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Abstract

Predicting and optimizing the performance of ray shooting is a very important prob-
lem in computer graphics due to the severe computational demands of ray tracing
and other applications, e.g., radio propagation simulation. Aronov and Fortune were
the first to guarantee an overall performance within a constant factor of optimal
in the following model of computation: build a triangulation compatible with the
scene, and shoot rays by locating origin and traversing until hit is found. Triangula-
tions are not a very popular model in computer graphics, but space decompositions
like kd-trees and octrees are used routinely. Aronov and coll. [1] developed a cost
measure for such decompositions, and proved it to reliably predict the average cost
of ray shooting.

In this paper, we address the corresponding optimization problem on octrees
with the same cost measure as the optimizing criterion. More generally, we solve
the generalization for generalized octrees in any d dimensions with scenes made
up of (d − 1)-dimensional simplices. We give a construction of trees which yields
cost O(M), where M is the infimum of the cost measure on all trees. Sometimes,
a balance condition is important (informally, balanced trees ensures that adjacent
leaves have similar size): we also show that rebalancing does not affect the cost
by more than a constant multiplicative factor. These are the first and only known
results that provide performance guarantees on the approximation factor for 3-
dimensional ray shooting with this realistic model of computation. Our results have
been validated experimentally by Aronov and coll. [2].

Key words: Ray shooting, cost model, cost prediction, average performance,
octree, space decomposition, optimization
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1 Introduction

Given a set S of objects, called a scene, the ray-shooting problem asks, given
a ray, what is the first object in S intersected by this ray. Solving this problem
is essential in answering visibility queries. Such queries are used in computer
graphics (e.g., ray tracing and radiosity techniques for photo-realistic 3D ren-
dering [15]), radio- and wave-propagation simulation [8], and a host of other
practical problems.

A popular approach to speed up ray-shooting queries is to construct a space
decomposition such as a quadtree in 2D or an octree in 3D. The query is then
answered by traversing the leaves of the tree as they are intersected by the ray,
and for each cell in turn, testing for an intersection between the ray and the
subset of objects intersecting that cell. The performance of such an approach
greatly depends on the quality of that space decomposition.

Unfortunately, not much is understood about how to measure this quality.
Practioners use a host of heuristics and parameters of the scene, of which the
object count is less important than, e.g., the size of the objects in the scene,
and other properties of the object distribution (density, depth complexity,
surface area of the subdivision). Those parameters are used to develop au-
tomatic termination criteria for recursively constructing the decompositions
(see Section 3). While they perform acceptably well most of the time, none
of these heuristics performs better than the brute-force method in the worst
case. More importantly, occasionally the termination criteria will produce a
bad decomposition, and in any case there is no way to know the quality of the
decomposition because lower bounds are hard to come by.

In [1], we proposed a measure for bounded-degree space decompositions, based
on the surface area heuristic. This cost measure is a simplification of a more
complicated but theoretically sound cost measure: under certain assumptions
on the ray distribution, the more complicated cost measure provably reflects
the cost of shooting an average ray using the space decomposition. The simpli-
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fied cost measure has a very similar predicting power for many scenes encoun-
tered in computer graphics. This has been experimentally verified [1, 2]. We
conjecture it would take a very artificially constructed and unrealistic scene
to bring forth a discrepancy. It thus makes sense to try and optimize the data
structure with respect to this simplified cost measure.

In this paper, we are interested in constructing trees with cost as low as
possible, with a guaranteed approximation ratio. First, we observe that tree
construction heuristics used in computer graphics do not have a bounded
approximation ratio. We give and analyze algorithms that produce trees with
cost O(M), where M is a lower bound on the cost of any tree for the given
scene. We also examine the effect of rebalancing the tree on the cost measure,
and prove that rebalancing only increases the cost by a constant multiplicative
factor. The only objects we consider are simplices: points and segments inside
the unit square [0, 1]2 in R2, or points, segments and triangles inside the unit
cube [0, 1]3 in R3, and (d − 1)-simplices in Rd. We however assume the real-
RAM model so as to avoid a discussion on the bit-length of the coordinates.
(This is also justified by our application.)

In a follow-up paper [2] to [1], we evaluate empirically several heuristics, in-
cluding those presented here, to optimize the cost value of an octree for a
given scene. Both our algorithm (3-greedy in this paper’s terminology) and
a simpler heuristic (which we call 1-greedy or greedy without lookahead) give
the best cost. In fact, we find that all the reasonable variants end up with
approximately the same cost which must be within a factor O(1) of optimal.
There is no guarantee that this cost is within (1 + ε) of optimal, though.
The polynomial-time algorithm suggested in the remark of Section 3.4 (full
subdivision to depth log2 n + C followed by dynamic programming) would be
guaranteed to give a O(1) approximation factor as well, and we’d even ex-
pect it to be very close to optimal, but it was too time- and space-consuming
for us to try in [2]. Nevertheless, we find it hard to believe that the cost to
which all these variants converge could be sub-optimal, and it thus appears
experimentally that our procedure yields a near-optimal tree in practice.

Related work. There has been a lot of work on quadtrees and octrees in
the mesh generation and graphics community (see the book by Samet [25], the
thesis of Moore [20], or the survey by Bern and Eppstein [7] for references).
Since they are used for discretizing the underlying space, usual considerations
include the tradeoff between the size of the tree and their accuracy with respect
to a certain measure (that usually evaluates a maximum approximation error
with respect to some surface). These are not usually relevant for ray shooting.

There is, however, a rich history of data-structure optimization for ray shoot-
ing in computer graphics. (See the surveys in [1,2,12] and refs. therein.) Cost
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measures have been proposed for ray shooting in octrees by MacDonald and
Booth [18], Reinhard and coll. [24], Whang and coll. [31], and for other struc-
tures, such as bounding volume hierarchies [16, 27, 29], bintrees [18], BSP-
trees [22], uniform grids [13] and hierarchical uniform grids [11]. We should
also mention the work of Havran and coll. [17], who propose a method to de-
termine experimentally the most efficient space subdivision for a given scene,
by picking a similar scene (according to certain characteristics such as size,
number of objects, densities, etc.) in a database of scenes for which the most
efficient scheme has been determined. All of these approaches use heuristic
criteria (sometimes very effectively) but none offer theoretical guarantees. In
particular, the cost function c of MacDonald and Booth is the same as ours
(see Section 2.1 below) and their greedy procedure almost identical to our
1-greedy heuristic. They do not however derive the theoretically correct for-
mulation c∗ nor establish the connection to c, but they do explore a wider
parameter space by allowing the subdivision of their bintree to be different
than the spatial median (which we do not in this work).

2 General cost measure results

2.1 Motivation, definitions, and problem statement

In this paper we consider the problem of shooting rays into a scene consisting
of solids, represented by their boundaries. In particular, we assume that these
boundaries have already been subdivided into elements of constant combinato-
rial complexity, so that the only objects we consider are simplices of dimension
at most d− 1 in Rd: points and segments inside the unit square [0, 1]2 in R2,
points, segments and triangles inside the unit cube [0, 1]3 in R3, and (d− 1)-
simplices in Rd.

The algorithm generally used for ray shooting with the help of a (convex)
spatial subdivision T such as a quadtree (in 2D) or an octree (in 3D) is the
following: when shooting a ray, the cells of that subdivision (in our context,
the leaves of the octree) are traversed in the order they are encountered by
the ray, starting with the cell that contains the origin of the ray. For each cell
traversed, all the objects intersecting that cell are tested against the ray to
find the first hit. If a hit is found inside the cell, then the traversal is stopped
and the first such hit is returned, otherwise the algorithm proceeds to the
next cell in the traversal. If it reaches the outside boundary of the enclosing
volume, the ray is declared unoccluded and the algorithm returns “no hit”.

The worst-case cost of this algorithm depends on the stabbing number of the
subdivision. While it is not hard to fabricate scenes with a worst-case linear
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time ray, in a typical application of ray shooting such as ray tracing or wave
propagation simulation, many rays are shot. The quantity of interest is really
the average cost for a random ray following a certain distribution of rays. A
common heuristic in computer graphics consists of approaching the density
of rays hitting a convex cell by its perimeter area, as motivated by Crofton’s
formula in integral geometry [26]. In fact, this is rigorous for line traversal
if the line distribution is the rigid-motion invariant distribution, but this is
ill-defined for rays. In [1], we observed that for a uniform distribution of rays
originating either outside the subdivision or on the surface of objects, the
density of rays traversing a cell was proportional to the area of the perimeter
plus the total area of the perimeter of the objects contained in the cell. The
average cost of traversing a cell is proportional to the number of intersection
tests performed multiplied by the density, plus some overhead γ for finding
the next cell in the traversal, 5 and thus the following cost measure should be
considered for modeling the total traversal costs [1]: 6

c∗S(T ) :=
∑

σ∈L(T )

(
γ + |Sσ|

)
×
(
λd−1(σ) + λd−1(Sσ ∩ σ)

)
, (1)

where L(T ) is the set of leaves of the tree, Sσ is the set of scene objects
intersecting a leaf σ, λd−1(σ) is the perimeter length (if d = 2) or surface
area (if d = 3) of σ, and λd−1(Sσ ∩ σ) is the perimeter or area of the portion
contained in σ of the objects in Sσ. The last term λd−1(Sσ ∩ σ) is somewhat
complicated to evaluate, and so the following simplification was introduced
in [1]:

cS(T ) :=
∑

σ∈L(T )

(
γ + |Sσ|

)
× λd−1(σ). (2)

This simplified cost function provably models the cost of finding all the ob-
jects intersected by a random line (with respect to the rigid-motion invariant
distribution of lines), and was already proposed earlier by MacDonald and
Booth [18] but without the connection to c∗S. MacDonald and Booth [18] (for
bintrees) and Aronov and coll. [1,2] (for bounded-degree spatial subdivisions,
with extensive experimentation for octree) argue and provide ample experi-
mental evidence that this cost function also reflects the average cost of ray
shooting using the spatial subdivision induced by the leaves of T .

5 Technically speaking, the cost functions make sense only for spatial subdivisions
with bounded degree, so that the cost of finding the next cell in the traversal can
be bounded by a constant γ. But this is also true in an amortized sense for octrees,
see [1] for the technical details.
6 Strictly speaking, the average cost of shooting a ray is c∗S(T )/µ where µ is the
total density of the ray distribution, i.e. the surface area of the outer perimeter of
T plus the total surface area of the objects in S. For the purpose of optimizing
ray shooting costs, however, if the outer bounding box and the scene are given,
the denominator is constant and we need only concentrate on finding the best T
optimizing c∗S(T ) or cS(T ).
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The problem we then consider is, given a scene S, an overall bounding box
B, and a cost function such as Eq. (2), to construct an octree T subdividing
B which minimizes cS(T ). Note that all the definitions as phrased above are
valid for d ≥ 4 as well as for 2D and 3D, and for the sake of generality we
consider below the problem for any fixed d ≥ 2. Since S and B are also fixed,
we will often omit them in the notation and use simply c(T ). In order to obtain
theoretical guarantees, we restrain ourselves to split the octree nodes at their
spatial median, although others have investigated other choices to heuristically
improve costs. Even with this, we do not know if our problem is NP-complete
or not. Nevertheless, we are not aware of any work providing optimality or
even any sublinear bound on the approximation ratio. Namely, all the known
termination criteria for subdividing an octree or other constructions mentioned
earlier have no known sublinear bound on their approximation ratio.

2.2 Tree and object costs

Observe that the cost measure expressed in Eq. (2) can be decomposed into
two terms: c(T ) = ct(T ) + co(T ). The first term,

ct(T ) := γ
∑

σ∈L(T )

λd−1(σ) = γλd−1(L(T )), (3)

where L(T ) denotes the set of leaves of T and λd−1 is extended to sets of
leaves by summation, is simply the tree total area (which is more than the
surface area of the bounding box). We call ct the tree cost. The second term∑

σ∈L(T ) |Sσ|λd−1(σ), can be computed object by object and this leads to

co(T ) :=
∑
s∈S

λd−1(Ls(T )), (4)

where Ls(T ) denote the set of leaves of T intersected by s, and again λd−1

is extended to sets of leaves by summation. We call co the object cost. Again,
note that λd−1(Ls(T )) is more than the perimeter of the union ∪s∈SLs(T ),
as it measures the sum of the perimeters of all the leaves intersected by the
object. (In particular, both sides of a face contribute if the face belongs to
the interior of ∪s∈SLs(T ).) It is useful to keep in mind the following simple
observations: when subdividing a leaf σ, the total tree cost of its children is
twice the tree cost of σ, and the contribution within σ to the object cost of an
object is multiplied by m/2d−1 where m ∈ [1 . . . 2d] is the number of children
intersected by the object. Note that m ≤ 3 for a segment in 2D and m ≤ 7 for
a triangle in 3D (unless they pass through the center of the cell). As the tree
grows finer, the tree cost increases while the object cost presumably decreases.

The following lemma was given in [9] for quadtrees, and rephrased here to
encompass any dimension as well.
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Lemma 1 For any d ≥ 2 and any set S of simplices of dimension at most
d− 1 in [0, 1]d, c(T ) ≥ 2dγ + d

√
2
∑

s∈S λd−1(s).

Proof. The tree cost cannot be less than λd−1([0, 1]d)γ = 2dγ, and the object
cost cannot be less than

∑
s∈S λd−1(s). We can improve this lower bound fur-

ther by noting that any leaf σ that is intersected by an object s has area at
least d

√
2 times λd−1(s ∩ σ). Indeed, the smallest ratio λd−1(σ)/λd−1(s ∩ σ)

happens when s maximizes λd−1(s∩σ); this happens for a diagonal segment of
length

√
2 for the unit square (of perimeter 4), and for a maximal rectangular

section of area
√

2 for the unit cube (of area 6). In fact, the maximal section
of the unit d-cube is

√
2 [6], hence the ratio is at least 2d/

√
2 = d

√
2 in any

dimension. 2

3 Tree construction schemes

All we have said so far is independent of the particular termination criterion
or algorithm used to construct the tree. In this section, we introduce several
construction schemes and explore their basic properties.

3.1 Terminology and notation

We follow the same terminology as [9], and generalize it to encompass any
dimension. For the d-cube [0, 1]d and the cells of the decomposition, we borrow
the usual terminology of polytopes (vertex, facet, h-face, etc.). The square is
a quadtree that has a single leaf (no subdivision), the cube is an octree with
a single leaf, and the d-cube is a single-leaf tree (for any d). We call this tree
unit and denote it by T (unit). If we subdivide this leaf recursively until depth
k, we get a complete tree (of depth k), denoted by T (complete)

k , and its leaves
form a regular d-dimensional grid with 2k intervals along each direction. Note
that the root has depth 0 and its children have depth 1. In a tree, if only the
cells incident to one facet (resp. d facets sharing a vertex, or touching any
of the 2d facets) of a cell are subdivided, and this recursively until depth k,
the subtree rooted at that cell is called a k-side (resp. k-corner and k-border)

tree, and denoted by T (side)
k (resp. T (corner)

k and T (border)
k ); see Figure 3.1 for an

illustration of the 2D case. In higher dimensions, there are other cases (one
for each dimension between 1 and d− 2). Generally speaking, we call the tree
obtained by recursively subdividing until depth k all the cells touching the
facets adjacent to given h-face a k-corner of order h (in dimension d), and

denote it T (h, d-corner)
k . A k-corner is of a corner of order 0, and a k-side is a

corner of order d − 1. All this notation is extended to starting from a cell
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Fig. 1. The k-side quadtree Q(side)
k (left), a corner Q(corner)

k (center), and a border
Q(border)

k (right).

σ instead of a unit tree, by substituting σ for T : for instance, the complete
subtree of depth k subdividing σ is denoted by σ

(complete)
k .

The subdivision operation induces a partial ordering ≺ on trees, whose min-
imum is the unit tree. Again, this partial ordering is extended to subtrees of
a fixed cell σ.

We consider algorithms for computing a tree for a given set S of objects, which
subdivide each cell recursively until some given termination criterion is satis-
fied. In particular, we may recursively subdivide the unit cube until each leaf
meets at most one object (or any fixed C). We call this the separation criterion,
and the resulting tree the minimum separating tree, denoted T (sep)(S), with

variants where the recursion stops at depth k, denoted T (sep)
k (S), or C > 1 de-

noted T (sep)
C (S). (Note that the depth of T (sep)

C is always infinite if more than
C simplices intersect.) In 3D, for non-intersecting triangles, a variant of [3]
stops the recursive subdivision also when no triangle edge intersects the leaf
(but any number of non-intersecting triangle interiors may slice the leaf). We
will not analyze this variant in this paper.

3.2 Examples of cost computation

As examples and for completeness, we compute the costs of some of the con-
figurations given above.

With no subdivision, the cost of the unit tree T (unit) is c(T (unit)) = 2d(γ + n).

For points, the cost of a full subdivision at depth k, T (complete)
k , is at most

2d(2kγ + 2dn
2k(d−1) ) because each point belongs to at most 2d leaves, and at least

2d(2kγ+ n
2k(d−1) ). The latter is the exact value if all the points fall in a single leaf

of T (complete)
k , and it happens if the binary expansions of all point coordinates

always have at least k + 1 bits.

The tree costs of the k-side, k-corner, and k-border, and more generally of
the k-corner of order h can be computed readily by noting that a k-side is a
half-scaled copy of 2d−1 empty trees and 2d−1 (k − 1)-sides, that a corner is

made of
(

d
i

)
half-scaled k-corners of order i, for every 0 ≤ i ≤ d− 1, and that
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a k-border is made of 2d half-scaled (k − 1)-corners:

ct(T (side)
k ) = 2dγ(k + 1),

ct(T (corner)
k ) =

2dγ

(2d−1 − 1)2
×
(
k
(
22d−1 − 21+d + 2

)
− 2d−1 + 1 +

2d−1 − 1

2k(d−1)

)
,

ct(T (border)
k ) = 2ct(T (corner)

k−1 )

Let Sn denote n distinct points very close to one corner of the unit cell,
let’s say the origin. Here, ‘very close’ means always within the cell incident
to that vertex. It’s then pointless to subdivide the other cells: since they
do not contain points of S, their cost would be doubled. After k levels of
recursively subdividing the incident cell, we obtain the tree T (sep)

k (Sn) whose

cost is c(T (sep)
k (Sn)) = 12γ + (n− 2γ)22−k for d = 2; for any d, the cost is

c(T (sep)
k (Sn)) =

2dn

2(d−1)k
+ 2dγ

(
1 +

1− 2(1−d)k

1− 21−d

)

Whether this is an improvement over T (unit) for any value of k depends on
n and γ. In particular, T (sep)

k (Sn) has cost lower than the unit tree for large

values of k only if n > 2γ in 2D, and n > 4
3
γ in 3D (n > 2d−1

2d−1−1
γ in general).

This example tells us that whether subdivision strategies based on the number
of objects in a cell—like the separation criterion—produce optimal or near-
optimal trees, depends strongly on the value of γ.

3.3 Dynamic programming and greedy strategies

As introduced in [9], the dynamic programming algorithm finds the tree that
minimizes the cost over all trees with depth at most k, which we denote by
T (opt)

k (S) (or σ
(opt)
k (S) if we start from a cell σ instead of the unit cell): the

algorithm starts with the complete tree T (complete)
k , and simply performs a

bottom-up traversal of all the nodes, while maintaining the optimum cost of
a tree rooted at that node. The decision whether to keep the subtree of a cell
or prune it is based on the cost of the cell vs. the sum of the optimum costs
of the subtrees rooted at its 2d children.

Unfortunately, the memory requirements of this algorithm are huge for large
values of k (although they remain polynomial if k = Θ(log n); see next sec-
tion). Therefore we also propose a greedy strategy with bounded lookahead:
the algorithm proceeds by recursively subdiving the nodes with a greedy ter-
mination criterion: when examining a cell σ, we run the dynamic programming
within σ with depth p (p is a parameter called lookahead). If the best sub-

9



tree σ(opt)
p (S) does not improve the cost of the unsubdivided node σ, then the

recursion terminates. Otherwise, we replace σ by the subtree σ(opt)
p (S) and

recursively evaluate the criterion for the leaves of σ(opt)
p (S). We call this the p-

greedy strategy and denote the resulting tree by T (p-greedy)(S) (or σ(p-greedy)(S)
if we start from a cell σ instead of the unit cube). Note that unlike all the
other trees constructed up to now, that tree could be infinite. We use the no-
tation T (p-greedy)

k to denote the tree constructed with the p-greedy lookahead
criterion combined with a maximum depth of k.

With one level of lookahead (p = 1), the greedy strategy simply examines
whether subdivision at one level decreases the cost measure. Below, we show
that this does not always yield good trees. We will analyze the greedy strategies
with one or more levels of lookahead, first for points, then for simplices. But
first, we must grapple with the issue of infinite depth.

3.4 Pruning beyond a given depth

The “optimal” tree may not have finite depth: it is conceivably possible to
decrease the cost by subdividing ad infinitum. Indeed, this is the case for
n > 2γ in the example of T (sep)

k (Sn) given at the end of section 3.2. So we let
M denote the infimum of c(T ) over all trees T for a scene S. (As a consequence
of Lemma 1, M ≥ 2dγ.) In order to have an algorithm that terminates, we
usually add an extra termination criterion such as a maximum depth k.

We now show that pruning a tree beyond depth k for some choice of k increases
the cost at most by a constant factor. We first show it for arbitrary convex
obstacles (simplices in particular). Then we improve on the result for the case
of points.

Lemma 2 Let T be a d-dimensional tree which stores a set S of n convex
objects of dimensions at most d − 1. For any fixed constant C ≥ 0 and k =
log2 n + C, let Tk be the tree obtained from T by removing every cell of depth
greater than k. Then c(Tk) = O(c(T )) with a constant depending on d, C and
γ (not on S nor n).

Proof. First, the tree cost only increases when subdividing, so that ct(Tk) ≤
ct(T ). The cells of depth less than k are the same in T and Tk, hence the
object cost of those cells of Tk is at most the object cost of T . It remains to
bound the object cost of the leaves of Tk that have depth k.

Let us consider an arbitrary object, and since we are only concerned with
depth k, let us consider the full subdivision of depth k instead of Tk. We let
K be 2k. This is a d-dimensional grid G of side K, with Kd cells. Our first
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purpose is to give an upper bound on the number of cells of this grid that
the object can intersect. We could not find a bound in the literature, so we
include it here for completeness:

Lemma 3 Let G be a K × · · · × K d-dimensional grid subdividing the unit
cube, with Kd cells. Any convex object s of dimension at most d− 1 intersects
at most (d + 1) ·

(
4dKd−2 + Kd−1λd−1(s)

)
cells of G.

Proof of Lemma 3. Since the dimension of s is at most d − 1, it belongs
to a hyperplane π: consider the coordinate ni of largest absolute value of a
vector n normal to π, and project the object s, the vector n, and the grid G
onto a (d− 1)-dimensional object s′, vector n′, and grid G ′ in the hyperplane
xi = 0. Note that λd−1(s

′) ≤ λd−1(s). By our choice of projection, each cell of
G ′ intersected by s′ is the projection of at most d + 1 cells of G intersected by
s. This is most easily seen by rewriting the equation of π as xini + x′n′ = π0,
or ∆xini +∆x′n′ = 0, which means that |∆xi| · |ni| ≤ |∆x′ · n′| ≤ ∑j 6=i |∆xj| ·
|nj| ≤ |ni|

∑
j 6=i |∆xj|, and thus when ∆x′ is in a cell of G ′, |∆xi| is at most

d − 1; in the worst case, this can span d + 1 cells (the bottom and top cells
being only touched by a single point). The (d− 2)-dimensional boundary of s′

is also convex, and may intersect at most Kd−1 − (K − 4)d−1 ≤ 4dKd−2 cells
(by convexity, the worst case occurs when the boundary is largest possible,
hence intersects all the border cells of G ′ and their neighbors). The relative
interior of s′ cannot contain more than Kd−1 · λd−1(s

′) cells of G ′, and the
lemma follows. 2

Proof of Lemma 2 (cont.) The area of a cell of G is 2dK1−d. The cost of the
object associated to depth k cells is then at most 2d(d + 1) (4d/K + λd−1(s)).
Summing over all objects gives a total of at most 2d(d+1) (4dn/K +

∑
s λd−1(s)).

Substituting 2log2 n+C for K shows that the combined object costs of the leaves
of Tk at depth k is at most 2d(d + 1)

(
d · 22−C +

∑
s λd−1(s)

)
. By Lemma 1,

this is at most max
{√

2(d + 1), d(d + 1)22−C/γ
}

times the cost of T . Putting

everything together, c(Tk) ≤
(
1 +
√

2(d + 1) + d(d + 1)22−C/γ
)
c(T ). 2

Remark. A choice of k = log2 n + C ensures that Tk has at most (2k)d =
O(nd) leaves, for any fixed d. Hence the algorithm which computes the full
subdivision at depth k and then applies the dynamic programming heuris-
tic provably computes a tree whose cost is O(M) in polynomial time, as a
consequence of Lemma 2.

Unfortunately, this cannot be extended to yield approximations within (1+ε).
But as a side note, for scenes consisting of points only and with slightly more
restrictive hypotheses on T , the depth k can be chosen so that Tk has size

O(n1+ 1
d−1 ) = O(n2) (for any d ≥ 2) and cost as close as desired to that of T .
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Lemma 4 Let T be a d-dimensional tree, which stores a set S of n points.
Assume that T does not contain empty internal nodes (i.e. that are subdvided
but do not contain any object). Let Tk be the tree obtained from T by removing
every cell of depth greater than k. Then, for every ε > 0 there exists a C
(that depends only on d, ε and γ but not on S nor n) such that, for k =

1
d−1

log2 n + C, we have
c(Tk) ≤ (1 + ε)c(T ).

Proof. The cost of a cell σ which contains nσ points and has depth k =
1

d−1
(log2 n + C) is c(σ) = (γ + nσ)2d · 2−k(d−1) = 2d(γ + nσ)/(2Cn). The proof

for points hinges on the fact that, unlike an arbitrary simplex, a point belongs
to at most 2d leaves, 7 and that to be subdivided, a cell needs to contain at
least one point. Hence, in Tk there are at most 2dn leaves that contain a point,
and

∑
σ nσ ≤ 2dn. Summing over all leaves at depth k which still contain

points, one gets

∑
σ∈Lk(T )

c(σ) ≤ 2d

n
(γ + nσ) · d2d+1(γ + 1)

2C
,

which can be made as small as ε2dγ for an appropriate value of C. By
Lemma 1, this implies that the cost of the non-empty leaves at depth k in
Tk is at most εc(T ). The leaves of Tk at depth less than k also belong to T ,
and the same holds as well for the leaves at depth k which do not contain any
point. Hence their total cost is at most c(T ) and the lemma follows. 2

This result may seem somewhat anecdotic, but scenes consisting of points only
have some relevance (see Section 4.2).

4 Constructing trees whose costs approach the optimal

4.1 General case: simplices

The following lemma was proven in [9] for the case d = 2. Its statement and
proof extend straightforwardly to higher dimensions.

Lemma 5 The lookahead greedy strategy does not always give (asymptoti-
cally) a cost-optimal tree. Specifically, for any k, there is a set S of n objects
such that no tree of depth at most k has cost less than 2d(γ + n), but some
tree of depth at least k + 1 has cost less than 2d(γ + n).

7 If this seems like nitpicking, consider that “point” might mean a very small sim-
plex. Thus this result for points applies equally to any collection of small objects,
where “small” means to be contained in some cube of side 2−k. See also Section 4.2.
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Fig. 2. An example of quadtree Q(2)
k,m; here m = 2 and d = 4.

The counterexample for d = 2 consists [9] of n copies of the segment pq, where
p = (1 − 2−m−1, 2−m−1), and q = (2−m−1, 1 − 2−m−1), and considering the

cost-optimal quadtree Q(2)
k,m of depth at most k. As long as k ≤ m + 1, the

situation is similar to the case where pq is the whole diagonal and the cost-
optimal quadtree of depth at most k is the square, as can easily be verified.
When k becomes larger, however, it becomes more cost-effective to subdivide
the corners, as shown by the quadtree in Figure 2 whose cost is less than
2d(γ + n).

Although the lookahead greedy strategy does not produce the optimal solu-
tion, in the counter-example above it does give a good approximation. In fact,
this can be proven for all scenes.

Theorem 6 Given a set S of convex objects of dimensions at most d − 1 in
the unit cube, let M be the infimum of c(T ) over all trees T storing S. There
is an integer p which depends only on d (p = 3 for d ≤ 3) such that the tree
T (p-greedy) constructed by the p-greedy strategy has cost c(T (p-greedy)) = O(M).

Proof. The intuition is that small objects behave well, and the cost of a big
object is bounded below by a constant times its size so it cannot be reduced
by very much. Let us look at a cell σ of the tree T (p-greedy): we are going to
show that, when the optimal decomposition of depth at most p of a cell σ does
not improve on the cost of σ, then the cost of σ is O(Mσ) where Mσ is the
infimum cost of all the possible tree subdivisions of σ. If this holds true for
every leaf σ of the p-greedy strategy, then c(Q(p-greedy)) = O(M) as well. We
will need a technical lemma:

Lemma 7 Let G be a K×· · ·×K d-dimensional grid subdividing the unit cube,
with Kd cells. For every d and K, there exist constants Gd(K) and Cd(K) > 0
such that for any convex object s of dimension at most d−1, either s intersects
at most Gd(K) cells of G, or else λd−1(s) ≥ Cd(K).
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Proof of Lemma 7. In two dimensions, a point intersects at most 4 cells,
and any segment intersecting at least five cells of G must have length at least
1/K, hence G2 = 4 and C2 = 1/K suffices. Intuitively, in three dimensions,
the maximum a segment can intersect is by joining two opposite endpoints
of the unit cube, leading to G3(K) = 7K − 6; in order to intersect any more
cells, it must subtend a triangle of height at least half a diagonal of the cells
of G, thus have an area of at least C3(K) =

√
3× (

√
3/2K)/2 = 3/(4K). The

same argument in higher dimension leads to Gd(K) = 2d(K−1)+1 and some
Cd(K) > 0. Unfortunately, a formal proof is much harder. We give an easier
proof which leads to slightly worse constants but works in any dimension.

Using the same notation as for Lemma 2, s projects onto some hyperplane
xi = 0 into an object s′, and s intersects at most (d+1) cells of G for every cell
of G ′ intersected by s′. We now argue that in d−1 dimensions, either s′ entirely
contains a cell of G ′ or else it is contained in a slab of width w = 2d

√
d/K.

Recall that any convex set has a pair of ellipsoids (called the Löwner-John
ellipsoids) e′ ⊆ s′ ⊆ e′′ such that s′ ⊆ de′. If the width of s′ is at least
2d
√

d/K in any direction, then the width of e′ is at least 2
√

d/K in any
direction as well and thus e′ contains a sphere of diameter 2

√
d/K, which

in turn must entirely contain a cell of G ′ (of diameter
√

d/K). In that case,
λd−1(s) ≥ λd−1(s

′) ≥ λd−1(e
′) ≥ 1/Kd−2. Otherwise, s′ is contained in a slab

of width w as claimed. Any of the N cells of G ′ intersected by this slab is
entirely contained in a slab of width w + 2

√
d, whose intersection with the

cube must be of (d− 1)-volume at least N/Kd−1 and at most w
√

2, since the
maximum section of a cube is

√
2 [6]. Thus N ≤ 2d

√
dKd−2. We may thus

take Cd(K) = 1/Kd−2 and Gd(K) = 2d(d + 1)
√

dKd−2. 2

Proof of Theorem 6 (cont.) We let K = 2p in the lemma, and choose p
as the smallest integer such that Gd(2

p) < (2p)d−1. Assume there are a ob-
jects intersecting at most Gd(2

p) cells, and b other objects. The cost of σ is

(γ +a+ b)λ1(σ). Since σ(complete)
p has cost at most

(
2pγ + a Gd(2p)

2p(d−1) + 2pb
)
λ1(σ),

which we assumed to be at least c(σ), we have c(σ) = (γ + a + b) λ1(σ) ≤(
2pγ + a Gd(2p)

2p(d−1) + 2pb
)
λ1(σ), which implies that a ≤ (γ+b)(2p−1)

(
1− Gd(2p)

2p(d−1)

)−1
.

By lemma 7, an object which belongs to more than Gd(p) cells has measure at
least Cd(p) so its contribution to the cost is at least (d

√
2Cd(2

p))λd−1(σ). The
optimal cost Mσ is then greater than (γ + bd

√
2Cd(2

p))λd−1(σ). We have then
proved that Mσ is at least a fixed fraction of the cost of σ, and the theorem
follows. 2

Already in 2D, the separating quadtree strategy does not work as well for
segments as for points, especially since it is not able to distinguish between a
segment that barely intersects the corner of the square and the diagonal (in
the first case it is usually good to subdivide, and in the second case it is not).
The lookahead p-greedy strategy is thus a true improvement.

14



4.2 The case of points

Arguably, the case of points is of theoretical interest only, but has relevance
since simplices are usually very small in a graphics scene (when they come
from a subdivision surface), and can be thought of as points. This is lent
credence by a recent trend: point cloud data (PCD) is becoming an important
primitive in computer graphics, and several algorithms for rendering them
have been given of late, which are amenable to our cost measure. (A good
introductory reference is the proceedings of the first Symposium on Point-
Based Graphics [14].)

In the plane, the 1- and 2-greedy strategy may produce a quadtree of cost Θ(n)
times the optimal cost, and so does 1-greedy in higher dimensions. Indeed,
this can be seen by placing n points in the center of the square. With no
subdivision, the cost is 4 (γ + n). With full subdivision to depth k ≥ 1, the
cost is 24γ +16(n− 2γ)/2k which tends to 24γ when k tends to infinity. After
one or two subdivisions, then, the cost is 8(n + γ) or 16γ + 4n, both of which
are higher than with no subdivision, hence the tree is not subdivided according
to the 1-greedy or the 2-greedy heuristic. This shows that the approximation
ratio is (n+γ)/6 = Θ(n). In any dimension, the same example shows that the
1-greedy strategy also has a bad approximation ratio of Θ(n). Nevertheless,
2-greedy (for d ≥ 3) and 3-greedy (for d = 2) both work near-optimally.

Lemma 8 Given a set S of n points in the unit d-cube, if M is the infi-
mum of c(T ) over all trees T , then c(T (3-greedy)) = O(M) for all d ≥ 2, and
c(T (2-greedy)) = O(M) for all d ≥ 3.

Proof. We prove that 3-greedy is near-optimal, for d ≥ 2. Then we indi-
cate what changes for 2-greedy when d ≥ 3. The cost of a cell σ is (γ +

|Sσ|)λ1(σ). The cost of a complete subdivision σ
(complete)
3 of σ to depth 3 is

(8γ + 1
8d−1

∑
p∈Sσ

np)λd−1(σ), where np is the number of leaves of that sub-
division that contain p. Since np is at most 2d, the latter cost is at most

(8γ + |Sσ|23−2d)λd−1(σ). If σ is a leaf of T (3-greedy), this means that σ
(opt)
3

is just the leaf σ, then certainly c(σ
(complete)
3 ) is greater than c(σ). Hence

8γ + |Sσ|23−2d ≥ γ + |Sσ|, i.e. |Sσ| = 7
1−23−2d γ = Cd. The only case when

the 3-greedy strategy fails, is when the lookahead says it is wrong to subdi-
vide whereas it is not. In that case, the number of points is at most Cdγ.
Then the cost is at most (1 + Cd)γλd−1(σ), and because of Lemma 1 this is
O(Mσ), where Mσ is the infimum cost of all the possible quadtree subdivisions
of σ. Since lookahead only subdivides a cell if it has a subtree that actually
improves the cost, necessarily T (3-greedy) is a subtree of T (opt) (where T (opt) is
any optimal 8 tree). Thus every leaf σ of T (3-greedy) is a cell of T (opt), and since

8 The cost M is an infimum and may not be achieved by any finite-depth tree. But
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c(σ) = O(Mσ) then c(T (3-greedy)) = O(T (opt)) = O(M) as well.

Redoing the computation with lookahead p = 2 for d ≥ 3, we find that
Cd = 7

1−22−d , and the rest of the proof follows similarly. 2

On the example given in that section, the separation criterion is near optimal.
In fact, Aronov and Schiffenbauer [4] have also and independently proven that
Q(AS-sep)(S) is near-optimal, where Q(AS-sep) uses a slightly different separation
criterion: subdivide a cell whenever it covers more than one point of S, and
also if any of its orthogonal (resp. diagonal) neighbors has depth which differs
by more than 1 (resp. 2). Note that their construction is valid only if all the
points in S are distinct and produces smooth quadtrees (see next section).

As for finding the optimal tree, the question is still open whether for given
values of γ (and maybe of n) there exists a p such that the lookahead greedy

strategy yields the optimal result, namely, the sequence c(T (p-greedy)
k ) converges

towards M as k tends to infinity. All we know is that if n = 5 and γ < 1 tends
to 1, the required p tends to infinity. We can also mention that if every point
belongs to at most one cell, then p = 1 leads to the optimal tree.

5 Rebalancing quadtrees and octrees

In all the applications of quadtrees and octrees, it can be important to main-
tain aspect ratio (hence starting with a unit cube) and to ensure that two
neighboring cells don’t have wildly differing sizes. This has led several authors
to propose balancing for trees. From our perspective, since the cost measure
of [1] provably relates to the cost of traversal only for balanced trees, we are
interested in balancing trees as well. Rebalancing is known to increase size by
at most a constant factor. In this section, we prove that rebalancing also does
not affect the cost by more than a multiplicative constant factor.

Two leaves are k-adjacent if they intersect in a convex portion of dimension
k. A tree is called k-balanced if the depths of any two k-adjacent leaves differ
by at most one. Notice that when considering two k-balanced trees, their
intersection, constructed from the unit tree by subdividing all and only cells
that are subdivided in both trees, is k-balanced. Thus for a tree T , there is
a unique balanced tree balk(T ) = min{T ′ : T ≺ T ′ and T ′ is k-balanced},
which is called the k-rebalancing of T . For instance, 0-balanced quadtrees
are what Moore called smooth quadtrees [20], and 1-balanced what he called
balanced and others called 1-irregular or restricted.

for this proof, T (opt) can be allowed to have infinite depth. Alternately, one may
consider an increasing sequence of trees (T (opt)

k )k→∞ whose costs converge to M .
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Theorem 9 Let T be a tree storing both points and/or simplices in the unit
cube. Then for any k, 0 ≤ k < d, c(balk(T )) = O(c(T )).

Since the cost c(T ) = ct(T ) + co(T ), the proof will be a simple consquence of
the next two lemmas. The following lemma was first proven by Weiser in 2D,
and by Moore for any dimension d ≥ 2, for a cost function which is simply
the number of leaves. Here, the cost function is the total surface area of the
leaves but their proof applies as well.

Lemma 10 Let T be a tree. Then for any k ≥ 0, ct(balk(T )) ≤ 3dct(T ).

Proof sketch. The construction suggested by Moore [20] starts with T ′ ← T
and subdivides every leaf node of T ′ which has a 0-adjacent neighbor whose
size is smaller than half, or equivalently whose depth is greater by more than
one. The process iterates until no further subdivision is necessary. The process
must terminate with T ′ = bal0(T ).

The basic observation is that, if all the neighbors of a leaf node σ have same
or smaller depth, then σ never has to be subdivided [20]. Intuitively, σ will
never force any further subdivision of these neighbors, and so they can only
be subdivided as a side, corner, or border, on the opposite side of σ. Using
this, Moore argues that every subdivision of an internal node σ in T ′ which is
not an internal node of T can be “blamed” on a 0-adjacent internal node of
T at the same depth as σ, and since a node in T can only be blamed by its
0-adjacent neighbors in T ′ at the same depth (at most 3d of them), the total
number m of nodes of T ′ can only be 3d times the total number of nodes of
T . This also holds for the number ` of leaves, since by induction it is not hard
to see that ` = 1 + (2d − 1)(m − 1)/2d; indeed, subdividing a leaf σ adds 2d

extra leaves to m but σ is no longer counted in `, so ` changes only by 2d− 1.
Consult [20] for the details.

Regarding the cost, the above proof adapts naturally by monitoring, instead
of the total number of nodes, the total area ca(T ) of the tree (internal and
external nodes). By induction, it is not hard to see that ca = 2ct− 2d; indeed,
subdividing σ adds 2λd−1(σ) to ca but ct changes only by λd−1(σ) since σ is
no longer a leaf. When subdividing σ in T ′, the cost of σ’s children can be
“blamed” on a 0-adjacent internal node of T at the same depth as σ, and
since a node in T can only be blamed by its 3d neighbors in T ′ at the same
depth, we easily have ca(T ′) ≤ 3dca(T ) which implies ct(T ′) ≤ 3dct(T ).

Since T ′ = bal0(T ), which is a refinement of balk(T ), for any k > 0, this
implies that ct(balk(T )) ≤ ct(bal0(T )) ≤ 3dct(T ). 2

Next we prove in Lemma 11 that the object cost of balk(T ) is at most twice
(for points) and some constant Bd ≤ 2d24d (for simplices) times that of T .
We prove this for a single object whose object cost is λd−1(Ls(T )), since the
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object cost is just the sum over all objects of that quantity. We conjecture
that the best value is Bd = 2d−1.

Lemma 11 Let T be a tree, and consider the object cost of a single object
s ∈ S both in T and in balk(T ). If s is a point, then λd−1(s ∩ balk(T )) ≤
2λd−1(Ls(T )). If s is a convex object of dimension at most d − 1, then there
is a constant Bd such that λd−1(s ∩ balk(T )) ≤ Bdλd−1(Ls(T )).

Proof. For a point, the worst case is when it falls exactly on the center of a
cell: it then belongs to all the children of the subdivided cell, and thus its con-
tribution to the object cost is at most doubled. Note that further subdivision
will never increase that contribution.

The situation is more complicated for simplices, but we can prove that the
contribution of an object within a leaf σ of T is never increased by more than
a constant factor. The proof relies in that, when rebalancing, σ is only subdi-
vided along its boundary, because only its neighbors can force it to subdivide.
Thus, the subtree σ′ of σ in balk(T ) must satisfy σ′ ≺ σ∞, where σ∞ is the
maximum subdivision of σ along its boundary (an infinite border). By the
next lemma and appropriate scaling, the object cost λd−1(s ∩ balk(T )) is at
most Bdλd−1(Ls(T )). 2

Lemma 12 The object cost of a flat object in T ≺ T (side)
∞ , and in T ≺ T (border)

∞
respectively, is bounded by constants Sd = d4d and Bd = 2d24d respectively.

Proof. We first prove the lemma for sides, then for borders. Let d be fixed,
and let sk (resp. ck, bk) be the maximum object cost of a simplex in T (side)

k

(resp. T (corner)
k , T (border)

k ). By construction, a k-side is made up of 2d−1 half-
scaled empty cells and 2d−1 half-scale (k− 1)-sides. Going one level further, it
is made of 2d−1 half-scaled empty cells, 22(d−1) quarter-scale empty cells, and
22(d−1) quarter-scale (k−2)-sides. If the simplex intersects all the (k−2)-sides,
then it cannot intersect the half-scaled empty cells, and it thus intersect only
2d−1 half-scale (k−1)-sides, thus sk ≤ sk−1 (the factor 2d−1 disappears because
of scaling). On the other hand, if it misses any of the (k − 2)-sides, then the
object cost decreases geometrically (but it may intersect all the empty cells,
of total measure 4d). More explicitly,

sk ≤ max

(
sk−1, 4d +

22d−2 − 1

22d−2
sk−2

)
.

This recurrence with s0 = 2d shows that sk is bounded by Sd = d4d for all k.
We can then consider a k-border as the union of 2d half-scaled k-sides (the
superpositions only increase the cost), so that the cost is at most 2d24d. 2

Remark 1. The constant 3d in Lemma 10 is tight for the number of leaves, but
we do not know if it is tight for the cost of 0-balanced trees. When considering
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k-balanced trees, k ≥ 1, it certainly is overly pessimistic. Indeed Moore shows
that in the plane, 9 is tight for 0-balanced quadtrees, but 8 is tight for 1-
balanced quadtrees.

Remark 2. Aronov and Schiffenbauer independently proved [4, Th. 2] that
for any quadtree Q (not necessarily balanced), there is a balanced quadtree
Q′ such that c(Q′) = O(c(Q)). Their construction may subdivide more than
necessary.

Remark 3. It could also very well be that rebalancing actually decreases the
cost. We don’t know that, and we don’t need it since we are mostly interested
in trees for which c(T ) = O(M). In any case, we can ask if there is a reverse
theorem (lower bound on c(balk(T )) in terms of c(T )).

6 Conclusion

In this paper we have proved that instead of considering the optimal octree,
and without increasing the cost too much, we may consider the octree given
by the lookahead strategy. Still, this may yield an infinite subdivision. In order
to have an effective algorithm, we need to add a termination criteria such as
a depth limit of log2 n. As we have also proven, this increases again the cost
at most by a constant factor. In practice, we find that greedy with or without
lookahead yield the same approximation ratio.

All the results stated in this paper should extend easily to recursive grids
and simplicial trees as well, in two and higher dimensions, with only small
differences. However, the constants involved in the analysis would be even
higher than they are here.

We conclude with a few open problems: first, is it true that by pruning at
depth k = Θ(log n), we can approach the cost to within 1 + ε for simplices?
Since the optimal tree might be infinite, there is little sense in asking for an
algorithm that constructs the optimal tree. But if the answer to this question
were true, it would be nice to have a PTAS with respect to the cost measure.
We don’t know if the greedy strategy for high enough lookahead would fit the
bill.

Lastly, the cost measure considered here is c(T ) but the theoretically sound
one that does model the average traversal cost during ray shooting is c∗(T )
(see Eq. 1). Our only result here is that the greedy strategy does not work.
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