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. ToMATo algorithm

1. Introduction to hierarchical and mode-seeking clustering
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Input: a finite set of observations: point cloud embedded in an Euclidean
space (i.e., with well-defined coordinates) or a more general metric space
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Goal: partition the data into a relevant family of clusters.
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Def: A partition of data into groups of|similar data points] The data points
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Not a single or universal notion of cluster.
A variety of approaches:
e Variational (Bayes priors)
e Spectral (eigenvalues of Laplacian)
e Density-based (KDE, DTM)
e Hierarchical (dendrograms)
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General clustering

Def: A partition of data into groups of|similar data points] The data points
in each group, or cluster, arelsimilar to each other and dissimilar to the ones

Not a single or universal notion of cluster.

A variety of approaches:
We will see a few standard algo-
rithms and how they can be im-

e Spectral (eigenvalues of Laplacian) proved with (O-dimensional) per-
sistent homology.

e Variational (Bayes priors)

e Density-based (KDE, DTM)
e Hierarchical (dendrograms)

® ctcC...



The k-means algorithm

Input: A (large) set of n points X and
an integer k < n.

Goal: Find a set of £ points L = {y1, ...

that minimizes

b= En: d(ilfz, L)2
1=1
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The k-means algorithm

Input: A (large) set of n points X and
an integer k < n. o

Goal: Find a set of k points L = {y1,...,yx}
that minimizes

b= En: d(ilfz, L)2
1=1

This is a NP hard problem!

Lloyd's algorithm: a very simple local search algorithm.
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The k-means algorithm

Warning:
e Minimum is not necessarily global!

e Speed of convergence not guaranteed.

e Lack of stability: output is very sensitive
to initial seeds.




Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).
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reaching a stopping criterion (e.g.,
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Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Acol i Dendogram, i.e., a tree such that:
gglomerative (bottom-up) - each leaf node is a singleton,

Start with single point cluster and |- each node represents a cluster,

recursively merge the most similar |- the root node contains the whole data,
clusters to one parent cluster until |- each internal node has two daughters, cor-

reaching a stopping criterion (e.g., responding to the clusters that were merged

max distance or cluster number). to obtain it. \
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Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up) Dividing (top-down)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.
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Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up) Dividing (top-down)

Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.
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P4 D5  Pe6




Single linkage clustering

Input: A set X,, = {x1,...,2,} in a metric space (X,d) (or just a matrix
of pairwise dissimilarities ((d; ;))i ;).

Given two clusters C,C" C X, let d(C,C") = inf copecr d(x, 2').
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2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.
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- . [Characterization, Stability and Convergence
T h e ( I n )Sta bl | Ity Of d e n d rOg ra m S of Hierarchical Clustering Methods, Carlsson,

Mémoli, J. Machine Learning Research, 2010]

dp(x,x") := height of lowest common ancestor of z,x" in dendrogram D.

Thm: dey((X,dpy ), (Y,dpy)) < dar((X,dx), (Y, dy)). ultrametric!



- . [Characterization, Stability and Convergence
T h e ( I n )Sta bl | Ity Of d e n d rOg ra m S of Hierarchical Clustering Methods, Carlsson,

Mémoli, J. Machine Learning Research, 2010]

dp(x,x") := height of lowest common ancestor of z,x" in dendrogram D.

Thm: dey((X,dpy ), (Y,dpy)) < dar((X,dx), (Y, dy)). ultrametric!

This is actually not true for complete and average clustering.
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gram nodes) remain stable.
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The (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

— O-dimensional persistent homology provides a stable output!
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However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

Another way to build a hierarchy is with the sublevel sets of a density function.
Using density for clustering is at the core of mode-seeking algorithms.

— O-dimensional persistent homology provides a stable output!



Mode seeking clustering

In mode seeking, data points are sampled according to some (unknown) prob-
ability density, and clusters are given with its basins of attraction.

Two approaches:

[Mean shift: a robust approach toward feature

o Iterative SUCh as. e g Mean Shlft space analysis, Comaniciu et al., IEEE Trans. on

Pattern Analysis and Machine Intelligence, 2002]

[A Graph-Theoretic Approach to Nonparametric

® Graph-baSEd, SUCh aS, e.g., Cluster Analysis, Koontz et al., IEEE Trans. on
Computers, 1976].



Mean Shift (2002)



Mean Shift (2002)

1. Pick random guess x € X.



Mean Shift (2002)

1. Pick random guess x € X.

2. Compute
M(Qf) = inEN(oc) K(z,2;)
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K (x,y) = exp (1542,

3. Update x + M (x).

2. Compute
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Mean Shift (2002)

1. Pick random guess x € X.

where N (x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel

K(z,y) = exp (—12412).

3. Update x + M (x).

2. Compute M(z) =

Do that for many random guesses, postprocess and merge similar centroids,
and use the distances to the centroids to decide clusters.



Mean Shift (2002)

1. Pick i .
 Regionof
2. Com interest
Center of
where [ s n kernel
K(z,y)
[ Mean Shift ]
3 Updz vector
Do that ntroids,
and use
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The Koonz, Narendra and Fukunaga algorithm (1976

Density estimation

graph

Discrete approximation of
the gradient; for each ver-
tex v, a gradient edge is
selected among the edges
adjacent to v.

<




The Koonz, Narendra and Fukunaga algorithm (1976)

The algorithm:

Input: A neighborhood graph G with n vertices (the data points) and an
n-dimensional vector f (density estimate).

Sort the vertex indices {1,2,...,n} in decreasing order: f(1) > ---> f(n).

Initialize a union-find data structure I/ and two lists g, r of length n.

fori e {1,...,n}:
Let \V be the set of neighbors of 7 in G that have indices lower than i
if N =2:
Create a new entry e in U and attach vertex ¢ to it: U.MakeSet(i)
7“[6] <— 1 (r[e] stores the root vertex associated with the entry ¢)
else: X
gli] <= argmax{f(j) : J € N} (41il stores the approximate gradient at vertex i)
e; < U.Find(glt])
Attach vertex ¢ to the entry e;: U.Union(z,e;)

Output: The collection of entries e in .
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Drawbacks:

estimated
density

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.
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The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

Approaches to overcome these issues:

One can smooth out the density estimate, but smoothing is usually data-driven
and hard to tune.

Build a hierarchy of clusters with O-dimensional persistent homology!
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Given a probability density f, we will consider the superlevel-set filtration
f1([t, +00)) for t from +o0 to —o0, instead of the sublevel-set filtration.
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Reminder: O-dimensional PH of density

Moreover, the stability theorem ensures that, given an underlying true density
f, and an estimator f ot it, one has:

dy(Dy, D) < |If = flloo-
R A

+ oo
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Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, 0-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

This means that, given a fixed threshold 7 > 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > 7!

v —0 < T< +00
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[Persistence-Based Clustering

ToMATo: Topological Mode Analysis Tool i fememian wanioras

Guibas, J. ACM, 2013]

Given a neighborhood graph with n vertices and m edges:

1. the algorithm sorts the vertices by decreasing density values,

2. and then makes a single pass through the vertex set, merging clusters
on the fly using a union-find data structure.

— Running time: O(nlogn + (n +m)a(n))
— Space complexity: O(n + m)
— Main memory usage: O(n)
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Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator f
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f([u,v]) = min{f(u), f(v)})

3. Compute the O-dimensional persistence diagram of this filtration.

(apply O-dimensional persistence algorithm — union-find data structure)
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Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator f
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f([u,v]) = min{f(u), f(v)})

3. Compute the O-dimensional persistence diagram of this filtration.

(apply O-dimensional persistence algorithm — union-find data structure)




Estimating the correct number of clusters

Hypotheses:

o f:RY— R a c-Lipschitz probability density function,

e P C R? a finite set of n points sampled i.i.d. according to f,

e f: P — R a density estimator s.t. 17 := max,ep |f(p) — f(p)| < II/5,
e G = (P, E) the d-neighborhood graph for some positive § < = 577

Note: II is the prominence of the least prominent peak of f



Estimating the correct number of clusters

Hypotheses:

o f:RY— R a c-Lipschitz probability density function,
e P C R? a finite set of n points sampled i.i.d. according to f,

e f: P — R a density estimator s.t. 17 := max,ep |f(p) — f(p)| < II/5,
I1— 577

e G = (P, F) the d-neighborhood graph for some positive § <

Note: II is the prominence of the least prominent peak of f

Thm: For any choice of 7 such that 2(¢éd +7) < 7 < Il — 3(cd + n), the
number of clusters computed by the algorithm is equal to the number of peaks
Of f W|th probab”rty at Ieast 1 — e_Q(n) (the €2 notation hides factors depending on c, &)

Proof: Skipped. The main ingredient is the stability theorem.



Estimating the correct number of clusters

7| 2(co +m)

L —3(cd +n)

2(06:+ n) 11 —:3(66 +n)

Thm: For any choice of 7 such that 2(cd +n) < 7 < II — 3(cd + 1), the

number of clusters computed by the algorithm is equal to the number of peaks
Of f W|th probab|||ty at Ieast 1 — e_ﬂ(n) (the €2 notation hides factors depending on ¢, §)

Proof: Skipped. The main ingredient is the stability theorem.



Pseudo-code

Input: A graph G with n vertices, an n-dimensional vector f and 7 > 0.
Sort the vertex indices {1,2,...,n} in decreasing order: (1) > --- > f(n).
Initialize a union-find data structure U/ and two lists g, r of length n.

for i € {1,...,n}:
Let A be the set of neighbors of 7 in G that have indices lower than ¢
if N = @:
Create a new entry e in U and attach vertex i to it: U .MakeSet(i)
T [6] <{— 1 (rle] stores the root vertex associated with the entry )
else: X
g[@] < argmax{f(j) . ] < N} (g[i] stores the approximate gradient at vertex 1)
e; < U.Find(g|i|)
Attach vertex ¢ to the entry e;: U.Union(i,e;)
for j € N:
e < U.Find(j)
if e # e; and min{f(rle]), f(rle)} < fi) + T cluster merges
U .Union(e, e;) with persistence
rleUei] < argmax{f(rle]), f(rlei])}
e; < elU e

Output: the collection of entries e of I such that f(r(e)) > .
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Synthetic Data
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Experimental results

Biological Data
Alanine-Dipeptide conformations (R*!)
with RMSD distance (non-Euclidean).

Common belief: 6 metastable states. 3|

PD shows anywhere between 4 and 7 clusters. ?|




E " t | |t [ Topological methods for exploring low-density states in biomolecular fold-
Xpe” I I len a reSU S ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,
Carlsson, J. Chem. Phys., 2009]

BiOlOgicaI Data Rank Prominence Metastability
1 400 0.99982
Alanine-Dipeptide conformations (R?!) 2 3827 1.91865
3 1334 2.8813
. . . 4 557 3.76217
with RMSD distance (non-Euclidean). : o 173838
6 32 5.65553
7 26 6.50757
38 7.2 6.8193
9 3.0 -
10 2.2 -

N (68 ~ o1 (@) ~
T T T T T

Metastability

Common belief: 6 metastable states.

PD shows anywhere between 4 and 7 clusters.

- _ O~ 3 4 5 6 7 8
Measures of metastability confirm this insight. Number of clusters



[ Topological methods for exploring low-density states in biomolecular fold-

EXpe” mental reSU |tS ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,

Carlsson, J. Chem. Phys., 2009]

Biological Data
Alanine-Dipeptide conformations (R*!)

with RMSD distance (non-Euclidean).

Note: Spectral Clustering takes a week
of tweaking, while ToMATo runs out-
of-the-box in a few minutes.

t L e .




Experimental results

Image Segmentation
Density is estimated in 3D color space.

Neighborhood graph is built in image domain

Distribution of prominences does not usually
show a clear unique gap.

Still, relationship between choice of 7 and

] (.5 1.5 2 25

number of obtained clusters remains explicit.



Application to non-rigid shape segmentation

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Persistence diagram for david1 with f = HKS(0.1)
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X 3 3 D Sh a p e 00 1|0 2|o 50 4|0 5|o éo ?Io slo

f = HKS function on X



Application to non-rigid shape segmentation

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Persistence diagram for david1 with f = HKS(0.1)
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f = HKS function on X

Problem: cluster boundaries are unstable, which gives dirty segments.



Application to non-rigid shape segmentation

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Persistence diagram for david1 with f = HKS(0.1)

80+

\4

60 -

50

40 - ,
T 5  prominent
o, peaks/clusters
10+

X 3 3 D Sh a p e 00 1|0 2|o 50 4|0 5|o éo ?Io slo

f = HKS function on X

Problem: cluster boundaries are unstable, which gives dirty segments.

See practical session! :-)



Il. Mapper algorithm

[Structure and Stability of the One-Dimensional Mapper, C., Oudot,
Foundations of Computational Mathematics, 2018]

[Statistical Analysis and Parameter Selection for Mapper, C., Michel,
Oudot, Journal of Machine Learning Research, 2018]

[Statistical analysis of Mapper for stochastic and multivariate filters, C.,
Michel, Journal of Applied and Computational Topology, 2022]



Mapper (hyper-)graphs

[ Topological Methods for the Analysis of High Dimensional
Data Sets and 3D Object Recognition, Singh, Mémoli, Carls-
son, Symp. Point based Graphics, 2007]




Mapper (hyper-)graphs

[ Topological Methods for the Analysis of High Dimensional
Data Sets and 3D Object Recognition, Singh, Mémoli, Carls-
son, Symp. Point based Graphics, 2007]

i”‘ f

" visualize topology on

“. the data directly L
% yoRs

s .



Mapper in applications

Two types of applications:

— clustering principle: identify statistically relevant sub-
populations through patterns (flares, loops)

— feature selection




Mapper in applications

3d shapes classification



Mapper in applications

relapsed survived death

no relapse
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High ESR

High ESR1
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Colored by chemoking levels

higher chemaking activity In low ESR1 (no relapse

relapsed survived death

no relapse

breast cancer subtype identification



Mapper in applications

High ESR
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Mapper in applications

High ESR
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Mapper in applications

High ESR1 Lowest value- r. B Highest values
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Uad . . . .
15 e 0 L8 =\ Sparing SCl tissue sparing Motor neuron sparing
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Mapper in applications

Formal identification of cell cycle
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Mapper in applications
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Mapper in the continuous setting

AY =R
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Mapper in the continuous setting

Inputs:
- topological space X

- continuous function f : X — Y
- cover Z of im(f) by open intervals: im(f) C (J; .1

Method:
1. Compute pullback coverUd of X: U = {f~1(I)}1ez

2. Retine U by separating each of its elements into its various
connected components in X — connected cover V
3. The Mapper is the nerve of V:

- 1 vertex per element V €V

- 1 edge per intersection VNV’ £ 0, V, V' €V

- 1 k-simplex per (k + 1)-fold intersection ﬂ?:o Vi#£0, Vo, -, VL€V



Mapper in practice

Mapper




Mapper in practice

Inputs:
- point cloud P C X with metric dp
- continuous function f : X — Y

- cover Z of im(f) by open intervals: im(f) C (J; .1
Method:
1. Compute pullback cover U of P: U = {f~1(I)} ez

2. Refine U by separating each of its elements into its various
clusters, as identified by a clustering algorithm — connected cover V

3. The Mapper is the nerve of V: intersections are assessed by the

resence of common data points
- 1 vertex per element V € V P P

- 1 edge per intersection VNV’ £ 0, V, V' €V
- 1 k-simplex per (k + 1)-fold intersection ﬂ?:o Vi£0, Vo, , VL€V



Mapper in practice

Parameters:

- function f: P - R
- cover Z of im( f) by open intervals

- clustering algorithm C



Mapper in practice

Parameters:
| f

- function f : P - R = lens or filter

- cover Z of im(f) by open intervals A/

- clustering algorithm C

00 ¢ 09 G0000 O o essoePt®

Classical choices:
e density estimates e Eigenfunctions of graph laplacians.

o centrality f(x) = ZyEX d(z,y) e Functions detecting outliers.

e eccentricity f(x) = maXyeXx d(z,y) e Distance to a root point.

e PCA coordinates e Prior knowledge



Mapper in practice

Parameters:

- function f: P - R

- cover Z of im( f) by open intervals

- clustering algorithm C \

_ range scale
Uniform cover:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)




Mapper in practice

Parameters:

- function f: P - R

- cover Z of im( f) by open intervals

- clustering algorithm C \

_ range scale
Uniform cover:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

Intuition:
- small » — finer resolution, more nodes.
- large r — rougher resolution, less nodes.

- small g — less connectivity, nerve dimension small.
- large g — more connectivity, nerve dimension large.

g = 30%



Mapper in practice

Parameters:

- function f: P - R
- cover Z of im( f) by open intervals

- clustering algorithm C

Classical choices:

- any clustering algorithm works
- different clustering algorithms/parameters for each preimage

- for theoretical reasons, we prefer to work with

hierarchical clustering with (predefined) neighborhood size ¢

|

geometric scale



Mapper in practice

A
Parameters: o ®0°°
prone-- e LARRTEE ;
" ® :
- function f: P - R . @ '. - f
;o .
- cover Z of im(f) by open intervals R . o
e 9.'.............' ........
. . ®
- clustering algorithm C
Build a neighboring Take the connected components of the
graph (kNN,...) subgraph spanned by the vertices in the

preimage f~'(U).



Mapper in practice

Mapper
M5 5 (P, 1)

(GGs = o-neighborhood graph




Choice of parameters

In practice, trial-and-error:

high-dimensional data sets**®, This is performed automatically within the
software, by deploying an ensemble machine learning algorithm that iterates
through overlapping subject bins of different sizes that resample the metric space
(with replacement), thereby using a combination of the metric location and
similarity of subjects in the network topology. |After performing millions of
iterations, the algorithm returns the most stable, consensus vote for the resultin
‘solden network’ (Reeb graph), representing the multidimensional data shape'

[ Topological Data Analysis for Discovery in Preclinical
Spinal Cord Injury and Traumatic Brain Injury, Nielson
et al., Nature, 2015]










Il. Mapper algorithm

1. Reeb spaces and Mappers



Reeb Graph

Reeb graph ~ Mapper with extremely small resolution




Reeb Graph

Mapper ~ pixelized Reeb graph

AR Ra




R b G h [Sur les points singuliers d’une forme de

ee ra p Pfaff complétement intégrable ou d’une
fonction numérique, Reeb, C. R. Acad.
Sci. Paris, 1946]

T~y <= | f(z) = f(y) and z,y belong to same cc of f~'({f(z)}) ]
Def: Rf(X) = X/ ~
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Sci. Paris, 1946]
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[Sur les points singuliers d’une forme de

REEb G ra ph Pfaff complétement intégrable ou d’une
fonction numérique, Reeb, C. R. Acad.
Sci. Paris, 1946]

T~y <= | f(z) = f(y) and z,y belong to same cc of f~'({f(z)}) ]
Def: Rf(X) = X/ ~

Prop: R;(X) is a graph when (X, f)
is Morse or of Morse type.

Prop: H.(R¢(X)) = H.(X)/H.(X).

[Reeb Graphs: Approximation and
Persistence, Dey, Wang, DCG, 2013]




[Sur les points singuliers d’une forme de

RGEb G ra ph Pfaff complétement intégrable ou d’une
fonction numérique, Reeb, C. R. Acad.
Sci. Paris, 1946]

T~y <= | f(z) = f(y) and z,y belong to same cc of f~'({f(z)}) ]
Def: Rf(X) = X/ ~

X > R
7 l /
R Ry (X)

Prop: R;(X) is a graph when (X, f)
is Morse or of Morse type.

horizontal homology ~ 'those homology classes that
are included in a finite union of levelsets of f'

Prop: H.(R;(X @X

[Reeb Graphs: Approximation and
Persistence, Dey, Wang, DCG, 2013]




Graph Descriptor

Thm: D7 provides a bag-of-features descriptor for R¢(X):

Ordgf <— downward branches Extof <— trunks (cc)

Rel; f «— upward branches Ext; f +— loops

e ordinary / relative

m extended



Graph Descriptor

Thm: D7 provides a bag-of-features descriptor for R¢(X):

Ordy f +— downward branches

Rel; f +— upward branches

Extof <— trunks (cc)

Ext; f +— loops

.. and distance to diagonal measures the (in-)stability e ordinary / relative

of each feature w.r.t. perturbations of (X, f)

m extended



Graph Descriptor

The construction of Df: is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

e ordinary / relative

m extended
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Graph Descriptor

The construction of Df is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

_|_
A ........................................................................................................... S
.............................................................. éRell_
..... ’
+
Ordg
Ext,
................................................ -

e ordinary / relative

m extended
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Graph Descriptor

The construction of Df is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

e ordinary / relative

m extended



sed on extended persistence, which uses a
' el then superlevel sets) of the Reeb graph.
Ext?

e ordinary / relative

m extended
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Graph Descriptor

The construction of Df: is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Ord: appears/dies in sublevels

e ordinary / relative

Rel: appears/dies in superlevels

Ext: appears in sublevels, dies in superlevels ® extended



Extension to Mapper

Reeb graph is a telescope (stratified space):

YQ X [CL_l,CL()] U¢_1 XO X {CL()} U¢O Yl X [ao,al] U¢0 X1 X {Cbl} Uq51

~

a_—_1 ao aq

Idea: deform the Reeb graph so that it becomes the Mapper and track the
corresponding changes in the persistence diagram Ds.



Operation 1: Merge M,

(Yie1 X [ai—1,a:]) Uy, _y (Xi X{ai}) Up; ..Uy, (Xj X {a;}) Ug; (Y X [aj,a;j41])

'

(Yi1 x lai—1,a]) Ug,_y (F7'([a,8]) x {a}) Ug, (Y5 % [a, aj41])




Operation 2: Split Sp,,

(Yic1 X [ai—1,a5]) Uy, (X X {ai}) Ug, (Yi X [as, ait1])

'

(Yic1 X |ai—1,a; — €]) U o= (X x {a;i —€}) Uiq (X; X [a; — €,a; + €]) Uig
1—1

(Xi x{ai+€}) U a;+c (Yi X [ai + € aiya])




Operation 3: Shift Sh,, .

(Yie1 X [ai—1,a:]) Uy, (Xi X {ai}) Ug, (Yi X [a;, ait1])

'

(Yic1 X [ai—1,ai +€]) Uy, _; (Xi X {ai +€}) Ug, (Y X |a; + €, ait1])




Formula Reeb graph — Mapper

Let 7 be the cover of im(f)
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- Spz is the union of all Sp, z with € small
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Descriptor for Mapper

Def: D;, = Ordf \ Q2" URelf \ QR UExtf \ Q&

Thm: D¢, provides a bag-of-features descriptor for M (X, Z):

Ordy <— downward branches | Exty <— trunks (cc)

Rel; «+— upward branches Ext{ <— loops




Descriptor for Mapper

Let 7 minimal cover of Imf CR. ForI € Z,let I =1~ LI TUTT, and define
the staircases ()7 with:

7 =Ur,ez Q.
INJ#D







Structure of Mapper

Def: D Fr = — Ordf \ QL U Rel f \ Q¥ U Ext f \ Q¢
Thm: Df,z provides a bag-of-features descriptor for M ¢(X,Z):

Ordy <— downward branches | Exty <— trunks (cc)

Rel; «+— upward branches Ext{ <— loops

Cor: D~ = Df whenever the resolution r of Z is smaller than the smallest
dlstance from D7\ A to the diagonal A.



Stability of Mapper

Def: D;;:=Ordf \ Q2" URelf \ QF UExtf \ QF*

Thm: D¢, provides a bag-of-features descriptor for M (X, Z):

Ordg +— downward branches

Rel; «+— upward branches

.. and distance to staircase boundary mea-

sures (in-)stability of each feature w.r.t.
perturbations of (X, f,7)

Extg <— trunks (cc)

Ext; <— loops




Stability of Mapper
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Stability of Mapper

Def: D;;:=Ordf \ Q2" URelf \ QF UExtf \ QF*

costz(m)
[
. §
B o
: J
\
m: D «— D;

f.Z s



Stability of Mapper

Def: D;;:=Ordf \ Q2" URelf \ QF UExtf \ QF*

Thm: For any functions f, f' : X — R of Morse type,

dz(Df 1, Dy 1) < |If = f'lloc-

costz(m)

. §
B o
o
f
|
\
m : Df,I — Df’,I



Stability of Mapper

Def: D;;:=Ordf \ Q2" URelf \ QF UExtf \ QF*

Thm: For any functions f, f' : X — R of Morse type,

dz(Df 1, Dy 1) < |If = f'lloc-

costz(m)

.- Y
o— _
Extensions to:
B o
e perturbations of X
o
e perturbations of Z f
' \
m . Df,I < Df’,l'



Il. Mapper algorithm

2. Confidence intervals



Mapper in practice

AR
0
Mapper
Jh . ppA
Mf75(Xn,Z)
""""" (GGs = o-neighborhood graph




Statistics for Mapper

A

Questions:

)

./ﬂ

n points sampled
i.i.d. according to L.

+ cover L

e Statistical properties of the estimator M}yé(ﬁn,l) ?

® @ 6\@

®
®
@

®
®

SR R OO

5

~»

(

e Convergence to the ground truth R¢(X) in d,? Deviation bounds?

S
3
3



Statistics for Mapper
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®
A A
. * % o ®
° ° OQ
— ° ° @@’/
_ . N * b
n points sampled . X, °
= n . [ ) \
I.i.d. according to (. | « % o®
L ° Y @@
o 0 |
+ cover L o o,
< ®
/

A

Let My s5(X,,Z) denote M (Gs,7)

1. Link between R(X) and My 5(X,,V)?

a. support — o-neighborhood graph b. Reeb graph — Mapper
X — Ga(Xn)

A A

2. Link between My 5(X,,Z) and M$ (X, Z)?

intersections given by metric graph — intersections given by points
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A

1. Link between R¢(X) and M 5(X,,,7)?

./ﬂ

n points sampled
i.i.d. according to L.

+ cover L

®eo0®

@
®
®
®
@

SR R OO



Statistics for Mapper
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. c ° L. 2
o o %e
—_— . Ce 2o e
o A 1 ®@
. t :
n points sampled |, Xn
. : o o *
I.i.d. according to (. | « . o® o
\ @
] ° Y @@
(I ) |
+ cover 1L e o,
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1. Link between R¢(X) and M 5(X,,,7)?

- I [Reeb Graphs: Approximation and
Support — 5 nelghborhOOd graph Persistence, Dey, Wang, DCG, 2013]

Thm: If 4dy (X, X,,) < < min {1rch(X), 1p(X)}, then one has:
db(Df, DfPL) < 2w(5)

where fpr, is the piecewise-linear approximation of f defined on R+ (G5(X,,)).
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1. Link between R¢(X) and M 5(X,,,7)?
support — 0-neighborhood graph

[Reeb Graphs: Approximation and
Persistence, Dey, Wang, DCG, 2013]

Thm: If 4dy (X, X,,) < < min {1rch(X), 1p(X)}, then one has:
db(Df, D];PL) < 2&)(5)
where fpr, is the piecewise-linear approximation of f defined on R+ (G5(X,,)).

Reeb graph — Mapper
Thm: db(DfPL’ DfPL,I) <.



Statistics for Mapper

®
A A $
. e © ° o (,;
° o
— \‘ ° * ° ®@® QO
°® N [ ] d @
[ ] . / 1
n points sampled |, Xn
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I.i.d. according to u. | « . °® o °
[ ° ® @@
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+ cover 1L e °.
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1. Link between R¢(X) and M 5(X,,,7)?

w: modulus of continuity of f, defined as w : § — sup{|f(x) — f(y)| : d(x,y) < I}
rch: reach of X.

p: radius of convexity of X: largest r s.t. geodesic balls of radius r» are convex.

dr: Hausdorff distance.



Statistics for Mapper

M

Def: The distance function to a compact M C R% dy : R — R, is:

du(w) = inf o =

Def: The Hausdorff distance between two compact sets M, M’ C R? is:

dpg (M, M') = sup Ay (z) — dp ()]
rE€R



Statistics for Mapper

Fy(z) ={y e M:dy(x) = |z -y}
Def: The medial axis of M is:

M(M) = {z € R : Ty ()| > 2}

Def: The reach of M, rch(M) is the smallest distance from M (M) to M:

reh(M) = inf du(y)
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n points sampled |, Xn
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2. Link between My 5(X,,Z) and M$ (X, Z)?

intersections given by metric graph — intersections given by points

Thm: If there are no intersection-crossing edges, then

A\

My,5(Xp,Z) 2 M$ 5(Xn, T)

and thus we can define Df,z — D];J.
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My s(X,,T) M$ 5(X,,7)
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A

Gathering everything, it only remains to upper bound dg (X, X,,) (which is
random since X, is random).

Hyp-Def: 1 is called (a,b)-standard if:
w(B(x,r)) > min{l, ar’} for all z € X and r > 0.

Then it is known that one has asymptotically almost surely:

n

d(X, X,) < C(a,b) (log“)l/b
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A A e ©
./\‘ .0. * ]
. N * — b
n points sampled |, Xn °
i.i.d. according to u. | « %
. + cover 1L ° °o.

Thm: If uis (a,b)-standard and f is c-Lipschitz then for:

SR R OO

5. — 4 2logn 1y 1 1 __co,
n = . ;gn€(§7 5),7°n—g—, one has Ve > 0

n

logn L/b
supk [dy (D5, 7, Dj)] < (%£2)

n

where C depends only on a, b, c.

More generally: r,, = w(d,)/9n
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Moreover, the estimator D]‘; , is minimax optimal (up to a logn factor)
PLy£+n

on the space P of (a,b)-standard probability measures on X.

Thm: For any estimator R, one has:

1\ I/
supIE {db (Dﬁ, Df)} > C <—> ;
pEP n
where C' depends only on a, b.

Proof: Consequence of Le Cam’s lemma.
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A A e ©
./\‘ .0. * ]
. N * — b
n points sampled |, Xn °
i.i.d. according to u. | « %
. + cover 1L ° °o.

Thm: If uis (a,b)-standard and f is c-Lipschitz then for:

SR R OO

1]
5n:4<2§n> , In € (%, %),Tnzcgcs—", one has Ve > 0

n

logn L/b
supE[db (D}PL’In, Df)} <C ( > |

peP n

where C depends only on a, b, c.

More generally: r,, = w(d,)/9n
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A A e © g
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n points sampled |, Xn : 5
) n \
. . . 2 J
I.i.d. according to u ‘. o To(gn,mn) " e "
R
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Fortunately, one can use subsampling to tune §,: let 5 > 0, s(n) = 1og(§)1+5

and define 6, := di (X5™, X,,), where X5 is a subset of X, of size s(n).
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n points sampled |, Xn ° 5
. . ) ° n ‘\
1.1.d. rain 2 ®
d. according to 41 | o . o * Zo(gn,mn) " e e®
R
®
'f ®
®
Fortunately, one can use subsampling to tune d,,: let 8 > 0, s(n) = L

~ log(n)tth
and define §,, := dp (X2, X.,), where X5 is a subset of X,, of size s(n).

Thm: If uis (a,b)-standard and f is c-Lipschitz, then for:
0, = dH(XS(n) X,), gn € (5, 2), rn = Sn  one has Ve > 0

gn '
_ ] 240 1/b
sup E |d, (D} I ,Df)} §C<Og(n) > |
,LLGP | PL, n
where C depends only on a, b, c.
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Ex : PCA filter

II1 : orthonormal projection onto first principal direction of covariance operator.

II1 : orthonormal projection onto first principal direction of empirical covariance operator.

o ~ log(n)?T* ) 1/b 1
£ {db (Dﬁl,PL,In’Dnl)} ’S ( n v v

[PCA-Kernel Estimation, Biau, Mas, Statis-
tics & Risk Modeling with Applications in
Finance and Insurance, 2012]

Get confidence region with E[d(-,-)] = [ P(d(-,-) > a)da.



Multivariate case: filter-based pseudometric

[ Topological Analysis of Nerves, Reeb
Spaces, Mappers, and Multiscale Map-
pers, Dey, Mémoli, Wang, SoCG, 2017]

Def: The filter-based pseudometric d+ : M X M — R is defined as

df(z,2") = inf,er (s diamy (f o7y),
where T'(z,z") denotes the set of all continuous paths v : [0,1] — M such that
v(0) = x and v(1) = z’, and diamy denotes the diameter of a subset of Y.

Def: The Gromov-Hausdorff metric dgu between (M, dy), (M’,d;:) is defined as

1,
dGH(M, M,) — ilnfc Sup(x’x/),(y,y/)ec‘df(.f,y) — df/ (Qj/,y/)‘,

where C' denotes the set of all correspondences between M and M’ (subsets of
M x M’ s.t. projections onto M and M’ are surjective).
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V [dGH(Mf,Rf) <71 >0.95
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Thm: If 4 and f#u are (a, b)-standard, then for 0,, as before, one has:

A

= {dGH (M}v‘Sn (X”’I)’Rf(XD} <5k [I‘es(I)]_|_Cw (10g(n)

n

¢
4

where C' depends only on a, b, and res denotes the resolution of the cover
7, i.e., the diameter of its elements.

Moreover, using covers with hypercubes or K-means, or quantized Distance-
tO_Measu re a”OWS to bou nd E [l”eS (Z)] . [A k-points-based distance for robust geometric inference,

Brecheteau, Levrard, Bernouilli, 2020]
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Thm: If w(u) < cu” for some ¢ > 0,7 € (0,1), and for a cover Z given by
thickening a k-means partition in R”:

E[res(Z)] < e~ (27%)/ (@640 (kD

v/ (2b+4)
")
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Experiments Chromosome conformation capture
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Experiments Chromosome conformation capture

0.60 0.65 0.70 0.75 0.80 0.08 0.10 0.12 0.14 0.16 0.18
f near band f mitotic_band

Formal identification of cell cycle with 95% confidence



Experiments Spinal cord data

Cervical (C1 - C7) Section Specific

SPLiT-Seq and scATAC-Seq

Thoracic (T1-T12) Topological Representation of

scRNA-Seq and scATAC-Seq

Statistics, Alignment and
Cross Modality Integration

Lumbar (L1 - L5) Transcriptional Imputation

Sacral (S1-S5)

[Va lidation by in situ Sequencing ]

Coccygeal




Experiments Spinal cord data
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Experiments
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Experiments Machine learning classifier

Machine Learning Classifier Monitoring

Filter = confidence of Random Forest classifier (in R?)
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Experiments Machine learning classifier

Machine Learning Classifier Monitoring

Filter = confidence of Random Forest classifier (in R®)
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Other works

Another line of work is about the interleaving distance between Mappers and
Reeb spaces seen as cosheaves Open(R%) — Set.

[Convergence between categorical repre-
sentations of Reeb space and Mapper,
Munch, Wang, SoCG, 2016]

Prop: For f: X — R%, d;(C(Rs(X)),C(Mf(X,I))) < res(Z).

[Probabilistic convergence and stability of

random Mapper graphs, Brown et al.,
JACT, 2020]

Prop: For f : X — R,

lim,, 4o P (dI(C(Rf(X)),C(Mf(X'n,Z))) < res(Z)) — 1.



. ToMATo algorithm

. Introduction to hierarchical and mode-seeking clustering

. ToMATo algorithm and guarantees

Il. Mapper algorithm

. Reeb spaces and Mappers

. Confidence intervals

Thanks! Questions?



