This is the open problem number 33.
Given 2k integers a1, ... ak and b1, ... bk, all smaller than a given integer n, how close can sqrt(a1)+...+sqrt(ak)-sqrt(b1)-...-sqrt(bk) be to 0? An exemple showing that this can be small is given by the discrete derivative of the square root function, which for k=2 would be sqrt(m+3)-3sqrt(m+2)+3sqrt(m+1)-sqrt(m). A bound on how small a difference can be is obtained by repeatedly squaring until no square root remains. However, there is a huge gap between the two. If we call f(n,k) the minimum of the difference of square roots, and study g(n,k)=-log(f(n,k))/log(n) as a function of n for a fixed k, we have a linear lower bound and an exponential upper bound. For k=2, the lower bound is 2.5 and the upper bound is 3.5. In order to know which bound should be improved, I computed f(n,2) for all values of n up to 312563. The following table shows the values of n for which f(n)<f(n-1) and the corresponding values of f(n), -g(n-1) and -g(n). It seems clear from these results that the right answer is 3.5, and the discrete derivative of the square root function does not provide a good enough bound.
3 | 0.0963763 | -1.27155 | -2.1295 |
5 | 0.0318812 | -1.68759 | -2.14096 |
6 | 0.0146119 | -2.14096 | -2.35853 |
7 | 0.00453023 | -2.35853 | -2.7735 |
11 | 0.00121245 | -2.34388 | -2.80042 |
14 | 0.000470241 | -2.61803 | -2.90341 |
18 | 0.000193786 | -2.70444 | -2.95767 |
23 | 0.000165937 | -2.76565 | -2.77593 |
26 | 8.25305e-05 | -2.70402 | -2.88584 |
31 | 7.6258e-05 | -2.76442 | -2.76104 |
33 | 2.72498e-05 | -2.73575 | -3.00599 |
37 | 1.43202e-05 | -2.933 | -3.08892 |
51 | 9.99392e-06 | -2.85117 | -2.92829 |
53 | 8.48065e-06 | -2.9139 | -2.94128 |
60 | 4.57667e-06 | -2.86392 | -3.00281 |
68 | 3.19057e-06 | -2.924 | -2.99924 |
69 | 1.52986e-06 | -2.99924 | -3.16249 |
82 | 1.53314e-07 | -3.0471 | -3.56065 |
114 | 1.27799e-07 | -3.31912 | -3.35138 |
150 | 1.26976e-07 | -3.17206 | -3.16911 |
164 | 3.13561e-08 | -3.1174 | -3.3879 |
221 | 8.36963e-09 | -3.20338 | -3.44537 |
289 | 6.62523e-09 | -3.28426 | -3.3235 |
322 | 1.44467e-09 | -3.26303 | -3.52502 |
561 | 7.05697e-10 | -3.21675 | -3.32903 |
586 | 5.21539e-10 | -3.30714 | -3.35371 |
623 | 4.56872e-10 | -3.32262 | -3.34237 |
708 | 3.48342e-10 | -3.27793 | -3.31856 |
818 | 9.44005e-11 | -3.24769 | -3.44177 |
990 | 2.75849e-11 | -3.34703 | -3.5249 |
1152 | 1.54047e-11 | -3.44955 | -3.53177 |
2138 | 4.53525e-12 | -3.24714 | -3.40642 |
2850 | 2.24518e-12 | -3.28348 | -3.37171 |
3984 | 9.62804e-13 | -3.23557 | -3.33761 |
4313 | 9.4259e-13 | -3.30606 | -3.3085 |
4322 | 9.32169e-13 | -3.30777 | -3.30901 |
4453 | 6.63913e-13 | -3.29733 | -3.33764 |
4868 | 4.1781e-14 | -3.30269 | -3.62836 |
5020 | 3.83131e-14 | -3.61535 | -3.62543 |
7866 | 2.68348e-14 | -3.44397 | -3.48361 |
8970 | 4.74025e-15 | -3.43339 | -3.62382 |
10827 | 4.10775e-15 | -3.55046 | -3.56584 |
15168 | 1.15251e-15 | -3.44098 | -3.57298 |
24348 | 7.86629e-16 | -3.40557 | -3.44337 |
28594 | 7.57102e-16 | -3.38944 | -3.39316 |
28811 | 7.21408e-16 | -3.39067 | -3.39536 |
30473 | 2.1301e-16 | -3.37693 | -3.49507 |
36770 | 8.81501e-17 | -3.43263 | -3.51655 |
42626 | 2.19847e-17 | -3.46781 | -3.59807 |
55358 | 9.91329e-18 | -3.51197 | -3.58489 |
67324 | 9.47254e-18 | -3.52179 | -3.52588 |
77306 | 6.79908e-18 | -3.48257 | -3.51203 |
80136 | 2.65572e-18 | -3.50085 | -3.5841 |
90434 | 1.62393e-18 | -3.54614 | -3.58923 |
123555 | 9.47734e-19 | -3.4937 | -3.53963 |
130958 | 8.79554e-19 | -3.52215 | -3.52849 |
155740 | 5.6392e-19 | -3.47734 | -3.51452 |
159870 | 2.33573e-19 | -3.50684 | -3.5804 |
190457 | 1.57751e-19 | -3.52885 | -3.56113 |
197473 | 1.34172e-19 | -3.55056 | -3.56384 |
220590 | 6.73264e-20 | -3.53178 | -3.58782 |
261138 | 5.74312e-20 | -3.53928 | -3.55202 |