
An introduction to Topological Data Analysis with Gudhi

TP 1 - MVA 2017-18

Frédéric Chazal

October 31, 2017

Abstract

Documentation for the Python interface of Gudhi:

http://gudhi.gforge.inria.fr/python/latest/

1 Simplicial complexes and simplex trees

In Gudhi, (�ltered) simplicial complexes are encoded through a data structure called simplex tree.

Here is a very simple example illustrating the use of simplex tree to represent simplicial complexes.

See the Gudhi documentation for a complete list of functionalities. Try the following code and a few

other functionalities from the documentation to get used with the Simplex Tree data structure.

import numpy as np

import gudhi as gd

import random as rd

import matplotlib.pyplot as plt

st = gd.SimplexTree() #Create a simplex tree

#Simplices can be inserted one by one

#Vertices are indexed by integers

if st.insert([0,1]):

print("first simplex inserted!")

st.insert([1,2])

st.insert([2,3])

st.insert([3,0])

st.insert([0,2])

st.insert([3,1])

L = st.get_filtration() #Get a list with all the simplices

#Notice that inserting an edge automatically insert its vertices (if they were

#not already in the complex)

for splx in L:

print(splx)

#insert the 2-skeleton giving some filtration values to the faces

st.insert([0,1,2],filtration=0.1)

st.insert([1,2,3],filtration=0.2)

1

http://gudhi.gforge.inria.fr/python/latest/

st.insert([0,2,3],filtration=0.3)

st.insert([0,1,3],filtration=0.4)

#if you add a new simplex with a given filtration values, all its faces that

#were not in the complex before are added with the same filtration value

st.insert([2,3,4],filtration=0.7)

L = st.get_filtration()

for splx in L:

print(splx)

###

#Many operations that can be done on simplicial complexes (see also the Gudhi

#documentation and examples):

###

st.set_dimension(2) #Warning! For the moment, the dimension of the simplicial

#complex has to be set manually

print("dimension=", st.dimension())

st.initialize_filtration()

print("filtration=", st.get_filtration())

print("filtration[1, 2]=", st.filtration([1, 2]))

print("filtration[4, 2]=", st.filtration([4, 2]))

print("num_simplices=", st.num_simplices())

print("num_vertices=", st.num_vertices())

print("skeleton[2]=", st.get_skeleton(2))

print("skeleton[1]=", st.get_skeleton(1))

print("skeleton[0]=", st.get_skeleton(0))

2 Filtrations and persistence diagrams

Filtrations are easy to de�ne and the computation of their persistence diagrams is done in the following

way:

###

#Filtrations and persitence computation

###

#Currently, the function to assign a filtration value to a simplex that is

already in the filtration has not been included in the Python version of

#Gudhi. It will be in the next release (but it is already existing in the C++

#library. A trick to overcome this issue is the following:

st2 = gd.SimplexTree() #The new filtered complex

L = st.get_filtration()

for splx in L:

#We assign to each simplex its dimension as filtration value

st2.insert(splx[0],filtration=len(splx[0])-1.0)

2

L = st2.get_filtration()

for splx in L:

print(splx)

#To compute the persistence diagram of the filtered simplex

st2.initialize_filtration()

diag2=st2.persistence()

print(diag2)

#To plot a persistence diagram

gd.plot_persistence_diagram(diag2)

gd.plot_persistence_barcode(diag2)

#To compute bottleneck distance between diagrams

st3 = gd.SimplexTree()

st3.insert([0,1],filtration=0.0)

st3.insert([1,2],filtration=0.1)

st3.insert([2,0],filtration=0.2)

st3.insert([0,1,2],filtration=0.5)

st3.set_dimension(2)

st3.initialize_filtration()

diag3 = st3.persistence()

gd.plot_persistence_diagram(diag3)

diag2_0 = st2.persistence_intervals_in_dimension(0)

diag3_0 = st3.persistence_intervals_in_dimension(0)

dB0 = gd.bottleneck_distance(diag2_0,diag3_0)

diag2_1 = st2.persistence_intervals_in_dimension(1)

diag3_1 = st3.persistence_intervals_in_dimension(1)

dB1 = gd.bottleneck_distance(diag2_1,diag3_1)

3 Stability of persistence for functions

Exercise 1.

a) Recall the torus is the surface which is homeomorphic to the surface obtained by identifying the

opposite sides of a square as illustrated on Figure 1. Using Gudhi, construct a triangulation (2-
dimensional simplicial complex) of the Torus. De�ne a �ltration on it, compute its persistence and use

it to deduce the Betti numbers of the torus (check that you get the correct result using the function

betti_numbers()).

b) Use Gudhi to compute the Betti numbers of a sphere of dimension 2 and of a sphere of dimension

3 (hint: the k-dimensional sphere is homeomorphic to the boundary of a k + 1-dimensional simplex.

Exercise 2. The goal of this exercise is to illustrate the persistence stability theorem for functions on

a very simple example.

The code below allows to de�ne a simplicial complex (the so-called α-complex) triangulating a set of

random points in the unit square in the plane.

n_pts = 1000

3

0 0

00

1

1 2

2

3 3

4 4

5

6

7

8

Figure 1: The torus as the quotient of a square

#Build a random set of points in the unit square

X = np.random.rand(n_pts,2)

#Compute the alpha-complex filtration

alpha_complex = gd.AlphaComplex(points=X)

st_alpha = alpha_complex.create_simplex_tree(max_alpha_square=1000.0)

Let p0 = (0.25, 0.25) and p1 = (0.75, 0.75) be two points in the plane R2 and let σ = 0.05.
1. Build on such a simplicial complex the sublevel set �ltration of the function

f(p) = exp(−‖p− p0‖
2

σ
) + 3 exp(−‖p− p1‖

2

σ
)

and compute its persistence diagrams in dimension 0 and 1.
2. Compute the persistence diagrams of random perturbations of f and compute the Bottleneck

distance between these persistence diagrams and the perturbated ones. Verify that the persistence

stability theorem for functions is satis�ed.

4

	Simplicial complexes and simplex trees
	Filtrations and persistence diagrams
	Stability of persistence for functions

