
Computational Geometry Learning

Exam

MPRI

Duration 2h

You are allowed access to the official course notes, the slides, and any personal notes.

1 Separation of a point set

Let p1, . . . , pn be n points of Rd. We want to compute two points pi and pj , i, j ∈ {1, . . . , n}, such that

||pi − pj || = min
1≤k<l≤n

||pk − pl||.

The segment joining the points pi and pj is called a minimal segment and ||pi − pj || is called the separation
of the point set.

A first algorithm

1. Show that a minimal segment is an edge of the Delaunay triangulation of p1, . . . , pn. Deduce an algorithm
to calculate a minimal segment. Analyze its complexity.

In the following we propose a randomized incremental algorithm to compute a minimal segment.

The planar case : d = 2

The algorithm considers the points one by one and maintains, at each step, a minimal segment.

For convenience, the index of a point is the step at which it has been inserted. For i = 2, . . . , n, let Si =
{p1, . . . , pi}, i.e. the set of the i first points and let δi be the minimal distance between two points of Si.
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Let Gi denote the grid of size δi, i.e. each cell in the grid is a square with edges of length δi and the vertices
of the grid are the points (λδi, µδi), where λ and µ are integers. Each point of Si is stored in the cell of the
grid it belongs to. For simplicity, we assume that any point of Si belongs to exactly one cell of the grid. Let
B be the cell of the grid that contains the new point pi+1

2a. Show that each cell contains at most four points of Si.
2b. Show that if the shortest distance between two points of Si+1 is realized between pi+1

and a point pj (j ≤ i), then pj ∈ B or to one of the eight cells incident to B.
Deduce that, if one knows B, the shortest distance, noted δi+1, between pi+1 and a point of

Si can be computed in time O(1).

If δi+1 ≥ δi, we set δi+1 := δi, Gi+1 := Gi, and we store pi+1 in Gi+1.

Otherwise, we build a new grid Gi+1 of size δi+1, we locate and we store the points of Si+1 in Gi+1.

The algorithm then considers the next point.

3. Detail the algorithm. In particular, show that, given Si and δi, one can represent Gi by a data structure
of size O(i) that allows 1. to insert a new point in time O(log i) and 2. to report the points that belong to a
given cell in time O(log i). Deduce the cost of one step of the algorithm when δi+1 = δi and when δi+1 6= δi.

4. Show that if the points are inserted in random order, the probability that δi+1 6= δi is ≤ 2
i+1 (consider the

case where δi is realized by a unique pair of points and then the case where δi is realized for several pairs of
points). Deduce that the expected cost of the algorithm is O(n log n).

Extension to higher dimensions

5. Show that the previous results can be extended in d-dimensional space. How does the constant in the
O() depend on d ?

2 Voronoi

Let P = {p1, . . . , pn} be a set of points of Rd in general position (no 2 points are equal, no 3 points are
aligned (d >= 2), no 4 points are coplanar (d >= 3) or cocircular (d = 2), etc). To each pi, we associate
its Voronoi cell V (pi) = {x ∈ Rd : ∀pj ∈ P, ||x − pi|| ≤ ||x − pj ||}. Similarly, we associate to pi its Far
cell F (pi) = {x ∈ Rd : ∀pj ∈ P, ||x − pi|| ≥ ||x − pj ||}. The Voronoi cells and their faces / intersections
form a cell-complex called the Voronoi diagram of P. The Far cells and their faces / intersections form a
cell-complex called the Far diagram of P.
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Give a short proof (you can use existing theorems on polytopes) to justify your answer to each question.

1. When is V (pi) empty ?

2. When is F (pi) empty ?

3. When is V (pi) non-convex ?

4. When is F (pi) non-convex ?

5. When is V (pi) unbounded ?

6. When is F (pi) unbounded ?

7. What is the maximal combinatorial complexity of the Voronoi diagram ?

8. What is the maximal combinatorial complexity of the Far diagram ?

(bonus) Suggest an algorithm to build the Far diagram in R2 and analyze its complexity.

3 Homology and persistence

Note : when asked for a persistence diagram, you may instead draw a persistence barcode. In both cases,
you need to write the coordinates of every relevant point on the picture.

Figure 1 – corners of a square of side length 2

For the points in Figure 1 (in R2 with the Euclidean distance), and without justification :

— Draw the persistence diagram of the Čech filtration.

— Recall that the Rips complex Rρ(P ) of parameter ρ ≥ 0 on points P is the maximal complex, w.r.t
inclusion, with vertex set P , and containing all edges connecting points at distance at most ρ. Draw
the persistence diagram of the Rips filtration.

— Draw the persistence diagram of the sublevelset filtration of the distance function to the point set.

What are the Betti numbers (for homology with Z/2Z-coefficients) of the 1-dimensional complex in Figure 2 ?
Give an explicit computation.
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Figure 2 – 1-skeleton of a tetrahedron
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Figure 3

4 Homology and Morse theory

— Draw the Hasse diagram of the complex in Figure 3 and give a Morse matching with exactly two
critical cells.

— Give the boundary maps for the corresponding Morse complex (with Z/2Z-coefficients).

— Give an expression (with generators) for the kernels and images of the boundary maps of the Morse
complex, and deduce the Betti numbers (for homology with Z/2Z-coefficients) of the complex in
Figure 3.
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