Introduction to Topological Data Analysis - I

Marc Glisse

Inria, France

Motivation

[3D images (porous rocks)]

[Force fields in granular media]

[Nano-materials -
Li et al 2017]

Data often have topological / geometric structure

How many mountains?

How many mountains?

Height is insufficient

Small bump on the side of a
Independent mountain
bigger mountain

Prominence (Topography)

Local maximum: how low do you need to go before you can reach a higher maximum?

Superlevelsets

$f: X \rightarrow \mathbb{R}$
$F_{t}=f^{-1}([t,+\infty))=\{x \in X, f(x) \geq t\}$
$F_{+\infty}=\emptyset, \quad F_{t} \subseteq F_{t^{\prime}}$ when $t \geq t^{\prime}, \quad F_{-\infty}=X$

Superlevelsets

$f: X \rightarrow \mathbb{R}$
$F_{t}=f^{-1}([t,+\infty))=\{x \in X, f(x) \geq t\}$
$F_{+\infty}=\emptyset, \quad F_{t} \subseteq F_{t^{\prime}}$ when $t \geq t^{\prime}, \quad F_{-\infty}=X$

Tracking connected components in superlevelsets

Tracking connected components in superlevelsets

Tracking connected components in superlevelsets

Tracking connected components in superlevelsets

Tracking connected components in superlevelsets

Tracking connected components in superlevelsets

Tracking connected components in superlevelsets

Tracking connected components in superlevelsets

Smaller mountain merged into a bigger mountain: end the bar

Tracking connected components in superlevelsets

Smaller mountain merged into a bigger mountain: end the bar

Tracking connected components in superlevelsets

Tracking connected components in superlevelsets

Barcode

What it contains, for each local maximum

- height
- prominence

Things it ignores

- position of the local maximum
- when a bar stops, which other bar it merges with
- what mountains are adjacent
- width of the mountains
- invariant by reparametrization

Why not the merge tree?

Why not the merge tree?

Persistence diagram

Higher dimension

Higher dimension

Higher dimension

Mathematical tool: homology
Defines "holes" of all dimensions. dim 0: connected components, dim 1: loops, etc.

2 connected components, 2 loops

1 connected component, 2 loops, 1 cavity

Higher dimension

$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Superlevelsets: sweep a horizontal plane
local maximum: new connected component
saddle point: merge 2 components, or create loop
local minimum: kill (fill) loop

One barcode / diagram per dimension (often drawn together in different colors)

Higher dimension

Stability

Stability

$$
\|f-g\|_{\infty}=\sup _{x \in X}\{|f(x)-g(x)|\}
$$

Bottleneck distance

Partial matching, the rest matched with the diagonal
The worst pair defines the cost
Sup norm between points: $\max \left(\left|x-x^{\prime}\right|,\left|y-y^{\prime}\right|\right)$
Minimum over all matchings (\sim Wasserstein W_{∞})
Can also define other distances W_{p}

Stability Theorem

$$
d_{B}(\operatorname{Dgm}(f), \operatorname{Dgm}(g)) \leq\|f-g\|_{\infty}
$$

Dgm is 1-Lipschitz

Independent (?) problem: point clouds

Input: point set P
Assumption: P approaches some unknown ideal object
What can we do?

Strong reconstruction

Strong reconstruction

"Connect the dots" homeomorphic reconstruction

Strong reconstruction

"Connect the dots" homeomorphic reconstruction Diffeomorphism?

Strong reconstruction

"Connect the dots" homeomorphic reconstruction
Diffeomorphism?
Requires a nice sampling

Strong reconstruction

"Connect the dots" homeomorphic reconstruction Diffeomorphism?

Requires a nice sampling
Requires hypotheses on the model

Weaker reconstruction

Weaker reconstruction

Thickened version of the object
Not homeomorphic to a circle
Same homotopy type

Even weaker

Clustering
Mapper (graph) - next class
Persistent homology

Topology of points?

Just n connected components...

Topology of points?

Just n connected components...
Walk back, blur

Topology of points?

Just n connected components...
Walk back, blur
1 connected component, 1 loop

Choosing the scale

III defined problem
\Longrightarrow Look at all scales!

Link with functions

$$
\begin{aligned}
& f: \mathbb{R}^{d} \rightarrow \mathbb{R} \\
& f(x)=\min _{p \in P}\|x-p\|_{2}
\end{aligned}
$$

Union of balls $=$ sublevelset of f

Persistence of offset filtration

Persistence of offset filtration

Persistence of offset filtration

Persistence of offset filtration

Persistence of offset filtration

Stability Theorem

$$
d_{B}\left(\operatorname{Dgm}\left(f_{P}\right), \operatorname{Dgm}\left(f_{Q}\right)\right) \leq\left\|f_{P}-f_{Q}\right\|_{\infty}=d_{H}(P, Q)
$$

d_{H} : Hausdorff distance

$$
d_{H}(A, B)=\max \left\{\sup _{b \in B} d(b, A), \sup _{a \in A} d(a, B)\right\} \quad \text { where } d(b, A)=\inf _{a \in A} d(b, a)
$$

How can we compute all that?

Computers need finite representations
Homology needs a notion of boundary
Hole \sim gluing 2 regions with the same boundary

\Longrightarrow Cell complexes (generalization of graphs)

Cubical

Simplicial

Filtered cubical complex

The cells are cubes of all dimensions (including vertices, edges, squares)
Represent a region of \mathbb{R}^{d} by a subset of cells (subcomplex)
Growing region $=$ sequence of subcomplexes $K_{0} \subseteq K_{1} \subseteq \ldots \subseteq K_{n}$

Each cell σ has a filtration value $f(\sigma)$: time of appearance
Subcomplex $K_{t}=\{\sigma, f(\sigma)<=t\}$
Homology needs boundaries: the faces of a cell of K_{i} are also cells of K_{i}
$\sigma \subset \tau \Longrightarrow f(\sigma) \leq f(\tau)$
Can compute the persistence diagram of the sequence of subcomplexes

Persistence algorithm in dim 0

Only uses a (filtered) graph
Insert vertices and edges one by one (filtration order)
Vertex: new connected component
Edge $a b$: if a and b in separate components, kill the youngest, otherwise new loop (ignored for $\operatorname{dim} 0$)

Persistence algorithm in dim 0

Only uses a (filtered) graph
Insert vertices and edges one by one (filtration order)
Vertex: new connected component
Edge $a b$: if a and b in separate components, kill the youngest, otherwise new loop (ignored for dim 0)
Disjoint-set data structure (aka union-find): very fast, running time dominated by sorting edges
Dimension p :

- Use cells of dimension p and $p+1$
- Replace "separate components" with algebra (boundary not in the vector space generated by previous boundaries)
- Worst case $\Theta\left(n^{3}\right)$, in practice $O(n) \quad$ (n number of cells)
- Cohomology? Same diagram

Functions
Discretize the function: grid points

Functions

Discretize the function: grid points
Extend to other cells: lower-star filtration
$f(\sigma)=$ maximum value at its vertices
Same persistence diagram as a piecewise linear interpolation

Functions

Discretize the function: grid points
Extend to other cells: lower-star filtration
$f(\sigma)=$ maximum value at its vertices
Same persistence diagram as a piecewise linear interpolation

level 0

Functions

Discretize the function: grid points
Extend to other cells: lower-star filtration
$f(\sigma)=$ maximum value at its vertices
Same persistence diagram as a piecewise linear interpolation

level 1

Functions

Discretize the function: grid points
Extend to other cells: lower-star filtration
$f(\sigma)=$ maximum value at its vertices
Same persistence diagram as a piecewise linear interpolation

level 2

Functions

Discretize the function: grid points
Extend to other cells: lower-star filtration
$f(\sigma)=$ maximum value at its vertices
Same persistence diagram as a piecewise linear interpolation

level 3

Functions

Discretize the function: grid points
Extend to other cells: lower-star filtration
$f(\sigma)=$ maximum value at its vertices
Same persistence diagram as a piecewise linear interpolation

level 4

Simplicial complex

Simplex: vertex, edge, triangle, tetrahedron, etc

Simplices have the minimal number of vertices for their dimension (no squares or pentagons)
Nice combinatorial intersection: $\sigma \cap \tau$ is a common face of σ and τ or empty.
Represent a region by a subset of cells (subcomplex)

Growing region $=$ sequence of subcomplexes $K_{0} \subseteq K_{1} \subseteq \ldots \subseteq K_{n}$
Each cell σ has a filtration value $f(\sigma)$: time of appearance
Subcomplex $K_{t}=\{\sigma, f(\sigma)<=t\}$
Homology needs boundaries: the faces of a simplex of K_{i} are also in K_{i} $\sigma \subset \tau \Longrightarrow f(\sigma) \leq f(\tau)$

Can compute the persistence diagram of the sequence of subcomplexes

Nerve of a cover $\left\{U_{1}, \ldots, U_{n}\right\}$
One vertex v_{i} per U_{i}
$\sigma=\left[v_{i_{0}}, \ldots v_{i_{k}}\right] \in K \Longleftrightarrow \bigcap_{j=0}^{k} U_{i_{j}}$
Abstract (not embedded)
Nerve Theorem: If all intersections $\bigcap_{i \in I \subseteq[1, n]} U_{i}$ are either empty or contractible, then the union $\bigcup_{i=1}^{n} U_{i}$ has the same homotopy type as the Nerve (simplicial complex).

Always true for convex objects (balls)

Persistent nerve of a growing cover $\left\{U_{1}^{t}, \ldots, U_{n}^{t}\right\}$
$U_{i}^{t} \subseteq U_{i}^{t^{\prime}}$ when $t \leq t^{\prime}$
K^{t} : Nerve of $\left\{U_{1}^{t}, \ldots, U_{n}^{t}\right\}$
$K^{t} \subseteq K^{t^{\prime}}$ when $t \leq t^{\prime}$
Persistence diagram of $U^{t}=\bigcup_{i=1}^{n} U_{i}^{t}$
Persistence diagram of K^{t}

Persistent nerve theorem: If all intersections $\bigcap_{i \in I \subseteq[1, n]} U_{i}^{t}$ are either empty or contractible, then the two diagrams are the same.

Čech filtration

Finite point set P, parameter r
$C_{r}(P)$ is the nerve of the union of the balls of radius r centered on the points of P
The sequence of $C_{r}(P)$ when r increases defines a filtered simplicial complex
$f(\sigma)=$ radius of Minimal Enclosing Ball of the vertices of σ

Čech filtration

Finite point set P, parameter r
$C_{r}(P)$ is the nerve of the union of the balls of radius r centered on the points of P
The sequence of $C_{r}(P)$ when r increases defines a filtered simplicial complex
$f(\sigma)=$ radius of Minimal Enclosing Ball of the vertices of σ
1 persistence diagram for the growing union of balls when r increases
1 persistence diagram for the sequence of Čech complexes when r increases
Persistent nerve theorem: those 2 diagrams are the same

Čech filtration

Finite point set P, parameter r
$C_{r}(P)$ is the nerve of the union of the balls of radius r centered on the points of P
The sequence of $C_{r}(P)$ when r increases defines a filtered simplicial complex
$f(\sigma)=$ radius of Minimal Enclosing Ball of the vertices of σ
1 persistence diagram for the growing union of balls when r increases
1 persistence diagram for the sequence of Čech complexes when r increases
Persistent nerve theorem: those 2 diagrams are the same
Weaknesses:
Big, $2^{|P|}$ simplices if we do not limit it
Numerical, geometric computation to test the intersection of k balls in \mathbb{R}^{d}

Rips filtration

Finite point set P, parameter r

$$
\sigma \in R_{r}(P) \Longleftrightarrow \operatorname{diam}(\sigma) \leq 2 r
$$

Same graph as the Čech complex $C_{r}(P)$
Add simplices for cliques (complete subgraphs): purely combinatorial
$C_{r}(P) \subseteq R_{r}(P) \subseteq C_{2 r}(P)$
\Longrightarrow persistence diagrams of Rips and Čech are at distance less than 2 in log-scale

Very flexible (arbitrary value on edges)
Drawbacks: not exact topology, and even bigger than Čech
Stability theorem still applies

α-complex

Čech: lot of redundancy in the cover when r is large.
Idea: no need to keep growing in places already covered by other balls

Choice: Rips or α-complex?

Seldom compute the true Čech complex
Rips: easy, very flexible. Independent of any embedding. Have to limit dimension and edge length α-complex: only defined in Euclidean \mathbb{R}^{d}, currently only efficient for small d, but super efficient there Several other alternatives, including sparse Rips, etc

Noise (outliers)

Stability theorem: only handles small perturbations, one outlier can break everything
Idea: superlevelsets of a density estimator
Computable version: weighted version of Čech, Rips; penalize points in low density regions

Crossover: time series as a point cloud

Time series: function $f: \mathbb{R} \rightarrow X$
If $X=\mathbb{R}$ use sublevelsets?
Alternative idea: forget time, see $f(\mathbb{R}) \subseteq X$ as a point set, compute Čech complex

5 • • 4

$$
X=\mathbb{R}^{2}
$$

$6 \cdot$

- 3
$1{ }^{\bullet}$
- 2

Crossover: time series as a point cloud

Time series: function $f: \mathbb{R} \rightarrow X$
If $X=\mathbb{R}$ use sublevelsets?
Alternative idea: forget time, see $f(\mathbb{R}) \subseteq X$ as a point set, compute Čech complex

Crossover: time series as a point cloud

Time series: function $f: \mathbb{R} \rightarrow X$
If $X=\mathbb{R}$ use sublevelsets?
Alternative idea: forget time, see $f(\mathbb{R}) \subseteq X$ as a point set, compute Čech complex
Lose too much information? Enrich f first, define $g=\left(f, \frac{\partial f}{\partial t}\right)$

$$
f(\mathbb{R})
$$

Crossover: time series as a point cloud

Time series: function $f: \mathbb{R} \rightarrow X$
If $X=\mathbb{R}$ use sublevelsets?
Alternative idea: forget time, see $f(\mathbb{R}) \subseteq X$ as a point set, compute Čech complex
Lose too much information? Enrich f first, define $g=\left(f, \frac{\partial f}{\partial t}\right)$
In practice, from sequence u_{n}, define e.g. $v_{n}=\left(u_{n}, u_{n+2}, u_{n+7}\right)$
Inspired by Taken's theorem in dynamical systems

Conclusion

Can be expensive to compute: aim for a smaller complex
Hardest part: deciding on what function to compute persistence
Next classes: how to use this in stat / ML

