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Motivation

[3D images
(porous rocks)]

[Sensors]

[Force fields in granular media]

[Nano-materials -
Li et al 2017]

Data often have topological / geometric structure



How many mountains?



How many mountains?



Height is insufficient

Small bump on the side of a
bigger mountain

Independent mountain



Prominence (Topography)

Local maximum: how low do you need to go before you can reach a higher maximum?

[wikipedia]



Superlevelsets

f : X −→ R

Ft = f−1([t,+∞)) = {x ∈ X, f(x) ≥ t}

F+∞ = ∅, Ft ⊆ Ft′ when t ≥ t′, F−∞ = X

t

X = R
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Tracking connected components in superlevelsets

Smaller mountain
merged into a bigger
mountain: end the bar
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Tracking connected components in superlevelsets



Tracking connected components in superlevelsets

Barcode



Barcode

What it contains, for each local maximum
• height
• prominence

Things it ignores
• position of the local maximum
• when a bar stops, which other bar it merges with
• what mountains are adjacent
• width of the mountains
• invariant by reparametrization



Why not the merge tree?

Unstable



Why not the merge tree?

Unstable



Persistence diagram

Barcode

Diagram

Interval (a, b)
=

Point (a, b)

Short bar
=

Point close to
the diagonal

di
ag
on
al

(points with multiplicity)



Higher dimension



Higher dimension



Higher dimension

Mathematical tool: homology

Defines “holes” of all dimensions. dim 0: connected components, dim 1: loops, etc.

2 connected components, 2 loops

1 connected component, 2 loops, 1 cavity

empty inside



Higher dimension

f : R2 −→ R

local maximum: new connected component

saddle point: merge 2 components, or create loop

local minimum: kill (fill) loop

Superlevelsets: sweep a horizontal plane

One barcode / diagram per dimension (often drawn together in different colors)



Higher dimension

z

M

a1
σ1

a2
σ2

a3

a4
σ3



Stability

X

R



Stability

X

R

||f − g||∞ = supx∈X{|f(x)− g(x)|}



Bottleneck distance

Partial matching, the rest matched with the diagonal

The worst pair defines the cost

Minimum over all matchings (∼ Wasserstein W∞)

Sup norm between points: max(|x− x′|, |y − y′|)

Can also define other distances Wp



Stability Theorem

dB(Dgm(f), Dgm(g)) ≤ ||f − g||∞

Dgm is 1-Lipschitz



Independent (?) problem: point clouds

Input: point set P

Assumption: P approaches some unknown ideal object

What can we do?



Strong reconstruction
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“Connect the dots” homeomorphic reconstruction
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Strong reconstruction
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Strong reconstruction

“Connect the dots” homeomorphic reconstruction

Diffeomorphism?

Requires a nice sampling

Requires hypotheses on the model



Weaker reconstruction



Weaker reconstruction

Thickened version of the object

Not homeomorphic to a circle

Same homotopy type



Even weaker

Clustering

Mapper (graph) – next class

Persistent homology



Topology of points?

Just n connected components...



Topology of points?

Just n connected components...

Walk back, blur



Topology of points?

Just n connected components...

Walk back, blur

1 connected component, 1 loop



Choosing the scale

Ill defined problem

=⇒ Look at all scales!



Link with functions

f : Rd → R
f(x) = minp∈P ||x− p||2

Union of balls = sublevelset of f



Persistence of offset filtration
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Persistence of offset filtration



Stability Theorem

dB(Dgm(fP ), Dgm(fQ)) ≤ ||fP − fQ||∞ = dH(P,Q)

dH : Hausdorff distance

dH(A,B) = max{supb∈B d(b, A), supa∈A d(a,B)} where d(b, A) = infa∈A d(b, a)

A
B



How can we compute all that?

Computers need finite representations

Homology needs a notion of boundary

Hole ∼ gluing 2 regions with the same boundary

=⇒ Cell complexes (generalization of graphs)

Cubical Simplicial



Filtered cubical complex

The cells are cubes of all dimensions (including vertices, edges, squares)

Each cell σ has a filtration value f(σ): time of appearance

Subcomplex Kt = {σ, f(σ) <= t}

Homology needs boundaries: the faces of a cell of Ki are also cells of Ki

Growing region = sequence of subcomplexes K0 ⊆ K1 ⊆ . . . ⊆ Kn

Represent a region of Rd by a subset of cells (subcomplex)

σ ⊂ τ =⇒ f(σ) ≤ f(τ)

Can compute the persistence diagram of the sequence of subcomplexes



Persistence algorithm in dim 0

Only uses a (filtered) graph

Insert vertices and edges one by one (filtration order)

Vertex: new connected component

Edge ab: if a and b in separate components, kill the youngest, otherwise new loop (ignored for dim 0)

0 1 2 3 4 5 6 7 8



Persistence algorithm in dim 0

Only uses a (filtered) graph

Insert vertices and edges one by one (filtration order)

Vertex: new connected component

Edge ab: if a and b in separate components, kill the youngest, otherwise new loop (ignored for dim 0)

Disjoint-set data structure (aka union-find): very fast, running time dominated by sorting edges

Dimension p:
• Use cells of dimension p and p+ 1
• Replace “separate components” with algebra (boundary not in the vector space generated by
previous boundaries)

• Worst case Θ(n3), in practice O(n) (n number of cells)
• Cohomology? Same diagram



Functions

Discretize the function: grid points
1 3 2

2 40

2 1 0



Functions

Discretize the function: grid points
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42

f(σ) = maximum value at its vertices

Same persistence diagram as a piecewise linear interpolation
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Discretize the function: grid points
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Simplicial complex

Simplex: vertex, edge, triangle, tetrahedron, etc

Simplices have the minimal number of vertices for their dimension (no squares or pentagons)

Nice combinatorial intersection: σ ∩ τ is a common face of σ and τ or empty.

Each cell σ has a filtration value f(σ): time of appearance

Subcomplex Kt = {σ, f(σ) <= t}

Homology needs boundaries: the faces of a simplex of Ki are also in Ki

Growing region = sequence of subcomplexes K0 ⊆ K1 ⊆ . . . ⊆ Kn

Represent a region by a subset of cells (subcomplex)

σ ⊂ τ =⇒ f(σ) ≤ f(τ)

Can compute the persistence diagram of the sequence of subcomplexes



Nerve of a cover {U1, . . . , Un}

One vertex vi per Ui

σ = [vi0 , . . . vik ] ∈ K ⇐⇒
⋂k

j=0 Uij

Nerve Theorem: If all intersections⋂
i∈I⊆[1,n] Ui are either empty or

contractible, then the union
⋃n

i=1 Ui

has the same homotopy type as the
Nerve (simplicial complex).

Always true for convex objects (balls)

Abstract (not embedded)



Persistent nerve of a growing cover {U t
1, . . . , U

t
n}

U t
i ⊆ U t′

i when t ≤ t′

Kt: Nerve of {U t
1, . . . , U

t
n}

Kt ⊆ Kt′ when t ≤ t′

Persistence diagram of U t =
⋃n

i=1 U
t
i

Persistence diagram of Kt

Persistent nerve theorem: If all intersections
⋂

i∈I⊆[1,n] U
t
i are either empty or contractible, then the

two diagrams are the same.



Čech filtration

Finite point set P , parameter r

Cr(P ) is the nerve of the union of the balls of radius r centered on the points of P

The sequence of Cr(P ) when r increases defines a filtered simplicial complex

f(σ) = radius of Minimal Enclosing Ball of the vertices of σ



Čech filtration

Finite point set P , parameter r

Cr(P ) is the nerve of the union of the balls of radius r centered on the points of P

1 persistence diagram for the growing union of balls when r increases

1 persistence diagram for the sequence of Čech complexes when r increases

The sequence of Cr(P ) when r increases defines a filtered simplicial complex

Persistent nerve theorem: those 2 diagrams are the same

f(σ) = radius of Minimal Enclosing Ball of the vertices of σ



Čech filtration

Finite point set P , parameter r

Cr(P ) is the nerve of the union of the balls of radius r centered on the points of P

1 persistence diagram for the growing union of balls when r increases

1 persistence diagram for the sequence of Čech complexes when r increases

The sequence of Cr(P ) when r increases defines a filtered simplicial complex

Persistent nerve theorem: those 2 diagrams are the same

Weaknesses:

Big, 2|P | simplices if we do not limit it

Numerical, geometric computation to test the intersection of k balls in Rd

f(σ) = radius of Minimal Enclosing Ball of the vertices of σ



Rips filtration

Finite point set P , parameter r

σ ∈ Rr(P ) ⇐⇒ diam(σ) ≤ 2r

Same graph as the Čech complex Cr(P )

Add simplices for cliques (complete subgraphs):
purely combinatorial

2ϵ

Cr(P ) ⊆ Rr(P ) ⊆ C2r(P )

=⇒ persistence diagrams of Rips and Čech are
at distance less than 2 in log-scale

Very flexible (arbitrary value on edges)

Drawbacks: not exact topology, and even bigger than Čech

Stability theorem still applies



α-complex

Čech: lot of redundancy in the cover when r is large.

Idea: no need to keep growing in places already covered by other balls

• Restrict balls to
Voronoi cells

• Same union
• Still convex =⇒
Nerve theorem

• Same persistence
diagram

• Smaller complex
• Embedded

Čech complex α-complex



Choice: Rips or α-complex?

Seldom compute the true Čech complex

Rips: easy, very flexible. Independent of any embedding. Have to limit dimension and edge length

α-complex: only defined in Euclidean Rd, currently only efficient for small d, but super efficient there

Several other alternatives, including sparse Rips, etc



Noise (outliers)

Stability theorem: only handles small perturbations, one outlier can break everything

Idea: superlevelsets of a density estimator

Computable version: weighted version of Čech, Rips; penalize points in low density regions



Crossover: time series as a point cloud

Time series: function f : R → X

If X = R use sublevelsets?

Alternative idea: forget time, see f(R) ⊆ X as a point set, compute Čech complex

87

6

5 4

3

2

1

X = R2



Crossover: time series as a point cloud

Time series: function f : R → X

If X = R use sublevelsets?

Alternative idea: forget time, see f(R) ⊆ X as a point set, compute Čech complex
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Crossover: time series as a point cloud

Time series: function f : R → X

If X = R use sublevelsets?

Alternative idea: forget time, see f(R) ⊆ X as a point set, compute Čech complex

Lose too much information? Enrich f first, define g = (f, ∂f
∂t )
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Crossover: time series as a point cloud

Time series: function f : R → X

If X = R use sublevelsets?

Alternative idea: forget time, see f(R) ⊆ X as a point set, compute Čech complex

Lose too much information? Enrich f first, define g = (f, ∂f
∂t )

In practice, from sequence un, define e.g. vn = (un, un+2, un+7)

Inspired by Taken’s theorem in dynamical systems



Conclusion

Can be expensive to compute: aim for a smaller complex

Hardest part: deciding on what function to compute persistence

Next classes: how to use this in stat / ML


