GESDA Introductory School
5-9 September 2022
IESC Cargèse, Corsica

Topological Clustering with Statistical Guarantees

Mathieu Carrière
INRIA Sophia-Antipolis
mathieu.carriere@inria.fr

I. ToMATo algorithm

1. Introduction to hierarchical and mode-seeking clustering
2. ToMATo algorithm and guarantees

II. Mapper algorithm

1. Reeb spaces and Mappers
2. Confidence intervals

I. ToMATo algorithm

1. Introduction to hierarchical and mode-seeking clustering
2. ToMATo algorithm and guarantees
II. Mapper algorithm
3. Reeb spaces and Mappers
4. Confidence intervals

General clustering

Def: A partition of data into groups of similar data points. The data points in each group, or cluster, are similar to each other and dissimilar to the ones from other clusters.

General clustering

Def: A partition of data into groups of similar data points. The data points in each group, or cluster, are similar to each other and dissimilar to the ones from other clusters.

Input: a finite set of observations: point cloud embedded in an Euclidean space (i.e., with well-defined coordinates) or a more general metric space (pairwise distance or similarity) matrix.

General clustering

Def: A partition of data into groups of similar data points. The data points in each group, or cluster, are similar to each other and dissimilar to the ones from other clusters.

Input: a finite set of observations: point cloud embedded in an Euclidean space (i.e., with well-defined coordinates) or a more general metric space (pairwise distance or similarity) matrix.

Goal: partition the data into a relevant family of clusters.

General clustering

Def: A partition of data into groups of similar data points The data points in each group, or cluster, are similar to each other and dissimilar to the ones from other clusters.

Not a single or universal notion of cluster.
A variety of approaches:

- Variational (Bayes priors)
- Spectral (eigenvalues of Laplacian)
- Density-based (KDE, DTM)
- Hierarchical (dendrograms)
- etc...

General clustering

Def: A partition of data into groups of similar data points The data points in each group, or cluster, are similar to each other and dissimilar to the ones from other clusters.

Not a single or universal notion of cluster.
A variety of approaches:

- Variational (Bayes priors)
- Spectral (eigenvalues of Laplacian)
- Density-based (KDE, DTM)
- Hierarchical (dendrograms)
- etc...

We will see a few standard algorithms and how they can be improved with (0-dimensional) persistent homology.

The k-means algorithm

Input: A (large) set of n points X and an integer $k<n$.

Goal: Find a set of k points $L=\left\{y_{1}, \ldots, y_{k}\right\}$ that minimizes

$$
E=\sum_{i=1}^{n} d\left(x_{i}, L\right)^{2}
$$

The k-means algorithm

Input: A (large) set of n points X and an integer $k<n$.

Goal: Find a set of k points $L=\left\{y_{1}, \ldots, y_{k}\right\}$ that minimizes

$$
E=\sum_{i=1}^{n} d\left(x_{i}, L\right)^{2}
$$

This is a NP hard problem!
Lloyd's algorithm: a very simple local search algorithm.

The k-means algorithm

Lloyd's algorithm
$L^{1} \leftarrow\left\{y_{1}^{1}, \ldots, y_{k}^{1}\right\}$ (initial seeds)

while convergence not reached:

```
for \(j \in\{1, \ldots, k\}\) :
    \(S_{j}^{i} \leftarrow\left\{x \in X: d\left(x, y_{j}^{i}\right)\right.\) achieves \(\left.d\left(x, L^{i}\right)\right\}\)
    for \(j \in\{1, \ldots, k\}\) :
        \(y_{j}^{i+1} \leftarrow \frac{1}{\left|S_{j}^{i}\right|} \sum_{x \in S_{j}^{i}} x\)
    \(i \leftarrow i+1\)
```


The k-means algorithm

Lloyd's algorithm

$L^{1} \leftarrow\left\{y_{1}^{1}, \ldots, y_{k}^{1}\right\}$ (initial seeds)
$i \leftarrow 1$

while convergence not reached:

```
for \(j \in\{1, \ldots, k\}\) :
    \(S_{j}^{i} \leftarrow\left\{x \in X: d\left(x, y_{j}^{i}\right)\right.\) achieves \(\left.d\left(x, L^{i}\right)\right\}\)
    for \(j \in\{1, \ldots, k\}\) :
        \(y_{j}^{i+1} \leftarrow \frac{1}{\left|S_{j}^{i}\right|} \sum_{x \in S_{j}^{i}} x\)
    \(i \leftarrow i+1\)
```


The k-means algorithm

Lloyd's algorithm

$L^{1} \leftarrow\left\{y_{1}^{1}, \ldots, y_{k}^{1}\right\}$ (initial seeds)
$i \leftarrow 1$

while convergence not reached:

```
for \(j \in\{1, \ldots, k\}\) :
    \(S_{j}^{i} \leftarrow\left\{x \in X: d\left(x, y_{j}^{i}\right)\right.\) achieves \(\left.d\left(x, L^{i}\right)\right\}\)
    for \(j \in\{1, \ldots, k\}\) :
        \(y_{j}^{i+1} \leftarrow \frac{1}{\left|S_{j}^{i}\right|} \sum_{x \in S_{j}^{i}} x\)
    \(i \leftarrow i+1\)
```


The k-means algorithm

Lloyd's algorithm

$L^{1} \leftarrow\left\{y_{1}^{1}, \ldots, y_{k}^{1}\right\}$ (initial seeds)
$i \leftarrow 1$
while convergence not reached:


```
for \(j \in\{1, \ldots, k\}\) :
    \(S_{j}^{i} \leftarrow\left\{x \in X: d\left(x, y_{j}^{i}\right)\right.\) achieves \(\left.d\left(x, L^{i}\right)\right\}\)
    for \(j \in\{1, \ldots, k\}\) :
        \(y_{j}^{i+1} \leftarrow \frac{1}{\left|S_{j}^{i}\right|} \sum_{x \in S_{j}^{i}} x\)
    \(i \leftarrow i+1\)
```


The k-means algorithm

Lloyd's algorithm

$L^{1} \leftarrow\left\{y_{1}^{1}, \ldots, y_{k}^{1}\right\}$ (initial seeds)
$i \leftarrow 1$
while convergence not reached:

$$
\begin{aligned}
& \text { for } j \in\{1, \ldots, k\}: \\
& S_{j}^{i} \leftarrow\left\{x \in X: d\left(x, y_{j}^{i}\right) \text { achieves } d\left(x, L^{i}\right)\right\} \\
& \text { for } j \in\{1, \ldots, k\}: \\
& \quad y_{j}^{i+1} \leftarrow \frac{1}{\left|S_{j}^{i}\right|} \sum_{x \in S_{j}^{i}} x \\
& i \leftarrow i+1
\end{aligned}
$$

The k-means algorithm

Lloyd's algorithm

$L^{1} \leftarrow\left\{y_{1}^{1}, \ldots, y_{k}^{1}\right\}$ (initial seeds)
$i \leftarrow 1$
while convergence not reached:

$$
\begin{aligned}
& \text { for } j \in\{1, \ldots, k\}: \\
& S_{j}^{i} \leftarrow\left\{x \in X: d\left(x, y_{j}^{i}\right) \text { achieves } d\left(x, L^{i}\right)\right\} \\
& \text { for } j \in\{1, \ldots, k\}: \\
& \quad y_{j}^{i+1} \leftarrow \frac{1}{\left|S_{j}^{i}\right|} \sum_{x \in S_{j}^{i}} x \\
& i \leftarrow i+1
\end{aligned}
$$

The k-means algorithm

Warning:

- Minimum is not necessarily global!
- Speed of convergence not guaranteed.
- Lack of stability: output is very sensitive to initial seeds.

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)
Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

$\stackrel{\bullet}{p}_{1} \quad \stackrel{\bullet}{p}_{2} \quad \stackrel{\bullet}{p}_{3} \quad \stackrel{\bullet}{p}_{4} \quad \stackrel{\bullet}{p}_{5} \quad \stackrel{\bullet}{p}_{6}$

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

- p_{1}
- p_{2}

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).
Agglomerative (bottom-up)
Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Dendogram, i.e., a tree such that:

- each leaf node is a singleton,
- each node represents a cluster,
- the root node contains the whole data,
- each internal node has two daughters, corresponding to the clusters that were merged to obtain it.

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and recursively split each cluster until reaching a stopping criterion.

$\begin{array}{llllll}\stackrel{\bullet}{p}_{1} & \stackrel{\bullet}{p}_{2} & \stackrel{\bullet}{p}_{3} & \stackrel{\bullet}{p}_{4} & \dot{p}_{5} & \stackrel{\bullet}{p}_{6}\end{array}$

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and recursively split each cluster until reaching a stopping criterion.

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and recursively split each cluster until reaching a stopping criterion.

Hierarchical clustering algorithms

Goal: Build a hierarchy of clusters (nested family of partitions).

Agglomerative (bottom-up)

Start with single point cluster and recursively merge the most similar clusters to one parent cluster until reaching a stopping criterion (e.g., max distance or cluster number).

Dividing (top-down)

Start with a single global cluster and recursively split each cluster until reaching a stopping criterion.

Single linkage clustering

Input: A set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $\left.\left(\left(d_{i, j}\right)\right)_{i, j}\right)$.

Given two clusters $C, C^{\prime} \subseteq X_{n}$ let $d\left(C, C^{\prime}\right)=\inf _{x \in C, x^{\prime} \in C^{\prime}} d\left(x, x^{\prime}\right)$.

Single linkage clustering

Input: A set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $\left.\left(\left(d_{i, j}\right)\right)_{i, j}\right)$.

Given two clusters $C, C^{\prime} \subseteq X_{n}$ let $d\left(C, C^{\prime}\right)=\inf _{x \in C, x^{\prime} \in C^{\prime}} d\left(x, x^{\prime}\right)$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_{i} is a cluster.
2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.

Single linkage clustering

Input: A set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $\left.\left(\left(d_{i, j}\right)\right)_{i, j}\right)$.

Given two clusters $C, C^{\prime} \subseteq X_{n}$ let $d\left(C, C^{\prime}\right)=\inf _{x \in C, x^{\prime} \in C^{\prime}} d\left(x, x^{\prime}\right)$.
sup: complete linkage

Agglomerative (bottom-up)
 $\frac{1}{|C| \cdot\left|C^{\prime}\right|} \sum$: average linkage

1. Start with a clustering where each x_{i} is a cluster.
2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.

Single linkage clustering

Input: A set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $\left.\left(\left(d_{i, j}\right)\right)_{i, j}\right)$.

Given two clusters $C, C^{\prime} \subseteq X_{n}$ let $d\left(C, C^{\prime}\right)=\inf _{x \in C, x^{\prime} \in C^{\prime}} d\left(x, x^{\prime}\right)$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_{i} is a cluster.
2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.

Single linkage clustering

Input: A set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $\left.\left(\left(d_{i, j}\right)\right)_{i, j}\right)$.

Given two clusters $C, C^{\prime} \subseteq X_{n}$ let $d\left(C, C^{\prime}\right)=\inf _{x \in C, x^{\prime} \in C^{\prime}} d\left(x, x^{\prime}\right)$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_{i} is a cluster.
2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Single linkage clustering

Input: A set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $\left.\left(\left(d_{i, j}\right)\right)_{i, j}\right)$.

Given two clusters $C, C^{\prime} \subseteq X_{n}$ let $d\left(C, C^{\prime}\right)=\inf _{x \in C, x^{\prime} \in C^{\prime}} d\left(x, x^{\prime}\right)$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_{i} is a cluster.
2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Single linkage clustering

Input: A set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $\left.\left(\left(d_{i, j}\right)\right)_{i, j}\right)$.

Given two clusters $C, C^{\prime} \subseteq X_{n}$ let $d\left(C, C^{\prime}\right)=\inf _{x \in C, x^{\prime} \in C^{\prime}} d\left(x, x^{\prime}\right)$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_{i} is a cluster.
2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.

Single linkage clustering

Input: A set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $\left.\left(\left(d_{i, j}\right)\right)_{i, j}\right)$.

Given two clusters $C, C^{\prime} \subseteq X_{n}$ let $d\left(C, C^{\prime}\right)=\inf _{x \in C, x^{\prime} \in C^{\prime}} d\left(x, x^{\prime}\right)$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_{i} is a cluster.
2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.

Single linkage clustering

Input: A set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ in a metric space (X, d) (or just a matrix of pairwise dissimilarities $\left.\left(\left(d_{i, j}\right)\right)_{i, j}\right)$.

Given two clusters $C, C^{\prime} \subseteq X_{n}$ let $d\left(C, C^{\prime}\right)=\inf _{x \in C, x^{\prime} \in C^{\prime}} d\left(x, x^{\prime}\right)$.

Agglomerative (bottom-up)

1. Start with a clustering where each x_{i} is a cluster.
2. At each step, merge the two closest clusters until it remains a single cluster (containing all data points).

Output: the resulting dendrogram.

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

The (in)stability of dendrograms

$d_{\mathcal{D}}\left(x, x^{\prime}\right):=$ height of lowest common ancestor of x, x^{\prime} in dendrogram \mathcal{D}.
Thm: $d_{G H}\left(\left(X, d_{\mathcal{D}_{X}}\right),\left(Y, d_{\mathcal{D}_{Y}}\right)\right) \leq d_{G H}\left(\left(X, d_{X}\right),\left(Y, d_{Y}\right)\right)$. ultrametric!

The (in)stability of dendrograms

$d_{\mathcal{D}}\left(x, x^{\prime}\right):=$ height of lowest common ancestor of x, x^{\prime} in dendrogram \mathcal{D}.
Thm: $d_{G H}\left(\left(X, d_{\mathcal{D}_{X}}\right),\left(Y, d_{\mathcal{D}_{Y}}\right)\right) \leq d_{G H}\left(\left(X, d_{X}\right),\left(Y, d_{Y}\right)\right)$. ultrametric!

This is actually not true for complete and average clustering.

The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure of the output dendrograms. However, the merging times (height of dendrogram nodes) remain stable.

The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure of the output dendrograms. However, the merging times (height of dendrogram nodes) remain stable.

Moreover, single linkage clustering keeps track of the evolution of the connected components of the distance function to the data (for Euclidean data).

The (in)stability of dendrograms

Small perturbations on the input data can induce wide changes in the structure of the output dendrograms. However, the merging times (height of dendrogram nodes) remain stable.

Moreover, single linkage clustering keeps track of the evolution of the connected components of the distance function to the data (for Euclidean data).
\rightarrow 0-dimensional persistent homology provides a stable output!

The (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea when there are outliers, since there is no stability of merging times anymore.
\rightarrow 0-dimensional persistent homology provides a stable output!

The (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea when there are outliers, since there is no stability of merging times anymore.

The (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea when there are outliers, since there is no stability of merging times anymore.
\rightarrow 0-dimensional persistent homology provides a stable output!

The (in)stability of dendrograms

However, building a hierarchy based on spatial proximity is still not a great idea when there are outliers, since there is no stability of merging times anymore. Another way to build a hierarchy is with the sublevel sets of a density function. Using density for clustering is at the core of mode-seeking algorithms.

Mode seeking clustering

In mode seeking, data points are sampled according to some (unknown) probability density, and clusters are given with its basins of attraction.

Two approaches:

- Iterative, such as, e.g., Mean Shift. $\begin{aligned} & \text { space analysis, Comaniciu et al., IEEE Trans. on } \\ & \text { Pattern Analysis and Machine Intelligence, 2002] }\end{aligned}$
- Graph-based, such as, e.g., $\begin{gathered}\text { [A Graph-Theoretic Approach to Nonparametric } \\ C l u s t e r ~ A n a l y s i s, ~ K o o n t z ~ e t ~ a l ., ~ I E E E ~ T r a n s . ~ o n ~\end{gathered}$ Computers, 1976].

Mean Shift (2002)

Mean Shift (2002)

1. Pick random guess $x \in X$.

Mean Shift (2002)

1. Pick random guess $x \in X$.
2. Compute

$$
M(x)=\frac{\sum_{x_{i} \in N(x)} K\left(x, x_{i}\right) \cdot x_{i}}{\sum_{x_{i} \in N(x)} K\left(x, x_{i}\right)},
$$

where $N(x)$ is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel $K(x, y)=\exp \left(-\frac{\|x-y\|_{2}^{2}}{2 \sigma^{2}}\right)$.

Mean Shift (2002)

1. Pick random guess $x \in X$.
2. Compute

$$
M(x)=\frac{\sum_{x_{i} \in N(x)} K\left(x, x_{i}\right) \cdot x_{i}}{\sum_{x_{i} \in N(x)} K\left(x, x_{i}\right)},
$$

where $N(x)$ is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel $K(x, y)=\exp \left(-\frac{\|x-y\|_{2}^{2}}{2 \sigma^{2}}\right)$.
3. Update $x \leftarrow M(x)$.

Mean Shift (2002)

1. Pick random guess $x \in X$.
2. Compute

$$
M(x)=\frac{\sum_{x_{i} \in N(x)} K\left(x, x_{i}\right) \cdot x_{i}}{\sum_{x_{i} \in N(x)} K\left(x, x_{i}\right)},
$$

where $N(x)$ is a neighborhood of x, and K is a kernel, e.g., Gaussian kernel $K(x, y)=\exp \left(-\frac{\|x-y\|_{2}^{2}}{2 \sigma^{2}}\right)$.
3. Update $x \leftarrow M(x)$.

Do that for many random guesses, postprocess and merge similar centroids, and use the distances to the centroids to decide clusters.

Mean Shift (2002)

The Koonz, Narendra and Fukunaga algorithm (1976)

The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

Neighborhood
∇ graph

The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

Neighborhood
∇ graph

Discrete approximation of the gradient; for each vertex v, a gradient edge is selected among the edges adjacent to v.

The Koonz, Narendra and Fukunaga algorithm (1976)

The algorithm:

Input: A neighborhood graph G with n vertices (the data points) and an n-dimensional vector \hat{f} (density estimate).

Sort the vertex indices $\{1,2, \ldots, n\}$ in decreasing order: $\hat{f}(1) \geq \cdots \geq \hat{f}(n)$. Initialize a union-find data structure \mathcal{U} and two lists g, r of length n. for $i \in\{1, \ldots, n\}$:

Let \mathcal{N} be the set of neighbors of i in G that have indices lower than i if $\mathcal{N}=\varnothing$:

Create a new entry e in \mathcal{U} and attach vertex i to it: \mathcal{U}.MakeSet(i)
$r[e] \leftarrow i{ }_{(r[e] \text { stores the root vertex associated with the entry } e)}$
else:
$g[i] \leftarrow \operatorname{argmax}\{\hat{f}(j): j \in \mathcal{N}\}{ }_{(g[i]}$ stores the approximante gradient at vertex $\left.i\right)$
$e_{i} \leftarrow \mathcal{U} . \operatorname{Find}(g[i])$
Attach vertex i to the entry $e_{i}: \mathcal{U}$.Union $\left(i, e_{i}\right)$
Output: The collection of entries e in \mathcal{U}.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are very sensitive to noise and outliers.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations, etc) may result in wide changes in the output.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations, etc) may result in wide changes in the output.

Approaches to overcome these issues:

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations, etc) may result in wide changes in the output.

Approaches to overcome these issues:
One can smooth out the density estimate, but smoothing is usually data-driven and hard to tune.

The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

One has as many clusters as local maxima of the density estimate, which are very sensitive to noise and outliers.

The choice of the neighborhood graph (k-nearest neighbors, triangulations, etc) may result in wide changes in the output.

Approaches to overcome these issues:
One can smooth out the density estimate, but smoothing is usually data-driven and hard to tune.

Build a hierarchy of clusters with 0-dimensional persistent homology!

I. ToMATo algorithm

1. Introduction to hierarchical and mode-seeking clustering
2. ToMATo algorithm and guarantees

II. Mapper algorithm

1. Reeb spaces and Mappers
2. Confidence intervals

Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t,+\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t,+\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t,+\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t,+\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t,+\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t,+\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t,+\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t,+\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Given a probability density f, we will consider the superlevel-set filtration $f^{-1}([t,+\infty))$ for t from $+\infty$ to $-\infty$, instead of the sublevel-set filtration.

Reminder: 0-dimensional PH of density

Moreover, the stability theorem ensures that, given an underlying true density f, and an estimator \hat{f} ot it, one has:

$$
d_{b}\left(D_{f}, D_{\hat{f}}\right) \leq\|f-\hat{f}\|_{\infty} .
$$

Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, 0-dimensional PH also remembers the connected components that were merged together during the filtration process and builds a hierarchy out of this information.

Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, 0-dimensional PH also remembers the connected components that were merged together during the filtration process and builds a hierarchy out of this information.

This means that, given a fixed threshold $\tau \geq 0$, one can even retrieve the clusters associated to all the bars of length (or prominence) $>\tau$!

$$
0 \leq \tau \leq \alpha-\beta
$$

Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, 0-dimensional PH also remembers the connected components that were merged together during the filtration process and builds a hierarchy out of this information.

This means that, given a fixed threshold $\tau \geq 0$, one can even retrieve the clusters associated to all the bars of length (or prominence) $>\tau$!

$$
\alpha-\beta<\tau \leq \gamma-\delta
$$

Building a hierarchy of cluster with 0-dimensional PH

In addition to being stable, 0-dimensional PH also remembers the connected components that were merged together during the filtration process and builds a hierarchy out of this information.

This means that, given a fixed threshold $\tau \geq 0$, one can even retrieve the clusters associated to all the bars of length (or prominence) $>\tau$!

$$
\gamma-\delta<\tau \leq+\infty
$$

ToMATo: Topological Mode Analysis Tool

1. Define an order on the point cloud with a density estimator \hat{f}. (sort data points by decreasing estimated density values)

ToMATo: Topological Mode Analysis Tool

1. Define an order on the point cloud with a density estimator \hat{f}. (sort data points by decreasing estimated density values)
2. Extend order to the graph edges (i.e., compute the upper-star filtration). $(\hat{f}([u, v])=\min \{\hat{f}(u), \hat{f}(v)\})$

ToMATo: Topological Mode Analysis Tool

1. Define an order on the point cloud with a density estimator \hat{f}. (sort data points by decreasing estimated density values)
2. Extend order to the graph edges (i.e., compute the upper-star filtration). $(\hat{f}([u, v])=\min \{\hat{f}(u), \hat{f}(v)\})$
3. Compute the 0 -dimensional persistence diagram of this filtration. (apply 0-dimensional persistence algorithm \rightarrow union-find data structure)

ToMATo: Topological Mode Analysis Tool

Given a neighborhood graph with n vertices and m edges:

1. the algorithm sorts the vertices by decreasing density values,
2. and then makes a single pass through the vertex set, merging clusters on the fly using a union-find data structure.
\rightarrow Running time: $O(n \log n+(n+m) \alpha(n))$
\rightarrow Space complexity: $O(n+m)$
\rightarrow Main memory usage: $O(n)$

Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator \hat{f}. (sort data points by decreasing estimated density values)
2. Extend order to the graph edges (i.e., compute the upper-star filtration). $(\hat{f}([u, v])=\min \{\hat{f}(u), \hat{f}(v)\})$
3. Compute the 0-dimensional persistence diagram of this filtration. (apply 0-dimensional persistence algorithm \rightarrow union-find data structure)

Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator \hat{f}. (sort data points by decreasing estimated density values)
2. Extend order to the graph edges (i.e., compute the upper-star filtration). $(\hat{f}([u, v])=\min \{\hat{f}(u), \hat{f}(v)\})$
3. Compute the 0 -dimensional persistence diagram of this filtration. (apply 0-dimensional persistence algorithm \rightarrow union-find data structure)

Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator \hat{f}. (sort data points by decreasing estimated density values)
2. Extend order to the graph edges (i.e., compute the upper-star filtration). $(\hat{f}([u, v])=\min \{\hat{f}(u), \hat{f}(v)\})$
3. Compute the 0 -dimensional persistence diagram of this filtration. (apply 0-dimensional persistence algorithm \rightarrow union-find data structure)

Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator \hat{f}. (sort data points by decreasing estimated density values)
2. Extend order to the graph edges (i.e., compute the upper-star filtration). $(\hat{f}([u, v])=\min \{\hat{f}(u), \hat{f}(v)\})$
3. Compute the 0 -dimensional persistence diagram of this filtration. (apply 0-dimensional persistence algorithm \rightarrow union-find data structure)

Estimating the correct number of clusters

1. Define an order on the point cloud with a density estimator \hat{f}. (sort data points by decreasing estimated density values)
2. Extend order to the graph edges (i.e., compute the upper-star filtration). $(\hat{f}([u, v])=\min \{\hat{f}(u), \hat{f}(v)\})$
3. Compute the 0 -dimensional persistence diagram of this filtration. (apply 0-dimensional persistence algorithm \rightarrow union-find data structure)

Estimating the correct number of clusters

Hypotheses:

- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a c-Lipschitz probability density function,
- $P \subset \mathbb{R}^{d}$ a finite set of n points sampled i.i.d. according to f,
- $\hat{f}: P \rightarrow \mathbb{R}$ a density estimator s.t. $\eta:=\max _{p \in P}|\hat{f}(p)-f(p)|<\Pi / 5$,
- $G=(P, E)$ the δ-neighborhood graph for some positive $\delta<\frac{\Pi-5 \eta}{5 c}$.

Note: Π is the prominence of the least prominent peak of f

Estimating the correct number of clusters

Hypotheses:

- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a c-Lipschitz probability density function,
- $P \subset \mathbb{R}^{d}$ a finite set of n points sampled i.i.d. according to f,
- $\hat{f}: P \rightarrow \mathbb{R}$ a density estimator s.t. $\eta:=\max _{p \in P}|\hat{f}(p)-f(p)|<\Pi / 5$,
- $G=(P, E)$ the δ-neighborhood graph for some positive $\delta<\frac{\Pi-5 \eta}{5 c}$.

Note: Π is the prominence of the least prominent peak of f

Thm: For any choice of τ such that $2(c \delta+\eta)<\tau<\Pi-3(c \delta+\eta)$, the number of clusters computed by the algorithm is equal to the number of peaks of f with probability at least $1-e^{-\Omega(n)}$.
(the Ω notation hides factors depending on c, δ)
Proof: Skipped. The main ingredient is the stability theorem.

Estimating the correct number of clusters

Thm: For any choice of τ such that $2(c \delta+\eta)<\tau<\Pi-3(c \delta+\eta)$, the number of clusters computed by the algorithm is equal to the number of peaks of f with probability at least $1-e^{-\Omega(n)}$.
(the Ω notation hides factors depending on c, δ)
Proof: Skipped. The main ingredient is the stability theorem.

Pseudo-code

Input: A graph G with n vertices, an n-dimensional vector \hat{f}, and $\tau \geq 0$. Sort the vertex indices $\{1,2, \ldots, n\}$ in decreasing order: $\hat{f}(1) \geq \cdots \geq \hat{f}(n)$. Initialize a union-find data structure \mathcal{U} and two lists g, r of length n. for $i \in\{1, \ldots, n\}$:

Let \mathcal{N} be the set of neighbors of i in G that have indices lower than i if $\mathcal{N}=\varnothing$:

Create a new entry e in \mathcal{U} and attach vertex i to it: \mathcal{U}.MakeSet(i)
$r[e] \leftarrow i{ }_{(r[e] \text { stores the root vertex associated with the entry e) }}$
else:
$g[i] \leftarrow \operatorname{argmax}\{\hat{f}(j): j \in \mathcal{N}\} \quad(g[i]$ stores the approximate egradient at vertex $i)$
$e_{i} \leftarrow \mathcal{U} . \operatorname{Find}(g[i])$
Attach vertex i to the entry $e_{i}: \mathcal{U}$. $\operatorname{Union}\left(i, e_{i}\right)$ for $j \in \mathcal{N}$:
$e \leftarrow \mathcal{U}$.Find (j)
if $e \neq e_{i}$ and $\min \left\{\hat{f}(r[e]), \hat{f}\left(r\left[e_{i}\right]\right)\right\}<\hat{f}(i)+\tau$: \mathcal{U}.Union $\left(e, e_{i}\right)$
cluster merges $r\left[e \cup e_{i}\right] \leftarrow \operatorname{argmax}\left\{\hat{f}(r[e]), \hat{f}\left(r\left[e_{i}\right]\right)\right\}$ $e_{i} \leftarrow e \cup e_{i}$
Output: the collection of entries e of \mathcal{U} such that $\hat{f}(r(e)) \geq \tau$.

Experimental results

Synthetic Data

Experimental results

Biological Data

Alanine-Dipeptide conformations $\left(\mathbb{R}^{21}\right)$
with RMSD distance (non-Euclidean).

Common belief: 6 metastable states.
PD shows anywhere between 4 and 7 clusters.

Experimental results

Biological Data

Alanine-Dipeptide conformations $\left(\mathbb{R}^{21}\right)$
with RMSD distance (non-Euclidean).

Common belief: 6 metastable states.
PD shows anywhere between 4 and 7 clusters.
Measures of metastability confirm this insight.

Rank	Prominence	Metastability
1	$+\infty$	0.99982
2	3827	1.91865
3	1334	2.8813
4	557	3.76217
5	85	4.73838
6	32	5.65553
7	26	6.50757
8	7.2	6.8193
9	3.0	-
10	2.2	-

Experimental results

Biological Data

Alanine-Dipeptide conformations $\left(\mathbb{R}^{21}\right)$
with RMSD distance (non-Euclidean).

Note: Spectral Clustering takes a week of tweaking, while ToMATo runs out-of-the-box in a few minutes.

Experimental results

Image Segmentation

Density is estimated in 3D color space.
Neighborhood graph is built in image domain

Distribution of prominences does not usually show a clear unique gap.

Still, relationship between choice of τ and number of obtained clusters remains explicit.

Application to non-rigid shape segmentation

[Persistence-Based Segmentation of Deformable Shapes, Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Application to non-rigid shape segmentation

[Persistence-Based Segmentation of Deformable Shapes, Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Problem: cluster boundaries are unstable, which gives dirty segments.

Application to non-rigid shape segmentation

[Persistence-Based Segmentation of Deformable Shapes, Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]

Problem: cluster boundaries are unstable, which gives dirty segments.
See practical session! :-)

I. ToMATo algorithm

1. Introduction to hierarchical and mode-seeking clustering
 2. ToMATo algorithm and guarantees

II. Mapper algorithm

1. Reeb spaces and Mappers
2. Confidence intervals
[Structure and Stability of the One-Dimensional Mapper, C., Oudot, Foundations of Computational Mathematics, 2018]
[Statistical Analysis and Parameter Selection for Mapper, C., Michel, Oudot, Journal of Machine Learning Research, 2018]
[Statistical analysis of Mapper for stochastic and multivariate filters, C., Michel, Journal of Applied and Computational Topology, 2022]

Mapper (hyper-)graphs

[Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition, Singh, Mémoli, Carlsson, Symp. Point based Graphics, 2007]

Mapper (hyper-)graphs

[Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition, Singh, Mémoli, Carlsson, Symp. Point based Graphics, 2007]

visualize topology on the data directly

Mapper in applications

Two types of applications:
\rightarrow clustering
\rightarrow feature selection
principle: identify statistically relevant subpopulations through patterns (flares, loops)

Mapper in applications

3d shapes classification

Mapper in applications

breast cancer subtype identification

Mapper in applications

Mapper in applications

Mapper in applications

Mapper in applications

Formal identification of cell cycle

Mapper in applications

Genomic analysis of spinal cord

Mapper in the continuous setting

Mapper in the continuous setting

Inputs:

- topological space X
- continuous function $f: X \rightarrow Y$
- cover \mathcal{I} of $\operatorname{im}(f)$ by open intervals: $\operatorname{im}(f) \subseteq \bigcup_{I \in \mathcal{I}} I$

Method:

1. Compute pullback cover \mathcal{U} of $X: \mathcal{U}=\left\{f^{-1}(I)\right\}_{I \in \mathcal{I}}$
2. Refine \mathcal{U} by separating each of its elements into its various connected components in $X \rightarrow$ connected cover \mathcal{V}
3. The Mapper is the nerve of \mathcal{V} :

- 1 vertex per element $V \in \mathcal{V}$
- 1 edge per intersection $V \cap V^{\prime} \neq \emptyset, V, V^{\prime} \in \mathcal{V}$
- $1 k$-simplex per $(k+1)$-fold intersection $\bigcap_{i=0}^{k} V_{i} \neq \emptyset, V_{0}, \cdots, V_{k} \in \mathcal{V}$

Mapper in practice

Mapper in practice

Inputs:

- point cloud $P \subseteq X$ with metric d_{P}
- continuous function $f: X \rightarrow Y$
- cover \mathcal{I} of $\operatorname{im}(f)$ by open intervals: $\operatorname{im}(f) \subseteq \bigcup_{I \in \mathcal{I}} I$

Method:

1. Compute pullback cover \mathcal{U} of $P: \mathcal{U}=\left\{f^{-1}(I)\right\}_{I \in \mathcal{I}}$
2. Refine \mathcal{U} by separating each of its elements into its various clusters, as identified by a clustering algorithm \rightarrow connected cover \mathcal{V}
3. The Mapper is the nerve of \mathcal{V} :

- 1 vertex per element $V \in \mathcal{V}$
- 1 edge per intersection $V \cap V^{\prime} \neq \emptyset, V, V^{\prime} \in \mathcal{V}$
- $1 k$-simplex per $(k+1)$-fold intersection $\bigcap_{i=0}^{k} V_{i} \neq \emptyset, V_{0}, \cdots, V_{k} \in \mathcal{V}$

Mapper in practice

Parameters:

- function $f: P \rightarrow \mathbb{R}$
- cover \mathcal{I} of $\operatorname{im}(f)$ by open intervals
- clustering algorithm \mathcal{C}

Mapper in practice

Parameters:

- function $f: P \rightarrow \mathbb{R} \longleftarrow$ lens or filter
- cover \mathcal{I} of $\operatorname{im}(f)$ by open intervals
- clustering algorithm \mathcal{C}

Classical choices:

- density estimates
- centrality $f(x)=\sum_{y \in X} d(x, y)$
- eccentricity $f(x)=\max _{y \in X} d(x, y)$
- PCA coordinates
- Eigenfunctions of graph laplacians.
- Functions detecting outliers.
- Distance to a root point.
- Prior knowledge

Mapper in practice

Parameters:

- function $f: P \rightarrow \mathbb{R}$
- cover \mathcal{I} of $\operatorname{im}(f)$ by open intervals
- clustering algorithm \mathcal{C}

Uniform cover:

- resolution / granularity: r (diameter of intervals)
- gain: g (percentage of overlap)

Mapper in practice

Parameters:

- function $f: P \rightarrow \mathbb{R}$
- cover \mathcal{I} of $\operatorname{im}(f)$ by open intervals
- clustering algorithm \mathcal{C}

Uniform cover:

- resolution / granularity: r (diameter of intervals)
- gain: g (percentage of overlap)

Intuition:

- small $r \rightarrow$ finer resolution, more nodes.
- large $r \rightarrow$ rougher resolution, less nodes.
- small $g \rightarrow$ less connectivity, nerve dimension small.
- large $g \rightarrow$ more connectivity, nerve dimension large.

Mapper in practice

Parameters:

- function $f: P \rightarrow \mathbb{R}$
- cover \mathcal{I} of $\operatorname{im}(f)$ by open intervals
- clustering algorithm \mathcal{C}

Classical choices:

- any clustering algorithm works
- different clustering algorithms/parameters for each preimage
- for theoretical reasons, we prefer to work with hierarchical clustering with (predefined) neighborhood size δ

Mapper in practice

Parameters:

- function $f: P \rightarrow \mathbb{R}$
- cover \mathcal{I} of $\operatorname{im}(f)$ by open intervals
- clustering algorithm \mathcal{C}

Build a neighboring graph (kNN,...)

Take the connected components of the subgraph spanned by the vertices in the preimage $f^{-1}(U)$.

Mapper in practice

$G_{\delta}=\delta$-neighborhood graph

Choice of parameters

In practice, trial-and-error:
high-dimensional data sets ${ }^{40,48}$. This is performed automatically within the software, by deploying an ensemble machine learning algorithm that iterates through overlapping subject bins of different sizes that resample the metric space (with replacement), thereby using a combination of the metric location and similarity of subjects in the network topology. After performing millions of iterations, the algorithm returns the most stable, consensus vote for the resulting 'golden network' (Reeb graph), representing the multidimensional data shape ${ }^{12,40}$.

Choice of parameters

$$
f=f_{x}, \delta=1 \%
$$

Choice of parameters

$$
f=f_{x}, \delta=1 \%
$$

I. ToMATo algorithm

1. Introduction to hierarchical and mode-seeking clustering
2. ToMATo algorithm and guarantees

II. Mapper algorithm

1. Reeb spaces and Mappers
2. Confidence intervals

Reeb Graph

Reeb graph \sim Mapper with extremely small resolution

Reeb Graph

Mapper \sim pixelized Reeb graph

Reeb Graph

[Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique, Reeb, C. R. Acad. Sci. Paris, 1946]

$$
\begin{gathered}
x \sim y \Longleftrightarrow\left[f(x)=f(y) \text { and } x, y \text { belong to same cc of } f^{-1}(\{f(x)\})\right] \\
\text { Def: } \mathrm{R}_{f}(X):=X / \sim
\end{gathered}
$$

Reeb Graph

[Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique, Reeb, C. R. Acad. Sci. Paris, 1946]

$$
\begin{gathered}
x \sim y \Longleftrightarrow\left[f(x)=f(y) \text { and } x, y \text { belong to same cc of } f^{-1}(\{f(x)\})\right] \\
\text { Def: } \mathrm{R}_{f}(X):=X / \sim
\end{gathered}
$$

Reeb Graph

[Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique, Reeb, C. R. Acad. Sci. Paris, 1946]

$$
\begin{gathered}
x \sim y \Longleftrightarrow\left[f(x)=f(y) \text { and } x, y \text { belong to same cc of } f^{-1}(\{f(x)\})\right] \\
\text { Def: } \mathrm{R}_{f}(X):=X / \sim
\end{gathered}
$$

Prop: $\mathrm{R}_{f}(X)$ is a graph when (X, f) is Morse or of Morse type.

Prop: $H_{*}\left(\mathrm{R}_{f}(X)\right)=H_{*}(X) / \bar{H}_{*}(X)$.

Reeb Graph

[Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique, Reeb, C. R. Acad. Sci. Paris, 1946]

$$
\begin{gathered}
x \sim y \Longleftrightarrow\left[f(x)=f(y) \text { and } x, y \text { belong to same cc of } f^{-1}(\{f(x)\})\right] \\
\text { Def: } \mathrm{R}_{f}(X):=X / \sim
\end{gathered}
$$

Prop: $\mathrm{R}_{f}(X)$ is a graph when (X, f) is Morse or of Morse type.

horizontal homology \sim 'those homology classes that are included in a finite union of levelsets of f^{\prime}

Prop: $\left.H_{*}\left(\mathrm{R}_{f}(X)\right)=H_{*}(X) \bar{H}_{*} X\right)$.

Graph Descriptor

Thm: $D_{\tilde{f}}$ provides a bag-of-features descriptor for $\mathrm{R}_{f}(X)$:
$\operatorname{Ord}_{0} \tilde{f} \longleftrightarrow$ downward branches
$\operatorname{Ext}_{0} \tilde{f} \longleftrightarrow$ trunks (cc)
$\operatorname{Rel}_{1} \tilde{f} \longleftrightarrow$ upward branches
$\operatorname{Ext}_{1} \tilde{f} \longleftrightarrow$ loops

Graph Descriptor

Thm: $D_{\tilde{f}}$ provides a bag-of-features descriptor for $\mathrm{R}_{f}(X)$:
$\operatorname{Ord}_{0} \tilde{f} \longleftrightarrow$ downward branches
$\operatorname{Ext}_{0} \tilde{f} \longleftrightarrow$ trunks (cc)
$\operatorname{Ext}_{1} \tilde{f} \longleftrightarrow$ loops

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Graph Descriptor

The construction of $D_{\tilde{f}}$ is based on extended persistence, which uses a family of excursion sets (sublevel then superlevel sets) of the Reeb graph.

Extension to Mapper

Reeb graph is a telescope (stratified space):
$Y_{0} \times\left[a_{-1}, a_{0}\right] \cup_{\psi_{-1}} X_{0} \times\left\{a_{0}\right\} \cup_{\phi_{0}} Y_{1} \times\left[a_{0}, a_{1}\right] \cup_{\psi_{0}} X_{1} \times\left\{a_{1}\right\} \cup_{\phi_{1}} \ldots$

Idea: deform the Reeb graph so that it becomes the Mapper and track the corresponding changes in the persistence diagram $D_{\tilde{f}}$.

Operation 1: Merge $M_{a, b}$

$$
\begin{aligned}
& \left(Y_{i-1} \times\left[a_{i-1}, a_{i}\right]\right) \cup_{\psi_{i-1}}\left(X_{i} \times\left\{a_{i}\right\}\right) \cup_{\phi_{i}} \ldots \cup_{\psi_{j-1}}\left(X_{j} \times\left\{a_{j}\right\}\right) \cup_{\phi_{j}}\left(Y_{j} \times\left[a_{j}, a_{j+1}\right]\right) \\
& \left(Y_{i-1} \times\left[a_{i-1}, \bar{a}\right]\right) \cup_{f_{i-1}}\left(\tilde{f}^{-1}([a, b]) \times\{\bar{a}\}\right) \cup_{g_{j}}\left(Y_{j} \times\left[\bar{a}, a_{j+1}\right]\right)
\end{aligned}
$$

Operation 2: Split $S p_{a_{i}, \epsilon}$

$$
\left(Y_{i-1} \times\left[a_{i-1}, a_{i}\right]\right) \cup_{\psi_{i-1}}\left(X_{i} \times\left\{a_{i}\right\}\right) \cup_{\phi_{i}}\left(Y_{i} \times\left[a_{i}, a_{i+1}\right]\right)
$$

$$
\begin{gathered}
\left(Y_{i-1} \times\left[a_{i-1}, a_{i}-\epsilon\right]\right) \cup_{\psi_{i-1}^{a_{i}-\epsilon}}\left(X_{i} \times\left\{a_{i}-\epsilon\right\}\right) \cup_{\mathrm{id}}\left(X_{i} \times\left[a_{i}-\epsilon, a_{i}+\epsilon\right]\right) \cup_{\mathrm{id}} \\
\left(X_{i} \times\left\{a_{i}+\epsilon\right\}\right) \cup_{\phi_{i}^{a_{i}+\epsilon}}\left(Y_{i} \times\left[a_{i}+\epsilon, a_{i+1}\right]\right)
\end{gathered}
$$

Operation 3: Shift $S h_{a_{i}, \epsilon}$

$$
\left(Y_{i-1} \times\left[a_{i-1}, a_{i}\right]\right) \cup_{\psi_{i-1}}\left(X_{i} \times\left\{a_{i}\right\}\right) \cup_{\phi_{i}}\left(Y_{i} \times\left[a_{i}, a_{i+1}\right]\right)
$$

$$
\left(Y_{i-1} \times\left[a_{i-1}, a_{i}+\epsilon\right]\right) \cup_{\psi_{i-1}}\left(X_{i} \times\left\{a_{i}+\epsilon\right\}\right) \cup_{\phi_{i}}\left(Y_{i} \times\left[a_{i}+\epsilon, a_{i+1}\right]\right)
$$

Formula Reeb graph \rightarrow Mapper

Let \mathcal{I} be the cover of $\operatorname{im}(f)$

Formula Reeb graph \rightarrow Mapper

Let \mathcal{I} be the cover of $\operatorname{im}(f)$

- $M_{\mathcal{I}}$ is the union of all $M_{I_{k}}$ and $M_{I_{k, k+1}}$ for $I \in \mathcal{I}$

Formula Reeb graph \rightarrow Mapper

Let \mathcal{I} be the cover of $\operatorname{im}(f)$

- $M_{\mathcal{I}}$ is the union of all $M_{I_{k}}$ and $M_{I_{k, k+1}}$ for $I \in \mathcal{I}$

- $S p_{\mathcal{I}}$ is the union of all $S p_{\epsilon, \bar{a}}$ with ϵ small

Formula Reeb graph \rightarrow Mapper

Let \mathcal{I} be the cover of $\operatorname{im}(f)$

- $M_{\mathcal{I}}$ is the union of all $M_{I_{k}}$ and $M_{I_{k, k+1}}$ for $I \in \mathcal{I}$

- $S p_{\mathcal{I}}$ is the union of all $S p_{\epsilon, \bar{a}}$ with ϵ small
- $S h_{\mathcal{I}}$ is the union of all $S h_{\epsilon_{1}, \bar{a}+\epsilon}$ and $S h_{\epsilon_{2}, \bar{a}-\epsilon}$ with $\epsilon_{1}, \epsilon_{2}$ small

Formula Reeb graph \rightarrow Mapper

Let \mathcal{I} be the cover of $\operatorname{im}(f)$

- $M_{\mathcal{I}}$ is the union of all $M_{I_{k}}$ and $M_{I_{k, k+1}}$ for $I \in \mathcal{I}$

- $S p_{\mathcal{I}}$ is the union of all $S p_{\epsilon, \bar{a}}$ with ϵ small
- $S h_{\mathcal{I}}$ is the union of all $S h_{\epsilon_{1}, \bar{a}+\epsilon}$ and $S h_{\epsilon_{2}, \bar{a}-\epsilon}$ with $\epsilon_{1}, \epsilon_{2}$ small
- $M_{\mathcal{I}}^{\prime}$ is the union of all $M_{I_{k}}$ for $I \in \mathcal{I}$

Formula Reeb graph \rightarrow Mapper

Let \mathcal{I} be the cover of $\operatorname{im}(f)$

- $M_{\mathcal{I}}$ is the union of all $M_{I_{k}}$ and $M_{I_{k, k+1}}$ for $I \in \mathcal{I}$

- $S p_{\mathcal{I}}$ is the union of all $S p_{\epsilon, \bar{a}}$ with ϵ small
- $S h_{\mathcal{I}}$ is the union of all $S h_{\epsilon_{1}, \bar{a}+\epsilon}$ and $S h_{\epsilon_{2}, \bar{a}-\epsilon}$ with $\epsilon_{1}, \epsilon_{2}$ small
- $M_{\mathcal{I}}^{\prime}$ is the union of all $M_{I_{k}}$ for $I \in \mathcal{I}$

$$
\mathrm{M}_{f}(X, \mathcal{I})=M_{\mathcal{I}}^{\prime} \circ S h_{\mathcal{I}} \circ S p_{\mathcal{I}} \circ M_{\mathcal{I}}\left(\mathrm{R}_{f}(X)\right)
$$

Formula Reeb graph \rightarrow Mapper
Let \mathcal{I} be the cover of $\operatorname{im}(f)$

$$
\mathrm{M}_{f}(X, \mathcal{I})=M_{\mathcal{I}}^{\prime} \circ S h_{\mathcal{I}} \circ S p_{\mathcal{I}} \circ M_{\mathcal{I}}\left(\mathrm{R}_{f}(X)\right)
$$

Formula Reeb graph \rightarrow Mapper

Let \mathcal{I} be the cover of $\operatorname{im}(f)$

$$
\mathrm{M}_{f}(X, \mathcal{I})=M_{\mathcal{I}}^{\prime} \circ S h_{\mathcal{I}} \circ S p_{\mathcal{I}} \circ M_{\mathcal{I}}\left(\mathrm{R}_{f}(X)\right)
$$

Descriptor for Mapper

$$
\text { Def: } D_{\tilde{f}, \mathcal{I}}:=\operatorname{Ord} \tilde{f} \backslash Q_{\tilde{I}}^{\text {Ord }} \cup \operatorname{Rel} \tilde{f} \backslash Q_{\tilde{I}}^{\mathrm{Rel}} \cup \operatorname{Ext} \tilde{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ext}}
$$

Descriptor for Mapper

Def: $D_{\tilde{f}, \mathcal{I}}:=\operatorname{Ord} \tilde{f} \backslash Q_{\mathcal{I}}^{\text {Ord }} \cup \operatorname{Rel} \tilde{f} \backslash Q_{\mathcal{I}}^{\mathrm{Rel}} \cup \operatorname{Ext} \tilde{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ext}}$
Thm: $D_{\tilde{f}, \mathcal{I}}$ provides a bag-of-features descriptor for $\mathrm{M}_{f}(X, \mathcal{I})$:
$\operatorname{Ord}_{0} \longleftrightarrow$ downward branches
Rel $_{1} \longleftrightarrow$ upward branches

Descriptor for Mapper

Let \mathcal{I} minimal cover of $\operatorname{Im} f \subseteq \mathbb{R}$. For $I \in \mathcal{I}$, let $I=I^{-} \sqcup \tilde{I} \sqcup I^{+}$, and define the staircases $Q_{\mathcal{I}}$ with:

Descriptor for ${ }^{n}{ }^{n}$

Structure of Mapper

Def: $D_{\tilde{f}, \mathcal{I}}:=\operatorname{Ord} \tilde{f} \backslash Q_{\mathcal{I}}^{\text {Ord }} \cup \operatorname{Rel} \tilde{f} \backslash Q_{\mathcal{I}}^{\mathrm{Rel}} \cup \operatorname{Ext} \tilde{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ext}}$
Thm: $D_{\tilde{f}, \mathcal{I}}$ provides a bag-of-features descriptor for $\mathrm{M}_{f}(X, \mathcal{I})$:

| $\operatorname{Ord}_{0} \longleftrightarrow$ downward branches |
| :--- | :--- |
| $\operatorname{Rel}_{1} \longleftrightarrow$ upward branches |\(| \begin{aligned} \& \operatorname{Ext}_{0} \longleftrightarrow trunks (cc)

\& \operatorname{Ext}_{1} \longleftrightarrow loops\end{aligned}\)
Cor: $D_{\tilde{f}, \mathcal{I}}=D_{\tilde{f}}$ whenever the resolution r of \mathcal{I} is smaller than the smallest distance from $D_{\tilde{f}} \backslash \Delta$ to the diagonal Δ.

Stability of Mapper

Def: $D_{\tilde{f}, \mathcal{I}}:=\operatorname{Ord} \tilde{f} \backslash Q_{\mathcal{I}}^{\text {Ord }} \cup \operatorname{Rel} \tilde{f} \backslash Q_{\mathcal{I}}^{\mathrm{Rel}} \cup \operatorname{Ext} \tilde{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ext}}$
Thm: $D_{\tilde{f}, \mathcal{I}}$ provides a bag-of-features descriptor for $\mathrm{M}_{f}(X, \mathcal{I})$:
$\operatorname{Ord}_{0} \longleftrightarrow$ downward branches Rel $_{1} \longleftrightarrow$ upward branches

Ext $_{0} \longleftrightarrow$ trunks (cc)
Ext $_{1} \longleftrightarrow$ loops
... and distance to staircase boundary measures (in-)stability of each feature w.r.t. perturbations of (X, f, \mathcal{I})

Stability of Mapper

Stability of Mapper

Stability of Mapper

Def: $D_{\tilde{f}, \mathcal{I}}:=\operatorname{Ord} \tilde{f} \backslash Q_{工}^{\operatorname{Ord}} \cup \operatorname{Rel} \tilde{f} \backslash Q_{\tilde{I}}^{\operatorname{Rel}} \cup \operatorname{Ext} \tilde{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ext}}$

Stability of Mapper

Def: $D_{\tilde{f}, \mathcal{I}}:=\operatorname{Ord} \tilde{f} \backslash Q_{\mathcal{I}}^{\text {Ord }} \cup \operatorname{Rel} \tilde{f} \backslash Q_{\mathcal{I}}^{\mathrm{Rel}} \cup \operatorname{Ext} \tilde{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ext}}$
Thm: For any functions $f, f^{\prime}: X \rightarrow \mathbb{R}$ of Morse type,

$$
d_{\mathcal{I}}\left(D_{\tilde{f}, \mathcal{I}}, D_{\tilde{f}^{\prime}, \mathcal{I}}\right) \leq\left\|f-f^{\prime}\right\|_{\infty}
$$

Stability of Mapper

Def: $D_{\tilde{f}, \mathcal{I}}:=\operatorname{Ord} \tilde{f} \backslash Q_{\mathcal{I}}^{\text {Ord }} \cup \operatorname{Rel} \tilde{f} \backslash Q_{\mathcal{I}}^{\mathrm{Rel}} \cup \operatorname{Ext} \tilde{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ext}}$
Thm: For any functions $f, f^{\prime}: X \rightarrow \mathbb{R}$ of Morse type,

$$
d_{\mathcal{I}}\left(D_{\tilde{f}, \mathcal{I}}, D_{\tilde{f}^{\prime}, \mathcal{I}}\right) \leq\left\|f-f^{\prime}\right\|_{\infty}
$$

Extensions to:

- perturbations of X
- perturbations of \mathcal{I}

I. ToMATo algorithm

1. Introduction to hierarchical and mode-seeking clustering
2. ToMATo algorithm and guarantees

II. Mapper algorithm

1. Reeb spaces and Mappers
2. Confidence intervals

Mapper in practice

$G_{\delta}=\delta$-neighborhood graph

Statistics for Mapper

Questions:

- Statistical properties of the estimator $\mathrm{M}_{f, \delta}^{\bullet}\left(\hat{X}_{n}, \mathcal{I}\right)$?
- Convergence to the ground truth $\mathrm{R}_{f}(X)$ in d_{b} ? Deviation bounds?

Statistics for Mapper

Let $\mathrm{M}_{f, \delta}\left(\hat{X}_{n}, \mathcal{I}\right)$ denote $\mathrm{M}_{f}\left(G_{\delta}, \mathcal{I}\right)$

1. Link between $\mathrm{R}_{f}(X)$ and $\mathrm{M}_{f, \delta}\left(\hat{X}_{n}, \mathcal{V}\right)$?
a. support $\rightarrow \delta$-neighborhood graph
b. Reeb graph \rightarrow Mapper

$$
X \rightarrow G_{\delta}\left(\hat{X}_{n}\right)
$$

2. Link between $\mathrm{M}_{f, \delta}\left(\hat{X}_{n}, \mathcal{I}\right)$ and $\mathrm{M}_{f, \delta}^{\bullet}\left(\hat{X}_{n}, \mathcal{I}\right)$? intersections given by metric graph \rightarrow intersections given by points

Statistics for Mapper

1. Link between $\mathrm{R}_{f}(X)$ and $\mathrm{M}_{f, \delta}\left(\hat{X}_{n}, \mathcal{I}\right)$?

Statistics for Mapper

1. Link between $\mathrm{R}_{f}(X)$ and $\mathrm{M}_{f, \delta}\left(\hat{X}_{n}, \mathcal{I}\right)$? support $\rightarrow \delta$-neighborhood graph
[Reeb Graphs: Approximation and Persistence, Dey, Wang, DCG, 2013]

Thm: If $4 d_{H}\left(X, \hat{X}_{n}\right) \leq \delta \leq \min \left\{\frac{1}{4} \operatorname{rch}(X), \frac{1}{4} \rho(X)\right\}$, then one has:

$$
d_{b}\left(D_{\tilde{f}}, D_{\tilde{f}_{\mathrm{PL}}}\right) \leq 2 \omega(\delta)
$$

where \tilde{f}_{PL} is the piecewise-linear approximation of \tilde{f} defined on $\mathrm{R}_{f}\left(G_{\delta}\left(\hat{X}_{n}\right)\right)$.

Statistics for Mapper

1. Link between $\mathrm{R}_{f}(X)$ and $\mathrm{M}_{f, \delta}\left(\hat{X}_{n}, \mathcal{I}\right)$? support $\rightarrow \delta$-neighborhood graph
[Reeb Graphs: Approximation and Persistence, Dey, Wang, DCG, 2013]

Thm: If $4 d_{H}\left(X, \hat{X}_{n}\right) \leq \delta \leq \min \left\{\frac{1}{4} \operatorname{rch}(X), \frac{1}{4} \rho(X)\right\}$, then one has:

$$
d_{b}\left(D_{\tilde{f}}, D_{\tilde{f}_{\mathrm{PL}}}\right) \leq 2 \omega(\delta)
$$

where \tilde{f}_{PL} is the piecewise-linear approximation of \tilde{f} defined on $\mathrm{R}_{f}\left(G_{\delta}\left(\hat{X}_{n}\right)\right)$.
Reeb graph \rightarrow Mapper
Thm: $d_{b}\left(D_{\tilde{f}_{\mathrm{PL}}}, D_{\tilde{f}_{\mathrm{PL}}, \mathcal{I}}\right) \leq r$.

Statistics for Mapper

1. Link between $\mathrm{R}_{f}(X)$ and $\mathrm{M}_{f, \delta}\left(\hat{X}_{n}, \mathcal{I}\right)$?
ω : modulus of continuity of f, defined as $\omega: \delta \mapsto \sup \{|f(x)-f(y)|: d(x, y) \leq \delta\}$ rch: reach of X.
ρ : radius of convexity of X : largest r s.t. geodesic balls of radius r are convex.
d_{H} : Hausdorff distance.

Statistics for Mapper

Def: The distance function to a compact $M \subset \mathbb{R}^{d}, d_{M}: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$is:

$$
d_{M}(x)=\inf _{p \in M}\|x-p\|
$$

Def: The Hausdorff distance between two compact sets $M, M^{\prime} \subset \mathbb{R}^{d}$ is:

$$
d_{H}\left(M, M^{\prime}\right)=\sup _{x \in \mathbb{R}^{d}}\left|d_{M}(x)-d_{M^{\prime}}(x)\right|
$$

Statistics for Mapper

$\Gamma_{M}(x)=\left\{y \in M: d_{M}(x)=\|x-y\|\right\}$
Def: The medial axis of M is:

$$
\mathcal{M}(M)=\left\{x \in \mathbb{R}^{d}:\left|\Gamma_{M}(x)\right| \geq 2\right\}
$$

Def: The reach of $M, \operatorname{rch}(M)$ is the smallest distance from $\mathcal{M}(M)$ to M :

$$
\operatorname{rch}(M)=\inf _{y \in \mathcal{M}(M)} d_{M}(y)
$$

Statistics for Mapper

2. Link between $\mathrm{M}_{f, \delta}\left(\hat{X}_{n}, \mathcal{I}\right)$ and $\mathrm{M}_{f, \delta}^{\bullet}\left(\hat{X}_{n}, \mathcal{I}\right)$?
intersections given by metric graph \rightarrow intersections given by points
Thm: If there are no intersection-crossing edges, then

$$
\mathrm{M}_{f, \delta}\left(\hat{X}_{n}, \mathcal{I}\right) \simeq \mathrm{M}_{f, \delta}^{\bullet}\left(\hat{X}_{n}, \mathcal{I}\right)
$$

and thus we can define $D_{\dot{f}, \mathcal{I}}^{\bullet}:=D_{\tilde{f}, \mathcal{I}}$.

Statistics for Mapper

intersection-crossing

911	\|	$\cdots \cdots$
Шw	॥	
पणा	I	-
\square	॥	
. . . .		\cdots
		$\mathrm{M}_{\mathrm{M}_{, j}\left(\hat{X}_{n}, \mathcal{L}\right)} \stackrel{\bullet}{\bullet}$

Statistics for Mapper

Gathering everything, it only remains to upper bound $d_{H}\left(X, \hat{X}_{n}\right)$ (which is random since \hat{X}_{n} is random).

Hyp-Def: μ is called (a, b)-standard if:

$$
\mu(B(x, r)) \geq \min \left\{1, a r^{b}\right\} \text { for all } x \in X \text { and } r>0
$$

Then it is known that one has asymptotically almost surely:

$$
d_{H}\left(X, \hat{X}_{n}\right) \leq C(a, b)\left(\frac{\log n}{n}\right)^{1 / b}
$$

Statistics for Mapper

Thm: If μ is (a, b)-standard and f is c-Lipschitz then for:

$$
\begin{aligned}
\delta_{n}= & 4\left(\frac{2 \log n}{a n}\right)^{1 / b}, g_{n} \in\left(\frac{1}{3}, \frac{1}{2}\right), r_{n}=\frac{c \delta_{n}}{g_{n}}, \quad \text { one has } \forall \varepsilon>0 \\
& \sup _{\mu \in \mathcal{P}} \mathbb{E}\left[d_{b}\left(D_{\tilde{f}_{\mathrm{PL}}, \mathcal{I}_{n}}^{\bullet}, D_{\tilde{f}}\right)\right] \leq C\left(\frac{\log n}{n}\right)^{1 / b},
\end{aligned}
$$

where C depends only on a, b, c.
More generally: $r_{n}=\omega\left(\delta_{n}\right) / g_{n}$

Statistics for Mapper

Moreover, the estimator $D_{\dot{\tilde{f}}_{\mathrm{PL}}, \mathcal{I}_{n}}$ is minimax optimal (up to a $\log n$ factor) on the space \mathcal{P} of (a, b)-standard probability measures on X.

Thm: For any estimator $\widehat{\mathrm{R}}$, one has:

$$
\sup _{\mu \in \mathcal{P}} \mathbb{E}\left[d_{b}\left(D_{\widehat{\mathrm{R}}}, D_{\tilde{f}}\right)\right] \geq C\left(\frac{1}{n}\right)^{1 / b}
$$

where C depends only on a, b.
Proof: Consequence of Le Cam's lemma.

Statistics for Mapper

Thm: If μ is (a, b)-standard and f is c-Lipschitz then for:

$$
\begin{aligned}
\delta_{n}= & 4\left(\frac{2 \log n}{\boxed{a} n}\right)^{1 / b}, g_{n} \in\left(\frac{1}{3}, \frac{1}{2}\right), r_{n}=\frac{c \delta_{n}}{g_{n}}, \quad \text { one has } \forall \varepsilon>0 \\
& \sup _{\mu \in \mathcal{P}} \mathbb{E}\left[d_{b}\left(D_{\tilde{f}_{\mathrm{PL}}, \mathcal{I}_{n}}^{\bullet}, D_{\tilde{f}}\right)\right] \leq C\left(\frac{\log n}{n}\right)^{1 / b},
\end{aligned}
$$

where C depends only on a, b, c.
More generally: $r_{n}=\omega\left(\delta_{n}\right) / g_{n}$

Statistics for Mapper

Fortunately, one can use subsampling to tune δ_{n} : let $\beta>0, s(n)=\frac{n}{\log (n)^{1+\beta}}$ and define $\delta_{n}:=d_{H}\left(\hat{X}_{n}^{s(n)}, \hat{X}_{n}\right)$, where $\hat{X}_{n}^{s(n)}$ is a subset of \hat{X}_{n} of size $s(n)$.

Statistics for Mapper

n points sampled
i.i.d. according to μ

Fortunately, one can use subsampling to tune δ_{n} : let $\beta>0, s(n)=\frac{n}{\log (n)^{1+\beta}}$ and define $\delta_{n}:=d_{H}\left(\hat{X}_{n}^{s(n)}, \hat{X}_{n}\right)$, where $\hat{X}_{n}^{s(n)}$ is a subset of \hat{X}_{n} of size $s(n)$.

Thm: If μ is (a, b)-standard and f is c-Lipschitz, then for:

$$
\begin{aligned}
\delta_{n}= & d_{H}\left(\hat{X}_{n}^{s(n)}, \hat{X}_{n}\right), g_{n} \in\left(\frac{1}{3}, \frac{1}{2}\right), r_{n}=\frac{c \delta_{n}}{g_{n}}, \text { one has } \forall \varepsilon>0 \\
& \sup _{\mu \in \mathcal{P}} \mathbb{E}\left[d_{b}\left(D_{\tilde{f}_{\mathrm{PL}}, \mathcal{I}_{n}}^{\bullet}, D_{\tilde{f}}\right)\right] \leq C\left(\frac{\log (n)^{2+\beta}}{n}\right)^{1 / b},
\end{aligned}
$$

where C depends only on a, b, c.

Statistics for Mapper

Ex: PCA filter

Π_{1} : orthonormal projection onto first principal direction of covariance operator. $\widehat{\Pi}_{1}$: orthonormal projection onto first principal direction of empirical covariance operator.

$$
\mathbb{E}\left[d_{b}\left(D_{\widehat{\Pi}_{1, \mathrm{PL}}^{\bullet}, \mathcal{I}_{n}}, D_{\tilde{\Pi}_{1}}\right)\right] \lesssim\left(\frac{\log (n)^{2+\beta}}{n}\right)^{1 / b} \vee \frac{1}{\sqrt{n}}
$$

[PCA-Kernel Estimation, Biau, Mas, Statistics \& Risk Modeling with Applications in Finance and Insurance, 2012]

Get confidence region with $\mathbb{E}[d(\cdot, \cdot)]=\int_{\alpha} \mathbb{P}(d(\cdot, \cdot) \geq \alpha) \mathrm{d} \alpha$.

Multivariate case: filter-based pseudometric

[Topological Analysis of Nerves, Reeb
Spaces, Mappers, and Multiscale Mappers, Dey, Mémoli, Wang, SoCG, 2017]

Def: The filter-based pseudometric $d_{f}: M \times M \rightarrow \mathbb{R}$ is defined as

$$
d_{f}\left(x, x^{\prime}\right)=\inf _{\gamma \in \Gamma\left(x, x^{\prime}\right)} \operatorname{diam}_{Y}(f \circ \gamma),
$$

where $\Gamma\left(x, x^{\prime}\right)$ denotes the set of all continuous paths $\gamma:[0,1] \rightarrow M$ such that $\gamma(0)=x$ and $\gamma(1)=x^{\prime}$, and diam_{Y} denotes the diameter of a subset of Y.

Def: The Gromov-Hausdorff metric $d_{G H}$ between $\left(M, d_{f}\right),\left(M^{\prime}, d_{f^{\prime}}\right)$ is defined as

$$
d_{G H}\left(M, M^{\prime}\right)=\frac{1}{2} \inf _{C} \sup _{\left(x, x^{\prime}\right),\left(y, y^{\prime}\right) \in C}\left|d_{f}(x, y)-d_{f^{\prime}}\left(x^{\prime}, y^{\prime}\right)\right|,
$$

where C denotes the set of all correspondences between M and M^{\prime} (subsets of $M \times M^{\prime}$ s.t. projections onto M and M^{\prime} are surjective).

Statistics for multivariate Mapper

Statistics for multivariate Mapper

Thm: If μ and $f \# \mu$ are (a, b)-standard, then for δ_{n} as before, one has:

$$
\mathbb{E}\left[d_{G H}\left(\mathrm{M}_{f, \delta_{n}}^{\bullet}\left(\hat{X}_{n}, \mathcal{I}\right), \mathrm{R}_{f}(X)\right)\right] \leq 5 \cdot \mathbb{E}[\operatorname{res}(\mathcal{I})]+C \omega\left(\frac{\log (n)^{i}}{n}\right.
$$

where C depends only on a, b, and res denotes the resolution of the cover \mathcal{I}, i.e., the diameter of its elements.

Moreover, using covers with hypercubes or K-means, or quantized Distance-to-Measure allows to bound $\mathbb{E}[\operatorname{res}(\mathcal{I})] . \quad \begin{gathered}{[A k \text {-points-based distance for robust geometric inference, }} \\ \text { Brecheteau, Levarad, Bermoilli, } 2020]\end{gathered}$

Statistics for multivariate Mapper

Thm: If $w(u) \leq c u^{\gamma}$ for some $c>0, \gamma \in(0,1)$, and for a cover \mathcal{I} given by thickening a k-means partition in \mathbb{R}^{D} :

$$
\mathbb{E}[\operatorname{res}(\mathcal{I})] \leq k^{-\left(2 \gamma^{2}\right) /\left(2 \gamma b+b^{2}\right)}+\left(\frac{k D}{n}\right)^{\gamma /(2 b+4 \gamma)}
$$

Experiments 85\% confidence intervals

Experiments 85\% confidence intervals

Experiments 85\% confidence intervals

Experiments Chromosome conformation capture

Initial state

Cross-linking

Fragmentation

Ligation
\qquad

Reverse cross-linking

Experiments Chromosome conformation capture

Formal identification of cell cycle with 95% confidence

Experiments Spinal cord data

Section Specific SPLiT-Seq and scATAC-Seq

Experiments Spinal cord data

Lumbar

Experiments Spinal cord data

Lumbar

Experiments Machine learning classifier

Machine Learning Classifier Monitoring

Filter $=$ confidence of Random Forest classifier (in \mathbb{R}^{3})

Experiments Machine learning classifier

Machine Learning Classifier Monitoring

Filter $=$ confidence of Random Forest classifier (in \mathbb{R}^{6})

Other works

Another line of work is about the interleaving distance between Mappers and Reeb spaces seen as cosheaves Open $\left(\mathbb{R}^{d}\right) \rightarrow$ Set.
[Convergence between categorical representations of Reeb space and Mapper, Munch, Wang, SoCG, 2016]

Prop: For $f: X \rightarrow \mathbb{R}^{d}, d_{I}\left(\mathcal{C}\left(\mathrm{R}_{f}(X)\right), \mathcal{C}\left(\mathrm{M}_{f}(X, \mathcal{I})\right)\right) \leq \operatorname{res}(\mathcal{I})$.
[Probabilistic convergence and stability of random Mapper graphs, Brown et al., JACT, 2020]

Prop: For $f: X \rightarrow \mathbb{R}$,

$$
\lim _{n \rightarrow+\infty} \mathbb{P}\left(d_{I}\left(\mathcal{C}\left(\mathrm{R}_{f}(X)\right), \mathcal{C}\left(\mathrm{M}_{f}\left(\hat{X}_{n}, \mathcal{I}\right)\right)\right) \leq \operatorname{res}(\mathcal{I})\right)=1
$$

I. ToMATo algorithm

1. Introduction to hierarchical and mode-seeking clustering
2. ToMATo algorithm and guarantees

II. Mapper algorithm

1. Reeb spaces and Mappers
2. Confidence intervals

Thanks! Questions?

