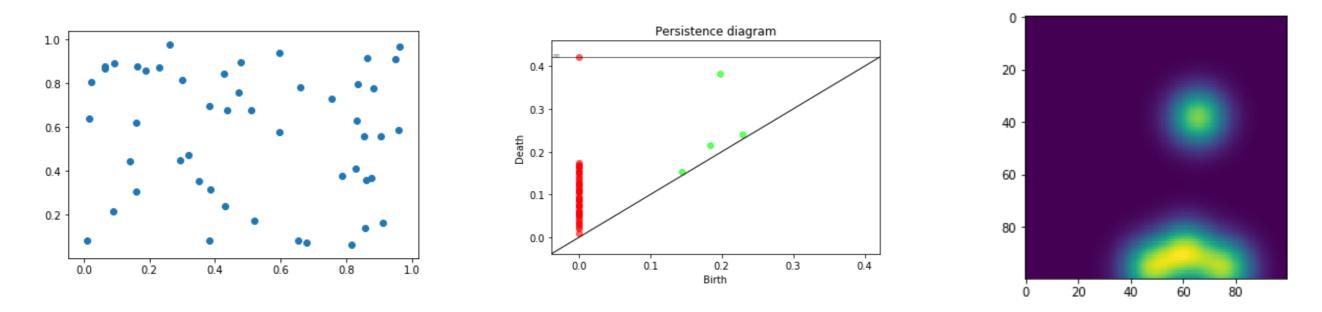
Sketch of proof

2. The expected diagram can be written as

$$E[D_{s}[\mathcal{K}(\mathbb{X})]] = \sum_{r=1}^{R} E\left[\mathbb{1}\{\mathbb{X} \in V_{r}\}D_{s}[\mathcal{K}(\mathbb{X})]\right] = \sum_{r=1}^{R} E\left[\mathbb{1}\{\mathbb{X} \in V_{r}\}\sum_{i=1}^{N_{r}} \delta_{\mathbf{r}_{i}}\right]$$
$$= \sum_{r=1}^{R} \sum_{i=1}^{N_{r}} E\left[\mathbb{1}\{\mathbb{X} \in V_{r}\}\delta_{\mathbf{r}_{i}}\right]$$
$$\mu_{ir}$$
3. Use the co-area formula:
$$\mu_{ir}(B) = P(\Phi_{ir}(\mathbb{X}) \in B, \mathbb{X} \in V_{r})$$
$$= \int_{V_{r}} \mathbb{1}\{\Phi_{ir}(x) \in B\}\kappa(x)d\mathcal{H}_{nd}(x)$$
$$= \int_{U \in B} \int_{x \in \Phi_{ir}^{-1}(u)} (J\Phi_{ir}(x))^{-1}\kappa(x)d\mathcal{H}_{nd-2}(x)du.$$
Density of μ_{ir}

Persistence images

[Adams et al, JMLR 2017]



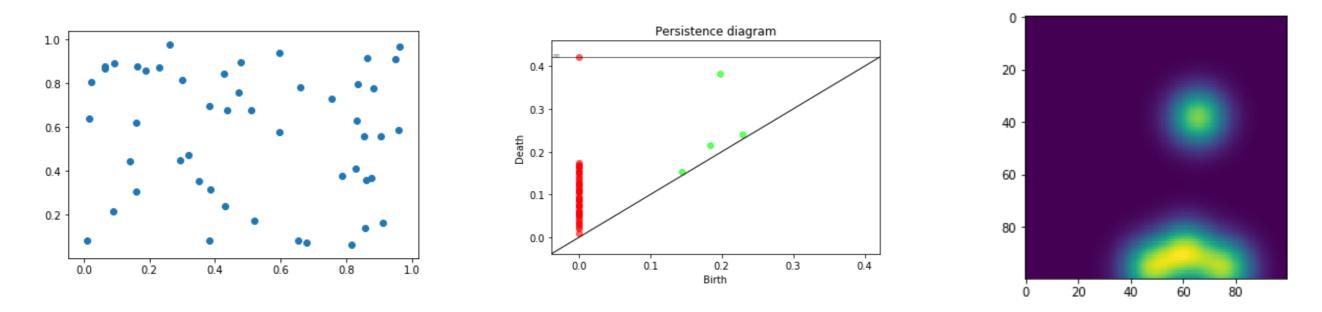
For $K : \mathbb{R}^2 \to \mathbb{R}$ a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for $u \in \mathbb{R}^2$, $K_H(z) = |H|^{-1/2} K(H^{-1/2} \cdot u)$

For $D = \sum_i \delta_{\mathbf{r}_i}$ a diagram, $K : \mathbb{R}^2 \to \mathbb{R}$ a kernel, H a bandwidth matrix and $w : \mathbb{R}^2 \to \mathbb{R}_+$ a weight function, one defines the persistence surface of D with kernel K and weight function w by:

$$\forall z \in \mathbb{R}^2, \ \rho(D)(u) = \sum_i w(\mathbf{r}_i) K_H(u - \mathbf{r}_i) = D(wK_H(u - \cdot))$$

Persistence images

[Adams et al, JMLR 2017]



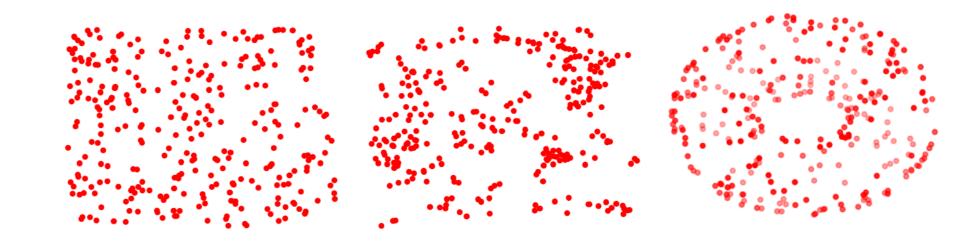
For $K : \mathbb{R}^2 \to \mathbb{R}$ a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for $u \in \mathbb{R}^2$, $K_H(z) = |H|^{-1/2} K(H^{-1/2} \cdot u)$

For $D = \sum_i \delta_{\mathbf{r}_i}$ a diagram, $K : \mathbb{R}^2 \to \mathbb{R}$ a kernel, H a bandwidth matrix and $w : \mathbb{R}^2 \to \mathbb{R}_+$ a weight function, one defines the persistence surface of D with kernel K and weight function w by:

$$\forall z \in \mathbb{R}^2, \ \rho(D)(u) = \sum_i w(\mathbf{r}_i) K_H(u - \mathbf{r}_i) = D(wK_H(u - \cdot))$$

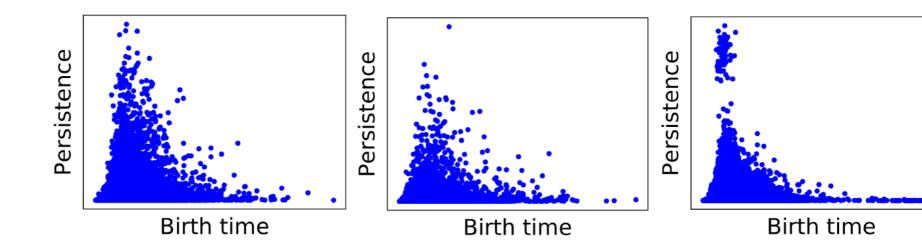
 \Rightarrow persistence surfaces can be seen as kernel based estimators of $E[D_s[\mathcal{K}(\mathbb{X})]]$.

Persistence images

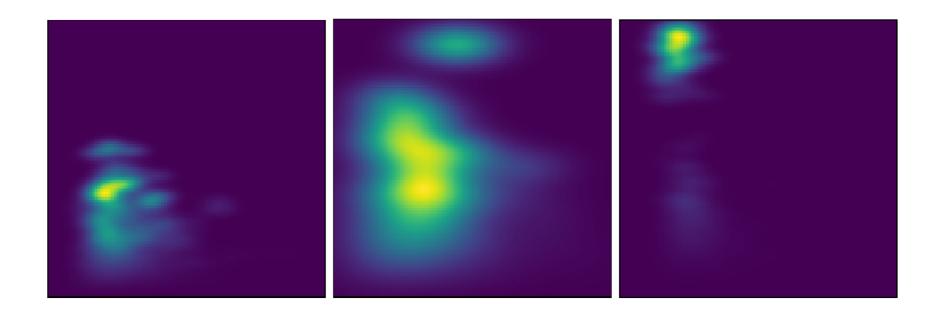


The realization of 3 different processes

The overlay of 40 different persistence diagrams



The persistence images with weight function $w(\mathbf{r}) = (r_2 - r_1)^3$ and bandwith selected using cross-validation.

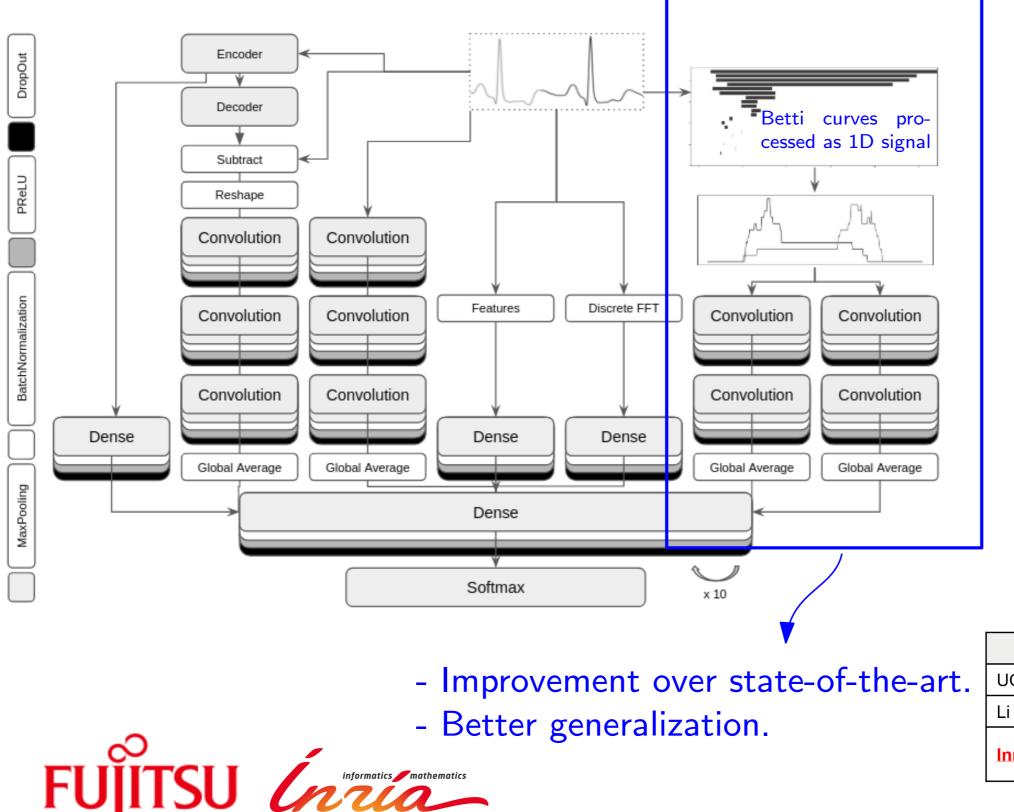


A few illustrative applications

Example of application: arrhythmia detection

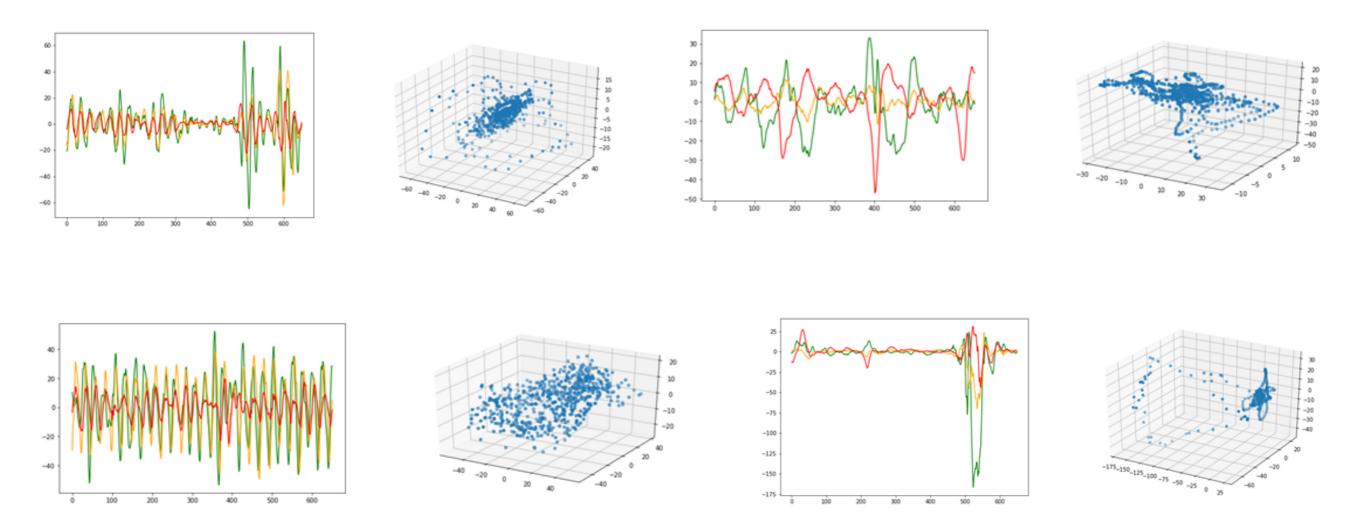
[Dindin, Umeda, C. Can. Conf. Al 2020]

Objective: Arrythmia detection from ECG data.



	Accuracy[%]
UCLA (2018)	93.4
Li et al. (2016)	94.6
Inria-Fujitsu (2018)*	98.6

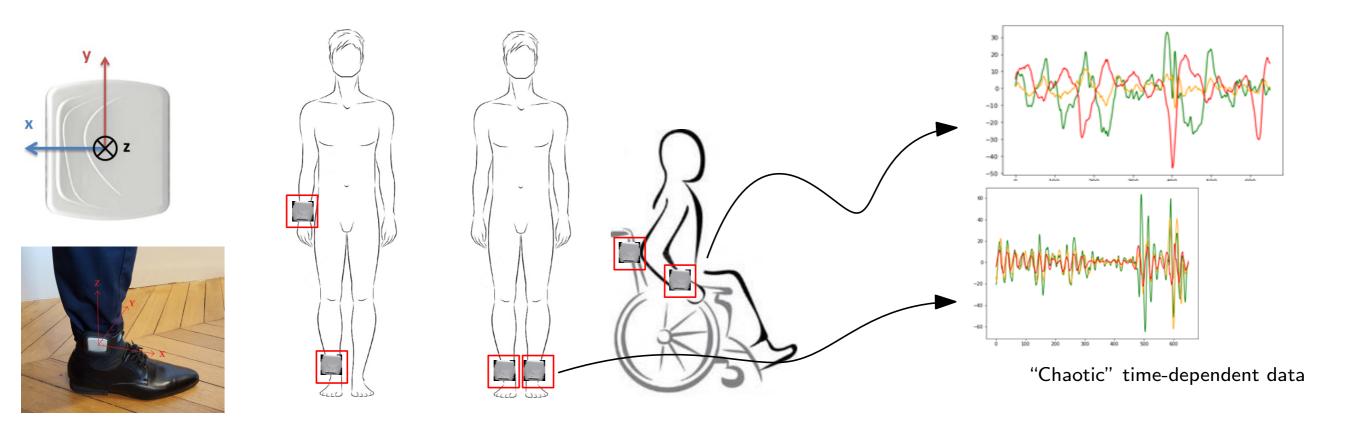
TDA and Machine Learning for sensor data



(Multivariate) time-dependent data can be converted into point clouds: sliding window, time-delay embedding,...

With landscapes: patient monitoring

[Beaufils, C., Dindin, Grelet, Michel 2018]

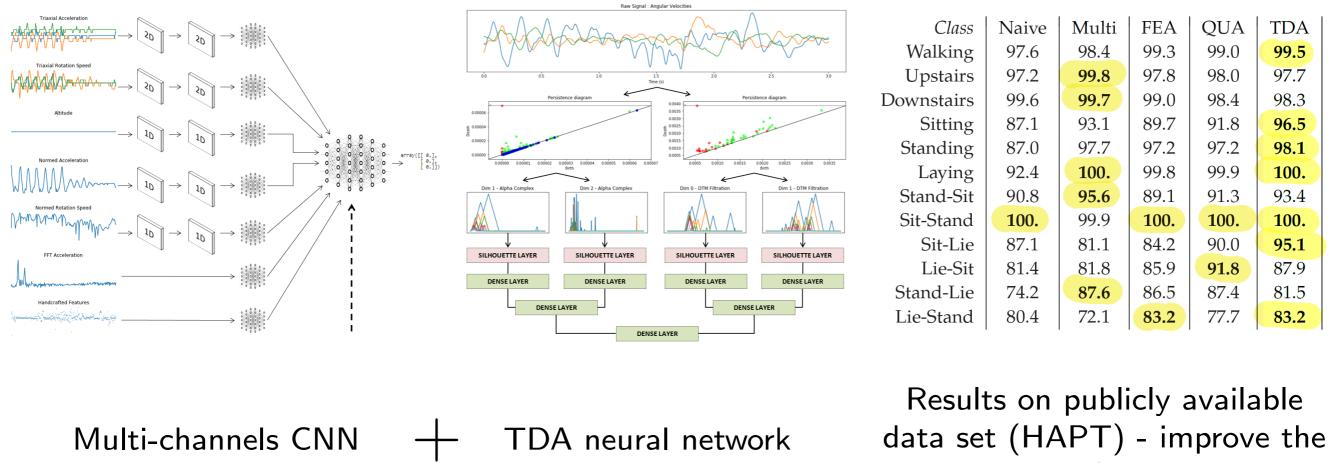


Objective: precise analysis of movements and activities of pedestrians.

Applications: personal healthcare; medical studies; defense.

With landscapes: patient monitoring

[Beaufils, C., Dindin, Grelet, Michel 2018] Example: Dyskinesia crisis detection and activity recognition:



- state-of-the-art.
- Data collected in non controlled environments (home) are very chaotic.
- Data registration (uncertainty in sensors orientation/position).
- Reliable and robust information is mandatory.
- Events of interest are often rare and difficult to characterize.

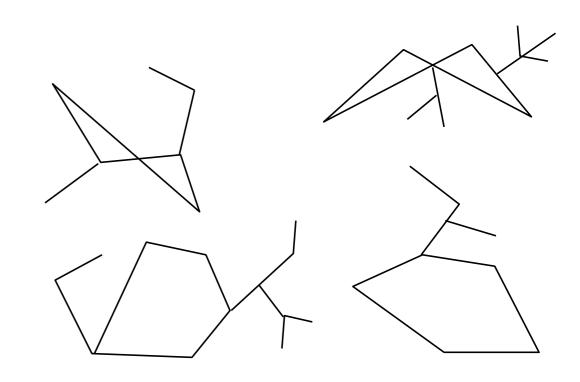
Extra slides

Graph classification using persistent homology

Input: A collection of graphs G_1, \dots, G_n belonging to different classes y_1, \dots, y_k .

Goal: Recover the classes, i.e. build, from the input data, a function

$$f: \mathcal{G} \to Y = \{y_1, \cdots, y_k\}$$



that assigns each graph in \mathcal{G} to its expected class.

Unformal assumption (hope): the class of a graph is determined by its geometric structure.

Simple idea: Build functions encoding the structure of the graphs at different scales and use their persistence diagrams as features.

Heat Kernel Signature on Graphs

Let G = (V, E) be a non oriented graph with vertex set $V = \{v_1, \dots, v_n\}$ and adjacency matrix $W = (w_{i,j})$.

The degree matrix D is the diagonal matrix defined by $D_{i,i} = \sum_j w_{i,j}$.

The normalized graph Laplacian is defined by $L_w = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$.

Let $\Psi = \{\psi_1, \dots, \psi_n\}$ be an orthonormal basis of eigenfunctions of L_w with corresponding eigenvalues $0 \le \lambda_1 \le \dots \le \lambda_n \le 2$.

Definition:

Given $t \ge 0$, the heat kernel signature at time t is defined by

$$hks_{G,t} \colon v \mapsto \sum_{k=1}^{n} \exp(-t\lambda_k) \psi_k(v)^2.$$
 [Sun et al 2009].

Heat Kernel Signature on Graphs

Definition:

Given $t \ge 0$, the heat kernel signature at time t is defined by

$$\operatorname{hks}_{G,t} : v \mapsto \sum_{k=1}^{n} \exp(-t\lambda_k) \psi_k(v)^2.$$
[Sun et al 2009].

Theorem: [Stability] [Hu et al 2014, Carriere et al 2019].

Let $t \ge 0$ and let L_w be the Laplacian matrix of a graph G with n vertices. Let G' be another graph with n vertices and Laplacian matrix $\tilde{L}_w = L_w + E$. Then there exists a constant C(G,t) > 0 only depending on t and the spectrum of L_w such that, for small enough ||E||:

$d_B(Dg(G, \operatorname{hks}_{G,t}), Dg(G, \operatorname{hks}_{G',t})) \le C(G, t) \|W\|.$

Rmk: Here Dg stands for sub-level sets, upper-level sets or extended persistence.