
GESDA Introductory School
5-9 September 2022

IESC Cargèse, Corsica

Topological Clustering with
Statistical Guarantees

Mathieu Carrière
INRIA Sophia-Antipolis

mathieu.carriere@inria.fr

I. ToMATo algorithm

II. Mapper algorithm

1. Introduction to hierarchical and mode-seeking clustering

2. ToMATo algorithm and guarantees

1. Reeb spaces and Mappers

2. Confidence intervals

I. ToMATo algorithm

II. Mapper algorithm

1. Introduction to hierarchical and mode-seeking clustering

2. ToMATo algorithm and guarantees

1. Reeb spaces and Mappers

2. Confidence intervals

General clustering

Def: A partition of data into groups of similar data points. The data points
in each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

General clustering

Def: A partition of data into groups of similar data points. The data points
in each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

Input: a finite set of observations: point cloud embedded in an Euclidean
space (i.e., with well-defined coordinates) or a more general metric space
(pairwise distance or similarity) matrix.

General clustering

Def: A partition of data into groups of similar data points. The data points
in each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

Input: a finite set of observations: point cloud embedded in an Euclidean
space (i.e., with well-defined coordinates) or a more general metric space
(pairwise distance or similarity) matrix.

Goal: partition the data into a relevant family of clusters.

General clustering

Def: A partition of data into groups of similar data points. The data points
in each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

A variety of approaches:

• Variational (Bayes priors)

• Spectral (eigenvalues of Laplacian)

• Density-based (KDE, DTM)

• Hierarchical (dendrograms)

• etc...

Not a single or universal notion of cluster.

General clustering

Def: A partition of data into groups of similar data points. The data points
in each group, or cluster, are similar to each other and dissimilar to the ones
from other clusters.

A variety of approaches:

• Variational (Bayes priors)

• Spectral (eigenvalues of Laplacian)

• Density-based (KDE, DTM)

• Hierarchical (dendrograms)

• etc...

Not a single or universal notion of cluster.

We will see a few standard algo-
rithms and how they can be im-
proved with (0-dimensional) per-
sistent homology.

The k-means algorithm

Input: A (large) set of n points X and
an integer k < n.

Goal: Find a set of k points L = {y1, . . . , yk}
that minimizes

E =
n∑
i=1

d(xi, L)2

The k-means algorithm

Input: A (large) set of n points X and
an integer k < n.

Goal: Find a set of k points L = {y1, . . . , yk}
that minimizes

E =
n∑
i=1

d(xi, L)2

This is a NP hard problem!
Lloyd’s algorithm: a very simple local search algorithm.

The k-means algorithm

Lloyd’s algorithm

L1 ← {y1
1 , . . . , y

1
k} (initial seeds)

i← 1
while convergence not reached:

for j ∈ {1, . . . , k}:
Sij ← {x ∈ X : d(x, yij) achieves d(x, Li)}

for j ∈ {1, . . . , k}:
yi+1
j ← 1

|Sij |
∑
x∈Sij

x

i← i+ 1

The k-means algorithm

Lloyd’s algorithm

L1 ← {y1
1 , . . . , y

1
k} (initial seeds)

i← 1
while convergence not reached:

for j ∈ {1, . . . , k}:
Sij ← {x ∈ X : d(x, yij) achieves d(x, Li)}

for j ∈ {1, . . . , k}:
yi+1
j ← 1

|Sij |
∑
x∈Sij

x

i← i+ 1

The k-means algorithm

Lloyd’s algorithm

L1 ← {y1
1 , . . . , y

1
k} (initial seeds)

i← 1
while convergence not reached:

for j ∈ {1, . . . , k}:
Sij ← {x ∈ X : d(x, yij) achieves d(x, Li)}

for j ∈ {1, . . . , k}:
yi+1
j ← 1

|Sij |
∑
x∈Sij

x

i← i+ 1

The k-means algorithm

Lloyd’s algorithm

L1 ← {y1
1 , . . . , y

1
k} (initial seeds)

i← 1
while convergence not reached:

for j ∈ {1, . . . , k}:
Sij ← {x ∈ X : d(x, yij) achieves d(x, Li)}

for j ∈ {1, . . . , k}:
yi+1
j ← 1

|Sij |
∑
x∈Sij

x

i← i+ 1

The k-means algorithm

Lloyd’s algorithm

L1 ← {y1
1 , . . . , y

1
k} (initial seeds)

i← 1
while convergence not reached:

for j ∈ {1, . . . , k}:
Sij ← {x ∈ X : d(x, yij) achieves d(x, Li)}

for j ∈ {1, . . . , k}:
yi+1
j ← 1

|Sij |
∑
x∈Sij

x

i← i+ 1

The k-means algorithm

Lloyd’s algorithm

L1 ← {y1
1 , . . . , y

1
k} (initial seeds)

i← 1
while convergence not reached:

for j ∈ {1, . . . , k}:
Sij ← {x ∈ X : d(x, yij) achieves d(x, Li)}

for j ∈ {1, . . . , k}:
yi+1
j ← 1

|Sij |
∑
x∈Sij

x

i← i+ 1

The k-means algorithm

• Minimum is not necessarily global!

• Speed of convergence not guaranteed.

• Lack of stability: output is very sensitive
to initial seeds.

Warning:

Hierarchical clustering algorithms
Goal: Build a hierarchy of clusters (nested family of partitions).

Hierarchical clustering algorithms
Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms
Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms
Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms
Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms
Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms
Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Dendogram, i.e., a tree such that:
- each leaf node is a singleton,
- each node represents a cluster,
- the root node contains the whole data,
- each internal node has two daughters, cor-
responding to the clusters that were merged
to obtain it.

Hierarchical clustering algorithms
Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms
Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

Hierarchical clustering algorithms
Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

p1
p2

p6
p3 p4

p5

Hierarchical clustering algorithms
Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and
recursively merge the most similar
clusters to one parent cluster until
reaching a stopping criterion (e.g.,
max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and
recursively split each cluster until
reaching a stopping criterion.

p3

p4 p5

p1

p2

p6

p1 p2 p3 p4 p5 p6

p1
p2

p6
p3 p4

p5

p6p1 p2 p3 p4
p5

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

sup: complete linkage
1

|C|·|C′|
∑

: average linkageAgglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

Single linkage clustering

Input: A set Xn = {x1, . . . , xn} in a metric space (X, d) (or just a matrix
of pairwise dissimilarities ((di,j))i,j).

Given two clusters C,C ′ ⊆ Xn let d(C,C ′) = infx∈C,x′∈C′ d(x, x′).

1. Start with a clustering where
each xi is a cluster.

2. At each step, merge the two clos-
est clusters until it remains a single
cluster (containing all data points).

Output: the resulting dendrogram.

Agglomerative (bottom-up)

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

dD(x, x′) := height of lowest common ancestor of x, x′ in dendrogram D.

Thm: dGH((X, dDX), (Y, dDY)) ≤ dGH((X, dX), (Y, dY)). ultrametric!

[Characterization, Stability and Convergence
of Hierarchical Clustering Methods, Carlsson,
Mémoli, J. Machine Learning Research, 2010]

The (in)stability of dendrograms

dD(x, x′) := height of lowest common ancestor of x, x′ in dendrogram D.

Thm: dGH((X, dDX), (Y, dDY)) ≤ dGH((X, dX), (Y, dY)).

This is actually not true for complete and average clustering.

ultrametric!

[Characterization, Stability and Convergence
of Hierarchical Clustering Methods, Carlsson,
Mémoli, J. Machine Learning Research, 2010]

The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure
of the output dendrograms. However, the merging times (height of dendro-
gram nodes) remain stable.

The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure
of the output dendrograms. However, the merging times (height of dendro-
gram nodes) remain stable.

Moreover, single linkage clustering keeps track of the evolution of the con-
nected components of the distance function to the data (for Euclidean data).

The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure
of the output dendrograms. However, the merging times (height of dendro-
gram nodes) remain stable.

→ 0-dimensional persistent homology provides a stable output!

Moreover, single linkage clustering keeps track of the evolution of the con-
nected components of the distance function to the data (for Euclidean data).

The (in)stability of dendrograms

→ 0-dimensional persistent homology provides a stable output!

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

The (in)stability of dendrograms

→ 0-dimensional persistent homology provides a stable output!

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

The (in)stability of dendrograms

→ 0-dimensional persistent homology provides a stable output!

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.

δδ

The (in)stability of dendrograms

→ 0-dimensional persistent homology provides a stable output!

However, building a hierarchy based on spatial proximity is still not a great idea
when there are outliers, since there is no stability of merging times anymore.
Another way to build a hierarchy is with the sublevel sets of a density function.
Using density for clustering is at the core of mode-seeking algorithms.

δδ

Mode seeking clustering

In mode seeking, data points are sampled according to some (unknown) prob-
ability density, and clusters are given with its basins of attraction.

Two approaches:

• Iterative, such as, e.g., Mean Shift.

• Graph-based, such as, e.g.,

[Mean shift: a robust approach toward feature
space analysis, Comaniciu et al., IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2002]

[A Graph-Theoretic Approach to Nonparametric
Cluster Analysis, Koontz et al., IEEE Trans. on
Computers, 1976].

Mean Shift (2002)

Mean Shift (2002)
1. Pick random guess x ∈ X.

Mean Shift (2002)
1. Pick random guess x ∈ X.
2. Compute

M(x) =
∑
xi∈N(x) K(x,xi)·xi∑
xi∈N(x) K(x,xi) ,

where N(x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel
K(x, y) = exp

(
−‖x−y‖

2
2

2σ2

)
.

Mean Shift (2002)
1. Pick random guess x ∈ X.
2. Compute

M(x) =
∑
xi∈N(x) K(x,xi)·xi∑
xi∈N(x) K(x,xi) ,

where N(x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel
K(x, y) = exp

(
−‖x−y‖

2
2

2σ2

)
.

3. Update x←M(x).

Mean Shift (2002)
1. Pick random guess x ∈ X.
2. Compute

M(x) =
∑
xi∈N(x) K(x,xi)·xi∑
xi∈N(x) K(x,xi) ,

where N(x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel
K(x, y) = exp

(
−‖x−y‖

2
2

2σ2

)
.

3. Update x←M(x).

Do that for many random guesses, postprocess and merge similar centroids,
and use the distances to the centroids to decide clusters.

Mean Shift (2002)
1. Pick random guess x ∈ X.
2. Compute

M(x) =
∑
xi∈N(x) K(x,xi)·xi∑
xi∈N(x) K(x,xi) ,

where N(x) is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel
K(x, y) = exp

(
−‖x−y‖

2
2

2σ2

)
.

3. Update x←M(x).

Do that for many random guesses, postprocess and merge similar centroids,
and use the distances to the centroids to decide clusters.

The Koonz, Narendra and Fukunaga algorithm (1976)

The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

Neighborhood
graph

The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

Neighborhood
graph

Discrete approximation of
the gradient; for each ver-
tex v, a gradient edge is
selected among the edges
adjacent to v.

The Koonz, Narendra and Fukunaga algorithm (1976)

Sort the vertex indices {1, 2, . . . , n} in decreasing order:

for i ∈ {1, . . . , n}:
Let N be the set of neighbors of i in G that have indices lower than i
if N = ∅:

Create a new entry e in U and attach vertex i to it: U .MakeSet(i)
r[e]← i (r[e] stores the root vertex associated with the entry e)

else:
g[i]← argmax{f̂(j) : j ∈ N} (g[i] stores the approximate gradient at vertex i)

ei ← U .Find(g[i])
Attach vertex i to the entry ei: U .Union(i, ei)

Output: The collection of entries e in U .

The algorithm:

Input: A neighborhood graph G with n vertices (the data points) and an
n-dimensional vector f̂ (density estimate).

f̂(1) ≥ · · · ≥ f̂(n).
Initialize a union-find data structure U and two lists g, r of length n.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

Approaches to overcome these issues:

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

Approaches to overcome these issues:
One can smooth out the density estimate, but smoothing is usually data-driven
and hard to tune.

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

Approaches to overcome these issues:
One can smooth out the density estimate, but smoothing is usually data-driven
and hard to tune.

Build a hierarchy of clusters with 0-dimensional persistent homology!

One has as many clusters as local maxima of the density estimate, which are
very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations,
etc) may result in wide changes in the output.

I. ToMATo algorithm

II. Mapper algorithm

1. Introduction to hierarchical and mode-seeking clustering

2. ToMATo algorithm and guarantees

1. Reeb spaces and Mappers

2. Confidence intervals

Rd

R
t

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Rd

R

α

β

Given a probability density f , we will consider the superlevel-set filtration
f−1([t,+∞)) for t from +∞ to −∞, instead of the sublevel-set filtration.

α

β

−∞ +∞

+∞

Reminder: 0-dimensional PH of density

Rd

R

−∞ +∞

+∞

db(Df , Df̂) ≤ ‖f − f̂‖∞.

Moreover, the stability theorem ensures that, given an underlying true density
f , and an estimator f̂ ot it, one has:

Reminder: 0-dimensional PH of density

X

R p

q

s

α

β

γ

δ

In addition to being stable, 0-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.

Building a hierarchy of cluster with 0-dimensional PH

X

R p

q

s

α

β

γ

δ

In addition to being stable, 0-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.
This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > τ !

0 ≤ τ ≤ α− β

Building a hierarchy of cluster with 0-dimensional PH

X

R

α

β

γ

δ

In addition to being stable, 0-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.
This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > τ !

α− β < τ ≤ γ − δ

p

q

s

Building a hierarchy of cluster with 0-dimensional PH

X

R

α

β

γ

δ

In addition to being stable, 0-dimensional PH also remembers the connected
components that were merged together during the filtration process and builds
a hierarchy out of this information.
This means that, given a fixed threshold τ ≥ 0, one can even retrieve the
clusters associated to all the bars of length (or prominence) > τ !

γ − δ < τ ≤ +∞

p

q

s

Building a hierarchy of cluster with 0-dimensional PH

ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

1. Define an order on the point cloud with a density estimator f̂ .
(sort data points by decreasing estimated density values)

ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

1. Define an order on the point cloud with a density estimator f̂ .
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f̂([u, v]) = min{f̂(u), f̂(v)})

ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

1. Define an order on the point cloud with a density estimator f̂ .
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.
(apply 0-dimensional persistence algorithm → union-find data structure)

ToMATo: Topological Mode Analysis Tool
[Persistence-Based Clustering
in Riemannian Manifolds,
Chazal, Oudot, Skraba,
Guibas, J. ACM, 2013]

→ Running time: O(n log n+ (n+m)α(n))

Given a neighborhood graph with n vertices and m edges:

→ Space complexity: O(n+m)
→ Main memory usage: O(n)

1. the algorithm sorts the vertices by decreasing density values,

2. and then makes a single pass through the vertex set, merging clusters
on the fly using a union-find data structure.

1. Define an order on the point cloud with a density estimator f̂ .
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.
(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

topological
noise

1. Define an order on the point cloud with a density estimator f̂ .
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.
(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

background noise

1. Define an order on the point cloud with a density estimator f̂ .
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.
(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

6 prominent
peaks

1. Define an order on the point cloud with a density estimator f̂ .
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.
(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

Any prominence threshold τ within the range of the prominence gap will separate the relevant peaks from the topological and background noise.τ

pro
minen

ce
ga

p

1. Define an order on the point cloud with a density estimator f̂ .
(sort data points by decreasing estimated density values)

2. Extend order to the graph edges (i.e., compute the upper-star filtration).
(f̂([u, v]) = min{f̂(u), f̂(v)})

3. Compute the 0-dimensional persistence diagram of this filtration.
(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters

Hypotheses:

• f : Rd → R a c-Lipschitz probability density function,
• P ⊂ Rd a finite set of n points sampled i.i.d. according to f ,

Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator s.t. η := maxp∈P |f̂(p)− f(p)| < Π/5,
• G = (P,E) the δ-neighborhood graph for some positive δ < Π−5η

5c .

Estimating the correct number of clusters

Hypotheses:

• f : Rd → R a c-Lipschitz probability density function,
• P ⊂ Rd a finite set of n points sampled i.i.d. according to f ,

Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator s.t. η := maxp∈P |f̂(p)− f(p)| < Π/5,
• G = (P,E) the δ-neighborhood graph for some positive δ < Π−5η

5c .

Thm: For any choice of τ such that 2(cδ + η) < τ < Π − 3(cδ + η), the
number of clusters computed by the algorithm is equal to the number of peaks
of f with probability at least 1− e−Ω(n). (the Ω notation hides factors depending on c, δ)

Estimating the correct number of clusters

Proof: Skipped. The main ingredient is the stability theorem.

Thm: For any choice of τ such that 2(cδ + η) < τ < Π − 3(cδ + η), the
number of clusters computed by the algorithm is equal to the number of peaks
of f with probability at least 1− e−Ω(n). (the Ω notation hides factors depending on c, δ)

-∞0
0 Π

Π

Df

Estimating the correct number of clusters

2(cδ + η)

Df̂

Π− 3(cδ + η)

2(cδ + η)

Π− 3(cδ + η)

-∞0

Proof: Skipped. The main ingredient is the stability theorem.

Input: A graph G with n vertices, an n-dimensional vector f̂ , and τ ≥ 0.

Output: the collection of entries e of U such that f̂(r(e)) ≥ τ .

with persistence
cluster merges

Pseudo-code

Sort the vertex indices {1, 2, . . . , n} in decreasing order:
Initialize a union-find data structure U and two lists g, r of length n.

f̂(1) ≥ · · · ≥ f̂(n).

for i ∈ {1, . . . , n}:
Let N be the set of neighbors of i in G that have indices lower than i
if N = ∅:

Create a new entry e in U and attach vertex i to it: U .MakeSet(i)
r[e]← i (r[e] stores the root vertex associated with the entry e)

else:
g[i]← argmax{f̂(j) : j ∈ N} (g[i] stores the approximate gradient at vertex i)

ei ← U .Find(g[i])
Attach vertex i to the entry ei: U .Union(i, ei)
for j ∈ N :

e← U .Find(j)
if e 6= ei and min{f̂(r[e]), f̂(r[ei])} < f̂(i) + τ :
U .Union(e, ei)
r[e ∪ ei]← argmax{f̂(r[e]), f̂(r[ei])}
ei ← e ∪ ei

Synthetic Data

1 2 3 4 5 6 7 8 9 10
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1
Spectral clustering

(k-means in eigenspace)

Experimental results

Synthetic Data

−∞

τ = 0

ToMATo

Experimental results

Synthetic Data

τ
−∞

ToMATo

Experimental results

Synthetic Data

Experimental results

It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Note: the PD is plotted on a log/log scale, to avoid scaling effects. So actual differences in prominence are orders of magnitude, as the next view shows.

Biological Data

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

-∞

Alanine-Dipeptide conformations (R21)
with RMSD distance (non-Euclidean).

Common belief: 6 metastable states.
PD shows anywhere between 4 and 7 clusters.

Experimental results

It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.
Biological Data
Alanine-Dipeptide conformations (R21)
with RMSD distance (non-Euclidean).

Common belief: 6 metastable states.
PD shows anywhere between 4 and 7 clusters.

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

Number of clusters

M
et

as
ta

bi
lit

y

MetastabilityRank Prominence
1 +∞ 0.99982
2 3827 1.91865
3 1334 2.8813
4 557 3.76217
5 85 4.73838
6 32 5.65553
7 26 6.50757
8 7.2 6.8193
9 3.0 -

10 2.2 -

Measures of metastability confirm this insight.

Experimental results [Topological methods for exploring low-density states in biomolecular fold-
ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,
Carlsson, J. Chem. Phys., 2009]

For reference on the sdata set and spectral approach, please refer to the following paper

It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.
Biological Data
Alanine-Dipeptide conformations (R21)
with RMSD distance (non-Euclidean).

[Topological methods for exploring low-density states in biomolecular fold-
ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,
Carlsson, J. Chem. Phys., 2009]

Note: Spectral Clustering takes a week
of tweaking, while ToMATo runs out-
of-the-box in a few minutes.

Experimental results

Image Segmentation
Density is estimated in 3D color space.
Neighborhood graph is built in image domain.

Distribution of prominences does not usually
show a clear unique gap.

Still, relationship between choice of τ and
number of obtained clusters remains explicit.

Experimental results

Application to non-rigid shape segmentation

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Application to non-rigid shape segmentation

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

Problem: cluster boundaries are unstable, which gives dirty segments.

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Application to non-rigid shape segmentation

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

Problem: cluster boundaries are unstable, which gives dirty segments.

See practical session! :-)

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

1. Reeb spaces and Mappers

2. Confidence intervals

I. ToMATo algorithm

II. Mapper algorithm

1. Introduction to hierarchical and mode-seeking clustering

2. ToMATo algorithm and guarantees

[Statistical Analysis and Parameter Selection for Mapper, C., Michel,
Oudot, Journal of Machine Learning Research, 2018]

[Structure and Stability of the One-Dimensional Mapper, C., Oudot,
Foundations of Computational Mathematics, 2018]

[Statistical analysis of Mapper for stochastic and multivariate filters, C.,
Michel, Journal of Applied and Computational Topology, 2022]

Mapper (hyper-)graphs
[Topological Methods for the Analysis of High Dimensional
Data Sets and 3D Object Recognition, Singh, Mémoli, Carls-
son, Symp. Point based Graphics, 2007]

Mapper (hyper-)graphs

visualize topology on
the data directly

[Topological Methods for the Analysis of High Dimensional
Data Sets and 3D Object Recognition, Singh, Mémoli, Carls-
son, Symp. Point based Graphics, 2007]

Two types of applications:

→ clustering
→ feature selection

principle: identify statistically relevant sub-
populations through patterns (flares, loops)

flares

loops

Mapper in applications

3d shapes classification

Mapper in applications

breast cancer subtype identification

Mapper in applications

recovery from spinal cord injuries

Mapper in applications

protein folding pathways

Mapper in applications

[Rucco et al. 2014]

diagnosis of
pulmonary embolism

Mapper in applications

Formal identification of cell cycle

Mapper in applications

Formal identification of cell cycle

Mapper in applications

Genomic analysis of spinal cord

Mapper in the continuous setting

X

f

Y = R

I

Mapper in the continuous setting

X

f

Y = R

I

U

Mapper in the continuous setting

X

f

Y = R

I

V

Mapper in the continuous setting

X

f

Y = R

I

V

Mapper
Mf (X, I)

Mapper in the continuous setting
Inputs:

- continuous function f : X → Y

- cover I of im(f) by open intervals: im(f) ⊆
⋃
I∈I I

1. Compute pullback cover U of X: U = {f−1(I)}I∈I

2. Refine U by separating each of its elements into its various
connected components in X

3. The Mapper is the nerve of V:
- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ 6= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k
i=0 Vi 6= ∅, V0, · · · , Vk ∈ V

Method:

- topological space X

→ connected cover V

X

f

R

I

V

Mapper

Mapper in practice

1. Compute pullback cover U of P : U = {f−1(I)}I∈I

2. Refine U by separating each of its elements into its various
clusters, as identified by a clustering algorithm

intersections are assessed by the
presence of common data points

→ connected cover V

Mapper in practice
Inputs:

- continuous function f : X → Y

- cover I of im(f) by open intervals: im(f) ⊆
⋃
I∈I I

- point cloud P ⊆ X with metric dP

3. The Mapper is the nerve of V:
- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ 6= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k
i=0 Vi 6= ∅, V0, · · · , Vk ∈ V

Method:

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- clustering algorithm C

Mapper in practice

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

lens or filter

- clustering algorithm C

Classical choices:

• density estimates

• centrality f(x) =
∑
y∈X d(x, y)

• eccentricity f(x) = maxy∈X d(x, y)

• PCA coordinates

• Eigenfunctions of graph laplacians.

• Functions detecting outliers.

• Distance to a root point.

• Prior knowledge

f

f

Mapper in practice

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

range scale
Uniform cover:

- resolution / granularity: r (diameter of intervals)
- gain: g (percentage of overlap)

r

g = 30%

I

R

- clustering algorithm C

Mapper in practice

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

range scale
Uniform cover:

- resolution / granularity: r (diameter of intervals)
- gain: g (percentage of overlap)

r

g = 30%

I

R

- clustering algorithm C

Intuition:
- small r → finer resolution, more nodes.
- large r → rougher resolution, less nodes.
- small g → less connectivity, nerve dimension small.
- large g → more connectivity, nerve dimension large.

Mapper in practice

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- for theoretical reasons, we prefer to work with

geometric scale

- clustering algorithm C

Classical choices:
- any clustering algorithm works

hierarchical clustering with (predefined) neighborhood size δ

- different clustering algorithms/parameters for each preimage

Mapper in practice

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- clustering algorithm C

f

Take the connected components of the
subgraph spanned by the vertices in the
preimage f−1(U).

Build a neighboring
graph (kNN,...)

Mapper in practice

X

f

R

I

V

Mapper

δ

Gδ = δ-neighborhood graph

M•f,δ(P, I)

Mapper in practice

Choice of parameters

In practice, trial-and-error:

[Topological Data Analysis for Discovery in Preclinical
Spinal Cord Injury and Traumatic Brain Injury, Nielson
et al., Nature, 2015]

Choice of parameters
g

1/r
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

15

25

35

45

f = fx, δ = 1%

Choice of parameters
g

1/r
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

15

25

35

45

f = fx, δ = 1%

1. Reeb spaces and Mappers

2. Confidence intervals

I. ToMATo algorithm

II. Mapper algorithm

1. Introduction to hierarchical and mode-seeking clustering

2. ToMATo algorithm and guarantees

Reeb Graph

Reeb graph ∼ Mapper with extremely small resolution

R
fX

R

Mapper ∼ pixelized Reeb graph

R

Reeb Graph

Reeb Graph

x ∼ y ⇐⇒ [f(x) = f(y) and x, y belong to same cc of f−1({f(x)})]
Def: Rf (X) := X/ ∼

R
fX

[Sur les points singuliers d’une forme de
Pfaff complètement intégrable ou d’une
fonction numérique, Reeb, C. R. Acad.
Sci. Paris, 1946]

Reeb Graph

x ∼ y ⇐⇒ [f(x) = f(y) and x, y belong to same cc of f−1({f(x)})]
Def: Rf (X) := X/ ∼

X
f //

π

��

R

Rf (X)
f̃

<<
R

fX f̃

[Sur les points singuliers d’une forme de
Pfaff complètement intégrable ou d’une
fonction numérique, Reeb, C. R. Acad.
Sci. Paris, 1946]

Reeb Graph

x ∼ y ⇐⇒ [f(x) = f(y) and x, y belong to same cc of f−1({f(x)})]
Def: Rf (X) := X/ ∼

X
f //

π

��

R

Rf (X)
f̃

<<
R

fX f̃

Prop: Rf (X) is a graph when (X, f)
is Morse or of Morse type.

[Reeb Graphs: Approximation and
Persistence, Dey, Wang, DCG, 2013]

Prop: H∗(Rf (X)) = H∗(X)/H̄∗(X).

[Sur les points singuliers d’une forme de
Pfaff complètement intégrable ou d’une
fonction numérique, Reeb, C. R. Acad.
Sci. Paris, 1946]

Reeb Graph

x ∼ y ⇐⇒ [f(x) = f(y) and x, y belong to same cc of f−1({f(x)})]
Def: Rf (X) := X/ ∼

X
f //

π

��

R

Rf (X)
f̃

<<
R

fX f̃

Prop: Rf (X) is a graph when (X, f)
is Morse or of Morse type.

[Reeb Graphs: Approximation and
Persistence, Dey, Wang, DCG, 2013]

Prop: H∗(Rf (X)) = H∗(X)/H̄∗(X).

horizontal homology ∼ ’those homology classes that
are included in a finite union of levelsets of f ’

[Sur les points singuliers d’une forme de
Pfaff complètement intégrable ou d’une
fonction numérique, Reeb, C. R. Acad.
Sci. Paris, 1946]

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Thm: Df̃ provides a bag-of-features descriptor for Rf (X):

Ord0f̃ ←→ downward branches
Rel1f̃ ←→ upward branches

Ext0f̃ ←→ trunks (cc)
Ext1f̃ ←→ loops

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Thm: Df̃ provides a bag-of-features descriptor for Rf (X):

Ord0f̃ ←→ downward branches
Rel1f̃ ←→ upward branches

Ext0f̃ ←→ trunks (cc)
Ext1f̃ ←→ loops

ordinary / relative
extended

... and distance to diagonal measures the (in-)stability
of each feature w.r.t. perturbations of (X, f)

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

The construction of Df̃ is based on extended persistence, which uses a
family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

ordinary / relative
extended

Ord: appears/dies in sublevels
Rel: appears/dies in superlevels
Ext: appears in sublevels, dies in superlevels

Extension to Mapper

Reeb graph is a telescope (stratified space):

a−1 a0 a1

Y0

Y1

X0 X1

Y0 × [a−1, a0] ∪ψ−1 X0 × {a0} ∪φ0 Y1 × [a0, a1] ∪ψ0 X1 × {a1} ∪φ1 ...

φ0
ψ0 φ1

f̃

Idea: deform the Reeb graph so that it becomes the Mapper and track the
corresponding changes in the persistence diagram Df̃ .

Operation 1: Merge Ma,b

a

a

b

b

(Yi−1 × [ai−1, ā]) ∪fi−1 (f̃−1([a, b])× {ā}) ∪gj (Yj × [ā, aj+1])

(Yi−1× [ai−1, ai])∪ψi−1 (Xi×{ai})∪φi ...∪ψj−1 (Xj ×{aj})∪φj (Yj × [aj , aj+1])

ā

ā

Operation 2: Split Spai,ε
(Yi−1 × [ai−1, ai]) ∪ψi−1 (Xi × {ai}) ∪φi (Yi × [ai, ai+1])

(Yi−1 × [ai−1, ai − ε]) ∪ψai−εi−1
(Xi × {ai − ε}) ∪id (Xi × [ai − ε, ai + ε]) ∪id

(Xi × {ai + ε}) ∪
φ
ai+ε
i

(Yi × [ai + ε, ai+1])

ai

ai

ai − ε

ai − ε

ai + ε

ai + ε

Operation 3: Shift Shai,ε
(Yi−1 × [ai−1, ai]) ∪ψi−1 (Xi × {ai}) ∪φi (Yi × [ai, ai+1])

(Yi−1 × [ai−1, ai + ε]) ∪ψi−1 (Xi × {ai + ε}) ∪φi (Yi × [ai + ε, ai+1])

ai

aj

ai + ε1

aj + ε2

ai + ε1

ai

Formula Reeb graph → Mapper
Let I be the cover of im(f)

Formula Reeb graph → Mapper
Let I be the cover of im(f)

- MI is the union of all MIk and MIk,k+1 for I ∈ I

I1 I1,2
I2 I2,3

I3 I3,4
I4

I

Formula Reeb graph → Mapper
Let I be the cover of im(f)

- MI is the union of all MIk and MIk,k+1 for I ∈ I

I1 I1,2
I2 I2,3

I3 I3,4
I4

I

- SpI is the union of all Spε,ā with ε small

Formula Reeb graph → Mapper
Let I be the cover of im(f)

- MI is the union of all MIk and MIk,k+1 for I ∈ I

I1 I1,2
I2 I2,3

I3 I3,4
I4

I

- SpI is the union of all Spε,ā with ε small
- ShI is the union of all Shε1,ā+ε and Shε2,ā−ε with ε1, ε2 small

Formula Reeb graph → Mapper
Let I be the cover of im(f)

- MI is the union of all MIk and MIk,k+1 for I ∈ I

I1 I1,2
I2 I2,3

I3 I3,4
I4

I

- SpI is the union of all Spε,ā with ε small
- ShI is the union of all Shε1,ā+ε and Shε2,ā−ε with ε1, ε2 small
- M ′I is the union of all MIk for I ∈ I

Formula Reeb graph → Mapper
Let I be the cover of im(f)

- MI is the union of all MIk and MIk,k+1 for I ∈ I

I1 I1,2
I2 I2,3

I3 I3,4
I4

I

- SpI is the union of all Spε,ā with ε small
- ShI is the union of all Shε1,ā+ε and Shε2,ā−ε with ε1, ε2 small

Mf(X, I) = M ′
I ◦ ShI ◦ SpI ◦MI(Rf(X))

- M ′I is the union of all MIk for I ∈ I

Formula Reeb graph → Mapper
Let I be the cover of im(f)

Mf(X, I) = M ′
I ◦ ShI ◦ SpI ◦MI(Rf(X))

Formula Reeb graph → Mapper
Let I be the cover of im(f)

Mf(X, I) = M ′
I ◦ ShI ◦ SpI ◦MI(Rf(X))

I1

I2
I1,2

Descriptor for Mapper

Def: Df̃ ,I := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I

QOrd
I

QRel
I QExt

I

Descriptor for Mapper

Def: Df̃ ,I := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Thm: Df̃ ,I provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches
Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)
Ext1 ←→ loops

QOrd
I

QRel
I QExt

I

Descriptor for Mapper
Let I minimal cover of Imf ⊆ R. For I ∈ I, let I = I− t Ĩ t I+, and define
the staircases Q·I with:

QOrd
I =

⋃
I∈I Q

+
Ĩ∪I+ QExt

I =
⋃
I,J∈I
I∩J 6=∅

Q−I∪J

Q+
I = {(x, y) ∈ R2 : x ≤ y ∈ I}

Q−I = {(x, y) ∈ R2 : y < x ∈ I}

QRel
I =

⋃
I∈I Q

−
I−∪Ĩ

I
Q+
I

Q−I

Descriptor for Mapper

Cor: Df̃ ,I = Df̃ whenever the resolution r of I is smaller than the smallest
distance from Df̃ \∆ to the diagonal ∆.

Structure of Mapper

Def: Df̃ ,I := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Thm: Df̃ ,I provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches
Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)
Ext1 ←→ loops

Stability of Mapper

... and distance to staircase boundary mea-
sures (in-)stability of each feature w.r.t.
perturbations of (X, f, I)

Def: Df̃ ,I := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Thm: Df̃ ,I provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches
Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)
Ext1 ←→ loops

Stability of Mapper

Stability of Mapper

Df̃ ,I D
f̃ ′,I←→m :

costI(m)

Stability of Mapper

Def: Df̃ ,I := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Df̃ ,I D
f̃ ′,I←→m :

Thm: For any functions f, f ′ : X → R of Morse type,

dI(Df̃ ,I , Df̃ ′,I) ≤ ‖f − f ′‖∞.
costI(m)

Stability of Mapper

Def: Df̃ ,I := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Df̃ ,I D
f̃ ′,I←→m :

Thm: For any functions f, f ′ : X → R of Morse type,

dI(Df̃ ,I , Df̃ ′,I) ≤ ‖f − f ′‖∞.
costI(m)

Extensions to:

• perturbations of X

• perturbations of I

Stability of Mapper

Def: Df̃ ,I := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I

1. Reeb spaces and Mappers

2. Confidence intervals

I. ToMATo algorithm

II. Mapper algorithm

1. Introduction to hierarchical and mode-seeking clustering

2. ToMATo algorithm and guarantees

Mapper in practice

X

f

R

I

V

Mapper

δ

Gδ = δ-neighborhood graph

M•f,δ(X̂n, I)

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Questions:
• Statistical properties of the estimator M•f,δ(X̂n, I) ?
• Convergence to the ground truth Rf (X) in db? Deviation bounds?

f
+ cover I

M•f,δ(X̂n, I)

Statistics for Mapper

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

Let Mf,δ(X̂n, I) denote Mf (Gδ, I)

1. Link between Rf (X) and Mf,δ(X̂n,V)?

2. Link between Mf,δ(X̂n, I) and M•f,δ(X̂n, I)?

X → Gδ(X̂n)

intersections given by metric graph → intersections given by points

support → δ-neighborhood graph Reeb graph → Mappera. b.

Statistics for Mapper

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

1. Link between Rf (X) and Mf,δ(X̂n, I)?

Statistics for Mapper

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

support → δ-neighborhood graph

Thm: If 4dH(X, X̂n) ≤ δ ≤ min
{ 1

4 rch(X), 1
4ρ(X)

}
, then one has:

db(Df̃ , Df̃PL
) ≤ 2ω(δ)

1. Link between Rf (X) and Mf,δ(X̂n, I)?

Statistics for Mapper

where f̃PL is the piecewise-linear approximation of f̃ defined on Rf (Gδ(X̂n)).

[Reeb Graphs: Approximation and
Persistence, Dey, Wang, DCG, 2013]

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

support → δ-neighborhood graph

Thm: If 4dH(X, X̂n) ≤ δ ≤ min
{ 1

4 rch(X), 1
4ρ(X)

}
, then one has:

db(Df̃ , Df̃PL
) ≤ 2ω(δ)

Reeb graph → Mapper

Thm: db(Df̃PL
, Df̃PL,I) ≤ r.

1. Link between Rf (X) and Mf,δ(X̂n, I)?

Statistics for Mapper

where f̃PL is the piecewise-linear approximation of f̃ defined on Rf (Gδ(X̂n)).

[Reeb Graphs: Approximation and
Persistence, Dey, Wang, DCG, 2013]

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

1. Link between Rf (X) and Mf,δ(X̂n, I)?

ω: modulus of continuity of f , defined as ω : δ 7→ sup{|f(x)− f(y)| : d(x, y) ≤ δ}
rch: reach of X.
ρ: radius of convexity of X: largest r s.t. geodesic balls of radius r are convex.
dH : Hausdorff distance.

Statistics for Mapper

Statistics for Mapper

Def: The distance function to a compact M ⊂ Rd, dM : Rd → R+ is:

dM (x) = inf
p∈M
‖x− p‖

Def: The Hausdorff distance between two compact sets M,M ′ ⊂ Rd is:

dH(M,M ′) = sup
x∈Rd

|dM (x)− dM ′(x)|

dH(M,M ′)

M

M ′

Statistics for Mapper

M
x

ΓM (x)

ΓM (x) = {y ∈M : dM (x) = ‖x− y‖}

Def: The medial axis of M is:

M(M) = {x ∈ Rd : |ΓM (x)| ≥ 2}

M

M(M)
rch(M)

Def: The reach of M , rch(M) is the smallest distance from M(M) to M :

rch(M) = inf
y∈M(M)

dM (y)

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

2. Link between Mf,δ(X̂n, I) and M•f,δ(X̂n, I)?

intersections given by metric graph → intersections given by points

Thm: If there are no intersection-crossing edges, then
Mf,δ(X̂n, I) ' M•f,δ(X̂n, I)

Statistics for Mapper

and thus we can define D•
f̃ ,I := Df̃ ,I .

Statistics for Mapper

Mf,δ(X̂n, I) M•f,δ(X̂n, I)

intersection-crossing

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

Gathering everything, it only remains to upper bound dH(X, X̂n) (which is
random since X̂n is random).

Hyp-Def: µ is called (a, b)-standard if:
µ(B(x, r)) ≥ min{1, arb} for all x ∈ X and r > 0.

Then it is known that one has asymptotically almost surely:

dH(X, X̂n) ≤ C(a, b)
(

logn
n

)1/b

Statistics for Mapper

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Thm: If µ is (a, b)-standard and f is c-Lipschitz then for:

sup
µ∈P

E
[
db

(
D•
f̃PL,In

, Df̃

)]
≤ C

(
log n
n

)1/b

,

where C depends only on a, b, c.

f
+ cover I

δn = 4
(

2 logn
an

)1/b
, gn ∈

(1
3 ,

1
2
)
, rn = cδn

gn
, one has ∀ε > 0

More generally: rn = ω(δn)/gn

Statistics for Mapper

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

Moreover, the estimator D•
f̃PL,In

is minimax optimal (up to a log n factor)
on the space P of (a, b)-standard probability measures on X.

Thm: For any estimator R̂, one has:

sup
µ∈P

E
[
db

(
DR̂, Df̃

)]
≥ C

(
1
n

)1/b

,

where C depends only on a, b.

Proof: Consequence of Le Cam’s lemma.

Statistics for Mapper

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Thm: If µ is (a, b)-standard and f is c-Lipschitz then for:

sup
µ∈P

E
[
db

(
D•
f̃PL,In

, Df̃

)]
≤ C

(
log n
n

)1/b

,

where C depends only on a, b, c.

f
+ cover I

δn = 4
(

2 logn
an

)1/b
, gn ∈

(1
3 ,

1
2
)
, rn = cδn

gn
, one has ∀ε > 0

More generally: rn = ω(δn)/gn

Statistics for Mapper

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

In(gn, rn)

Fortunately, one can use subsampling to tune δn: let β > 0, s(n) = n
log(n)1+β

and define δn := dH(X̂s(n)
n , X̂n), where X̂s(n)

n is a subset of X̂n of size s(n).

δn

Statistics for Mapper

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

In(gn, rn)

Fortunately, one can use subsampling to tune δn: let β > 0, s(n) = n
log(n)1+β

and define δn := dH(X̂s(n)
n , X̂n), where X̂s(n)

n is a subset of X̂n of size s(n).

δn

Thm: If µ is (a, b)-standard and f is c-Lipschitz, then for:

sup
µ∈P

E
[
db

(
D•
f̃PL,In

, Df̃

)]
≤ C

(
log(n)2+β

n

)1/b

,

where C depends only on a, b, c.

Statistics for Mapper

δn = dH(X̂s(n)
n , X̂n), gn ∈

(1
3 ,

1
2
)
, rn = cδn

gn
, one has ∀ε > 0

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

In(gn, rn)
δn

Ex : PCA filter

Statistics for Mapper

Π1 : orthonormal projection onto first principal direction of covariance operator.
Π̂1 : orthonormal projection onto first principal direction of empirical covariance operator.

E
[
db

(
D•

Π̂1,PL,In
, DΠ̃1

)]
.
(

log(n)2+β

n

)1/b
∨ 1√

n

[PCA-Kernel Estimation, Biau, Mas, Statis-
tics & Risk Modeling with Applications in
Finance and Insurance, 2012]

Get confidence region with E [d(·, ·)] =
∫
α
P(d(·, ·) ≥ α)dα.

Multivariate case: filter-based pseudometric

Def: The filter-based pseudometric df : M ×M → R is defined as

df (x, x′) = infγ∈Γ(x,x′) diamY (f ◦ γ),

where Γ(x, x′) denotes the set of all continuous paths γ : [0, 1] → M such that
γ(0) = x and γ(1) = x′, and diamY denotes the diameter of a subset of Y .

Def: The Gromov-Hausdorff metric dGH between (M,df), (M ′, df ′) is defined as

dGH(M,M ′) = 1
2 infC sup(x,x′),(y,y′)∈C |df (x, y)− df ′(x′, y′)|,

where C denotes the set of all correspondences between M and M ′ (subsets of
M ×M ′ s.t. projections onto M and M ′ are surjective).

[Topological Analysis of Nerves, Reeb
Spaces, Mappers, and Multiscale Map-
pers, Dey, Mémoli, Wang, SoCG, 2017]

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

δn

Statistics for multivariate Mapper

E [dGH(Mf ,Rf) ≤ ?] ≥ 0.95

I

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

δn

Statistics for multivariate Mapper

Thm: If µ and f#µ are (a, b)-standard, then for δn as before, one has:

E
[
dGH

(
M•f,δn(X̂n, I),Rf (X)

)]
≤ 5·E [res(I)]+Cω

(
log(n)2+β

n

)1/b

,

where C depends only on a, b, and res denotes the resolution of the cover
I, i.e., the diameter of its elements.

I

Moreover, using covers with hypercubes or K-means, or quantized Distance-
to-Measure allows to bound E [res(I)]. [A k-points-based distance for robust geometric inference,

Brecheteau, Levrard, Bernouilli, 2020]

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

δn

Statistics for multivariate Mapper

I

Thm: If w(u) ≤ cuγ for some c > 0, γ ∈ (0, 1), and for a cover I given by
thickening a k-means partition in RD:

E [res(I)] ≤ k−(2γ2)/(2γb+b2) +
(
kD

n

)γ/(2b+4γ)

85% confidence intervalsExperiments

85% confidence intervalsExperiments

85% confidence intervalsExperiments

Chromosome conformation captureExperiments

Chromosome conformation capture

Formal identification of cell cycle with 95% confidence

Experiments

Experiments Spinal cord data

Experiments Spinal cord data

Experiments Spinal cord data

Machine learning classifier

Filter = confidence of Random Forest classifier (in R3)

Experiments

Machine Learning Classifier Monitoring

Machine learning classifier

Sitting

Standing

Walking up

Walking

Walking down
Intermediate

between laying
and sitting

Laying

Filter = confidence of Random Forest classifier (in R6)

Experiments

Machine Learning Classifier Monitoring

Other works

Another line of work is about the interleaving distance between Mappers and
Reeb spaces seen as cosheaves Open(Rd)→ Set.

Prop: For f : X → Rd, dI(C(Rf (X)), C(Mf (X, I))) ≤ res(I).

Prop: For f : X → R,

limn→+∞ P
(
dI(C(Rf (X)), C(Mf (X̂n, I))) ≤ res(I)

)
= 1.

[Convergence between categorical repre-
sentations of Reeb space and Mapper,
Munch, Wang, SoCG, 2016]

[Probabilistic convergence and stability of
random Mapper graphs, Brown et al.,
JACT, 2020]

I. ToMATo algorithm

II. Mapper algorithm

1. Introduction to hierarchical and mode-seeking clustering

2. ToMATo algorithm and guarantees

1. Reeb spaces and Mappers

2. Confidence intervals

Thanks! Questions?

