Introduction to Topological Data Analysis – I

Marc Glisse Inria, France

Motivation

Data often have topological / geometric structure

[3D images (porous rocks)]

TD

PCOD8307680

PCOD8162096

[Nano-materials -Li et al 2017]

How many mountains?

How many mountains?

Height is insufficient

Small bump on the side of a bigger mountain

Independent mountain

Prominence (Topography)

Local maximum: how low do you need to go before you can reach a higher maximum?

[wikipedia]

Superlevelsets

 $\begin{aligned} f: X \to \mathbb{R} \\ F_t &= f^{-1}([t, +\infty)) = \{x \in X, f(x) \ge t\} \\ F_{+\infty} &= \emptyset, \qquad F_t \subseteq F_{t'} \text{ when } t \ge t', \qquad F_{-\infty} = X \end{aligned}$

Superlevelsets

 $\begin{aligned} f: X \to \mathbb{R} \\ F_t &= f^{-1}([t, +\infty)) = \{x \in X, f(x) \ge t\} \\ F_{+\infty} &= \emptyset, \qquad F_t \subseteq F_{t'} \text{ when } t \ge t', \qquad F_{-\infty} = X \end{aligned}$

Smaller mountain merged into a bigger mountain: end the bar

Smaller mountain merged into a bigger mountain: end the bar

Barcode

Barcode

What it contains, for each local maximum

- height
- prominence

Things it ignores

- position of the local maximum
- when a bar stops, which other bar it merges with
- what mountains are adjacent
- width of the mountains
- invariant by reparametrization

Why not the merge tree?

Unstable

Why not the merge tree?

Unstable

Persistence diagram

Interval (a, b)= Point (a, b)

Short bar

Point close to the diagonal

(points with multiplicity)

Mathematical tool: homology

Defines "holes" of all dimensions. dim 0: connected components, dim 1: loops, etc.

 $f: \mathbb{R}^2 \to \mathbb{R}$

Superlevelsets: sweep a horizontal plane

local maximum: new connected component

saddle point: merge 2 components, or create loop

local minimum: kill (fill) loop

One barcode / diagram per dimension (often drawn together in different colors)

 $||f - g||_{\infty} = \sup_{x \in X} \{|f(x) - g(x)|\}$

Bottleneck distance

Partial matching, the rest matched with the diagonal

The worst pair defines the cost

Sup norm between points: max(|x - x'|, |y - y'|)

Minimum over all matchings (\sim Wasserstein W_{∞})

Can also define other distances W_p

Stability Theorem

 $d_B(Dgm(f), Dgm(g)) \le ||f - g||_{\infty}$

Dgm is 1-Lipschitz

Independent (?) problem: point clouds

Input: point set P

Assumption: P approaches some unknown ideal object

What can we do?

Strong reconstruction

Strong reconstruction

"Connect the dots" homeomorphic reconstruction

Strong reconstruction

"Connect the dots" homeomorphic reconstruction

Diffeomorphism?

Strong reconstruction

"Connect the dots" homeomorphic reconstruction

Diffeomorphism?

Requires a nice sampling

Strong reconstruction

"Connect the dots" homeomorphic reconstruction

Diffeomorphism?

Requires a nice sampling

Requires hypotheses on the model

Weaker reconstruction

•

Weaker reconstruction

Thickened version of the object

Not homeomorphic to a circle

Same homotopy type

Even weaker

Clustering

Mapper (graph) – next class

Persistent homology

Topology of points?

Just n connected components...

Topology of points?

Just n connected components...

Walk back, blur

Topology of points?

Just n connected components...

Walk back, blur

1 connected component, 1 loop

Choosing the scale

Ill defined problem

 \implies Look at all scales!

Link with functions

$$f: \mathbb{R}^d \to \mathbb{R}$$
$$f(x) = \min_{p \in P} ||x - p||_2$$

Union of balls = \mathbf{sub} levelset of f

Stability Theorem

$$d_B(Dgm(f_P), Dgm(f_Q)) \le ||f_P - f_Q||_{\infty} = d_H($$

 d_H : Hausdorff distance

 $d_H(A,B) = \max\{\sup_{b \in B} d(b,A), \sup_{a \in A} d(a,B)\}$ where $d(b, A) = \inf_{a \in A} d(b, a)$

(P,Q)

How can we compute all that?

Computers need finite representations

Homology needs a notion of *boundary*

Hole \sim gluing 2 regions with the same boundary

 \implies Cell complexes (generalization of graphs)

Cubical

Filtered cubical complex

The cells are cubes of all dimensions (including vertices, edges, squares)

Represent a region of \mathbb{R}^d by a subset of cells (*subcomplex*)

Growing region = sequence of subcomplexes $K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$

Each cell σ has a *filtration value* $f(\sigma)$: time of appearance

Subcomplex $K_t = \{\sigma, f(\sigma) \le t\}$

Homology needs boundaries: the faces of a cell of K_i are also cells of K_i

 $\sigma \subset \tau \implies f(\sigma) \leq f(\tau)$

Can compute the persistence diagram of the sequence of subcomplexes

Persistence algorithm in dim 0

Only uses a (filtered) graph

Insert vertices and edges one by one (filtration order)

Vertex: new connected component

Edge ab: if a and b in separate components, kill the youngest, otherwise new loop (ignored for dim 0)

Persistence algorithm in dim 0

Only uses a (filtered) graph

Insert vertices and edges one by one (filtration order)

Vertex: new connected component

Edge ab: if a and b in separate components, kill the youngest, otherwise new loop (ignored for dim 0)

Disjoint-set data structure (aka union-find): very fast, running time dominated by sorting edges

Dimension p:

- Use cells of dimension p and p+1
- Replace "separate components" with algebra (boundary not in the vector space generated by previous boundaries)
- Worst case $\Theta(n^3)$, in practice O(n) (*n* number of cells)
- **Co**homology? Same diagram

Discretize the function: grid points

Discretize the function: grid points

Extend to other cells: lower-star filtration

 $f(\sigma) = \max \operatorname{imum} value at its vertices$

Discretize the function: grid points

Extend to other cells: lower-star filtration

 $f(\sigma) = \max \operatorname{imum} value at its vertices$

Same persistence diagram as a piecewise linear interpolation

level 0

Discretize the function: grid points

Extend to other cells: lower-star filtration

 $f(\sigma) = \max \operatorname{imum} value at its vertices$

Same persistence diagram as a piecewise linear interpolation

level 1

Discretize the function: grid points

Extend to other cells: lower-star filtration

 $f(\sigma) = \max \operatorname{imum} value at its vertices$

Discretize the function: grid points

Extend to other cells: lower-star filtration

 $f(\sigma) = \max \min value at its vertices$

Discretize the function: grid points

Extend to other cells: lower-star filtration

 $f(\sigma) = \max \operatorname{imum} value at its vertices$

Simplicial complex

Simplex: vertex, edge, triangle, tetrahedron, etc

Simplices have the *minimal* number of vertices for their dimension (no squares or pentagons)

Nice combinatorial intersection: $\sigma \cap \tau$ is a common face of σ and τ or empty.

Represent a region by a subset of cells (*subcomplex*)

Growing region = sequence of subcomplexes $K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$

Each cell σ has a *filtration value* $f(\sigma)$: time of appearance

Subcomplex $K_t = \{\sigma, f(\sigma) \le t\}$

Homology needs boundaries: the faces of a simplex of K_i are also in K_i

 $\sigma \subset \tau \implies f(\sigma) \le f(\tau)$

Can compute the persistence diagram of the sequence of subcomplexes

Nerve of a cover $\{U_1, \ldots, U_n\}$

One vertex v_i per U_i

$$\sigma = [v_{i_0}, \dots v_{i_k}] \in K \iff \bigcap_{j=0}^k U_{i_j}$$

Abstract (not embedded)

Nerve Theorem: If all intersections $\bigcap_{i \in I \subseteq [1,n]} U_i$ are either empty or contractible, then the union $\bigcup_{i=1}^n U_i$ has the same homotopy type as the <u>Nerve</u> (simplicial complex).

Always true for convex objects (balls)

Persistent nerve of a growing cover $\{U_1^t, \ldots, U_n^t\}$

 $U_i^t \subseteq U_i^{t'}$ when $t \leq t'$ K^t : Nerve of $\{U_1^t, \ldots, U_n^t\}$ $K^t \subseteq K^{t'}$ when $t \leq t'$ Persistence diagram of $U^t = \bigcup_{i=1}^n U_i^t$

Persistence diagram of K^t

Persistent nerve theorem: If all intersections $\bigcap_{i \in I \subseteq [1,n]} U_i^t$ are either empty or contractible, then the two diagrams are the same.

Čech filtration

Finite point set P, parameter r

 $C_r(P)$ is the nerve of the union of the balls of radius r centered on the points of P The sequence of $C_r(P)$ when r increases defines a filtered simplicial complex $f(\sigma) =$ radius of Minimal Enclosing Ball of the vertices of σ

Čech filtration

Finite point set P, parameter r

 $C_r(P)$ is the nerve of the union of the balls of radius r centered on the points of P The sequence of $C_r(P)$ when r increases defines a filtered simplicial complex $f(\sigma) =$ radius of Minimal Enclosing Ball of the vertices of σ 1 persistence diagram for the growing union of balls when r increases 1 persistence diagram for the sequence of \check{C} ech complexes when r increases Persistent nerve theorem: those 2 diagrams are the same
Čech filtration

Finite point set P, parameter r

 $C_r(P)$ is the nerve of the union of the balls of radius r centered on the points of P The sequence of $C_r(P)$ when r increases defines a filtered simplicial complex $f(\sigma) =$ radius of Minimal Enclosing Ball of the vertices of σ 1 persistence diagram for the growing union of balls when r increases 1 persistence diagram for the sequence of \check{C} ech complexes when r increases Persistent nerve theorem: those 2 diagrams are the same Weaknesses:

Big, $2^{|P|}$ simplices if we do not limit it

Numerical, geometric computation to test the intersection of k balls in \mathbb{R}^d

Rips filtration

Finite point set P, parameter r

 $\sigma \in R_r(P) \iff \mathsf{diam}(\sigma) \le 2r$

Same graph as the Čech complex $C_r(P)$

Add simplices for cliques (complete subgraphs): purely combinatorial

 $C_r(P) \subseteq R_r(P) \subseteq C_{2r}(P)$

 \implies persistence diagrams of Rips and Čech are at distance less than 2 in log-scale

Very flexible (arbitrary value on edges)

Drawbacks: not exact topology, and even bigger than Čech

Stability theorem still applies

α -complex

Čech: lot of redundancy in the cover when r is large.

Idea: no need to keep growing in places already covered by other balls

α -complex

Choice: Rips or α -complex?

Seldom compute the true Čech complex

Rips: easy, very flexible. Independent of any embedding. Have to limit dimension and edge length

 α -complex: only defined in Euclidean \mathbb{R}^d , currently only efficient for small d, but super efficient there

Several other alternatives, including sparse Rips, etc

hension and edge length d, but super efficient there

Noise (outliers)

Stability theorem: only handles small perturbations, one outlier can break everything

Idea: superlevelsets of a density estimator

Computable version: weighted version of Čech, Rips; penalize points in low density regions

Time series: function $f : \mathbb{R} \to X$

```
If X = \mathbb{R} use sublevelsets?
```

Alternative idea: forget time, see $f(\mathbb{R}) \subseteq X$ as a point set, compute Čech complex

Time series: function $f : \mathbb{R} \to X$

If $X = \mathbb{R}$ use sublevelsets?

Alternative idea: forget time, see $f(\mathbb{R}) \subseteq X$ as a point set, compute Čech complex

Time series: function $f : \mathbb{R} \to X$

If $X = \mathbb{R}$ use sublevelsets?

Alternative idea: forget time, see $f(\mathbb{R}) \subseteq X$ as a point set, compute Čech complex

Lose too much information? Enrich f first, define $g = (f, \frac{\partial f}{\partial t})$

Time series: function $f : \mathbb{R} \to X$

If $X = \mathbb{R}$ use sublevelsets?

Alternative idea: forget time, see $f(\mathbb{R}) \subseteq X$ as a point set, compute Čech complex

Lose too much information? Enrich f first, define $g = (f, \frac{\partial f}{\partial t})$

In practice, from sequence u_n , define e.g. $v_n = (u_n, u_{n+2}, u_{n+7})$

Inspired by Taken's theorem in dynamical systems

Conclusion

Can be expensive to compute: aim for a smaller complex

Hardest part: deciding on what function to compute persistence

Next classes: how to use this in stat / ML