
Computational Geometry Learning

Exam

MPRI

Duration 2h30

You are allowed access to the official course notes, the slides, and any personal notes.

1 Minimal enclosing shell

We consider sets of points in R2 in generic position. A shell is a region in the plane between two concentric
circles. An enclosing shell for a point set P is a shell that contains all the points of P, see Figure 1. We
define a minimal enclosing shell (MES) of P as an enclosing shell with minimal area.

Answer the following questions, with justification, in any convenient order.

1. Does there always exist a MES?

2. Is it unique?

3. Describe without justification a MES for the point sets in Figures 2 and 3 and give their area.

4. Give an efficient algorithm to compute a MES. Hint: find a change of variables that makes everything
linear.

5. Does this generalize to higher dimensions?

2 Voronoi counting

Terminology reminder: for a set of points in the plane, its Voronoi diagram consists of 0-cells (vertices),
1-cells (segments) and 2-cells (polygons).
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Figure 1: An enclosing shell
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Figure 2: First point set

0 2

1

Figure 3: Second point set
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Figure 4: Left: Torus obtained by identifying the edges of two triangles. Right: simplicial complex triangu-
lating the torus.

For a set of n points in Rd in generic position, what is the maximum number of 4-cells that a Voronoi
diagram can have, as a function of n and d ≥ 1? Give some justification.

3 Problem

A torus is the surface obtained from gluing the edges of a square respecting the gluing pattern of Figure 4
(left), i.e., by identifying edges with same arrow pattern in pairs, without reverting arrows.

• Show that Figure 4 (left) is not a simplicial complex.

• Figure 4 (right) gives a simplicial complex of the torus. Give the number of simplices of each dimension
of Figure 4 (right), and compute explicitly the Euler characteristic of the torus.

• Denote by v, e, and f the number of vertices, edges, and triangles of a simplicial complex, and χ
its Euler characteristic. Prove that any simplicial complex triangulating a compact surface with no
boundary satisfies:

– 2e = 3f ,

– e = 3(v − χ),

– e ≤ 1
2v(v − 1).

• Prove that the simplicial complex triangulating the torus in Figure 4 has the minimal number of
triangles.
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• We say that a simplex σ1 ≤lex σ2 iff the string x1x2 . . . xd ≤lex y1y2 . . . yd′ in lexicographic order, where
the xi are the labels of vertices of σ1 (i.e., σ1 = {x1, x2, . . . , xd}), the yj are the labels of vertices of σ2
(i.e., σ2 = {y1, . . . , yd′}), and the labels of vertices satisfy xi < xi+1 and yj < yj+1 for all appropriate
i and j. We define similarly <lex and =lex.

We say that pairs of simplices (τ1, σ1) ≤lex (τ2, σ2) iff, either τ1 <lex τ2, or τ1 =lex τ2 and σ1 ≤lex σ2.

Consider the following heuristic to compute a Morse matching (which is a small adaptation of the one
seen in class):

– A set of available simplices; A←[ K, X,T, S ←[ ∅
– While A 6= ∅:

∗ if there is a free pair (τ, σ), τ ⊂ σ, in A, pick the minimal such pair (τ0, σ0) in lex order, and
match τ0 with σ0:

· A←[ A \ {τ0, σ0},
· T ←[ T ∪ {τ0},
· S ←[ S ∪ {σ0} ⇒ ω(τ0) = σ0

∗ else pick the maximal (w.r.t. to inclusion) simplex ζ0 ∈ A that is minimal in lex order, and
make it critical:

· set X ←[ X ∪ {ζ0},
· A←[ A \ {ζ0}.

Explain why this computes a Morse matching.

• Run the heuristic above by hand to compute a Morse matching for the simplicial complex in Figure 4
[left]. Detail explicitly the first five iterations of the while loop, with the following syntax: for
1 ≤ i ≤ 5,

“i: make xyz critical/pair xy ↔ xyz”.

Give explicitly the sets X and all the pairs τ ↔ ω(τ) at the end of computation.

• Give the boundary matrices ∂Xd in Z/2Z for the Morse complex obtained by the heuristic, for all d ≥ 0.

• Give an explicit basis for the kernel and images of each boundary map ∂Xd , and prove that for the
torus, β0 = 1, β1 = 2, and β2 = 1 (with Z/2Z coefficients).

• Deduce from the construction above the Z/2Z homology of the torus, minus the inside of one triangle
(any triangle). Justify.

• Give a triangulation of the circle with minimal number of edges, and compute its homology.
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• A short exact sequence of chain complexes is a sequence:

0
0−−−−→ C

φ−−−−→ D
ψ−−−−→ E

0−−−−→ 0

of five chain complexes and four chain maps, where for any two consecutive chain maps:

X
f−−−−→ Y

g−−−−→ Z,

we have imf = kerg.

Let K be a simplicial complex, and K1,K2 ⊆ K two sub complexes of K. Prove that K1 ∪K2 and
K1 ∩K2 are simplicial complexes, and design a short exact sequence for the chain complexes:

0
0−−−−→ C(K1 ∩K2)

φ−−−−→ C(K1)⊕C(K2)
ψ−−−−→ C(K1 ∪K2)

0−−−−→ 0,

where the boundary maps of C(K1)⊕C(K2) is ∂1 ⊕ ∂2, for ∂1 the boundary map of K1, and ∂2 the
boundary map for K2.

Prove that the maps φ and ψ you have designed are chain maps, and prove that the sequence is a
short exact sequence.

• A long exact sequence of vector spaces is a (possibly infinite) sequence of vector spaces and linear maps:

· · · fi−−−−→ Vi
fi−1−−−−→ Vi−1

fi−2−−−−→ · · ·

satisfying imfi = kerfi−1.

We accept the following lemma:

Lemma. If:
0

0−−−−→ C
φ−−−−→ D

ψ−−−−→ E
0−−−−→ 0

is a short exact sequence of chain complexes, then there exists the following long exact sequence of
their homology groups:

· · · −→ Hd(C) −→ Hd(D) −→ Hd(E) −→ Hd−1(C) −→ · · · ,

for all integers d ∈ Z.

Compute the Z/2Z-Betti numbers of the double torus in Figure 5 using the lemma above, and all
results obtained so far. Prove formally your statement. Recall that for a finite simplicial complex,
Hd = 0 for all d < 0.
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Figure 5: A double torus is obtained by taking two tori, removing a disk in each of them, and gluing the
two circle boundaries together.

4 Exercise

We call a persistence diagram a multi-set of points {(xi, yi) : i ∈ I} ∪ {(x, x) : x ∈ R≥0}, for a set of indices
I possibly infinite and every pair (xi, yi) satisfying 0 ≤ xi ≤ yi < +∞ for all i ∈ I.

• Show that the bottleneck distance between two persistence diagrams satisfies the triangle inequality.

• Prove that two distinct persistence diagrams (as multi-sets) can be at bottleneck distance 0 from one
another.

• Prove that two persistence diagrams:

D1 = {(x(1)i , y
(1)
i ) : i ∈ I} ∪ {(x, x) : x ∈ R≥0} and D2 = {(x(2)j , y

(2)
j ) : j ∈ J} ∪ {(x, x) : x ∈ R≥0}

that are distinct as multi-sets, and for which additionally x
(1)
i < y

(1)
i and x

(2)
j < y

(2)
j for all i ∈ I and

j ∈ J , can be at bottleneck distance 0 from one another.

5 Exercise

Give the persistence diagram (with filtration values based on distances) of the Rips filtration given by the
point cloud of Figure 6 in the Euclidean plane. Detail your calculation.
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Figure 6: Point cloud in the Euclidean plane.
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