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What is Topological Data Analysis (TDA)?

Modern data carry complex, but important, geometric/topological structure!

[Sensors (Sysnav courtesy)]
[Cell population -

cytometry - MetaFora
courtesy]

[Porous material (IFPEN courtesy)]



What is Topological Data Analysis (TDA)?

Topological Data Analysis (TDA) is a recent field whose aim is to:

• infer relevant topological and geometric features from complex data,

• take advantage of topological/geometric information for further Data
Analysis, Machine Learning and AI tasks:
- using topological features in ML pipelines,
- taking advantage of topological information to improve ML pipelines.

Data

Topol. features
(e.g. persistence)



A classical TDA pipeline

∞
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Data Filtration
Persistent
homology

Multiscale topol.
structure

Topol.
information

1. Build a multiscale topol. structure on top
of data: filtrations.

2. Compute multiscale topol. signatures:
persistent homology

3. Take advantage of the signature for further
Machine Learning and AI tasks: Statistical
aspects and representations of persistence

Representations of
persistence

Machine
Learning / AI



Simplicial complexes

Given a set P = {p0, . . . , pk} ⊂ Rd of k + 1 affinely independent points, the k-
dimensional simplex σ, or k-simplex for short, spanned by P is the set of convex
combinations

k∑
i=0

λi pi, with

k∑
i=0

λi = 1 and λi ≥ 0.

The points p0, . . . , pk are called the vertices of σ.

0-simplex:
vertex

1-simplex:
edge

2-simplex:
triangle

3-simplex:
tetrahedron

etc...



Simplicial complexes

A (finite) simplicial complex K in Rd is a (finite) collection of simplices such that:

1. any face of a simplex of K is a simplex of K,

2. the intersection of any two simplices of K is either empty or a common face
of both.

The underlying space of K, denoted by |K| ⊂ Rd is the union of the simplices of K.



Abstract simplicial complexes

Let P be a set. An abstract simplicial complex
K with vertex set P is a set of finite subsets of
P satisfying the two conditions :

1. The elements of P belong to K.

2. If τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces
(good for top./geom. inference) and as combinatorial objects (abstract simplicial
complexes, good for computations).



Homology in a nutshell (with coeff. in Z/2Z)

Formalize the notion of connected components, cycles/holes, voids... in a topological
space (here we will restrict to simplicial complexes).

• 2 connected components (0-dim homology)

• 4 cycles (1-dim homology)

• 1 void (2-dim homology)

Empty torus



Homology in a nutshell (with coeff. in Z/2Z)

Let K be a d-dimensional simplicial complex. Let k ∈ {0, 1, · · · , d} and
{σ1, · · · , σp} be the set of k-simplices of K.

k-chain:

c =

p∑
i=1

εiσi with εi ∈ Z/2Z = {0, 1}

Sum of k-chains:

c+ c′ =

p∑
i=1

(εi + ε′i)σi and λ.c =

p∑
i=1

(λε′i)σi

where the sums εi + ε′i and the products λεi are modulo 2.

The space of k-chains:



Homology in a nutshell (with coeff. in Z/2Z)

The boundary operator:

The boundary ∂σ of a k-simplex σ is the sum of its (k − 1)-faces. This is a
(k − 1)-chain.

Ifσ = [v0, · · · , vk] then ∂kσ =
k∑
i=0

(−1)i[v0 · · · v̂i · · · vk]

The boundary operator is the linear map defined by

∂k : Ck(K) → Ck−1(K)
c → ∂kc =

∑
σ∈c ∂kσ

∂k∂k+1 := ∂k ◦ ∂k+1 = 0



Homology in a nutshell (with coeff. in Z/2Z)

Cycles and boundaries:

The chain complex associated to a complex K of dimension d

∅ → Cd(K)
∂→ Cd−1(K)

∂→ · · · Ck+1(K)
∂→ Ck(K)

∂→ · · · C1(K)
∂→ C0(K)

∂→ ∅

k-cycles:

Zk(K) := ker(∂ : Ck → Ck−1) = {c ∈ Ck : ∂c = ∅}

k-boundaries:

Bk(K) := im(∂ : Ck+1 → Ck) = {c ∈ Ck : ∃c′ ∈ Ck+1, c = ∂c′}

Bk(K) ⊂ Zk(K) ⊂ Ck(K)



Homology in a nutshell (with coeff. in Z/2Z)

Homology groups and Betti numbers:

Bk(K) ⊂ Zk(K) ⊂ Ck(K)

• The kth homology group of K: Hk(K) = Zk/Bk

• Tout each cycle c ∈ Zk(K) corresponds its homology class c+Bk(K) =
{c+ b : b ∈ Bk(K)}.

• Two cycles c, c′ are homologous if they are in the same homology class:
∃b ∈ Bk(K) s. t. b = c′ − c(= c′ + c).

• The kth Betti number of K: βk(K) = dim(Hk(K)).

Remark: β0(K) = number of connected components of K.



Non homologous 1-cycles

Two homologous 1-cycles

A 1-boundary

Not a cycle

Cycles and boundaries



Topological invariance and singular homology

Theorem: If K and K ′ are two simplicial complexes with homeomorphic
supports then their homology groups are isomorphic and their Betti num-
bers are equal.

� This is a classical result in algebraic topology but the proof is not
obvious.

� Rely on the notion of singular homology→ defined for any topological
space.

β0 = 1, β1 = 2, β2 = 0



Topological invariance and singular homology

σ

X

Let ∆k be the standard simplex in Rk. A singular k-simplex in a topological
space X is a continuous map σ : ∆k → X.

The same construction as for simplicial homology can be done with singular
complexes → Singular homology

Important properties:

� Singular homology is defined for any topological space X.

� If X is homotopy equivalent to the support of a simplicial complex, then
the singular and simplicial homology coincide!



Topological invariance and singular homology

σ

X

Homology and continuous maps:

� if f : X → Y is a continuous map and σ : ∆k → X a simplex in X,
then f ◦ σ : ∆k → Y is a simplex in Y ⇒ f induces a linear maps
between homology groups:

f] : Hk(X)→ Hk(Y )

� if f : X → Y is an homeomorphism or an homotopy equivalence then
f] is an isomorphism.



Homology (to summarize)

• X a topological space + K (e.g. K =
Z/2,Z/p,R · · · ) a field + k a non-negative
integer.

• The k-th homology group Hk(X,K) : a vec-
tor space with coefficients in K.

• Elements of Hk(X,K) : represent the k-
dimensional cycles in X.

• Betti numbers: βk(X) = dim(Hk(X,K)).

• β0(X) = number of connected components of X.

• If f : X → Y is continuous, then f induces a linear map f] : Hk(X)→ Hk(Y ).

• In particular, if X ⊂ Y , then the inclusion map i : X → Y induces a linear map
Hk(X)→ Hk(Y ).

(Some) properties:

X

β0(X) = 1
β1(X) = 2

β0(X) = 1
β1(X) = 0
β2(X) = 1

X



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) K built on top of a set X is
a family (Ka | a ∈ T), T ⊆ R, of subcomplexes of some fixed simplicial
complex K with vertex set X s. t. Ka ⊆ Kb for any a ≤ b.

• More generaly, filtration = nested family of topological spaces indexed by T.

Persistent homology of a filtered simplicial complexe encodes the evolution of the
homology of the subcomplexes.



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) K built on top of a set X is
a family (Ka | a ∈ T), T ⊆ R, of subcomplexes of some fixed simplicial
complex K with vertex set X s. t. Ka ⊆ Kb for any a ≤ b.

• More generaly, filtration = nested family of topological spaces indexed by T.

Many examples and ways to design filtrations depending on the application and
targeted objectives : sublevel and upperlevel sets, Čech complex,...



Filtrations of simplicial complexes

A filtration of a (finite) simplicial complex K is a sequence of subcomplexes
such that
i) ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
ii) Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

There are many ways to build filtrations - see next lesson.



An algorithm to compute (simplicial) homology

Input: A filtration of a simplicial complex ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Output: The Betti numbers β0, β1, · · · , βd of K.

β0 = β1 = · · · = βd = 0;
for i = 1 to m
k = dimσi − 1;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1;
else βk = βk − 1;

end if;
end for;
output (β0, β1, · · · , βd);



An algorithm to compute (simplicial) homology

Input: A filtration of a simplicial complex ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Output: The Betti numbers β0, β1, · · · , βd of K.

β0 = β1 = · · · = βd = 0;
for i = 1 to m
k = dimσi − 1;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1;
else βk = βk − 1;

end if;
end for;
output (β0, β1, · · · , βd);

Remark: At the ith step of the algorithm, the vector (β0, · · · , βd) stores the
Betti numbers of Ki.



Proof

� If σi is contained in a (k + 1)-cycle in Ki, this cycle is not a boundary
in Ki.

� If σi is contained in a (k+1)-cycle c in Ki, then c cannot be homologous
to a cycle in Ki−1

⇒ βk+1(Ki) ≥ βk+1(Ki−1) + 1

� If σi is not contained in a (k + 1)-cycle c in Ki, then ∂σi is not a
boundary in Ki−1

⇒ βk(Ki) ≤ βk(Ki−1)− 1

� the previous inequalities are equalities.



Positive and negative simplicies

Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial complex
K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Definition: A (k+1)-simplex σi is positive if it is contained in a (k+1)-cycle
in Ki. It is negative otherwise.

βk(K) = ](positive simplices) − ](negative simplices)

Create a new (k + 1)-cycle in Ki

Destroy a k-cycle in Ki



Getting more information

Definition: A (k+1)-simplex σi is positive if it is contained in a (k+1)-cycle
in Ki. It is negative otherwise.

βk(K) = ](positive simplices) − ](negative simplices)

Create a new (k + 1)-cycle in Ki

Destroy a k-cycle in Ki

� How to keep track of the evolution of the topology all along the filtra-
tion?

� What are the created/destroyed cycles?

� What is the lifetime of a cycle?

� How to compute rank(Hk(Ki)→ Hk(Kj))?



Getting more information

Definition: A (k+1)-simplex σi is positive if it is contained in a (k+1)-cycle
in Ki. It is negative otherwise.

βk(K) = ](positive simplices) − ](negative simplices)

Create a new (k + 1)-cycle in Ki

Destroy a k-cycle in Ki

� How to keep track of the evolution of the topology all along the filtra-
tion?

� What are the created/destroyed cycles?

� What is the lifetime of a cycle?

� How to compute rank(Hk(Ki)→ Hk(Kj))?

This is where persistent homology comes into
play!



Persistent homology

� A general mathematical framework to encode the evolution of the topology
(homology) of families of nested spaces (filtered complex, sublevel sets,...).

� Formalized in its present form by H. Edelsbrunner (2002) et al and G. Carlsson
et al (2005) - wide development during the last two decades.

� Multiscale topological information.

� Barcodes/persistence diagrams can be efficiently computed.

� Stability properties

persistence
X

R
X topological space

f : X → R

Nested spaces

∞

⊆ ⊆ Persistence diagram



The theory of persistence

A general mathematical framework to encode the evolution of the topology (homol-
ogy) of families of nested spaces (filtrations).

Historical landmarks:

• 90′s: size theory (P. Frosini et al), framed Morse complex and stability
(S.A. Barannikov).

• 2002− 2005: persistent homology (H. Edelsbrunner et al, Carlsson et al).

• 2005: stability of persistence for continuous functions (D. Cohen-Steiner
et al).

• 2009− 2012: algebraic stability of persistence modules (F.C. et al).

• 2014: the GUDHI software plateform (J.-D. Boissonnat et al). Also several
other softs since 2005: Dionysus, (J)Plex, PHAT,...

• Last 5 years: statistical aspects of persistence and machine learning.



2X

R

• Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function

• The family of sublevel sets of a function is an example of filtration.

α

Persistent homology for functions
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2X

R

• The family of sublevel sets of a function is an example of filtration.

Persistent homology for functions



2

α

β

X

R

α

β

∞

• Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function

• The family of sublevel sets of a function is an example of filtration.

Persistent homology for functions
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fP : R2 → R

x→ min
p∈P
‖x− p‖2

Persistent homology for functions

barcode for holes (1-d homology)
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4 8 12 16 20 24 28 320

fP : R2 → R

x→ min
p∈P
‖x− p‖2

Persistent homology for functions

barcode for holes (1-d homology)
Points with multiplicity



X

R

∞

What if f is slightly perturbed?

Stability properties



The bottleneck distance between two diagrams D1 and D2 is

dB(D1, D2) = inf
γ∈Γ

sup
p∈D1

‖p− γ(p)‖∞

where Γ is the set of all the bijections between D1 and D2 and ‖p − q‖∞ =
max(|xp − xq|, |yp − yq|).

Distance between persistence diagrams
∞

Important Remark: There is one persistence diagram per homology dimension. In
general, are compared diagrams corresponding to same homology dim.



X

R

∞

What if f is slightly perturbed?

Theorem (Stability):
For any tame functions f, g : X→ R, dB(Df ,Dg) ≤ ‖f − g‖∞.

Stability properties

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG
09], [C., de Silva, Glisse, Oudot 12]

Important Remark: if φ : X→ X is an homeomorphism, then Df◦φ = Df .



Persistent homology of filtered complexes

Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial complex K s. t.
Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.



Persistent homology of filtered complexes

Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial complex K s. t.
Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

� ∀t ≤ t′ ∈ R, f−1((−∞, t]) ⊆ f−1((−∞, t′]) → filtration of X by the sublevel
sets of f .

� If f is defined at the vertices of a simplicial complex K , the sublevel sets filtration
is a filtration of the simplicial complex K.

Relation between sublevel sets filtrations and filtered simplicial complexes:

� For σ = [v0, · · · , vk] ∈ K, f(σ) =
maxi=0,··· ,k f(vi)

� The simplices of K are ordered according in-
creasing f values (and dimension in case of
equal values on different simplices).



Persistent homology of filtered complexes

Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial complex K s. t.
Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Algorithm to compute the Betti numbers β0, β1, · · · , βd of K:

β0 = β1 = · · · = βd = 0;
for i = 1 to m
k = dimσi − 1;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1;
else βk = βk − 1;

end if;
end for;
output (β0, β1, · · · , βd);

The algorithm can be easily adapted to
keep track of an homology basis and pairs
positive simplices (birth of a new homo-
logical class) to negative simplices (death
of an existing homology class).

Notation: Hi
k = Hk(Ki)



Cycle associated to a positive simplex

Lemma: If σi is a positive k-simplex, then there exists a k-cycle cσ s.t.:
- cσ is not a boundary in Ki,
- cσ contains σi but no other positive k-simplex.
The cycle cσ is unique.

Proof:
By induction on the order of appearence of the simplices in the filtration.



Homology basis

� At the beginning: the basis of H0
k is empty.

� If a basis of Hi−1
k has been built and σi is a positive k-simplex then one adds

the homology class of the cycle ci associated to σi to the basis of Hi−1
k ⇒ basis

of Hi
k.

� If a basis of Hj−1
k has been built and σj is a negative (k + 1)-simplex:

– let ci1 , · · · , cip be the cycles associated to the positive simplices
σi1 , · · · , σip that form a basis of Hj−1

k

– d = ∂σj =
∑p
k=1 εkc

ik + b

– l(j) = max{ik : εk = 1}
– Remove the homology class of cl(j) from the basis of Hj−1

k ⇒ basis of
Hj
k.
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Homology basis

� At the beginning: the basis of H0
k is empty.

� If a basis of Hi−1
k has been built and σi is a positive k-simplex then one adds
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Homology basis

� At the beginning: the basis of H0
k is empty.

� If a basis of Hi−1
k has been built and σi is a positive k-simplex then one adds

the homology class of the cycle ci associated to σi to the basis of Hi−1
k ⇒ basis

of Hi
k.

� If a basis of Hj−1
k has been built and σj is a negative (k + 1)-simplex:

– let ci1 , · · · , cip be the cycles associated to the positive simplices
σi1 , · · · , σip that form a basis of Hj−1

k

– d = ∂σj =
∑p
k=1 εkc

ik + b

– l(j) = max{ik : εk = 1}
– Remove the homology class of cl(j) from the basis of Hj−1

k ⇒ basis of
Hj
k.

ci1
ci2

∂σj = ci1 + ci2

σj



Pairing simplices

� If a basis of Hj−1
k has been built and σj is a negative (k + 1)-simplex:

– let ci1 , · · · , cip be the cycles associated to the positive simplices
σi1 , · · · , σip that form a basis of Hj−1

k

– d = ∂σj =
∑p
k=1 εkc

ik + b

– l(j) = max{ik : εk = 1}
– Remove the homology class of cl(j) from the basis of Hj−1

k ⇒ basis of Hj
k.

The simplices σl(j) and σj are paired to form a persistent pair (σl(j), σj).
→ The homology class created by σl(j) in Kl(j) is killed by σj in Kj . The
persistence (or life-time) of this cycle is : j − l(j)− 1.

Remark: filtrations of K can be indexed by increasing sequences αi of real numbers
(useful when working with a function defined on the vertices of a simplicial complex).



Persistence algorithm: first version

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

L0 = L1 = · · · = Ld−1 = ∅
For j = 0 to m
k = dimσj − 1;
if σj is a negative simplex
l(j) = highest index of the positive simplices associated to ∂σj ;
Lk = Lk ∪ {(σl(j), σj)};

end if
end for
output L0, L1, · · · , Ld−1 ;



Persistence algorithm: first version

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

L0 = L1 = · · · = Ld−1 = ∅
For j = 0 to m
k = dimσj − 1;
if σj is a negative simplex
l(j) = highest index of the positive simplices associated to ∂σj ;
Lk = Lk ∪ {(σl(j), σj)};

end if
end for
output L0, L1, · · · , Ld−1 ;

How to test this condition?



The persistence algorithm: matrix version

The matrix of the boundary operator:

� M = (mij)i,j=1,··· ,m with coefficient in Z/2 defined by

mij = 1 if σi is a face of σj and mij = 0 otherwise

� For any column Cj , l(j) is defined by

(i = l(j))⇔ (mij = 1 and mi′j = 0 ∀i′ > i)

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.



The persistence algorithm: matrix version

Compute the matrix of the boundary operator M
For j = 0 to m

While (there exists j′ < j such that l(j′) == l(j))
Cj = Cj + Cj′ mod(2);

End while
End for
Output the pairs (l(j), j);

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Remark: The worst case complexity of the algorithm is O(m3) but much lower in
most practical cases.



The persistence algorithm: matrix version

A simple example:



Correctness of the algorithm

Proposition: the second algorithm (matrix version) outputs the persistence pairs.

Proof: follows from the four remarks below.

1. At each step of the algorithm, the column Cj represents a chain of the form

∂

(
σj +

∑
i<j

εiσ
i

)
with εi ∈ {0, 1}

2. At the end of the algorithm, if j is s.t. l(j) is defined then σl(j) is a positive
simplex.

3. If at the end of the algorithm the column Cj is zero then σj is positive.

4. If at the end of the algorithm the column Cj is not zero then (σl(j), σj) is a
persistence pair.



Persistence diagram

� each pair (σl(j), σj) is represented by (l(j), j) or (f(σl(j)), f(σj)) ∈ R2 when
considering filtrations induced by functions, or (αl(j), αj) if the filtration is in-
dexed by a real valued sequence (αi)i∈I .

� The diagonal {y = x} is added to the persistence diagram.

� Unpaired positive simplex σi → (i,+∞).
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Points may have multiplicity



Persistence diagram

� each pair (σl(j), σj) is represented by (l(j), j) or (f(σl(j)), f(σj)) ∈ R2 when
considering filtrations induced by functions, or (αl(j), αj) if the filtration is in-
dexed by a real valued sequence (αi)i∈I .

� The diagonal {y = x} is added to the persistence diagram.

� Unpaired positive simplex σi → (i,+∞).

Barcodes: an alternative (equivalent) representation where each pair (i, j) is repre-
sented by the interval [i, j]

2 4 6



The bottleneck distance between two diagrams D1 and D2 is

dB(D1, D2) = inf
γ∈Γ

sup
p∈D1

‖p− γ(p)‖∞

and the “p-Wasserstein” distance (p ≥ 1) is

Wp(D1, D2) = inf
γ∈Γ

(∑
p∈D1

‖p− γ(p)‖pp

) 1
p

where Γ is the set of all the bijections between D1 and D2 and ‖p−q‖∞ =
max(|xp − xq|, |yp − yq|).

Distances between persistence diagrams

birth

death

∞

0

Multiplicity: 2

Add the diagonal

D1

D2
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What if f is slightly perturbed?

Stability properties



3X

R

∞

What if f is slightly perturbed?

Theorem (Stability):
For any tame functions f, g : X→ R, d∞B (Df ,Dg) ≤ ‖f − g‖∞.

Stability properties

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG
09], [C., de Silva, Glisse, Oudot 12]



Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

Input:
1. A finite set X of observations (point cloud with coordinates or pairwise distance
matrix),
2. A real valued function f defined on the observations (e.g. density estimate).

Goal: Partition the data according to the basins of attraction of the peaks of f

[C.,Guibas,Oudot,Skraba - J. ACM 2013]



Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]

1. Build a neighborhing graph G on top of X.

2. Compute the (0-dim) persistence of f to identify prominent peaks → number of
clusters (union-find algorithm).
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[C.,Guibas,Oudot,Skraba - J. ACM 2013]

1. Build a neighborhing graph G on top of X.
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Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]

1. Build a neighborhing graph G on top of X.

2. Compute the (0-dim) persistence of f to identify prominent peaks → number of
clusters (union-find algorithm).

3. Chose a threshold τ > 0 and use the persistence algorithm to merge components
with prominence less than τ .

τ
τ = 0



Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]

τ
τ = 0

Complexity of the algorithm: O(n logn)

Theoretical guarantees:

- Stability of the number of clusters (w.r.t. perturbations of X and f).

- Partial stability of clusters: well identified stable parts in each cluster.

“soft ” clustering



Application to non-rigid shape segmentation
[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

Problem: some part of clusters are unstable → dirty segments



Application to non-rigid shape segmentation
[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]

Problem: some part of clusters are unstable → dirty segments

Idea:
- Run the persistence based algorithm several times on random perturbations of f
(size bounded by the “persistence” gap).
- Partial stability of clusters allows to establish correspondences between clusters
across the different runs → for any x ∈ X, a vector giving the probability for x to
belong to each cluster.



Application to non-rigid shape segmentation
[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]



Topology-based unsupervised classification
Segmentation of cytometry data for medical diagnosis

An innovative start-up specialized in biological
diagnosis from cytometry data.

Objective: unsupervised learning in large point clouds (several millions) in
medium/high dimensions (≈ 4→ 80)

Applications: medical diagnosis from blood samples (1 point = 1 blood cell)

Methodology: Persistence-based clustering to robustly identify relevant clusters.

An example of application

[M. Glisse, L. Pujol et al 2020]

[C, Guibas, Oudot, Skraba 2013]



Persistent homology for (point cloud) data

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

Build topol.
structure

Persistent
homology

� Build a geometric filtered simplicial complex on top of X̂m → multiscale topol.
structure.

� Compute the persistent homology of the complex → multiscale topol. signature.

� Compare the signatures of “close” data sets → robustness and stability results.

� Statistical properties of signatures



Filtered complexes and filtrations

A filtered simplicial complex S built on top of a set X is a family (Sa | a ∈ R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. Sa ⊆ Sb
for any a ≤ b.

A filtration F of a space X is a nested family (Fa | a ∈ R) of subspaces of X
such that Fa ⊆ Fb for any a ≤ b.

Example: If f : X → R is a function, then the sublevelsets of f ,
Fa = f−1((−∞, a]) define the sublevel set filtration associated to f .

Example: Rips and Cech filtrations



Sublevel set filtration associated to a function

� f a real valued function defined on the vertices of K

� For σ = [v0, · · · , vk] ∈ K, f(σ) = maxi=0,··· ,k f(vi)

� The simplices of K are ordered according increasing f values (and di-
mension in case of equal values on different simplices).

Exercise: show that this is a filtration

0

1

2

3



Sublevel set filtration associated to a function

� f a real valued function defined on the vertices of K

� For σ = [v0, · · · , vk] ∈ K, f(σ) = maxi=0,··· ,k f(vi)

� The simplices of K are ordered according increasing f values (and di-
mension in case of equal values on different simplices).

Exercise: show that this is a filtration

0

1

2

3

2

3

3

3

2

3



The Čech complex and filtration

� Let U = (Ui)i∈I be a cover of a topological space X by open sets:
X = ∪i∈IUi.

� The Cěch complex C(U) associated to the covering U is the simplicial
complex defined by:
- the vertex set of C(U) is the set of the open sets Ui
- [Ui0 , · · · , Uik ] is a k-simplex in C(U) iff ∩kj=0Uij 6= ∅.



The Čech complex and filtration

Nerve theorem (Leray): If all the intersections between opens in U are either
empty or contractible then C(U) and X = ∪i∈IUi are homotopy equivalent.

⇒ The combinatorics of the covering (a simplicial complex) carries the topol-
ogy of the space.



The Čech complex and filtration

Let V be a point cloud (in a metric space).

The Čech complex Čech(V ) is the filtered simplicial complex indexed by R
whose vertex set is V and defined by:

σ = [p0p1 · · · pk] ∈ Čech(V, α) iff ∩ki=0 B(pi, α) 6= ∅



The Vietoris-Rips filtration

Let V be a point cloud (in a metric space (X, d)).

The Vietoris-Rips complex Rips(V ) is the filtered simplicial complex indexed
by R whose vertex set is V and defined by:

σ = [p0p1 · · · pk] ∈ Rips(V, α) iff ∀i, j ∈ {0, · · · , k}, d(pi, pj) ≤ α

� Easy to compute and fully determined by its 1-skeleton

� Rips-Čech interleaving: for any α > 0,

Čech(L,
α

2
) ⊆ Rips(L,α) ⊆ Čech(L,α)

Rips Čech



Voronöı diagrams, Delaunay triangulations and
α-complexes

P = {p1, · · · , pn} ∈ Rd
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Voronöı diagrams, Delaunay triangulations and
α-complexes

√
α

P = {p1, · · · , pn} ∈ Rd

Voronöı cells:

V or(pi) = {x ∈ Rd : ∀j, ‖x− pi‖ ≤ ‖x− pj‖}

Delaunay complex D(P ):
nerve of the cover made by the Voronöı cells V or(pi)

Alpha complex A(P, α):
For α ≥ 0, nerve of the family(

V or(pi) ∩B(pi,
√
α)
)
i=1,··· ,n



Voronöı diagrams, Delaunay triangulations and
α-complexes

√
α

P = {p1, · · · , pn} ∈ Rd

Voronöı cells:

V or(pi) = {x ∈ Rd : ∀j, ‖x− pi‖ ≤ ‖x− pj‖}

Delaunay complex D(P ):
nerve of the cover made by the Voronöı cells V or(pi)

Alpha complex A(P, α):
For α ≥ 0, nerve of the family(

V or(pi) ∩B(pi,
√
α)
)
i=1,··· ,n

Theorem:
A(P, α) is homotopy equivalent to ∪ni=1B(pi,

√
α).



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ dGH(X,Y).

Bottleneck distance Gromov-Hausdorff distance

Rem: This result also holds for other families of filtrations (particular case of a more general
theorem).

[C., de Silva, Oudot - Geom. Dedicata 2013].

dGH(X,Y) := inf
Z,γ1,γ2

dH(γ1(X), γ2(X))

Z metric space, γ1 : X→ Z and γ2 : Y→ Z
isometric embeddings.



Hausdorff distance

Let A,B ⊂M be two compact subsets of a metric space (M,d)

dH(A,B) = max{sup
b∈B

d(b, A), sup
a∈A

d(a,B)}

where d(b, A) = supa∈A d(b, a).



Application: non rigid shape classification

camel
cat
elephant
face
head
horse

∞

0
0

1
∞

0
0

1
∞

0
0

1
∞

0
0

1

MDS using bottleneck distance.

[C., Cohen-Steiner, Guibas, Mémoli, Oudot - SGP ’09]

� Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

� Compare diagrams of sampled shapes instead of shapes themselves.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Examples:

� Let S be a filtered simplicial complex. If Va = H(Sa) and vba : H(Sa)→ H(Sb)
is the linear map induced by the inclusion Sa ↪→ Sb then (H(Sa) | a ∈ R) is
a persistence module.

� Given a metric space (X, dX) , H(Rips(X)) is a persistence module.

� If f : X → R is a function, then the filtration defined by the sublevel sets of
f , Fa = f−1((−∞, a]), induces a persistence module at homology level.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem:

q-tame persistence modules have well-defined persistence diagrams.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse,
Oudot 12]



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

An idea about the definition of persistence diagrams:

a b
c

d
Number of points in any rectangle [a, b] × [c, d]
above the diagonal:

rk(vcb)− rk(vdb ) + rk(vda)− rk(vca)

Measures on rectangles:

a b c d



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem:

q-tame persistence modules have well-defined persistence diagrams.

Exercise: Let X be a precompact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

Recall that a metric space (X, ρ) is precompact if for any ε > 0 there exists a finite subset Fε ⊂ X such that dH (X, Fε) < ε (i.e.
∀x ∈ X, ∃p ∈ Fε s.t. ρ(x, p) < ε).

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse,
Oudot 12]



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

A homomorphism of degree ε between two persis-
tence modules U and V is a collection Φ of linear
maps

(φa : Ua → Va+ε | a ∈ R)

such that vb+εa+ε ◦ φa = φb ◦ uba for all a ≤ b.

Ua U b

V a+ε V b+ε

An ε-interleaving between U and V is specified by two homomorphisms of degree ε
Φ : U → V and Ψ : V → U s.t. Φ ◦ Ψ and Ψ ◦ Φ are the “shifts” of degree 2ε
between U and V.

Ua

V a+ε

Ua+2ε

V a+3ε· · ·

· · ·
φa

ψa+ε

ua+2ε
a

va+3ε
a+ε

· · ·

· · ·



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]

Exercise: Show the stability theorem for (tame) functions :
let X be a topological space and let f, g : X→ R be two tame functions. Then

dB(Df ,Dg) ≤ ‖f − g‖∞.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

Strategy: build filtrations that induce q-tame homology persistence modules
and that turn out to be ε-interleaved when the considered spaces/functions are
O(ε)-close.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

Strategy: build filtrations that induce q-tame homology persistence modules
and that turn out to be ε-interleaved when the considered spaces/functions are
O(ε)-close.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]

Exercise: Prove the stability theorem for functions.



Multivalued maps and correspondences

A multivalued map C : X ⇒ Y from a set X to a set Y is a subset of X × Y,
also denoted C, that projects surjectively onto X through the canonical projection
πX : X × Y → X. The image C(σ) of a subset σ of X is the canonical projection
onto Y of the preimage of σ through πX.

X

Y C

Y

X CT



Multivalued maps and correspondences

A multivalued map C : X ⇒ Y from a set X to a set Y is a subset of X × Y,
also denoted C, that projects surjectively onto X through the canonical projection
πX : X × Y → X. The image C(σ) of a subset σ of X is the canonical projection
onto Y of the preimage of σ through πX.

X

Y C

Y

X CT

The transpose of C, denoted CT , is the image of C through the symmetry map
(x, y) 7→ (y, x).

A multivalued map C : X⇒ Y is a correspondence if CT is also a multivalued map.



Multivalued maps and correspondences

A multivalued map C : X ⇒ Y from a set X to a set Y is a subset of X × Y,
also denoted C, that projects surjectively onto X through the canonical projection
πX : X × Y → X. The image C(σ) of a subset σ of X is the canonical projection
onto Y of the preimage of σ through πX.

X

Y C

Y

X CT

Example: ε-correspondence and Gromov-Hausdorff distance.

Let (X, ρX) and (Y, ρY) be compact metric spaces.
A correspondence C : X ⇒ Y is an ε-correspondence if
∀(x, y), (x′, y′) ∈ C, |ρX(x, x′)− ρY(y, y′)| ≤ ε.

dGH(X,Y) =
1

2
inf{ε ≥ 0 : there exists an ε-correspondence between Xand Y}

Y

X

C

x x′

y

y′



Multivalued simplicial maps

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map C : X⇒ Y is ε-simplicial from S to T if for any a ∈ R and any
simplex σ ∈ Sa, every finite subset of C(σ) is a simplex of Ta+ε.

X

Y
C

Y

X CT



Multivalued simplicial maps

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map C : X⇒ Y is ε-simplicial from S to T if for any a ∈ R and any
simplex σ ∈ Sa, every finite subset of C(σ) is a simplex of Ta+ε.

X

Y
C

Y

X CT

Proposition: Let S, T be filtered complexes with vertex sets X, Y respectively. If
C : X ⇒ Y is a correspondence such that C and CT are both ε-simplicial, then
together they induce a canonical ε-interleaving between H(S) and H(T).



The example of the Rips and Čech filtrations

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.



The example of the Rips and Čech filtrations

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.

Proof: Let C : X⇒ Y be a correspondence with distortion at most ε.
If σ ∈ Rips(X, a) then ρX(x, x′) ≤ a for all x, x′ ∈ σ.
Let τ ⊆ C(σ) be any finite subset.
For any y, y′ ∈ τ there exist x, x′ ∈ σ s. t. y ∈ C(x), y′ ∈ C(x′) so

ρY(y, y′) ≤ ρX(x, x′) + ε ≤ a+ ε and τ ∈ Rips(Y, a+ ε)

⇒ C is ε-simplicial from Rips(X) to Rips(Y).
Symetrically, CT is ε-simplicial from Rips(Y) to Rips(X).
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Let τ ⊆ C(σ) be any finite subset.
For any y, y′ ∈ τ there exist x, x′ ∈ σ s. t. y ∈ C(x), y′ ∈ C(x′) so
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The example of the Rips and Čech filtrations

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.

Proof: Let C : X⇒ Y be a correspondence with distortion at most ε.
If σ ∈ Rips(X, a) then ρX(x, x′) ≤ a for all x, x′ ∈ σ.
Let τ ⊆ C(σ) be any finite subset.
For any y, y′ ∈ τ there exist x, x′ ∈ σ s. t. y ∈ C(x), y′ ∈ C(x′) so

ρY(y, y′) ≤ ρX(x, x′) + ε ≤ a+ ε and τ ∈ Rips(Y, a+ ε)

⇒ C is ε-simplicial from Rips(X) to Rips(Y).
Symetrically, CT is ε-simplicial from Rips(Y) to Rips(X).

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Čech(X)) and H(Čech(Y)) are ε-interleaved.

Remark: Similar results for witness complexes (fixed landmarks)



Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!



Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!

Proof: show that Iba : H(Rips(X, a))→ H(Rips(X, b)) has
finite rank whenever a < b.

Let ε = (b − a)/2 and let F ⊂ X be finite s. t.
dH(X,F ) ≤ ε/2.

Then C = {(x, f) ∈ X × F |d(x, f) ≤ ε/2} is
an ε-correspondence.

Using the interleaving map, Iba factorizes as

HRips(X, a)→ HRips(F, a+ ε)→ HRips(X, a+ 2ε) = HRips(X, b)

finite dimensional

X

F
C



Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!

Theorem: Let X,Y be compact metric spaces. Then

db(dgm(H(Čech(X))), dgm(H(Čech(Y)))) ≤ 2dGH(X,Y),

db(dgm(H(Rips(X))), dgm(H(Rips(Y)))) ≤ 2dGH(X,Y).

Remark: The proofs never use the triangle inequality! The previous approch and results
easily extend to other settings like, e.g. spaces endowed with a similarity measure.



Why persistence

� Even when X is compact, Hp(Rips(X, a)), p ≥ 1, might be infinite dimen-
sional for some value of a:

aX

It is also possible to build such an example with the open Rips
complex:

[x0, x1, · · · , xk] ∈ Rips(X, a−)⇔ dX(xi, xj) < a, for all i, j



Why persistence

� Even when X is compact, Hp(Rips(X, a)), p ≥ 1, might be infinite dimen-
sional for some value of a:

aX

It is also possible to build such an example with the open Rips
complex:

[x0, x1, · · · , xk] ∈ Rips(X, a−)⇔ dX(xi, xj) < a, for all i, j

� For any α, β ∈ R such that 0 < α ≤ β and any integer k there exists a
compact metric space X such that for any a ∈ [α, β], Hk(Rips(X, a)) has a
non countable infinite dimension (can be embedded in R4 [Droz 2013]).



Why persistence

� Even when X is compact, Hp(Rips(X, a)), p ≥ 1, might be infinite dimen-
sional for some value of a:

aX

It is also possible to build such an example with the open Rips
complex:

[x0, x1, · · · , xk] ∈ Rips(X, a−)⇔ dX(xi, xj) < a, for all i, j

� If X is geodesic, then dim H1(Rips(X, a)) < +∞ for all a > 0 and
Dgm(H1(Rips(X))) is contained in the vertical line x = 0.

� For any α, β ∈ R such that 0 < α ≤ β and any integer k there exists a
compact metric space X such that for any a ∈ [α, β], Hk(Rips(X, a)) has a
non countable infinite dimension (can be embedded in R4 [Droz 2013]).

� If X is compact, then dim H1(Čech(X, a)) < +∞ for all a ([Smale-Smale,
C.-de Silva]).

� If X is a geodesic δ-hyperbolic space then Dgm(H2(Rips(X))) is contained
in a vertical band of width O(δ).



Computational issues and robustness to noise
A statistical perspective



Some weaknesses

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ 2dGH(X,Y).

→ Vietoris-Rips (or Cech, witness) filtrations quickly become prohibitively large as
the size of the data increases ( O(|X|d) ), making the computation of persistence
practically almost impossible.

→ Persistence diagrams of Rips-Vietoris (and Cěch, witness,..) filtrations and
Gromov-Hausdorff distance are very sensitive to noise and outliers.



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Questions:

� Statistical properties of dgm(Filt(X̂m)) ? dgm(Filt(X̂m))→? as m→ +∞?



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Questions:

� Statistical properties of dgm(Filt(X̂m)) ? dgm(Filt(X̂m))→? as m→ +∞?

� Can we do more statistics with persistence diagrams?



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Stability thm: db(dgm(Filt(Xµ)), dgm(Filt(X̂m))) ≤ 2dGH(Xµ, X̂m)

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ P

(
dGH(Xµ, X̂m) >

ε

2

)So, for any ε > 0,



Deviation inequality

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Xµ compact

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Deviation inequality

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem: If µ satisfies the (a, b)-standard assumption, then for any ε > 0:

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ min(

8b

aεb
exp(−maεb), 1).

Moreover lim
n→∞

P

(
db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
≤ C1

(
logm

m

)1/b
)

= 1.

where C1 is a constant only depending on a and b.

Xµ compact

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Deviation inequality

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Sketch of proof:

1. Upperbound P
(
dH(Xµ, X̂m) > ε

2

)
.

2. (a, b) standard assumption⇒ an explicit upperbound for the covering number
of Xµ (by balls of radius ε/2).

3. Apply “union bound” argument.

Xµ compact

C(ε) ≤ P (ε/2)

+ µ(B(x, ε/2)) ≥ a(ε/2)b

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Minimax rate of convergence

Let P(a, b,M) be the set of all the probability measures on the metric space (M, ρ)
satisfying the (a, b)-standard assumption on M:

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Minimax rate of convergence

Let P(a, b,M) be the set of all the probability measures on the metric space (M, ρ)
satisfying the (a, b)-standard assumption on M:

Remark: we can obtain slightly better bounds if Xµ is a submanifold of RD - see [Genovese,
Perone-Pacifico,Verdinelli, Wasserman 2011, 2012]

Theorem: Let P(a, b,M) be the set of (a, b)-standard proba measures on M. Then:

sup
µ∈P(a,b,M)

E
[
db(dgm(Filt(Xµ)), dgm(Filt(X̂m)))

]
≤ C

(
lnm

m

)1/b

where the constant C only depends on a and b (not on M!). Assume moreover that
there exists a non isolated point x in M and let xm be a sequence in M \ {x} such

that ρ(x, xm) ≤ (am)−1/b . Then for any estimator d̂gmm of dgm(Filt(Xµ)):

lim inf
m→∞

ρ(x, xm)−1 sup
µ∈P(a,b,M)

E
[
db(dgm(Filt(Xµ)), d̂gmm)

]
≥ C′

where C′ is an absolute constant.

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Numerical illustrations

- µ: unif. measure on Lissajous curve Xµ.
- Filt: distance to Xµ in R2.
- sample k = 300 sets of m points for m =
[2100 : 100 : 3000].
- compute

Êm = Ê[dB(dgm(Filt(Xµ)), dgm(Filt(X̂n)))].

- plot log(Êm) as a function of
log(log(m)/m).



Numerical illustrations

- µ: unif. measure on a torus Xµ.
- Filt: distance to Xµ in R3.
- sample k = 300 sets of n points for m =
[12000 : 1000 : 21000].
- compute

Êm = Ê[dB(dgm(Filt(Xµ)), dgm(Filt(X̂m)))].

- plot log(Êm) as a function of
log(log(m)/m).



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

D = {( di+bi
2

, di+bi
2

)}i ∈ I For p = ( b+d
2
, d−b

2
) ∈ D,

Λp(t) =


t− b t ∈ [b, b+d

2
]

d− t t ∈ ( b+d
2
, d]

0 otherwise.
Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

where kmax is the kth largest value in the set.

[Bubenik 2012]



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

Properties

• For any t ∈ R and any k ∈ N, 0 ≤ λD(k, t) ≤ λD(k + 1, t).

• For any t ∈ R and any k ∈ N, |λD(k, t) − λD′(k, t)| ≤ dB(D,D′) where
dB(D,D′) denotes the bottleneck distance between D and D′.

stability properties of persistence landscapes

[Bubenik 2012]



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

• Persistence encoded as an element of a functional space (vector space!).

• Expectation of distribution of landscapes is well-defined and can be approximated
from average of sampled landscapes.

• Process point of view: convergence results and convergence rates → confidence
intervals can be computed using bootstrap.

• Provide a convenient way to process persistence information in deep neural
networks.

[C., Fasy, Lecci, Rinaldo, Wasserman SoCG 2014]

[Kim, Kim, Zaheer, Kim, C., Wasserman NeurIPS 2020,
Carrière, C., Ike, Lacombe, Royer, Umeda AISTAT 2020]

[Bubenik 2012]



Weak convergence of landscapes

Let P be a probability distribution on LT , and let λ1, . . . , λn ∼ P . Let µ be the
mean landscape:

µ(t) = E[λi(t)], t ∈ [0, T ].

We estimate µ with the sample average

λn(t) =
1

n

n∑
i=1

λi(t), t ∈ [0, T ].

Since E(λn(t)) = µ(t), λn is a point-wise unbiased estimator of µ.

Let LT be the space of landscapes with support contained in [0, T ].

For fixed t: pointwise convergence of λn(t) to µ(t) + CLT

Here, convergence of the process{√
n
(
λn(t)− µ(t)

)}
t∈[0,T ]



Weak convergence of landscapes

Let
F = {ft}0≤t≤T

where ft : LT → R is defined by ft(λ) = λ(t).

Empirical process indexed by ft ∈ F :

Gn(t) = Gn(ft) :=
√
n
(
λn(t)− µ(t)

)
=

1√
n

n∑
i=1

(ft(λi)− µ(t)) =
√
n(Pn−P )(ft)

Theorem [Weak convergence of landscapes]. Let G be a Brownian bridge with
covariance function κ(t, s) =

∫
ft(λ)fs(λ)dP (λ)−

∫
ft(λ)dP (λ)

∫
fs(λ)dP (λ), for

t, s ∈ [0, T ]. Then Gn  G.



Weak convergence of landscapes

Let
F = {ft}0≤t≤T

where ft : LT → R is defined by ft(λ) = λ(t).

Empirical process indexed by ft ∈ F :

Gn(t) = Gn(ft) :=
√
n
(
λn(t)− µ(t)

)
=

1√
n

n∑
i=1

(ft(λi)− µ(t)) =
√
n(Pn−P )(ft)

For t ∈ [0, T ], let σ(t) be the standard deviation of
√
nλn(t), i.e. σ(t) =√

nVar(λn(t)) =
√

Var(ft(λ1)).

Theorem [Uniform CLT]. Suppose that σ(t) > c > 0 in an interval [t∗ , t
∗] ⊂ [0, T ],

for some constant c. Then there exists a random variable W
d
= supt∈[t∗ ,t∗] |G(ft)|

such that

sup
z∈R

∣∣∣∣∣P
(

sup
t∈[t∗ ,t∗]

|Gn(t)| ≤ z

)
− P (W ≤ z)

∣∣∣∣∣ = O

(
(logn)7/8

n1/8

)
.



Some consequences

Theorem. Suppose that σ(t) > c > 0 in an interval [t∗ , t
∗] ⊂ [0, T ], for some

constant c. Then, given a confidence level 1 − α, one can construct confidence
functions `n(t) and un(t) such that

P
(
`n(t) ≤ µ(t) ≤ un(t) for all t ∈ [t∗ , t

∗]
)
≥ 1− α−O

(
(logn)7/8

n1/8

)
.

Also, supt (un(t)− `n(t)) = OP
(√

1
n

)
.

Bootstrap for landscapes → confidence bands for landscapes.



Some consequences

Theorem. Suppose that σ(t) > c > 0 in an interval [t∗ , t
∗] ⊂ [0, T ], for some

constant c. Then, given a confidence level 1 − α, one can construct confidence
functions `n(t) and un(t) such that

P
(
`n(t) ≤ µ(t) ≤ un(t) for all t ∈ [t∗ , t

∗]
)
≥ 1− α−O

(
(logn)7/8

n1/8

)
.

Also, supt (un(t)− `n(t)) = OP
(√

1
n

)
.

Bootstrap for landscapes → confidence bands for landscapes.



To summarize

X̂m Rips(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

Xµ compact

Repeat n times: λ1(t), · · · , λn(t) → λn(t) ΛP (t) = E[λi(t)]

λXµ(t)

|λn(t)− ΛP (t)|

Bootstrap

|λXP
(t)− ΛP (t)| →

0 as m
→∞

Stability w.r.t. µ?

m→∞



Wasserstein distance
Let (M, ρ) be a metric space and let µ, ν be probability measures on M with finite
p-moments (p ≥ 1).

“The” Wasserstein distance Wp(µ, ν) quantifies the optimal cost of pushing µ onto
ν, the cost of moving a small mass dx from x to y being ρ(x, y)pdx.

� Transport plan: Π a proba measure on
M ×M such that Π(A × Rd) = µ(A)
and Π(Rd × B) = ν(B) for any borelian
sets A,B ⊂M .

� Cost of a transport plan:

C(Π) =

(∫
M×M

ρ(x, y)pdΠ(x, y)

) 1
p

� Wp(µ, ν) = infΠ C(Π)



Wasserstein distance

Example:

� If P = {p1, . . . , pn} is a point cloud, and P ′ = {p1, . . . , pn−k−1, o1, . . . , ok}
with d(oi, P ) = R, then

dH(C,C′) ≥ R but W2(µC , µC′) ≤
√
k

n
(R+ diam(C))



(Sub)sampling and stability of expected landscapes

X̂m Rips(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λRips(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Remarks:
- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distribu-
tions, not for expectations) ;
- also work with “Gromov-Wasserstein” metric;

- m
1
p cannot be replaced by a constant.



(Sub)sampling and stability of expected landscapes

X̂m Rips(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λRips(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Consequences:
� Subsampling: efficient and easy to parallelize algorithm to infer topol. information

from huge data sets.

� Robustness to outliers.

� R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

X̂m Rips(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λRips(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Proof:

1. Wp(µ
⊗m, ν⊗m) ≤ m

1
pWp(µ, ν)

2. Wp(Pµ, Pν) ≤Wp(µ
⊗m, ν⊗m) (stability of persistence!)

3. ‖Λµ,m − Λν,m‖∞ ≤Wp(Pµ, Pν) (Jensen’s inequality)

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

Example: Circle with one outlier.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes
[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Example: 3D shapes

From n = 100 subsamples of size m = 300



(Sub)sampling and stability of expected landscapes

(Toy) Example: Accelerometer data from smartphone.

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

X̂m Rips(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λRips(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Proof:

1. Wp(µ
⊗m, ν⊗m) ≤ m

1
pWp(µ, ν)

2. Wp(Pµ, Pν) ≤Wp(µ
⊗m, ν⊗m) (stability of persistence!)

3. ‖Λµ,m − Λν,m‖∞ ≤Wp(Pµ, Pν) (Jensen’s inequality)

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



Proof

Lemma 1: For any µ, ν ∈ P(M),

Wp(µ
⊗m, ν⊗m) ≤ m

1
pWp(µ, ν)

where the metric ρm in Mm is any metric satisfying for any X = (x1, · · ·xm),
Y = (y1, · · · ym),

ρm(X,Y ) ≤

(
m∑
i=1

ρ(xi, yi)
p

) 1
p

Proof: If Π ∈ P(M×M) is a transport plan between µ and ν, then Π⊗m is a transport
plan between µ⊗m and ν⊗m (up to reordering the comp. of M2m and∫
M2m

ρm(X,Y )pdΠ⊗m(X,Y ) ≤
∫
Mm×Mm

m∑
i=1

ρ(xi, yi)
p dΠ(x1, y1) · · · dΠ(xm, ym)

= m

∫
M×M

ρ(x1, y1)pdΠ(x1, y1).



Proof

Lemma 2:
Wp(φ

m
µ , φ

m
ν ) ≤Wp(µ

⊗m, ν⊗m)

where φm : Mm → D, φm(X) = dgm(Filt(X)), D is the space of persistence diagrams
endowed with the bottleneck distance and φmµ = (φm)∗µ, φmν = (φm)∗ν.

Notations:
- Λm : Mm ×Mm → D ×D, Λm(X,Y ) = (ψ(φm(X)), ψ(φm(X))).

Proof: if Π ∈ P(Mm ×Mm) is a transport plan between µ⊗m and ν⊗m then Λm,∗Π
is a transport plan between Φmµ and Φmν and∫
D2
T

db(DX , DY )pdΛm,∗Π(DX , DY ) =

∫
M2m

db(φm(X), φm(Y ))pdΠ(X,Y )

≤
∫
M2m

dH(X,Y )pdΠ(X,Y ) (stab.thm)

≤
∫
M2m

ρm(X,Y )pdΠ(X,Y ).



Proof
Notations:
- L : space of landscapes (with sup. norm)
- ψ : D → L, ψ(D) = λD
- Ψm

µ = ψ∗φ
m
µ , Ψm

ν = ψ∗φ
m
ν

Lemma 3: Let λX ∼ Ψm
µ and λY ∼ Ψm

ν . Then∥∥∥EΨmµ [λX ]− EΨmν [λY ]
∥∥∥
∞
≤Wdb,p

(
Φmµ , Φmν

)
.

Proof: Let Π be a transport plan between Φmµ and Φmν . For any t ∈ R we have∣∣∣EΨmµ
[λX ](t)− EΨmν

[λY ](t)
∣∣∣p = |E[λX(t)− λY (t)]|p

≤ E [|λX(t)− λY (t)|p] (Jensen inequality)

≤ E [db(DX , DY )p] (Stability of landscapes)

=

∫
DT×DT

db(DX , DY )pdΠ(DX , DY )



TDA and Machine Learning
The problem of representation of persistent homology



The problem of representation of persistence

Representations of
persistence

Machine
Learning / AIPersistence diagrams are not well-suited for clas-

sical ML algorithms (the space of PD is highly
non linear)

Not always clear which part of the diagrams car-
ries the relevant information.

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))



• discrete measures: (interesting statistical properties [Chazal, Divol 2018])

• polynomial roots or evaluations [Di Fabio Ferri 2015] [Kalǐsnik 2016]

• Collections of 1D functions

• finite metric spaces [Carrière Oudot Ovsjanikov 2015]

→ sliced on lines [Carrière Oudot Cuturi 2017]

→ convolution with Gaussian kernel [Reininghaus et al. 2015] [Chepushtanova et
al. 2015] [Kusano Fukumisu Hiraoka 2016-17] [Le Yamada 2018]

A zoo of representations of persistence

(non exhaustive list - see also Gudhi representations)

→ persistence images [Adams et al 2017]

→ landscapes [Bubenik 2012]

→ Betti curves [Umeda 2017]



Persistence diagrams as discrete measures

D
D :=

∑
p∈D

δp

• The space of measures is much nicer that the space of P. D. !

• In the general algebraic persistence theory, persistence diagrams
naturally appears as discrete measures in the plane.

• Many persistence representations can be expressed as

D(f) =
∑
p∈D

f(p) =

∫
fdD

for well-chosen functions f : R2 → H.

Motivations:

[C., de Silva, Glisse, Oudot 16]



Persistence diagrams as discrete measures

D
D :=

∑
p∈D

δp

Benefits:

• Interesting statistical properties

• Data-driven selection of well-adapted representations (supervised and
unsupervised, coming with guarantees)

• Optimisation of persistence-based functions

Many tools available and implemented in the GUDHI library



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(u) = |H|−1/2K(H−1/2 · u)

For D =
∑
i δpi a diagram, K : R2 → R a kernel, H a bandwidth matrix

and w : R2 → R+ a weight function, one defines the persistence surface of D
with kernel K and weight function w by:

∀u ∈ R2, ρ(D)(u) =
∑
i

w(pi)KH(u− pi) = D(wKH(u− ·))



• discrete measures: (interesting statistical properties [Chazal, Divol 2018])

• polynomial roots or evaluations [Di Fabio Ferri 2015] [Kalǐsnik 2016]

• Collections of 1D functions

• finite metric spaces [Carrière Oudot Ovsjanikov 2015]

→ sliced on lines [Carrière Oudot Cuturi 2017]

→ convolution with Gaussian kernel [Reininghaus et al. 2015] [Chepushtanova et
al. 2015] [Kusano Fukumisu Hiraoka 2016-17] [Le Yamada 2018]

A zoo of representations of persistence

(non exhaustive list - see also Gudhi representations)

→ persistence images [Adams et al 2017]

→ landscapes [Bubenik 2012]

→ Betti curves [Umeda 2017]

Problem: How to chose the right representation?
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Reminder: Neural Net
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(0)
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f
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f
(k)
θk

: x ∈ Rdk 7→ σ(Wk · x+ bk) ∈ Rdk+1

θk = (Wk ∈ Rdk+1×dk , bk ∈ Rdk+1), σ : x 7→ max(0, x) or (1 + e−x)−1

· · ·

Final classifier: Fθ = f
(n)
θn
◦· · ·◦f (0)

θ0

NN with depth n ∈ N∗

Reminder: Neural Net
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Backpropagation: for each k:

NN with depth n ∈ N∗

1. compute ∇`(θk) with chain rule 2. update θk := θk − η∇`(θk)

Reminder: Neural Net



Rd0

Rd1
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Rdn+1

In
p

u
t

O
u

tp
u

tf
(0)
θ0

f
(1)
θ1

f
(n−1)
θn−1

f
(n)
θn· · ·

Goal: Minimize `(θ) =
∑
i ‖fθ(xi)− yi‖22 w.r.t. θ

Backpropagation: for each k:

NN with depth n ∈ N∗

Requirement: f
(k)
θk

needs to be differentiable w.r.t. θk and x

1. compute ∇`(θk) with chain rule 2. update θk := θk − η∇`(θk)

Reminder: Neural Net



Tailored to handle sets instead of finite dimensional vectors

Input: {x1, ..., xn} ⊂ Rd instead of x ∈ Rd

Originally defined in [Zaheer et al. 2017]

Deep Set Architecture



Tailored to handle sets instead of finite dimensional vectors

Input: {x1, ..., xn} ⊂ Rd instead of x ∈ Rd

Network is permutation invariant: F (X) = ρ (
∑
i φ(xi))

Originally defined in [Zaheer et al. 2017]

x1
x2
x3

xn

x1
x2
x3 ...

...

sum

X

⇒ F ({x1, ..., xn}) = F ({xσ(1), ..., xσ(n)}), ∀σ

φ

In practice:

ρ

φ(xi) = W · xi + b

Deep Set Architecture



Tailored to handle sets instead of finite dimensional vectors

Input: {x1, ..., xn} ⊂ Rd instead of x ∈ Rd

Network is permutation invariant: F (X) = ρ (
∑
i φ(xi))

Originally defined in [Zaheer et al. 2017]

Universality theorem

Th: [Zaheer et al. 2017]

A function f is permutation invariant iif f(X) = ρ (
∑
i φ(xi))

for some ρ and φ, whenever X is included in a countable space

Deep Set Architecture



Permutation invariant layers generalize several TDA approaches

→ persistence images → silhouettes

But not all of them since R2 is not countable

Using any permutation invariant operation (such as max, min, kth largest
value) allows to generalize other TDA approaches

→ Betti curves

Weight function

Point transformation
φ : R2 → Rk

PersLay(dgm) = ρ (op{w(p) · φ(p)}p∈dgm)

Permutation-invariant
operation

Adaptation to persistence diagrams
[Carrière et al 2019]

https://github.com/MathieuCarriere/perslay (will be released in gudhi in a near future)



Λp1

Λp2

Λp3

p1

p2

p3

p4

φΛ : p 7→


Λp(t1)
Λp(t2)

...
Λp(tq)


Parameters t1, · · · , tq ∈ R

w(p) = 1 op = top-k

Adaptation to persistence diagrams
[Carrière et al 2019]

Persistence landscape



Γp1

Γp2

Γp3
Γp4

φΓ : p 7→


Γp(t1)
Γp(t2)

...
Γp(tq)


Parameters t1, · · · , tq ∈ R2

w(p) = wt((x, y)) op = sum

Adaptation to persistence diagrams
[Carrière et al 2019]

Persistence surface

Γp : t 7→ exp
(
−‖p− t‖22/(2σ2)

)



features

w(·)φ(·) op

op

op
ρ

w(·)φ(·)

w(·)φ(·)

opw(·)φ(·)

data

Adaptation to persistence diagrams
[Carrière et al 2019]



Adaptation to persistence diagrams
[Carrière et al 2019]

Average scores from 10 times 10-folds
cross-validation



Goal: classify orbits of linked twisted map

Orbits described by (depending on parameter r):{
xn+1 = xn + r yn(1− yn) mod 1

yn+1 = yn + r xn+1(1− xn+1) mod 1

Label = 2

Label = 1 Label = 5

Label = 4
Label = 3

Adaptation to persistence diagrams
[Carrière et al 2019]



Goal: classify orbits of linked twisted map

Label = 2

Label = 1 Label = 5

Label = 4
Label = 3

Adaptation to persistence diagrams
[Carrière et al 2019]



A general question

argmin f ( )?

How to minimize functions depending of persistence diagrams (e.g. total
persistence)?



A general question

argmin f ( )?

How to minimize functions depending of persistence diagrams (e.g. total
persistence)?

→ Need to understand the “differentiability of persistence”



Example: dimensionality reduction

Input: 2 sampled circles
in R9 (3D view)

Dim reduction in R2

without topol.
constraint

Dim reduction in R2

with topol. constraint



argmin f ( )?

A “long-standing” question in Topological Data Analysis

[Continuation of point clouds via persistence diagrams,
Gameiro, Hiraoka, Obayashi, Physica D, 2015]

[A topology layer for machine learning, Brüel-Gabrielsson
et al., AISTATS, 2020]

[Topological Function Optimization for Continuous Shape
Matching, Poulenard, Skraba, Ovsjanikov, SGP, 2018]

[Topological Autoencoders, Moor et al., ICML, 2020]

The minimization problem



argmin f ( )?

A “long-standing” question in Topological Data Analysis

[Continuation of point clouds via persistence diagrams,
Gameiro, Hiraoka, Obayashi, Physica D, 2015]

[A topology layer for machine learning, Brüel-Gabrielsson
et al., AISTATS, 2020]

[Topological Function Optimization for Continuous Shape
Matching, Poulenard, Skraba, Ovsjanikov, SGP, 2018]

[Topological Autoencoders, Moor et al., ICML, 2020]

Point cloud data

Bottleneck distance loss

Total persistence loss

Vietoris-Rips filtration

All restricted to specific data type / loss function / filtration!

The minimization problem



Simplicial complexes and filtrations

Given a set V , a simplicial complex K is a
collection of finite subsets of V s. t.
- {v} ∈ K for any v ∈ V ,
- if σ ∈ K and τ ⊆ σ then τ ∈ K.

Given K and R ⊆ R, a filtration of K is an in-
creasing sequence (Kr)r∈R of subcomplexes
of K with respect to the inclusion such that⋃
r∈RKr = K.



Simplicial complexes and filtrations

Given a set V , a simplicial complex K is a
collection of finite subsets of V s. t.
- {v} ∈ K for any v ∈ V ,
- if σ ∈ K and τ ⊆ σ then τ ∈ K.

Given K and R ⊆ R, a filtration of K is an in-
creasing sequence (Kr)r∈R of subcomplexes
of K with respect to the inclusion such that⋃
r∈RKr = K.

To σ ∈ K, one can associate Φσ = inf{r ∈ R : σ ∈ Kr}

⇒ A filtration of K is a |K|-dimensional vector

Φ = (Φσ)σ∈K ∈ R|K| s. t. τ ⊆ σ ⇒ Φτ ≤ Φσ

The set FiltK ⊂ R|K| of the vectors in R|K| defining a filtration on K is
semi-algebraic.



Simplicial complexes and filtrations

Given a set V , a simplicial complex K is a
collection of finite subsets of V s. t.
- {v} ∈ K for any v ∈ V ,
- if σ ∈ K and τ ⊆ σ then τ ∈ K.

Given K and R ⊆ R, a filtration of K is an in-
creasing sequence (Kr)r∈R of subcomplexes
of K with respect to the inclusion such that⋃
r∈RKr = K.

Definition: Let K be a simplicial complex and A a set. A map
Φ: A → R|K| is said to be a parametrized family of filtrations if
for any x ∈ A and σ, τ ∈ K with τ ⊆ σ, one has Φτ (x) ≤ Φσ(x).



Persistent homology computation

Let K be a finite filtered simplicial complex and let σ1 � · · · � σ|K| the simplices

of K ordered according the increasing entries of Φ = (Φσ)σ∈K ∈ R|K|
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Let K be a finite filtered simplicial complex and let σ1 � · · · � σ|K| the simplices

of K ordered according the increasing entries of Φ = (Φσ)σ∈K ∈ R|K|

Process the simplices according to their order of entrance in the filtration:

Let k = dimσi and denote Ki−1 = ∪i−1
l=1σl



Persistent homology computation

Let K be a finite filtered simplicial complex and let σ1 � · · · � σ|K| the simplices

of K ordered according the increasing entries of Φ = (Φσ)σ∈K ∈ R|K|

Process the simplices according to their order of entrance in the filtration:

Let k = dimσi and denote Ki−1 = ∪i−1
l=1σl

Case 1: adding σi to Ki−1 creates a
new k-dimensional topological feature
in Ki (new homology class in Hk).

Ki

σi

⇒ the birth of a k-dim feature is registered.



Persistent homology computation

Let K be a finite filtered simplicial complex and let σ1 � · · · � σ|K| the simplices

of K ordered according the increasing entries of Φ = (Φσ)σ∈K ∈ R|K|

Process the simplices according to their order of entrance in the filtration:

Let k = dimσi and denote Ki−1 = ∪i−1
l=1σl

Case 1: adding σi to Ki−1 creates a
new k-dimensional topological feature
in Ki (new homology class in Hk).

Ki

σi

⇒ the birth of a k-dim feature is registered.

Case 2: adding σi to Ki−1 kills a
(k− 1)-dimensional topological feature
in Ki (homology class in Hk−1).

Ki

σi

⇒ persistence algo. pairs the simplex σi
to the simplex σl(i) that gave birth to the
killed feature.



Persistent homology computation

Filtration Pairing of simplices Persistence diagram D(Φ)

p pairs (σl(i), σi)

q unpaired σl

|K| = 2p+ q

Φ = (Φσ)σ∈K ∈ R|K|
(Φσl(i) ,Φσi)

(Φσl ,+∞)

Using lexicographical
order

D(Φ) ∈ R|K|

The persistence
map: Pers

(this is a “locally constant”
permutation of coordinates)



The persistence map is semi-algebraic

Proposition: Given a simplicial complex K, the map

Pers : FiltK ⊆ R|K| → R|K|

is semi-algebraic, (and thus definable in any o-minimal structure). Moreover,
there exists a semi-algebraic partition of FiltK such that the restriction of
Pers to each element of this partition is a Lipschitz map.

Corollary: Let K be a simplicial complex and Φ: A → R|K| be a semi-
algebraic (or definable in a given o-minimal structure) parametrized family of
filtrations. The map Pers ◦ Φ: A→ R|K| is semi-algebraic (definable).



The persistence map is semi-algebraic

Proposition: Let K be a simplicial complex and Φ: A → R|K| a definable
parametrized family of filtrations, where dimA = m. Then there exists a finite
definable partition of A, A = StO1t· · ·tOk such that dimS < dimA := m
and, for any i = 1, . . . , k, Oi is a definable manifold of dimension m and
Pers ◦ Φ: Oi → R|K| is differentiable.

This is an immediate consequence of finiteness and stratifiability properties of definable sets



Semi-algebraic sets and maps

A semialgebraic subset of Rn is a subset defined as a finite unions and inter-
sections of polynomial equations and inequations with real coefficients.
In other words, the set of semialgebraic subsets of Rn is the smallest class
SAn of subsets of Rn satisfaying:

1. if P ∈ R[X1, · · · , Xn] is a polynomial, {x ∈ Rn : P (x) = 0} ∈ SAn
and {x ∈ Rn : P (x) > 0} ∈ SAn.

2. If A,B ∈ SAn, then A ∪B, A ∩B and Rn \A belong to SAn.

Given A ⊆ Rn and A ⊆ Rm two semialgebraic sets, a map Φ : A → B, where A
and B is a semialgebraic map if its graph

GΦ = {(x,Φ(x)) : x ∈ A} ⊆ A×B

is a semialgebraic subset of Rn × Rm.



o-minimal structures

An o-minimal structure on the field of real numbers R is a collection (Sn)n∈N,
where each Sn is a set of subsets of Rn such that:

1. S1 is exactly the collection of finite unions of points and intervals;

2. all algebraic subsets of Rn are in Sn;

3. Sn is a Boolean subalgebra of Rn for any n ∈ N;

4. if A ∈ Sn and B ∈ Sm, then A×B ∈ Sn+m;

5. if π : Rn+1 → Rn is the linear projection onto the first n coordinates
and A ∈ Sn+1, then π(A) ∈ Sn.

A ∈ Sn is called a definable set in the o-minimal structure.

For A ⊆ Rn, a map f : A→ Rm is a definable map if its graph is a definable
set in Rn+m.

Important property: Definable sets admit finite (Whitney) stratification.

Example: Semi-algebraic sets define an o-minimal structure.



Example: the Vietoris-Rips filtration

Φ: A = (Rd)n → R|∆n| = R2n−1

where ∆n is the simplicial complex made of all the faces of
the (n− 1)-dimensional simplex and, for any

x = (x1, . . . , xn) ∈ A and any simplex σ ⊆ {1, . . . , n},

Φσ(x) = max
i,j∈σ

‖xi − xj‖.



Example: sublevel sets filtrations

K a simplicial complex with n vertices v1, . . . , vn.

Any real-valued function f defined on the vertices of K can be represented as
a vector (f(v1), . . . , f(vn)) ∈ Rn.

Φ: A = Rn → R|K|

where for any f = (f1, . . . , fn) ∈ A and any simplex σ ⊆ {1, . . . , n},

Φσ(f) = max
i∈σ

fi



Functions of persistence

Definition: A function

E : R|K| = (R2)p × Rq → R

is a function of persistence if it is invariant to permutations of the points of
the persistence diagram: for any (p1, . . . , pp, e1, . . . , eq) ∈ (R2)p × Rq and
any permutations α, β of the sets {1, . . . , p} and {1, . . . , q}, respectively, one
has

E(pα(1), . . . , pα(p), eβ(1), . . . , eβ(q)) = E(p1, . . . , pp, e1, . . . , eq).



Functions of persistence

Definition: A function

E : R|K| = (R2)p × Rq → R

is a function of persistence if it is invariant to permutations of the points of
the persistence diagram: for any (p1, . . . , pp, e1, . . . , eq) ∈ (R2)p × Rq and
any permutations α, β of the sets {1, . . . , p} and {1, . . . , q}, respectively, one
has

E(pα(1), . . . , pα(p), eβ(1), . . . , eβ(q)) = E(p1, . . . , pp, e1, . . . , eq).

If E is locally Lipschitz, then the composition E ◦Pers is also locally Lipschitz.

If E and Φ: A ⊆ Rd → R|K| are semi-algebraic (or definable), then L =
E ◦ Pers ◦ Φ: A → R has a well-defined Clarke subdifferential ∂L(z) :=
Conv{limzi→z∇L(zi) : L is differentiable at zi}.

Properties:



Examples

Total persistence.

E(D) =

p∑
i=1

|di − bi|, for D = ((b1, d1), . . . , (bp, dp), e1, . . . , eq).

E is semi-algebraic and Lipschitz.



Examples

Total persistence.

E(D) =

p∑
i=1

|di − bi|, for D = ((b1, d1), . . . , (bp, dp), e1, . . . , eq).

E is semi-algebraic and Lipschitz.

Bottleneck distance.

E(D) = dB(D,D∗) = min
m

max
(p,p∗)∈m

||p− p∗||∞

where denoting ∆ = {(x, x) : x ∈ R} the diagonal in R2, m is a partial
matching between D and D∗, i.e., a subset of (D ∪∆)× (D∗ ∪∆) such that
every point of D \∆ and D∗ \∆, appears exactly once in m.
E is semi-algebraic and Lipschitz.



Minimization via stochastic (sub-)gradient descent

Minimization of L through the differential inclusion

dz

dt
∈ −∂L(z(t)) for almost every t.

If E and Φ: A ⊆ Rd → R|K| are semi-algbraic (or definable), then L =
E ◦ Pers ◦ Φ: A → R has a well-defined Clarke subdifferential ∂L(z) :=
Conv{limzi→z∇L(zi) : L is differentiable at zi}.

Standard stochastic subgradient algorithm

xk+1 = xk − αk(yk + ζk), yk ∈ ∂L(xk),

where the sequence (αk)k is the learning rate and (ζk)k is a sequence of
random variables.



Minimization via stochastic (sub-)gradient descent

Minimization of L through the differential inclusion

dz

dt
∈ −∂L(z(t)) for almost every t.

If E and Φ: A ⊆ Rd → R|K| are semi-algbraic (or definable), then L =
E ◦ Pers ◦ Φ: A → R has a well-defined Clarke subdifferential ∂L(z) :=
Conv{limzi→z∇L(zi) : L is differentiable at zi}.

Standard stochastic subgradient algorithm

xk+1 = xk − αk(yk + ζk), yk ∈ ∂L(xk),

where the sequence (αk)k is the learning rate and (ζk)k is a sequence of
random variables.

Question: convergence of the algorithm?



Convergence

Convergence follows from [Davis et al, Stochastic subgradient method converges on
tame functions. Found. Comp. Math. 2020].

1. for any k, αk ≥ 0,
∑∞
k=1 αk = +∞ and,

∑∞
k=1 α

2
k < +∞;

2. supk ‖xk‖ < +∞, almost surely;

3. denoting by Fk the increasing sequence of σ-algebras Fk =
σ(xj , yj , ζj , j < k), there exists a function p : Rd → R which is bounded
on bounded sets such that almost surely, for any k,

E[ζk|Fk] = 0 and E[‖ζk‖2|Fk] < p(xk).

Technical (but classical) assumptions:

Standard stochastic subgradient algorithm

xk+1 = xk − αk(yk + ζk), yk ∈ ∂L(xk),

where the sequence (αk)k is the learning rate and (ζk)k is a sequence of
random variables.



Convergence

Convergence follows from [Davis et al, Stochastic subgradient method converges on
tame functions. Found. Comp. Math. 2020].

Standard stochastic subgradient algorithm

xk+1 = xk − αk(yk + ζk), yk ∈ ∂L(xk),

where the sequence (αk)k is the learning rate and (ζk)k is a sequence of
random variables.

Theorem:
Let K be a simplicial complex, A ⊆ Rd, and Φ: A → R|K| a parametrized
family of filtrations of K that is definable in an o-minimal structure. Let
E : R|K| → R be a definable function of persistence such that L = E◦Pers◦Φ
is locally Lipschitz. Then, under the above assumptions 1, 2, and 3, almost
surely the limit points of the sequence (xk)k obtained from the iterations of
the algo. are critical points of L and the sequence (L(xk))k converges.



Numerical illustration
The differential of persistence map is obvious to compute→ easy implementation (soon
available in GUDHI)

Point cloud optimization

Input: a point cloud X sampled uniformly
from the unit square S = [0, 1]2

Loss: L(X) = P (X) + T (X) where

T (X) := −
∑
p∈D

‖p− π∆(p)‖2∞

withD is the 1-dimensional persistence di-
agram associated to the Vietoris-Rips fil-
tration of X, π∆ stands for the projection
onto the diagonal ∆, and

P (X) :=
∑
x∈X

d(x, S)

is a penalty term ensuring that the point
coordinates stay in the unit square.

With T (X) only



Another example: The density of expected

persistence diagrams



Reminder: the Vietoris-Rips filtration

Let V be a point cloud (in a metric space (X, d)).

The Vietoris-Rips complex Rips(V ) is the filtered simplicial complex indexed
by R whose vertex set is V and defined by:

σ = [p0p1 · · · pk] ∈ Rips(V, α) iff ∀i, j ∈ {0, · · · , k}, d(pi, pj) ≤ α

Easy to compute and fully determined by its 1-skeleton

Rips



The weighted Vietoris-Rips filtration

Ripsw

Let V be a weigthed point cloud (in a metric space (X, d)): V ⊂ X and
w : V → R.

The weighted Vietoris-Rips complex Ripsw(V ) is the filtered simplicial complex
indexed by R whose vertex set is V and defined by:

σ = [p0p1 · · · pk] ∈ Ripsw(V, α)

iff

∀i, j ∈ {0, · · · , k}, d(pi, pj) ≤ α and ∀i ∈ {0, · · · , k}, w(pi) ≤ α



Persistent homology computation (reminder)

Let S = (Sa | a ∈ R) be a finite filtered simplicial complex with N simplices and
let Sa1 ⊂ Sa2 ⊂ · · · ⊂ SaN be the discrete filtration induced by the entering times
of the simplices: Sai \ Sai−1 = σai .
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Process the simplices according to their order of entrance in the filtration:

Let k = dimσai (ie. σai = [v0, · · · , vk])
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Persistent homology computation (reminder)
Process the simplices according to their order of entrance in the filtration:

Let k = dimσai (ie. σai = [v0, · · · , vk])

Case 1: adding σai to Sai−1 creates a
new k-dimensional topological feature
in Sai (new homology class in Hk).

Sai−1

σai

⇒ the birth of a k-dim feature is registered.

Case 2: adding σai to Sai−1 kills a
(k− 1)-dimensional topological feature
in Sai (homology class in Hk−1).

Sai−1

σai

⇒ persistence algo. pairs the simplex σai
to the simplex σaj that gave birth to the
killed feature.

(σaj , σai) : persistence pair

(aj , ai) ∈ R2: point in the per-
sistence diagram

→
→

Important to remember: the
persistence pairs are determined by the

order on the simplices; the corresponding
points in the diagrams are determined by

the indices.
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∞

0
0

X K(X)

D[K(X)]

X is now a random
point coud (in some
metric space)

K is a deterministic
filtration (e.g. Rips)

D[K(X)] becomes
random

What can be said about the distribution of diagrams D[K(X)]?

Goal: understand the structure of E[D[K(X)]] in the non asymptotic setting
( |X| = n is fixed, or bounded)

• Stability properties⇒ asymptotic properties, confidence bands, Wasserstein
stability,...

• Other representation of persistence (landscapes, Betti curves, pers. images,
kernels,...)



Filtrations revisited

Let n > 0 be an integer,
Fn: the collection of non-empty subsets of {1, . . . , n},
M : a real analytic compact d-dim. connected manifold (poss. with boundary).

Filtering function:
ϕ = (ϕ[J ])J∈Fn : Mn → R|Fn|

satisfiying the following conditions:

(K2) Invariance by permutation: For J ∈ Fn and for (x1, . . . , xn) ∈ Mn,
if τ is a permutation of the entries having support included in J , then
ϕ[J ](xτ(1), . . . , xτ(n)) = ϕ[J ](x1, . . . , xn).

(K3) Monotony: For J ⊂ J ′ ∈ Fn, ϕ[J ] ≤ ϕ[J ′].

Given x = (x1, · · · , xn), ϕ(x) induces an order on the faces of the simplex with n
vertices that is a filtration K(x):

∀J ∈ Fn, J ∈ K(x, r)⇐⇒ ϕ[J ](x) ≤ r.



Filtrations revisited

Not: for x = (x1, . . . , xn) ∈Mn and for J a simplex, x(J) := (xj)j∈J

(K1) Absence of interaction: For J ∈ Fn, ϕ[J ](x) only depends on x(J).

(K2) Invariance by permutation: For J ∈ Fn and for (x1, . . . , xn) ∈ Mn,
if τ is a permutation of the entries having support included in J , then
ϕ[J ](xτ(1), . . . , xτ(n)) = ϕ[J ](x1, . . . , xn).

(K3) Monotony: For J ⊂ J ′ ∈ Fn, ϕ[J ] ≤ ϕ[J ′].

(K4) Compatibility: For a simplex J ∈ Fn and for j ∈ J , if ϕ[J ](x1, . . . , xn) is not
a function of xj on some open set U of Mn, then ϕ[J ] ≡ ϕ[J\{j}] on U .

(K5) Smoothness: The function ϕ is subanalytic and the gradient of each of its
entries (which is defined a.s.e.) is non vanishing a.s.e..
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The density of expected persistence diagrams

Theorem: Fix n ≥ 1. Assume that:

• M is a real analytic compact d-dimensional connected submanifold possibly
with boundary,

• X is a random variable on Mn having a density with respect to the Haussdorf
measure Hdn,

• K satisfies the assumptions (K1)-(K5).

Then, for s ≥ 0, E[Ds[K(X)]] has a density with respect to the Lebesgue measure
on the half plane ∆ = {(b, d) ∈ R2 : b ≤ d}.
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The density of expected persistence diagrams

Theorem: Fix n ≥ 1. Assume that:

• M is a real analytic compact d-dimensional connected riemannian manifold
possibly with boundary,

• X is a random variable on Mn having a density with respect to the Haussdorf
measure Hdn,

• K satisfies the assumptions (K1)-(K4) and (K5’).

Then, for s ≥ 1, E[Ds[K(X)]] has a density with respect to the Lebesgue measure
on ∆. Moreover, E[D0[K(X)]] has a density with respect to the Lebesgue measure
on the vertical line {0} × [0,∞).

Technical assumption (related to finite-
ness properties of subanalytic sets) that
can be discarded in most cases.

Theorem [smoothness]: Under the assumption of previous theorem, if moreover
X ∈Mn has a density of class Ck with respect to Hnd. Then, for s ≥ 0, the density
of E[Ds[K(X)]] is of class Ck.



The Hausdorff measure and the co-area formula

Definition: Let k be a non-negative number. For A ⊂ RD, and δ > 0,
consider

Hδk(A) := inf

{∑
i

diam(Ui)
k, A ⊂

⋃
i

Ui and diam(Ui) < δ

}
.

The k-dimensional Haussdorf measure on RD of A is defined by Hk(A) :=
limδ→0Hδk(A).

Theorem [Co-area formula]: Let M (resp. N) be a smooth Riemannian
manifold of dimension m (resp n). Assume that m ≥ n and let Φ : M → N
be a differentiable map. Denote by DΦ the differential of Φ. The Jacobian
of Φ is defined by JΦ =

√
det((DΦ)× (DΦ)t). For f : M → R+ a positive

measurable function, the following equality holds:∫
M

f(x)JΦ(x)dHm(x) =

∫
N

(∫
x∈Φ−1({y})

f(x)dHm−n(x)

)
dHn(y).



Background on subanalytic sets

Let M ⊂ RD be a connected real analytic submanifold (poss. with boundary),
of dim. d.

• X ⊂M is semianalytic if any p ∈M has a neighbourhood Up such that

X ∩ Up =

p⋃
i=1

q⋂
j=1

Xij ,

where Xij is either f−1
ij ({0}) or f−1

ij ((0,∞)) for some analytic functions fij :
U → R.

• X ⊆ M is subanalytic if for each point of M , there exists a neighborhood
U of this point, a real analytic manifold N and A, a relatively compact
semianalytic set of N ×M , such that X ∩ U is the projection of A on M .

• f : X → R is subanalytic if its graph is subanalytic in M × R. The set of
real-valued subanalytic functions on X is denoted by S(X).



Background on subanalytic sets

Let M ⊂ RD be a connected real analytic submanifold (poss. with boundary),
of dim. d.

• x ∈ X ⊆ M is smooth of dimension k if, in some neighbourhood of x in
M , X is an analytic submanifold (of dimension k).

• The dimension of X is the maximal dimension of a smooth point of X.

• Reg(X): regular points of X, i.e. smooth points of X of dimension d.

• Sing(X): sigular points of X, i.e. the non-regular points.

• Reg(X) is an open subset of M , possibly empty.



Background on subanalytic sets

Let M ⊂ RD be a connected real analytic submanifold (poss. with boundary),
of dim. d.

Lemma: For f ∈ S(M), the set A(f) on which f is analytic is an open
subanalytic set of M . Its complement is a subanalytic set of dimension smaller
than d.

Lemma: Let X be a subanalytic subset of M and let f, g : X → R be
subanalytic such that the image of a bounded set is bounded. Then
- fg and f + g are subanalytic,
- the sets f−1({0}) and f−1((0,∞)) are subanalytic in M .

Lemma: Let X be a subanalytic subset of M . If the dimension of X is
smaller than d, then Hd(X) = 0.



Background on subanalytic sets

Let M ⊂ RD be a connected real analytic submanifold (poss. with boundary),
of dim. d.

Lemma: For f ∈ S(M), the set A(f) on which f is analytic is an open
subanalytic set of M . Its complement is a subanalytic set of dimension smaller
than d.

Lemma: Let X be a subanalytic subset of M and let f, g : X → R be
subanalytic such that the image of a bounded set is bounded. Then
- fg and f + g are subanalytic,
- the sets f−1({0}) and f−1((0,∞)) are subanalytic in M .

Lemma: Let X be a subanalytic subset of M . If the dimension of X is
smaller than d, then Hd(X) = 0.

Consequences:
- Hd(X) = Hd(Reg(X)),
- for any f ∈ S(M), the gradient ∇f is defined everywhere but on some
subanalytic set of dimension smaller than d (of zero Hausdorff measure).



Sketch of proof

1. There exists a partition of the complement of a (subanalytic) set of
measure 0 in Mn by open sets V1, · · · , VR such that :

• the order of the simplices of K(x) is constant on each Vr,

• for any r = 1, · · · , R, and any x ∈ Vr,

Ds[K(x)] =

Nr∑
i=1

δri

with ri = (ϕ[Ji1 ](x), ϕ[Ji2 ](x)) where Nr, Ji1 , Ji2 only depends on Vr.

• Ji1 , Ji2 can be chosen so that the differential of

Φir : x ∈ Vr → ri = (ϕ[Ji1 ](x), ϕ[Ji2 ](x))

has maximal rank (2).



Sketch of proof

2.The expected diagram can be written as

E[Ds[K(X)]] =
R∑
r=1

E [1{X ∈ Vr}Ds[K(X)]] =
R∑
r=1

E

[
1{X ∈ Vr}

Nr∑
i=1

δri

]

=
R∑
r=1

Nr∑
i=1

E [1{X ∈ Vr}δri ]



Sketch of proof

2.The expected diagram can be written as

E[Ds[K(X)]] =
R∑
r=1

E [1{X ∈ Vr}Ds[K(X)]] =
R∑
r=1

E

[
1{X ∈ Vr}

Nr∑
i=1

δri

]

=
R∑
r=1

Nr∑
i=1

E [1{X ∈ Vr}δri ]

3. Use the co-area formula:

µir(B) = P (Φir(X) ∈ B,X ∈ Vr)

=

∫
Vr

1{Φir(x) ∈ B}κ(x)dHnd(x)

=

∫
u∈B

∫
x∈Φ−1

ir (u)

(JΦir(x))−1κ(x)dHnd−2(x)du.

µir

Density of X

Density of µir



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(z) = |H|−1/2K(H−1/2 · u)

For D =
∑
i δri a diagram, K : R2 → R a kernel, H a bandwidth matrix and

w : R2 → R+ a weight function, one defines the persistence surface of D with
kernel K and weight function w by:

∀z ∈ R2, ρ(D)(u) =
∑
i

w(ri)KH(u− ri) = D(wKH(u− ·))



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(z) = |H|−1/2K(H−1/2 · u)

For D =
∑
i δri a diagram, K : R2 → R a kernel, H a bandwidth matrix and

w : R2 → R+ a weight function, one defines the persistence surface of D with
kernel K and weight function w by:

∀z ∈ R2, ρ(D)(u) =
∑
i

w(ri)KH(u− ri) = D(wKH(u− ·))

⇒ persistence surfaces can be seen as kernel based estimators of E[Ds[K(X)]].



Persistence images

The realization of 3
different processes

The overlay of 40
different persistence

diagrams

The persistence images
with weight function
w(r) = (r2 − r1)3 and

bandwith selected using
cross-validation.



A few illustrative applications



Example of application: arrhythmia detection

Objective: Arrythmia detection from ECG data.

Betti curves pro-
cessed as 1D signal

- Improvement over state-of-the-art.
- Better generalization.

[Dindin, Umeda, C. Can. Conf. AI 2020].



TDA and Machine Learning for sensor data

(Multivariate) time-dependent data can be converted into point clouds:
sliding window, time-delay embedding,...



With landscapes: patient monitoring

Objective: precise analysis of movements and activities of pedestrians.

“Chaotic” time-dependent data

Applications: personal healthcare; medical studies; defense.

[Beaufils, C., Dindin, Grelet, Michel 2018]



With landscapes: patient monitoring

- Data collected in non controlled environments (home) are very chaotic.
- Data registration (uncertainty in sensors orientation/position).
- Reliable and robust information is mandatory.
- Events of interest are often rare and difficult to characterize.

Example: Dyskinesia crisis detection and activity recognition:

Results on publicly available
data set (HAPT) - improve the

state-of-the-art.
Multi-channels CNN TDA neural network+

[Beaufils, C., Dindin, Grelet, Michel 2018]



Extra slides



Graph classification using persistent homology

Input: A collection of graphs G1, · · · , Gn
belonging to different classes y1, · · · , yk.

Goal: Recover the classes, i.e. build, from
the input data, a function

f : G → Y = {y1, · · · , yk}

that assigns each graph in G to its expected
class.

Simple idea: Build functions encoding the structure of the graphs at different
scales and use their persistence diagrams as features.

Unformal assumption (hope): the class of a graph is determined by its
geometric structure.



Heat Kernel Signature on Graphs

Let G = (V,E) be a non oriented graph with vertex set V = {v1, · · · , vn}
and adjacency matrix W = (wi,j).

The degree matrix D is the diagonal matrix defined by Di,i =
∑
j wi,j .

The normalized graph Laplacian is defined by Lw = I −D− 1
2WD−

1
2 .

Given t ≥ 0, the heat kernel signature at time t is defined by

hksG,t : v 7→
n∑
k=1

exp(−tλk)ψk(v)2.
[Sun et al 2009].

Definition:

Let Ψ = {ψ1, . . . , ψn} be an orthonormal basis of eigenfunctions of Lw with
corresponding eigenvalues 0 ≤ λ1 ≤ · · · ≤ λn ≤ 2.



Heat Kernel Signature on Graphs

Given t ≥ 0, the heat kernel signature at time t is defined by

hksG,t : v 7→
n∑
k=1

exp(−tλk)ψk(v)2.
[Sun et al 2009].

Definition:

Let t ≥ 0 and let Lw be the Laplacian matrix of a graph G with n vertices. Let
G′ be another graph with n vertices and Laplacian matrix L̃w = Lw+E. Then
there exists a constant C(G, t) > 0 only depending on t and the spectrum of
Lw such that, for small enough ‖E‖:

dB(Dg(G,hksG,t), Dg(G,hksG′,t)) ≤ C(G, t)‖W‖.

Theorem: [Stability]

Rmk: Here Dg stands for sub-level sets, upper-level sets or extended persistence.

[Hu et al 2014, Carriere et al 2019].






	Title
	Title

