
An introduction to Topological Data Analysis with Gudhi

TP 2: The Vietoris-Rips and α-complex �ltrations

MVA 2017-18

Frédéric Chazal

December 3, 2017

Abstract

To download this �le and get the code samples (available on the course webpage soon):

http://geometrica.saclay.inria.fr/team/Fred.Chazal/MVA2017.html

Documentation for the Python interface of Gudhi:

http://gudhi.gforge.inria.fr/python/latest/

1 Basic instructions to build Vietoris-Rips and α-complex �ltrations

and compute their persistence

#Create a random point cloud in 3D

nb_pts =100

pt_cloud = np.random.rand(nb_pts,3)

#Built Rips-Vietoris filtration and compute its persistence diagram

rips_complex = gd.RipsComplex(pt_cloud,max_edge_length=0.5)

simplex_tree = rips_complex.create_simplex_tree(max_dimension=3)

print("Number of simplices in the V-R complex: ",simplex_tree.num_simplices())

diag = simplex_tree.persistence(homology_coeff_field=2, min_persistence=0)

gd.plot_persistence_diagram(diag)

#Compute Rips-Vietoris filtration and compute its persistence diagram from

#a pairwise distance matrix

dist_mat = []

for i in range(nb_pts):

ld = []

for j in range(i):

ld.append(np.linalg.norm(pt_cloud[i,:]-pt_cloud[j,:]))

dist_mat.append(ld)

rips_complex2 = gd.RipsComplex(distance_matrix=dist_mat,max_edge_length=0.5)

simplex_tree2 = rips_complex2.create_simplex_tree(max_dimension=3)

diag2 = simplex_tree2.persistence(homology_coeff_field=2, min_persistence=0)

gd.plot_persistence_diagram(diag2)

#Compute the alpha-complex filtration and compute its persistence

1

http://geometrica.saclay.inria.fr/team/Fred.Chazal/MVA2017.html
http://gudhi.gforge.inria.fr/python/latest/

alpha_complex = gd.AlphaComplex(points=pt_cloud)

simplex_tree3 = alpha_complex.create_simplex_tree(max_alpha_square=60.0)

print("Number of simplices in the alpha-complex: ",simplex_tree3.num_simplices())

diag3 = simplex_tree3.persistence(homology_coeff_field=2, min_persistence=0)

gd.plot_persistence_diagram(diag3)

Exercise 1.

a) Illustrate the stability theorem for persistence diagrams of Vietoris-Rips and α-complex �ltrations.

b) What does happen to Vietoris-Rips and α-complex �ltrations when the size of the point cloud

increases? When the ambient dimension increases?

2 Sensor data

Download the data at the following address and save it as a �le named data_acc.dat:

http://geometrica.saclay.inria.fr/team/Fred.Chazal/slides/data_acc.dat

and load it using the pickle module:

import numpy as np

import pickle as pickle

import gudhi as gd

from mpl_toolkits.mplot3d import Axes3D

f = open("data_acc.dat","rb")

data = pickle.load(f,encoding="latin1")

f.close()

data_A = data[0]

data_B = data[1]

data_C = data[2]

label = data[3]

The walk of 3 persons A, B and C, has been recorded using the accelerometer sensor of a smartphone

in their pocket, giving rise to 3 multivariate time series in R3: each time series represents the 3

coordinates of the acceleration of the corresponding person in a coordinate system attached to the

sensor (take care that as, the smartphone was carried in a possibly di�erent position for each person,

these time series cannot be compared coordinates by coordinates). Using a sliding window, each serie

have been splitted in a list of 100 times series made of 200 consecutive points, that are now stored in

data_A, data_B and data_C.

1. Plot a few of the time series to get an idea of the corresponding point clouds in R3. For example:

data_A_sample = data_A[0]

plt.gca(projection='3d')

plt.plot(data_A_sample [:,0],data_A_sample [:,1],data_A_sample [:,2])

2. Compute and plot the persistence diagrams of the Vietoris-Rips and the alpha-complex �ltrations,

for a few examples of the time series.

3. Compute the 0-dimensional and 1-dimensional persistence diagrams (α-shape or Rips-Vietoris

�ltration) of all the time series. Compute the matrix of pairwise distances between the diagrams (as

this is may take a while, you can just select a subset of all the diagrams where each of the 3 classes

A, B and C are represented). Visualize the pairwise distances via Multidimensional Scaling (use a

di�erent color for each class). You can use sklearn for that:

2

http://geometrica.saclay.inria.fr/team/Fred.Chazal/slides/data_acc.dat

from sklearn import manifold

B is the pairwise distance matrix between 0 or 1-dim dgms

#label_color contains the colors corresponding to the class of each dgm

mds = manifold.MDS(n_components=3, max_iter=3000, eps=1e-9,

dissimilarity="precomputed", n_jobs=1)

pos1 = mds.fit(B1).embedding_

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

ax.scatter(pos1[:,0], pos1[:, 1], pos1[:,2], marker = 'o', color=label_color)

4. Use the function below to embed the data in dimension 3×3 = 9 with a delay equal to 2 (time-delay

embedding) and do the same experiments as previously, using the Vietoris-Rips �ltration this time.

def sliding_window_data(x,edim,delay=1):

"""time delay embedding of a d-dim times series into R^{d*edim}

the time series is assumed to be periodic

parameters:

+ x: a list of d lists of same length L or a dxL numpy array

+ edim: the number of points taken to build the embedding in

R^{d*edim}

+ delay: embeeding given by (x[i],x[i+delay],...,

x[i + (edim-1)*delay])

Default value for delay is 1

"""

ts = np.asarray(x)

if len(np.shape(ts)) == 1:

ts = np.reshape(ts,(1,ts.shape[0]))

ts_d = ts.shape[0]

ts_length = ts.shape[1]

#output = zeros((edim*ts_d,nb_pt))

output = ts

for i in range(edim-1):

output = np.concatenate((output,np.roll(ts,-(i+1)*delay,axis=1)),axis=0)

return output

3

	Basic instructions to build Vietoris-Rips and -complex filtrations and compute their persistence
	Sensor data

