Computational Geometry Learning
Exam

MPRI

Duration 2h30

You are allowed access to the official course notes, the slides, and any personal notes.

1 Minimal enclosing shell

We consider sets of points in R? in generic position. A shell is a region in the plane between two concentric
circles. An enclosing shell for a point set P is a shell that contains all the points of P, see Figure 1. We
define a minimal enclosing shell (MES) of P as an enclosing shell with minimal area.

Answer the following questions, with justification, in any convenient order.

1. Does there always exist a MES?
2. Is it unique?
3. Describe without justification a MES for the point sets in Figures 2 and 3 and give their area.

4. Give an efficient algorithm to compute a MES. Hint: find a change of variables that makes everything
linear.

5. Does this generalize to higher dimensions?

2 Voronoi counting

Terminology reminder: for a set of points in the plane, its Voronoi diagram consists of O-cells (vertices),
1-cells (segments) and 2-cells (polygons).



Figure 1: An enclosing shell

Figure 2: First point set

Figure 3: Second point set
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Figure 4: Left: Torus obtained by identifying the edges of two triangles. Right: simplicial complex triangu-
lating the torus.

For a set of n points in R? in generic position, what is the mazimum number of 4-cells that a Voronoi
diagram can have, as a function of n and d > 17 Give some justification.

3 Problem

A torus is the surface obtained from gluing the edges of a square respecting the gluing pattern of Figure 4
(left), i.e., by identifying edges with same arrow pattern in pairs, without reverting arrows.

e Show that Figure 4 (left) is not a simplicial complex.

e Figure 4 (right) gives a simplicial complex of the torus. Give the number of simplices of each dimension
of Figure 4 (right), and compute explicitly the Euler characteristic of the torus.

e Denote by v, e, and f the number of vertices, edges, and triangles of a simplicial complex, and x
its Euler characteristic. Prove that any simplicial complex triangulating a compact surface with no
boundary satisfies:

— 2e = 3f,
—e=3(v—x),
—e< fu(v—1).

e Prove that the simplicial complex triangulating the torus in Figure 4 has the minimal number of
triangles.



We say that a simplex 01 <jex 09 iff the string z12zs ... 24 <jex Y1¥2 - - - Yo in lexicographic order, where
the x; are the labels of vertices of o1 (i.e., 01 = {x1,%2,...,24}), the y; are the labels of vertices of o
(i.e., 02 ={y1,...,ya}), and the labels of vertices satisfy z; < ;41 and y; < y;j41 for all appropriate
7 and j. We define similarly <jex and =jex.

We say that pairs of simplices (71, 01) <jex (T2, 02) iff, either 71 <jox T2, Or 7| =jex T2 and o1 <jex 02.
Consider the following heuristic to compute a Morse matching (which is a small adaptation of the one
seen in class):

— A set of available simplices; A+ K, X,T,S <
— While A # ()

« if there is a free pair (7,0), 7 C o, in A, pick the minimal such pair (79, 09) in lex order, and
match 7y with og:
+ A A\ {70, 00},
T+ TU {7’0},
: SHSU{U()} :>w(7'0):0'0
 else pick the mazimal (w.r.t. to inclusion) simplex (y € A that is minimal in lex order, and
make it critical:

- set X <= X U{(},
- A AN {Go}-

Explain why this computes a Morse matching.

Run the heuristic above by hand to compute a Morse matching for the simplicial complex in Figure 4
[left]. Detail explicitly the first five iterations of the while loop, with the following syntax: for
1<i<5,

“i: make xyz critical/pair zy <> zyz”.

Give explicitly the sets X and all the pairs 7 <+ w(7) at the end of computation.
Give the boundary matrices ;¥ in Z/2Z for the Morse complex obtained by the heuristic, for all d > 0.

Give an explicit basis for the kernel and images of each boundary map Oj{ , and prove that for the
torus, fo =1, f1 = 2, and B2 = 1 (with Z/2Z coefficients).

Deduce from the construction above the Z/2Z homology of the torus, minus the inside of one triangle
(any triangle). Justify.

Give a triangulation of the circle with minimal number of edges, and compute its homology.



o A short exact sequence of chain complezes is a sequence:

Oocqﬁ P 0

D E 0

of five chain complexes and four chain maps, where for any two consecutive chain maps:

X f

y -2 7,

we have imf = kerg.

Let K be a simplicial complex, and K;, Ky C K two sub complexes of K. Prove that K; U Ky and
K; N K> are simplicial complexes, and design a short exact sequence for the chain complexes:

02 C(KiNKy) —2— C(Ky) & C(Ks) —2— C(K; UKs) —2— 0,

where the boundary maps of C(K;) & C(Kz) is 01 @ 02, for 0; the boundary map of K;, and d the
boundary map for K.

Prove that the maps ¢ and v you have designed are chain maps, and prove that the sequence is a
short exact sequence.

e A long exact sequence of vector spaces is a (possibly infinite) sequence of vector spaces and linear maps:

fi v fi—1 Vi, fi—2
satisfying im f; = ker f;_1.
We accept the following lemma:
Lemma. If:
0—2sc—2sp-—* 5" 9

is a short exact sequence of chain complexes, then there exists the following long exact sequence of
their homology groups:

- — Hy(C) — Hy(D) — Hy(E) — Hy1(C) — -+ -,
for all integers d € Z.

Compute the Z/2Z-Betti numbers of the double torus in Figure 5 using the lemma above, and all
results obtained so far. Prove formally your statement. Recall that for a finite simplicial complex,
H; =0 for all d <O0.



Figure 5: A double torus is obtained by taking two tori, removing a disk in each of them, and gluing the
two circle boundaries together.

4 Exercise

We call a persistence diagram a multi-set of points {(z;,y;) : i € I} U{(z,z) : x € R>o}, for a set of indices
I possibly infinite and every pair (z;,y;) satisfying 0 < z; < y; < +oo for all ¢ € I.

e Show that the bottleneck distance between two persistence diagrams satisfies the triangle inequality.

e Prove that two distinct persistence diagrams (as multi-sets) can be at bottleneck distance 0 from one
another.

e Prove that two persistence diagrams:

7

D, = {(xgl),ygl)) cielfU{(zr,z):x € Rsg} and Dy= {(acg.z),y]@)) cjeJU{(z,x):z € R}

(1)

that are distinct as multi-sets, and for which additionally x;

j € J, can be at bottleneck distance 0 from one another.

< yl(l) and x§-2) < y](?) for all 2 € I and

5 Exercise

Give the persistence diagram (with filtration values based on distances) of the Rips filtration given by the
point cloud of Figure 6 in the Euclidean plane. Detail your calculation.



(0,0) (4,0)

Figure 6: Point cloud in the Euclidean plane.



