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Preface

It is in the early 2000’s that persistence emerged as a new theory in the field of
applied and computational topology. This happened mostly under the impulsion
of two schools: the one led by H. Edelsbrunner and J. Harer at Duke University,
the other led by G. Carlsson at Stanford University. After more than a decade of
a steady development, the theory has now reached a somewhat stable state, and
the community of researchers and practitioners gathered around it has grown in
size from a handful of people to a couple hundred1. In other words, persistence has
become a mature research topic.

The existing books and surveys on the subject [48, 114, 115, 119, 141, 245]
are largely built around the topological aspects of the theory, and for particular
instances such as the persistent homology of the family of sublevel sets of a Morse
function on a compact manifold. While this can be useful for developing intuition,
it does create bias in how the subject is understood. A recent monograph [72] tries
to correct this bias by focusing almost exclusively on the algebraic aspects of the
theory, and in particular on the mathematical properties of persistence modules
and of their diagrams.

The goal pursued in the present book is to put the algebraic part back into
context2, to give a broad view of the theory including also its topological and
algorithmic aspects, and to elaborate on its connections to quiver theory on the
one hand, to data analysis on the other hand. While the subject cannot be treated
with the same level of detail as in [72], the book still describes and motivates the
main concepts and ideas, and provides sufficient insights into the proofs so the
reader can understand the mechanisms at work.

Throughout the exposition I will be focusing on the currently most stable in-
stance of the theory: 1-dimensional persistence. Other instances, such as multi-
dimensional persistence or persistence indexed over general partially ordered sets,
are comparatively less well understood and will be mentioned in the last part of
the book as directions for future research. The background material on quiver the-
ory provided in Chapter 1 and Appendix A should help the reader understand the
challenges associated with them.

Reading guidelines. There are three parts in the book. The first part (Chap-
ters 1 through 3 and Appendix A) focuses on the theoretical foundations of per-
sistence. The second part (Chapters 4 through 7) deals with a selected set of

1As evidence of this, the Institute for Mathematics and its Applications at the University
of Minnesota (http://www.ima.umn.edu/) was holding an annual thematic program on Scientific
and Engineering Applications of Algebraic Topology in the academic year 2013-2014. Their first
workshop, devoted to topological data analysis and persistence theory, gathered around 150 people
on site, plus 300 simultaneous connections to the live broadcast.

2Let me mention a recent short survey [234] that pursues a similar goal.

vii
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viii PREFACE

applications. The third part (Chapters 8 and 9) talks about future prospects for
both the theory and its applications. The document has been designed in the hope
that it can provide something to everyone among our community, as well as to
newcomers with potentially different backgrounds:

• Readers with a bias towards mathematical foundations and structure the-
orems will find the current state of knowledge about the decomposabil-
ity of persistence modules in Chapter 1, and about the stability of their
diagrams in Chapter 3. To those who are curious about the connections
between persistence and quiver theory, I recommend reading Appendix A.

• Readers with a bias towards algorithms will find a survey of the methods
used to compute persistence in Chapter 2, and a thorough treatment of
the algorithmic aspects of the applications considered in Part 2.

• Practitioners in applied fields who want to learn about persistence in
general will find a comprehensive yet still accessible exposition spanning
all aspects of the theory, including its connections to some applications.
To those I recommend the following walk through Part 1 of the document:

a) The general introduction,
b) Sections 1 through 3 of Chapter 1,
c) Sections 1.1 and 2.1 of Chapter 2,
d) Sections 1, 2.1 and 4 of Chapter 3.

Then, they can safely read Parts 2 and 3.

For the reader’s convenience, the introduction of each chapter in Parts 1 and 2
mentions the prerequisites for reading the chapter and provides references to the
relevant literature. As a general rule, I would recommend reading [115] or [142]
prior to this book, as these references give quite accessible introductions to the
field of applied and computational topology.
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them, let me thank my co-authors, with whom I had an exciting time developing
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Gary Miller, Maksim Ovsjanikov, Donald Sheehy, Primoz Skraba, and Yue Wang.

Second, I want to thank the people who have helped me design the book and
improve its content. Among them, my gratitude goes primarily to Michael Lesnick,
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comments that greatly helped improve Part 1 and Appendix A. I am also grateful
to the anonymous referees, who provided me with valuable feedback on the flow of
the book and on its readability. I also want to thank the people who have proof-
read excerpts from the manuscrit and helped me improve the content and exposition
locally: Eddie Aamari, Jean-Daniel Boissonnat, Frédéric Chazal, Jérémy Cochoy,
Pawe�l D�lotko, Marc Glisse, Bertrand Michel. Let me apologize in advance to those
whose names I may have forgotten in this list.

Finally, I want to thank Sergei Gelfand, Christine Thivierge, and the Amer-
ican Mathematical Society for their interest in the book and for their support to
finalize it.

Palaiseau, June 2015
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Introduction

A picture being worth a thousand words, let us introduce our subject by show-
ing a toy example coming from data analysis. Consider the data set of Figure 0.1,
which is composed of 176 points sampled along 11 congruent letter-B shapes ar-
ranged into a letter A in the plane. When asking about the shape represented by
this data set, one usually gets the answer: “It depends”, followed by a list of pos-
sible choices, the most common of which being “eleven B’s” and “one A”. To these
choices one could arguably add a third obvious possibility: “176 points”. What
differentiates these choices is the scale at which each one of them fits the data.

Figure 0.1. A planar point set with several underlying geometric
structures at different scales.

Finding the ‘right’ scale(s) at which to process a given data set is a common
problem faced across the data analysis literature. Most approaches simply ignore
it and delegate the choice of scale to the user, who is then reduced to tuning some
parameter blindly, usually by trial-and-error. Sometimes the parameter to tune
does not even have a direct interpretation as a scale, which makes things even
harder. This is where multiscale approaches distinguish themselves: by processing
the data at all scales at once, they do not rely on a particular choice of scale. Their
feedback gives the user a precise understanding of the relationship between the
choice of input parameter and the output to be expected. Eventually, finding the
‘right’ scale to be used to produce the final output is still left to the user, however
(s)he can now make an informed choice of parameter.

As an illustration, Figure 0.2 shows the result obtained by hierarchical ag-
glomerative clustering on the aforementioned data set. The hierarchy reveals three
relevant scales: at low levels (between 0 and 4), the clustering has one cluster per
data point; at intermediate levels (between 8 and 12), the clustering has one cluster
per letter B; at the highest level (above 16), there is only one cluster left, which
spans the entire letter A.

1
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2 INTRODUCTION

2 4 6 8 10 12 14 160

Figure 0.2. The hierarchy (also called dendrogram) produced by
single-linkage clustering on the data set of Figure 0.1.

Figure 0.3. The barcode produced by persistence on the data
set of Figure 0.1. The abscissa line represents the geometric scale
with a logarithmic graduation. Left (resp. right) arrows mark left-
(resp. right-) infinite intervals, while thin (resp. bold) bars mark
intervals with multiplicity 1 (resp. 11).

Persistence produces the same hierarchy but uses a simplified representation
for it, shown in the upper half of Figure 0.3. This representation forgets the actual
merge pattern between the clusters. When two clusters are merged, they no longer
produce a new cluster corresponding to their union in the hierarchy. Instead, one
of them ceases to be treated as an independent cluster, to the benefit of the other.
The choice of the winner is arbitrary in this case, however in general it is driven by a
principle called the elder rule, which will be illustrated in the upcoming Figure 0.5.
The resulting collection of horizontal bars is called a persistence barcode. Each bar
is associated to a single data point and represents its persistence as an independent
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INTRODUCTION 3

Connected Components

Holes

1.51

Figure 0.4. Left: a collection of 72 color images of size 128×128
pixels coming from the Columbia Object Image Library [203]. The
images were obtained by taking pictures of an object while rotat-
ing around it. Each image gives a data point in 49 152 dimensions,
where by construction the data set lies near some simple closed
curve. Right: the corresponding barcode produced by persistence,
where the abscissa line represents the geometric scale with a loga-
rithmic graduation, and where left (resp. right) arrows mark left-
(resp. right-) infinite intervals.
— Pictures used in the left part of the figure are courtesy of the Computer

Vision Laboratory at Columbia University.

cluster. Although weaker than the full hierarchical representation, the barcode is
still informative enough to allow for an interpretation. In the present example, the
11 bars with multiplicity 1 come from the 11 B’s merging into a single A around
scale 24 = 16. Before that, the 15 bars with multiplicity 11 come from each letter B
having 16 points that get merged into a single cluster around scale 23 = 8. It takes
a bit of time to get used to this kind of representation, in which the actual hierarchy
(who is merged with whom) is lost. Nevertheless, this is the price to pay for more
stability and generality.

Persistence is indeed able to produce such barcodes for higher-dimensional topo-
logical features as well. For instance, the bottom half of Figure 0.3 shows a barcode
encoding the lifespans of ‘holes’ across scales in the data set of Figure 0.1. To un-
derstand what is meant by this, imagine each data point being replaced by a ball
of radius r at scale r. Persistence detects the holes in the resulting union of balls
at every scale, and tracks their persistence across scales. Each bar in the resulting
barcode corresponds to a particular hole, and it encodes its lifespan in the growing
family of balls. The same can be done for voids in higher dimensions. In the ex-
ample of Figure 0.3, the 2 bars with multiplicity 11 appearing at lower scales come
from each letter B having 2 holes, while the long bar with multiplicity 1 appearing
at larger scales comes from the letter A having a single hole. The rest of the bars
indicate holes created at intermediate steps in the ball growing process, for instance
in places where B’s are arranged into a triangle.

Being able to detect the presence of topological features of arbitrary dimensions
in data, and to represent these features as a barcode whatever their dimension, is
what makes persistence an interesting tool for data visualization and analysis, and
a nice complement to more classical techniques such as clustering or dimensionality
reduction [183]. Besides, being able to do so in high dimensions and in a robust way,
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4 INTRODUCTION

as illustrated in Figure 0.4, is an asset for applications. It is also an algorithmic
challenge, as dealing with high-dimensional data requires to develop a computing
machinery that scales up reasonably with the ambient dimension.

Persistence in a nutshell. The theory works at two different levels: topological,
and algebraic. At the topological level, it takes as input a sequence of nested
topological spaces, called a filtration:

(0.1) X1 ⊆ X2 ⊆ · · · ⊆ Xn.

Such sequences come typically from taking excursion sets (sublevel sets or superlevel
sets) of real-valued functions. For instance, in the example of Figure 0.3, the
filtration is composed of the sublevel sets of the distance to the point cloud, the
r-sublevel set being the same as the union of balls of same radius r about the
data points, for every r ≥ 0. Here already comes a difficulty: in (0.1) we are
using a finite sequence, whereas the sublevel sets of a function form a continuous
1-parameter family. While algorithms only work with finite sequences for obvious
reasons, the theory is stated for general 1-parameter families. The connection
between discrete and continuous families is not obvious in general, and determining
the precise conditions to be put on a continuous family so that it behaves ‘like’ a
discrete family has been the subject of much investigation, as will be reflected in
the following chapters.

Given a sequence like (0.1), we want not only to compute the topological struc-
ture of each space Xi separately, but also to understand how topological features
persist across the family. The right tool to do this is homology over a field, which
turns (0.1) into a sequence of vector spaces (the homology groups H∗(Xi)) connected
by linear maps (induced by the inclusions Xi ↪→ Xi+1):

(0.2) H∗(X1) −→ H∗(X2) −→ · · · −→ H∗(Xn).

Such a sequence is called a persistence module. Thus we move from the topological
level to the algebraic level, where our initial problem becomes the one of finding
bases for the vector spaces H∗(Xi) that are ‘compatible’ with the maps in (0.2).
Roughly speaking, being compatible means that for any indices i, j with 1 ≤ i ≤
j ≤ n, the composition

H∗(Xi) −→ H∗(Xi+1) −→ · · · −→ H∗(Xj−1) −→ H∗(Xj)

has a (rectangular) diagonal matrix in the bases of H∗(Xi) and H∗(Xj). Then,
every basis element can be tracked across the sequence (0.2), and its birth time b
and death time d defined respectively as the first and last indices at which it is part
of the current basis. At the topological level, this basis element corresponds to some
feature (connected component, hole, void, etc.) appearing in Xb and disappearing
in Xd+1. Its lifespan is encoded as an interval [b, d] in the persistence barcode3.

The very existence of compatible bases is known from basic linear algebra when
n ≤ 2 and from the structure theorem for finitely generated modules over a principal
ideal domain when n is arbitrary (but finite) and the vector spaces H∗(Xi) have
finite dimensions. Beyond these simple cases, e.g. when the index set is infinite or
when the spaces are infinite-dimensional, the existence of compatible bases is not
always assured, and when it is, this is thanks to powerful decomposition theorems
from quiver representation theory. Indeed, in its algebraic formulation, persistence

3Some authors rather use the equivalent notation [b, d + 1) for the interval. We will come
back to this in Chapter 1.
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INTRODUCTION 5

is closely tied to quiver theory. Their relationship will be stressed in the following
chapters, but for now let us say that quiver is just another name for (multi-)graph,
and that a representation is a realization of a quiver as a diagram of vector spaces
and linear maps. Thus, (0.2) is a representation of the quiver

•
1

�� •
2

�� · · · �� •n
Computing a compatible basis is possible when the filtration is simplicial, that

is, when it is a finite sequence of nested simplicial complexes. It turns out that
computing the barcode in this special case is hardly more complicated than com-
puting the homology of the last complex in the sequence, as the standard matrix
reduction algorithm for computing homology can be adapted to work with the fil-
tration order. Once again we are back to the question of relating the barcodes of
finite (simplicial) filtrations to the ones of more general filtrations. This can be
done via the stability properties of these objects.

Stability. The stability of persistence barcodes is stated for an alternate rep-
resentation called persistence diagrams. In this representation, each interval4 b, d
is viewed as a point (b, d) in the plane, so a barcode becomes a planar multiset.
The persistence of a topological feature, as measured by the length (d − b) of the
corresponding barcode interval b, d, is now measured by the vertical distance of the
corresponding diagram point (b, d) to the diagonal y = x. For instance, Figure 0.5
shows the persistence diagrams associated to the filtrations of (the sublevel-sets of)
two functions R → R: a smooth function f , and a piecewise linear approximation
f ′. As can be seen, the proximity between f and f ′ implies the proximity between
their diagrams dgm(f) and dgm(f ′). This empirical observation is formalized in
the following inequality, where ‖ · ‖∞ denotes the supremum norm and db denotes
the so-called bottleneck distance between diagrams:

(0.3) db(dgm(f), dgm(f ′)) ≤ ‖f − f ′‖∞.

Roughly speaking, the bottleneck distance provides a one-to-one matching between
the diagram points corresponding to highly persistent topological features of f and
f ′, the topological features with low persistence being regarded as noise and their
corresponding diagram points being matched to the nearby diagonal.

Stability, as stated in (0.3) and illustrated in Figure 0.5, is an important prop-
erty of persistence diagrams for applications, since it guarantees the consistency of
the computed results. For instance, it ensures that the persistence diagram of an
unknown function can be faithfully approximated from the one of a known approxi-
mation. Or, that reliable information about the topology of an unknown geometric
object can be retrieved from a noisy sampling under some reasonable noise model.

The proof of the stability result works at the algebraic level directly. For this
it introduces a measure of proximity between persistence modules, called the inter-
leaving distance, which derives naturally from the proximity between the functions
the modules originate from (when such functions exist). In this metric, the stability
result becomes in fact an isometry theorem, so that comparing persistence mod-
ules is basically the same as comparing their diagrams. From there on, persistence
diagrams can be used as signatures for all kinds of objects from which persistence
modules are derived, including functions but not only.

4We are omitting the brackets to indicate that the interval can be indifferently open, closed,
or half-open.
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6 INTRODUCTION

R
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q′
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s′

Figure 0.5. Left: A smooth function f : R → R (red) and a piece-
wise linear approximation f ′ (blue). Top-right: Superimposition of
the persistence diagrams of f (red) and f ′ (blue). Every red dia-
gram point (b, d) corresponds to some local minimum of f creating
an independent connected component in the sublevel set of f at
time b, and merging it into the component of some lower mini-
mum at time d, as per the elder rule. Idem for blue points and f ′.
Bottom-right: The size function corresponding to the persistence
diagram of f .

The isometry theorem is the cornerstone of the current theory, and its main
asset for applications. It is also what makes persistence stand out of classical quiver
theory.

Connections to other theories. As mentioned previously, there is a deep con-
nection between the algebraic level of persistence and quiver theory. Meanwhile,
the topological level has strong bonds with Morse theory:

• In the special case where the input filtration is given by the sublevel sets
of a Morse function f , i.e. a C∞-continuous real-valued function with
non-degenerate critical points such that all the critical values are distinct,
Morse theory describes when and how the topology of the sublevel sets
of f changes in the filtration [195, theorems 3.1 and 3.2], thus providing a
complete characterization of its persistence diagram. Persistence general-
izes this analysis beyond the setting of Morse theory, to cases where the
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INTRODUCTION 7

function f may not be differentiable nor even continuous, and where its
domain may not be a smooth manifold nor a manifold at all.

• In a similar way, persistence for simplicial filtrations is related to the
discrete version of Morse theory [130]. There are indeed filtered counter-
parts to the discrete gradient fields and to their associated discrete Morse
complexes. These are defined on simplicial filtrations rather than on sin-
gle simplicial complexes, with the expected property that the persistent
homology of the filtered Morse complexes is the same as the one of the
filtrations they come from. This connection has been exploited in various
ways, for instance to speed up the persistence computation [198].

• Finally, the 0-dimensional aspects of persistence are related to Morse the-
ory in a particular way [55, 213]. Given a Morse function f , the hierarchy
on the local minima of f produced by persistence from the family of its
sublevel sets is equivalent to the join tree of f . Similarly, the hierarchy
on the local maxima of f produced from its superlevel sets is equivalent
to the split tree of f . Once merged together, these two trees form the
contour tree of f , which is the loop-free version of the Reeb graph and is
equal to it when the domain of f is both connected and simply connected.
There are also some relations between the 1-dimensional persistence of f
and the loops of its Reeb graph [86, 108].

As we saw earlier, the connection between the topological and the algebraic
levels of persistence happens through the use of homology, which turns sequences
of topological spaces into sequences of vector spaces. Using the metaphor of a
space changing over time to describe each sequence, we can view persistence as a
generalization of classical homology theory to the study of time-evolving spaces. In
this metaphor, persistence modules such as (0.2) are the time-dependent analogues
of the homology groups, and their barcodes are the time-dependent analogues of the
Betti numbers. Although somewhat restrictive, this view of the theory is convenient
for interpretation.

Persistence is also a generalization of size theory [97, 131], whose concern is
with the quantity

rank H0(Xi) → H0(Xj)

defined for all pairs (i, j) such that 1 ≤ i ≤ j ≤ n, and called the size function of
the filtration (0.1). The value of the size function at (i, j) measures the number
of connected components of Xi that are still disconnected in Xj . The level sets
of this function look like staircases in the plane, whose upper-left corners are the
points recorded in the 0-dimensional part of the persistence diagram—see Figure 0.5
for an illustration. The stability result (0.3) appeared in size theory prior to the
development of persistence, however in a form restricted to 0-dimensional homology.

Finally, the algorithmic aspects of persistence have close connections to spectral
sequences [81]. Roughly speaking, the spectral sequence algorithm outputs the same
barcode as the matrix reduction algorithm, albeit in a different order.

These connections at multiple levels bear witness to the richness of persistence
as a theory.
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8 INTRODUCTION

Applications. This richness is also reflected in the diversity of the applications,
whose list has been ever growing since the early developments of the theory. The
following excerpt5 illustrates the variety of the topics addressed:

• analysis of random, modular and non-modular scale-free networks and
networks with exponential connectivity distribution [158],

• analysis of social and spatial networks, including neurons, genes, online
messages, air passengers, Twitter, face-to-face contact, co-authorship [210],

• coverage and hole detection in wireless sensor fields [98, 136],
• multiple hypothesis tracking on urban vehicular data [23],
• analysis of the statistics of high-contrast image patches [54],
• image segmentation [70, 209],
• 1d signal denoising [212],
• 3d shape classification [58],
• clustering of protein conformations [70],
• measurement of protein compressibility [135],
• classification of hepatic lesions [1],
• identification of breast cancer subtypes [205],
• analysis of activity patterns in the primary visual cortex [224],
• discrimination of electroencephalogram signals recorded before and during

epileptic seizures [237],
• analysis of 2d cortical thickness data [82],
• statistical analysis of orthodontic data [134, 155],
• measurement of structural changes during lipid vesicle fusion [169],
• characterization of the frequency and scale of lateral gene transfer in

pathogenic bacteria [125],
• pattern detection in gene expression data [105],
• study of plant root systems [115, §IX.4],
• study of the cosmic web and its filamentary structure [226, 227],
• analysis of force networks in granular matter [171],
• analysis of regimes in dynamical systems [25].

In most of these applications, the use of persistence resulted in the definition of new
descriptors for the considered data, which revealed previously hidden structural
information and allowed the authors to draw original conclusions.

Contents. There are three parts in the book. The first part focuses on the
theoretical foundations of persistence. It gives a broad view of the theory, including
its algebraic, topological, and algorithmic aspects. It is divided into three chapters
and an appendix:

• Chapter 1 introduces the algebraic aspects through the lense of quiver
theory. It tries to show both the heritage of quiver theory and the novelty
brought in by persistence in its algebraic formulation. It is supplemented
with Appendix A, which gives a formal introduction to quiver representa-
tion theory and highlights its connections to persistence. Concepts such
as persistence module, zigzag module, module homomorphism, interval
decomposition, persistence diagram, quiver, representation, are defined in
these two chapters.

5Much of the list was provided by F. Chazal, F. Lecci and B. Michel, who recently took an
inventory of existing applications of persistence.
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INTRODUCTION 9

• Chapter 2 introduces the topological and algorithmic aspects of persis-
tence theory. It first reviews the topological constructions that are most
commonly used in practice to derive persistence modules. It then focuses
on the algorithms designed to compute persistence from filtrations: the
original algorithm, described in some detail, then a high-level review of
its variants and extensions. Concepts such as filtration, zigzag, pyramid,
persistent (co-)homology, are defined in this chapter.

• Chapter 3 is entirely devoted to the stability of persistence diagrams, in
particular to the statement and proof of the Isometry Theorem, which
is the central piece of the theory. After introducing and motivating the
measures of proximity between persistence modules and between their
diagrams which are used in the statement of the theorem, it develops the
main ideas behind the proof and discusses the origins and significance of
the result. Concepts such as interleaving distance, bottleneck distance
and matching, snapping principle, module interpolation, are defined in
this chapter.

The second part of the document deals with applications of persistence. Rather
than trying to address all the topics covered in the aforementioned list, in a broad
and shallow survey, it narrows the focus down to a few selected problems and
analyzes in depth the contribution of persistence to the state of the art. Some of
these problems have had a lasting influence on the development of the theory. The
exposition is divided into four chapters:

• Chapters 4 and 5 introduce the problem of inferring the topology of a
geometric object from a finite point sample, which was and continues to
be one of the main motivations for the development of the theory. The
general approach to the problem is presented in Chapter 4, along with
some theoretical guarantees on the quality of the output. Algorithmic
aspects are addressed in Chapter 5, which introduces recent techniques to
optimize the running time and memory usage, improve the signal-to-noise
ratio in the output, and handle a larger variety of input data.

• Chapter 6 focuses more specifically on the 0-dimensional version of topo-
logical inference, also known as clustering. It formalizes the connection
between persistence and hierarchical clustering, which we saw earlier. It
also draws a connection to mode seeking and demonstrates how persis-
tence can be used to stabilize previously unstable hill-climbing methods.
Finally, it addresses the question of inferring higher-dimensional struc-
ture, to learn about the composition of each individual cluster as well as
about their interconnectivity in the ambient space. This part comes with
comparatively little effort once the persistence framework has been set up.

• Chapter 7 shifts the focus somewhat and addresses the problem of compar-
ing datasets against one another. After setting up the theoretical frame-
work, in which datasets and their underlying structures are treated as
metric spaces, it shows how persistence can be used to define descriptors
that are provably stable under very general hypotheses. It also adresses
the question of computing these descriptors (or reliable approximations)
efficiently. Down the road, this chapter provides material for comparing
shapes, images, or more general data sets, with guarantees.
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10 INTRODUCTION

The third part of the document is more prospective and is divided into two
short chapters: one is on current trends in topological data analysis (Chapter 8), the
other is on further developments of the theory (Chapter 9). This part gathers the
many open questions raised within the previous parts, along with some additional
comments and references.
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CHAPTER 1

Algebraic Persistence

As we saw in the general introduction, the algebraic theory of persistence deals
with certain types of diagrams of vector spaces and linear maps, called persistence
modules. The simplest instances look like this, where the spaces V1, · · · , Vn and the
maps v1, · · · , vn−1 are arbitrary:

V1
v1 �� V2

v2 �� · · ·
vn−1

�� Vn.

Diagrams such as this one are representations of the so-called linear quiver Ln.
More generally, all persistence modules are representations of certain types of quiv-
ers, possibly with relations. Quiver theory provides us not only with a convenient
terminology to define persistence modules and describe their properties, but also
with a set of powerful structure theorems to decompose them into ‘atomic’ repre-
sentations called interval modules. Thus, in its algebraic formulation, persistence
owes a lot to the theory of quiver representations.

Yet, algebraic persistence cannot be quite reduced to a subset of quiver theory.
Shifting the focus from quiver representations to signatures derived from their inter-
val decompositions, it provides very general stability theorems for these signatures
and efficient algorithms to compute them. Over time, these signatures—known as
the persistence diagrams—have become its main object of study and its primary
tool for applications. This is the story told in this part of the book: first, how
persistence develops as an offspring of quiver theory by focusing on certain types
of quivers, and second, how it departs from it by shifting the focus from quiver
representations to their signatures.

The first part of the chapter introduces persistence modules using the language
of quiver theory. It begins naturally with an overview of the required background
material from quiver theory (Section 1), followed by a formal introduction to persis-
tence modules and a review of the conditions under which they can be decomposed
(Section 2). The emphasis is on the legacy of quiver theory to persistence.

The second part of the chapter introduces persistence diagrams as signatures for
decomposable persistence modules (Sections 3). It then shows how these signatures
can be generalized to a class of (possibly indecomposable) representations called the
q-tame modules (Section 4). The stability properties of these signatures are deferred
to Chapter 3.

The chapter closes with a general discussion (Section 5).

Prerequisites. No background on quiver theory is required to read the chap-
ter. However, a reasonable background in abstract and commutative algebra, cor-
responding roughly to Parts I through III of [111], is needed. Also, some basic
notions of category theory, corresponding roughly to Chapters I and VIII of [184],
can be helpful although they are not strictly required.

13
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14 1. ALGEBRAIC PERSISTENCE

1. A quick walk through the theory of quiver representations

This section gives a brief overview of the concepts and results from quiver
theory that will be used afterwards. It also sets up the terminology and notations.
The progression is from the more classical aspects of quiver theory to the ones more
closely related to persistence. It gives a limited view of the theory of representations,
which is a far broader subject.

A more thorough treatment is provided in Appendix A for the interested reader.
It includes formal definitions for the concepts introduced here, and a proof out-
line for Gabriel’s theorem, the key result of this section. It also includes further
background material, and draws some connections between tools developed inde-
pendently in persistence and in quiver theory—e.g. Diamond Principle of Carlsson
and de Silva [49] versus reflection functors of Bernstein, Gelfand, and Ponomarev
[24].

Quivers. Quivers can be thought of as directed graphs, or rather multigraphs,
with potentially infinitely many nodes and arrows. Here is a very simple example
of quiver:

(1.1) •
1

a �� •
2

•
3

b�� •
4

c�� d �� •
5

and here is a more elaborate example:

(1.2) •1

•
2

a

���������
b

��
c

�� •
3

d

���������

e

���������

The quivers we are most interested in are the so-called An-type quivers, which are
finite and linear-shaped, with arbitrary arrow orientations, as in (1.1). Here is a
formal general description, where a headless arrow means that the actual arrow
orientations can be arbitrary:

(1.3) •
1

•
2

· · · •
n−1

•
n

The special case where all arrows are oriented to the right is called the linear quiver,
denoted Ln. Not only An-type quivers but also their infinite extensions are relevant
to persistence theory.

Quiver representations. Representations of a quiver Q over a field k are just
realizations of Q as a (possibly non-commutative) diagram of k-vector spaces and k-
linear maps. For instance, a representation of the quiver (1.1) can be the following:

(1.4) k
( 1
0 )

�� k2 k
( 1
1 )

�� k2( 0 1 )
��

( 1 0
0 1 )

�� k2

or the following:

(1.5) k
0 �� 0 k

0�� k
1�� 0 �� 0
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1. A QUICK WALK THROUGH THE THEORY OF QUIVER REPRESENTATIONS 15

Here is an example of a representation of the quiver (1.2)—note that none of the
triangles commute:

(1.6)

k

k

1

����������
1

��

( 1
0 )

�� k2
0

���������

( 0 1 )
���������

A morphism φ : V → W between two representations of Q is a collection of linear
maps φi : Vi → Wi at the nodes •

i
of Q, such that the following diagram commutes

for every arrow •
i

a �� •
j

of Q:

(1.7) Vi
va ��

φi

��

Vj

φj

��

Wi
wa �� Wj

For instance, a morphism φ from (1.4) to (1.5) can be the following collection of
vertical maps making every quadrangle commute:

(1.8)

k
( 1
0 )

��

1

��

k2

0

��

k
( 1
1 )

��

−1

��

k2( 0 1 )
��

( 1 0
0 1 )

��

( 0 −1 )

��

k2

0

��

k
0 �� 0 k

0�� k
1�� 0 �� 0

φ is called an isomorphism between representations when all its linear maps φi

are ismormophisms between vector spaces. The commutativity condition in (1.7)
ensures then that V and W have the same algebraic structure.

The category of representations. The representations of a given quiver Q over a
fixed base field k, together with the morphisms connecting them, form a category
denoted Repk(Q). This category turns out to be abelian, so some of the nice prop-
erties of single vector spaces (which can also be viewed as representations of the
quiver • having one node and no arrow) carry over to representations of arbitrary
quivers. In particular:

• There is a zero object in the category, called the trivial representation. It
is made up only of zero vector spaces and linear maps. For instance, the
trivial representation of the quiver (1.1) is

0 �� 0 0�� 0 ���� 0

• We can form internal and external direct sums of representations. For
instance, the external direct sum of (1.4) and (1.5) is the following rep-
resentation of (1.1), where the spaces and maps are naturally defined as
the direct sums of their counterparts in (1.4) and (1.5):

k2
( 1 0
0 0 )

�� k2 k2
( 1 0
1 0 )

�� k3
( 0 1 0
0 0 1 )
��

( 1 0 0
0 1 0 )

�� k2
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16 1. ALGEBRAIC PERSISTENCE

• We can define the kernel, image and cokernel of any morphism φ : V → W.
These are defined pointwise, with respectively kerφi, imφi and cokerφi

attached to each node •
i

of Q, the linear maps between nodes being in-

duced from the ones in V and W. For instance, the kernel of the morphism
in (1.8) is

0
0 �� k2 0

0�� k
0��

( 1
0 )

�� k2

As expected, φ is an isomorphism if and only if both kerφ and cokerφ are
trivial.

Not all properties of single vector spaces carry over to representations of arbitrary
quivers though. Perhaps the most notable exception is semisimplicity, i.e. the
fact that a subspace of a vector space always has a complement: there is no such

thing for representations of arbitrary quivers. For instance, W = 0
0 �� k is a

subrepresentation of V = k
1 �� k , i.e. its spaces are subspaces of the ones in V

and its maps are the restrictions of the ones in V, yet W is not a summand of V,
i.e. there is no subrepresentation U such that V = U⊕W. This obstruction is what
makes the classification of quiver representations an essentially more challenging
problem than for single vector spaces.

Classification of quiver representations. Given a fixed quiver Q and a fixed base
field k, what are the isomorphism classes of representations of Q over k? This central
problem in quiver theory has a decisive impact on persistence, as it provides decom-
position theorems for persistence modules. Although solving it in full generality
is an essentially impossible task, under some restrictions it becomes remarkably
simple. For instance, assuming the quiver Q is finite and every representation of Q
under consideration has finite dimension (defined as the sum of the dimensions of
its constituent vector spaces), we benefit from the Krull-Remak-Schmidt principle,
that is:

Theorem 1.1 (Krull, Remak, Schmidt). Let Q be a finite quiver, and let k be
a field. Then, every finite-dimensional representation V of Q over k decomposes as
a direct sum

(1.9) V = V1 ⊕ · · · ⊕ Vr

where each Vi is itself indecomposable i.e. cannot be further decomposed into a di-
rect sum of at least two nonzero representations. Moreover, the decomposition ( 1.9)
is unique up to isomorphism and permutation of the terms in the direct sum.

The proof of existence is an easy induction on the dimension of V, while the
proof of uniqueness can be viewed as a simple application of Azumaya’s theo-
rem [14]. This result turns the classification problem into the one of identifying the
isomorphism classes of indecomposable representations. Gabriel [133] settled the
question for a small subset of the finite quivers called the Dynkin quivers. His result
asserts that Dynkin quivers only have finitely many isomorphism classes of inde-
composable representations, and it provides a simple way to identify these classes.
It also introduces a dichotomy on the finite connected quivers, between the ones
that are Dynkin, for which the classification problem is easy, and the rest, for which
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1. A QUICK WALK THROUGH THE THEORY OF QUIVER REPRESENTATIONS 17

the problem is significantly harder if at all possible1. Luckily for us, An-type quivers
are Dynkin, so Gabriel’s theorem applies and takes the following special form:

Theorem 1.2 (Gabriel for An-type quivers). Let Q be an An-type quiver, and
let k be a field. Then, every indecomposable finite-dimensional representation of Q
over k is isomorphic to some interval representation IQ[b, d], described as follows:

0
0 · · · 0

0
0

k
1 · · · 1

k
0

0
0 · · · 0

0︸ ︷︷ ︸
[1, b−1]

︸ ︷︷ ︸
[b, d]

︸ ︷︷ ︸
[d+1, n]

Combined with Theorem 1.1, this result asserts that every finite-dimensional
representation of an An-type quiver Q decomposes uniquely (up to isomorphism and
permutation of the terms) as a direct sum of interval representations. This not only
gives an exhaustive classification of the finite-dimensional representations of Q, but
it also provides complete descriptors for their isomorphism classes, as any such class
is fully described by the collection of intervals [b, d] involved in its decomposition.
This collection of intervals is at the origin of our persistence barcodes.

Unfortunately, Theorems 1.1 and 1.2 are limited in two ways for our pur-
poses. First, by only considering quivers indexed over finite sets, whereas we
would like to consider arbitrary subsets of R. Second, by restricting the focus
to finite-dimensional representations, whereas in our case we may have to deal with
representations including infinitely many nontrivial spaces, or spaces of infinite di-
mension. The rest of Section 1 is a review of several extensions of the theorems
that address these limitations.

Infinite-dimensional representations. Theorems 1.1 and 1.2 turn out to be still
valid if infinite-dimensional representations are considered as well. This is thanks
to a powerful result of Auslander [12] and Ringel and Tachikawa [217] dealing with
left modules over Artin algebras2. The connection with quiver representations is
done through the construction of the so-called path algebra of a quiver Q, denoted
kQ, which in short is the k-algebra generated by the finite oriented paths in Q,
with the product operator induced by concatenations of paths. The path algebra
is an Artin algebra whenever Q is finite with no oriented cycle, which happens e.g.
when Q is an An-type quiver. There is then an equivalence of categories between
Repk(Q) and the left modules over kQ. The result of Auslander [12] and Ringel
and Tachikawa [217], combined with Gabriel’s and Azumaya’s theorems, gives the
following decomposition theorem for finite- or infinite-dimensional representations
of An-type quivers:

Theorem 1.3 (Auslander, Ringel, Tachikawa, Gabriel, Azumaya). Let Q be an
An-type quiver, and let k be a field. Then, every indecomposable representation of Q
over k is isomorphic to an interval representation IQ[b, d], and every representation
of Q, whether finite- or infinite-dimensional, is isomorphic to a (possibly infinite)
direct sum of interval representations. Moreover, this decomposition is unique up
to isomorphism and permutation of the terms.

1There is in fact a trichotomy: beside the Dynkin quivers are the so-called tame quivers, for
which the classification problem is still feasible (albeit harder); the rest of the quivers are called
wild because for them the classification problem is an essentially impossible task.

2An Artin algebra is a finitely generated algebra over an Artinian ring, i.e. a commutative
ring that satisfies the descending chain condition on ideals: every nested sequence of ideals I1 ⊇
I2 ⊇ · · · stabilizes eventually.
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18 1. ALGEBRAIC PERSISTENCE

Inifinite extensions of Ln. As a first step toward expanding the index set, con-
sider the following countable extensions of the linear quiver Ln, indexed respectively
over N and Z:

N : •
0

�� •
1

�� •
2

�� · · ·

Z : · · · �� •−2
�� •−1

�� •
0

�� •
1

�� •
2

�� · · ·

Webb [238] has extended Theorems 1.1 and 1.2 to the quiver Z in the following
way, where a representation V of Z is called pointwise finite-dimensional when
each of its constituent vector spaces has finite dimension3. The decomposition of
representations of N is obtained as a special case, in which the vector spaces assigned
to nodes with negative index are trivial. The uniqueness of the decomposition (for
both Z and N) follows once again from Azumaya’s theorem.

Theorem 1.4 (Webb). Let k be a field. Then, any pointwise finite-dimensional
representation of Z over k is a direct sum of interval representations.

As it turns out, there is an equivalence of categories between the representations
of Z and the Z-graded modules over the polynomial ring k[t]. Webb’s proof works
in the latter category. In light of this equivalence, Theorem 1.4 can be viewed as
a generalization of the classical structure theorem for finitely generated (graded)
modules over a (graded) principal ideal domain [163, §3.8]. The importance of the
pointwise finite-dimensionality assumption is illustrated by the following example.

Example 1.5 (Webb [238]). For each integer m ≥ 0, let km denote a copy of

the field k. Let then V = (Vi, v
j
i ) be the representation of Z defined by:

∀i ≥ 0, Vi =
∏
m≥0

km,

∀i < 0, Vi =
∏

m≥−i

km,

∀i ≤ j, vji is the inclusion mapVi ↪→ Vj .

For i ≥ 0, Vi is isomorphic to the space of sequences (x0, x1, x2, · · · ) of elements in k,
and is therefore uncountably-dimensional. For i < 0, Vi is isomorphic to the space
of all such sequences satisfying the extra condition that x0 = · · · = x−i−1 = 0.
Suppose V decomposes as a direct sum of interval representations. Since each
map vji is injective for i < 0 and bijective for i ≥ 0, all the intervals must be
of the form (−∞,+∞) or [i,+∞) for some i ≤ 0. Since the quotient Vi+1/Vi

has dimension 1 for i < 0, each interval [i,+∞) occurs with multiplicity 1 in the
decomposition. Since

⋂
i<0 Vi = 0 (i.e. the only sequence (x0, x1, x2, · · · ) such that

0 = x0 = x1 = x2 = · · · is the identically zero sequence), the interval (−∞,+∞)
does not occur at all in the decomposition. Hence, we have V ∼=

⊕
i≤0 I[i,+∞),

and therefore V0 is countably-dimensional, a contradiction.

3This is a weaker assumption than having V itself be finite-dimensional when the quiver is
infinite.
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2. PERSISTENCE MODULES AND INTERVAL DECOMPOSITIONS 19

Representations of arbitrary subposets of (R,≤). We now consider extensions
of the index set to arbitrary subsets T of R. For this we work with the poset (T,≤)
directly, rather than with some associated quiver. Regarding (T,≤) as a category
in the natural way4, we let a representation of (T,≤) be a functor to the category
of vector spaces. What this means concretely is that the representation defines
vector spaces (Vi)i∈T and linear maps (vji : Vi → Vj)i≤j∈T satisfying the following
constraints induced by functoriality:

(1.10)
vii = 1Vi

for every i ∈ T , and

vki = vkj ◦ v
j
i for every i ≤ j ≤ k ∈ T .

More generally, one can define representations for any given poset as functors from
that poset to the category of vector spaces.

Crawley-Boevey [93] has extended Theorems 1.1 and 1.2 to representations
of arbitrary subposets of (R,≤). Pointwise finite-dimensionality is understood as
in Theorem 1.4. The proof uses a specialized version of the functorial filtration
method of Ringel [216]. The uniqueness of the decomposition once again follows
from Azumaya’s theorem.

Theorem 1.6 (Crawley-Boevey). Let k be a field and let T ⊆ R. Then, any
pointwise finite-dimensional representation of (T,≤) over k is a direct sum of in-
terval representations.

Note that there is a larger variety of interval representations for the posets
(Z,≤) and (R,≤) than for the An-type quivers. Indeed, some intervals may be
left-infinite, or right-infinite, or both. Moreover, since R has limit points, some
intervals for (R,≤) may be open or half-open. We will elaborate on this point in
the next section.

Remark. The connection to quiver theory is somewhat more subtle in this
general setting than in the previous ones. First of all, any quiver can be viewed as
a category, with one object per node and one morphism per finite oriented path. Its
representations are then interpreted as functors to the category of vector spaces. In
the case of the quivers N and Z, the corresponding categories are equivalent to the
posets (N,≤) and (Z,≤) respectively. However, not every quiver is equivalent (as a
category) to a poset, and conversely, not every poset is equivalent to a quiver. The
reason for the latter limitation is that paths sharing the same source and the same
target are not considered equal in a quiver (recall (1.2) and (1.6)), whereas they are
in a poset by transitivity. The workaround is to equip the quivers with relations that
identify the paths sharing the same source and the same target. The representations
of the resulting quivers with relations have to reflect these identifications. This way,
any poset can be made equivalent (as a category) to some quiver with relations,
and its representations can be viewed themselves as quiver representations.

2. Persistence modules and interval decompositions

The background material on quiver theory given in Section 1 provides us with
a convenient terminology to introduce persistence modules—see also Section 5 for
a historical account. From now on and until the end of the chapter, the field k over
which representations are taken is fixed.

4i.e. with one object per element i ∈ T and a single morphism per couple i ≤ j.
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20 1. ALGEBRAIC PERSISTENCE

Definition 1.7. Given T ⊆ R, a persistence module over T is a representation
of the poset (T,≤).

This definition follows (1.10) and includes the representations of the quivers Ln,
N and Z as special cases. However, it does not include the representations of general
An-type quivers, which are gathered into a different concept called zigzag module.

Definition 1.8. Given n ≥ 1, a zigzag module of length n is a representation
of an An-type quiver.

The term ‘zigzag’ is justified by the following special situation motivated by
applications, where every other arrow is oriented backwards:

(1.11) V1
v1 �� V2

��
v2

V3
v3 �� · · · ��

vn−3

Vn−2

vn−2
�� Vn−1

��
vn−1

Vn

Zigzag modules can also be thought of as poset representations. As a directed
acyclic graph, an An-type quiver Q is the Hasse diagram5 of some partial order
relation � on the set {1, · · · , n}. Since Q has at most one oriented path between
any pair of nodes, it is equivalent (as a category) to the poset ({1, · · · , n},�), and
its representations are also representations of ({1, · · · , n},�). Thus, we can rewrite
Definition 1.8 as follows, which emphasizes its connection to Definition 1.7:

Definition 1.8 (rephrased). Given n ≥ 1, a zigzag module of length n is a
representation of the poset ({1, · · · , n},�), where � is any partial order relation
whose Hasse diagram is of type An.

Section 1 provides us with powerful structure theorems to decompose these
objects. The basic building blocks are the interval representations, called interval
modules in the persistence literature. Given an arbitrary index set T ⊆ R, an
interval of T is a subset S ⊆ T such that for any elements i ≤ j ≤ k of T , i, k ∈ S
implies j ∈ S. The associated interval module has the field k at every index i ∈ S
and the zero space elsewhere, the maps between copies of k being identities and all
other maps being zero. This definition is oblivious to the actual map orientations,
which depend on the order relation � that equips the index set T . When this
relation is obvious from the context, we simply write IS for the interval module
associated with S; otherwise we write I�S, or even IQS when � is specified through
its Hasse diagram Q.

The following theorem summarizes the structural results from Section 1 (The-
orems 1.1, 1.2, 1.3 and 1.6) and can be thought of as our main heritage from quiver
theory. The conditions under which it guarantees the existence of an interval de-
composition are sufficient for our purposes.

Theorem 1.9 (Interval Decomposition). Given an index set T ⊆ R and a par-
tial order relation � on T , a representation V of the poset (T,�) can be decomposed
as a direct sum of interval modules in each of the following situations:

(i) T is finite and the Hasse diagram of � is of type An (which happens in
particular when � is the natural order ≤ on T , whose Hasse diagram is Ln),

(ii) T is arbitrary, � is the natural order ≤, and V is pointwise finite-dimensional.
Moreover, the decomposition, when it exists, is unique up to isomorphism and per-
mutation of the terms in the direct sum, and each term is indecomposable.

5Defined as the graph having {1, · · · , n} as vertex set, and one edge i −→ j per couple i ≺ j
such that there is no k with i ≺ k ≺ j.
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3. PERSISTENCE BARCODES AND DIAGRAMS 21

So, concretely:

(i) any zigzag module decomposes uniquely as a direct sum of interval mod-
ules,

(i)-(ii) any persistence module whose index set is finite or whose vector spaces
are finite-dimensional decomposes uniquely as a direct sum of interval
modules.

A persistence or zigzag module V that decomposes as a direct sum of interval mod-
ules is called interval-decomposable. The converse (called interval-indecomposable)
means that either V decomposes into indecomposable representations that are not
interval modules, or V does not decompose at all as a direct sum of indecomposable
representations. In principle, interval-decomposability is a stronger concept than
the classical notion of decomposability into indecomposables from quiver theory.
Nevertheless, the tools introduced by Webb [238] can be used to prove both con-
cepts equivalent for modules over (subsets of) Z [192], while to our knowledge the
question is still not settled for modules over R.

3. Persistence barcodes and diagrams

In order to simplify the description of interval modules over arbitrary subsets
of R, including subsets with limit points, we need to decide on a simple and unified
writing convention for intervals. For this purpose we will use decorated real numbers,
which are written as ordinary real numbers with an additional superscript + (plus)
or − (minus). Whenever the decoration of a number is unknown or irrelevant, we
will use the superscript ±. The order on decorated numbers is the obvious one:
b± < d± if b < d, or if b = d and b± = b− and d± = b+. The corresponding
dictionary for finite intervals of R is the following one, where b± < d±:

�b−, d−� stands for [b, d) ,

�b−, d+� stands for [b, d],

�b+, d−� stands for (b, d),

�b+, d+� stands for (b, d].

We will also use the symbols −∞ and +∞ for infinite endpoints. Since intervals
are always open at infinity, these implicitly carry the superscripts −∞+ and +∞−,
which we will generally omit in the notations, so for instance �−∞, d−� stands for
the open interval (−∞, d).

Given an arbitrary index set T ⊆ R, we can now rewrite each interval S of T as
�b±, d±�∩T , for some interval �b±, d±� of R. Note that the choice of �b±, d±� may
not be unique when T is a strict subset of R. For instance, letting S = {2, 3} and
T = {1, 2, 3, 4}, we can write S indifferently as [2, 3]∩ T , or (1, 3]∩ T , or (1, 4)∩ T ,
or [2, 4) ∩ T , or more generally �b±, d±� ∩ T for any [2, 3] ⊆ �b±, d±� ⊆ (1, 4). To
remove ambiguities, unless otherwise stated we will always pick the interval of R
that is smallest with respect to inclusion, as per the following rule6:

Rule 1.10. Given an interval S of an index set T , among the intervals of
R whose intersection with T is S, pick the one that is smallest with respect to
inclusion, e.g. [2, 3] in the previous example.

6This rule has been applied implicitly until now. It is arbitrary and not motivated by math-
ematical considerations. Other rules can be applied as well, leading to different writings of the
same interval S of T .
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22 1. ALGEBRAIC PERSISTENCE

�b+j , d+j � = (bj , dj ]

�b+j , d−j � = (bj , dj)[bj , dj) = �b−j , d−j �

[bj , dj ] = �b−j , d+j �

Figure 1.1. The four decorated points corresponding to intervals �b±j , d±j �.

For simplicity we will also omit the index set T in the notation when it is
irrelevant or obvious from the context. Then, any interval-decomposable module V

can be written uniquely (up to permutation of the terms) as

(1.12) V ∼=
⊕
j∈J

I�b±j , d±j �.

The set of intervals �b±j , d±j �, ordered by the lexicographical order on the decorated
coordinates, is called the persistence barcode of V. Technically it is a multiset, as
an interval may occur more than once. Another representation of the persistence
barcode is as a multiset of decorated points in the extended plane R̄2 = [−∞,+∞]2,
where each interval �b±j , d±j � is identified with the point of coordinates (bj , dj)
decorated with a diagonal tick according to the convention of Figure 1.1. This
multiset of decorated points is called the decorated persistence diagram of V, noted
Dgm(V). From (1.12),

(1.13) Dgm(V) = {(b±j , d±j ) | j ∈ J}.
The undecorated persistence diagram of V, noted dgm(V), is the same multiset
without the decorations:

(1.14) dgm(V) = {(bj , dj) | j ∈ J}.
Let us give a concrete example taken from our traditional zoo—the background
details will be given in Chapter 2.

a

b

c

d

e

a

b

c

d

e

+∞

Figure 1.2. A classical example in persistence theory. Left: a
smooth planar curve X and its y-coordinate or ‘height’ function f :
X → R. Right: the decorated persistence diagram of H0(F).
— From Chazal et al. [72].

Example 1.11. Consider the curve X in R2 shown in Figure 1.2, filtered by the
height function f . Take the family F of sublevelsets Fy = f−1((−∞, y]) of f , where
parameter y ranges over R. This family is nested, that is, Fy ⊆ Fy′ whenever y ≤ y′.
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3. PERSISTENCE BARCODES AND DIAGRAMS 23

Let us apply the 0-homology functor H0 to F and study the resulting persistence
module H0(F), which encodes the evolution of the connectivity of the sublevel sets
Fy as parameter y ranges from −∞ to +∞. This module decomposes as follows:

H0(F) ∼= I[a,+∞)⊕ I[b, c)⊕ I[d, e) = I�a−,+∞�⊕ I�b−, c−� ⊕ I�d−, e−�,
which intuitively means that 3 different independent connected components appear
in the sublevel set Fy during the process: the first one at y = a, the second one at
y = b, the third one at y = d; while the first one remains until the end, the other
two eventually get merged into it, at times y = c and y = e respectively. A pictorial
description of this decomposition is provided by the decorated persistence diagram
in Figure 1.2.

The persistence measure. Let V be an interval-decomposable module. From its
decorated persistence diagram Dgm(V) we derive the following measure on rectan-
gles R = [p, q] × [r, s] in the extended plane with −∞ ≤ p < q ≤ r < s ≤ +∞:

(1.15) μV(R) = card (Dgm(V)|R) ,

where the membership relation for a decorated point (b±, d±) ∈ Dgm(V) is defined
by:

(1.16) (b±, d±) ∈ R ⇐⇒ [q, r] ⊆ �b±, d±� ⊆ [p, s].

The pictorial view of (1.16) is that point (b, d) and its decoration tick belong to
the closed rectangle R, as illustrated in Figure 1.3. Then, (1.15) merely defines μV

as the counting measure over the restrictions of Dgm(V) to rectangles, which takes
values in {0, 1, 2, · · · ,+∞} (we do not distinguish between infinite values). The

Figure 1.3. A decorated point (b±, d±) belongs to a rectangle R
if (b, d) belongs to the interior of R, or if it belongs to the boundary
of R with its tick pointing towards the interior of R.
— From Chazal et al. [72].

term measure is motivated by the fact that μV is additive with respect to splitting
a rectangle into two rectangles, either vertically or horizontally, with the convention
that x + ∞ = +∞ + x = +∞:

∀p < x < q ≤ r < y < s,{
μV([p, q]× [r, s]) = μV([p, x]× [r, s]) + μV([x, q]× [r, s])

μV([p, q]× [r, s]) = μV([p, q]× [r, y]) + μV([p, q]× [y, s])

(1.17)

This additivity property is illustrated in Figure 1.4, where the claim is that μV(R) =
μV(A) + μV(B) = μV(C) + μV(D). Notice how the decoration of a given point on
the border between two subrectangles assigns this point uniquely to one of them.
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A

xp
r

q

s
R

p
r

q

s
C

D

p

y

q
r

s
B

Figure 1.4. Additivity of μV under vertical / horizontal splitting.
— From Chazal et al. [72].

When V = (Vi, v
j
i ) is a persistence module over R, we can also relate its persis-

tence measure μV more directly to V through the following well-known inclusion-
exclusion formulas, which hold provided that all the ranks are finite or, less strin-
gently, that all but rank vrq are finite—in which case the values of the alternating
sums are +∞:

∀p < q ≤ r < s ∈ R,⎧⎪⎪⎨
⎪⎪⎩

μV([−∞, q] × [r,+∞]) = rank vrq ,
μV([−∞, q] × [r, s]) = rank vrq − rank vsq ,
μV([p, q]× [r,+∞]) = rank vrq − rank vrp,
μV([p, q]× [r, s]) = rank vrq − rank vsq + rank vsp − rank vrp.

(1.18)

The first formula counts the number of decorated points of Dgm(V) that lie inside
the quadrant Q = [−∞, q] × [r,+∞], the second formula inside the horizontal
strip H = [−∞, q] × [r, s], the third formula inside the vertical strip V = [p, q] ×
[r,+∞], the fourth formula inside the rectangle R = [p, q] × [r, s]. These patterns
are illustrated in Figure 1.5. Notice how the second, third and fourth formulas are
obtained from the first one by counting points inside quadrants and by removing
multiple counts (hence the term ‘inclusion-exclusion formulas’). These formulas are
useful to localize points in the persistence diagram from the sole knowledge of the
ranks of the linear maps in V. As we will see next, they can be used to generalize
the definition of persistence diagram to a certain class of interval-indecomposable
persistence modules.

V

H R

Q

Figure 1.5. A quadrant, horizontal strip, vertical strip, and finite
rectangle in the half plane above the diagonal.
— From Chazal et al. [72].
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4. Extension to interval-indecomposable persistence modules

So far we have restricted our attention to modules that are decomposable into
interval summands. For these modules we have defined persistence diagrams that
encode their algebraic structure in a unique and complete way. These diagrams,
together with their derived persistence measures, serve as signatures for the mod-
ules, and as we will see in Chapter 3 they can be compared against one another in
a natural and theoretically sound way.

In order to extend the definition of persistence diagram to persistence modules
V that are not interval-decomposable, we proceed backwards compared to Section 3:
first, we use the formulas of (1.18) as axioms to define the persistence measure μV

of V; then, we show the existence and uniqueness of a multiset of points in the
extended plane whose counting measure restricted to rectangles coincides with μV.
In order to use (1.18), we need to assume that the ranks in the alternating sums
are finite, except rank vrq , which brings up the following notion of tameness for V:

Definition 1.12. A persistence module V = (Vi, v
j
i ) over R is quadrant-tame,

or q-tame for short, if rank vji < +∞ for all i < j.

The reason for this name is obvious from the first formula of (1.18): when V

is interval-decomposable, rank vji represents the total multiplicity of the diagram
inside the quadrant [−∞, i] × [j,+∞]. The q-tameness property allows this multi-
plicity to be infinite when i = j (i.e. when the lower-right corner of the quadrant
touches the diagonal line y = x) but not when i < j (i.e. when the quadrant lies
strictly above the diagonal line). Note that forcing the multiplicity to be finite
even when i = j would bring us back to the concept of pointwise finite-dimensional
module.

For a q-tame persistence module V, we define the persistence measure μV by the
formulas of (1.18), which as we saw are well-founded in this case. This measure on
rectangles does take values in {0, 1, 2, · · · ,+∞} as before, although the fact that it
cannot be negative is not obvious at first sight: it follows from the observation that
the formulas of (1.18) actually count the multiplicity of the summand I[q, r] in the
interval-decomposition of the restriction of the module V to some finite index set J ,
which is J = {q, r} for the first formula, J = {q, r, s} for the second, J = {p, q, r} for
the third, and J = {p, q, r, s} for the fourth. In each case, the restriction of V to this
finite index set J is interval-decomposable by Theorem 1.9 (i), so the multiplicity
of the summand I[q, r] is well-defined and non-negative—for further details on this
specific point, please refer to [72, §2.1]. In addition to being non-negative, μV is
also additive under vertical and horizontal splittings, a straight consequence of its
definition (the duplicated terms in the alternating sums cancel out).

Theorem 1.13 ([72, theorem 2.8 and corollary 2.15]). Given a q-tame module
V, there is a uniquely defined locally finite decorated multiset Dgm(V) in the open
extended upper half-plane {(x, y) ∈ R̄2 | x < y} such that for any rectangle
R = [p, q] × [r, s] with −∞ ≤ p < q < r < s ≤ +∞,

μV(R) = card (Dgm(V)|R) .

The proof of this result works by subdividing the rectangle R recursively into
subrectangles, and by a limit process it eventually charges the local mass of μV to a
finite set of decorated points, whose uniqueness is obtained as an easy consequence
of the construction. A preliminary version of this argument appeared in [71] and was
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26 1. ALGEBRAIC PERSISTENCE

based on measures defined on specific families of rectangles. The final version in [72]
is more cleanly formalized and considers general rectangle measures, therefore we
recommend it to the interested reader.

Theorem 1.13 defines the persistence diagram of a q-tame module V uniquely as
a multiset Dgm(V) of decorated points lying above the diagonal line Δ = {(x, x) |
x ∈ R̄}. Alternately, one can use a persistence barcode representation, in which ev-
ery diagram point (b±, d±) becomes the interval �b±, d±�. The undecorated version
of Dgm(V), denoted dgm(V), is obtained as in (1.14) by forgetting the decorations.

These definitions agree with the ones from Section 3 in the sense that, if a
persistence module V over R is both q-tame and interval-decomposable, then the
multiset Dgm(V) derived from Theorem 1.13 agrees with the one from (1.13) ev-
erywhere above the diagonal Δ—see [72, proposition 2.18]. The two multisets may
differ along Δ though, since the interval-decomposition of V may contain summands
of type I[b, b] = I�b−, b+�, which are not captured by the rectangles not touching Δ.
It turns out that either definition of Dgm(V) can be used in practice, as the natural
measures of proximity between persistence modules and between their diagrams,
which will be presented in Chapter 3, are oblivious to the restrictions of the dia-
grams to the diagonal Δ. We will therefore be using both definitions indifferently
in the following.

5. Discussion

To conclude the chapter, let us discuss some of its concepts further and put
them into perspective.

Persistence modules: a historical account. Several definitions of a persistence
module coexist in the persistence literature, following the steady development of
the theory towards greater generality and abstraction.

The term persistence module was coined originally by Zomorodian and Carls-
son [243], but the concept appeared already in [118], where it referred to a finite
sequence of finite-dimensional vector spaces connected by linear maps as follows:

(1.19) V1
v1 �� V2

v2 �� · · ·
vn−1

�� Vn

In other words, a persistence module as per Edelsbrunner, Letscher, and Zomoro-
dian [118] is a finite-dimensional representation of the linear quiver Ln. Zomoro-
dian and Carlsson [243] extended the concept to diagrams indexed over the natural
numbers, that is, to representations of the quiver N. Cohen-Steiner, Edelsbrunner,
and Harer [87] further extended the concept to work with diagrams indexed over
the real line. They defined a persistence module as an indexed family of finite-
dimensional vector spaces {Vi}i∈R together with a doubly indexed family of linear

maps {vji : Vi → Vj}i≤j that satisfy the following identity and composition rules:

(1.20)
∀i, vii = 1Vi

,

∀i ≤ j ≤ k, vki = vkj ◦ v
j
i .

Such objects are pointwise finite-dimensional representations of the poset (R,≤),
the identity and composition rules (1.20) following from functoriality as in (1.10).

Chazal et al. [71] dropped the finite-dimensionality condition on the vector
spaces, and then Chazal et al. [72] replaced R by any subset T ⊆ R equipped with
the same order relation ≤. Hence Definition 1.7.
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Carlsson and de Silva [49] extended the concept of persistence module in a
different way, by choosing arbitrary orientations for the linear maps connecting the
finite-dimensional vector spaces in (1.19). This gave rise to the concept of zigzag
module, presented in Definition 1.8 without the finite-dimensionality condition.

More recently, Bubenik and Scott [41] then Bubenik, de Silva, and Scott [40]
proposed to generalize the concept of persistence module to representations of ar-
bitrary posets. This generalization reaches far beyond the setting of 1-dimensional
persistence, losing some of its fundamental properties along the way, such as the
ability to define complete discrete invariants like persistence barcodes in a system-
atic way. Nevertheless, it still guarantees some ‘soft’ form of stability, as will be
discussed at the end of Chapter 3 and then in Chapter 9.

Interval decompositions in the persistence literature. Although Theorem 1.9 is
presented as a byproduct of representation theory in the chapter, it actually took
our community some time to realize this connection.

Historically, Zomorodian and Carlsson [243] were the first ones to describe per-
sistence modules in terms of representations. They pointed out the connection be-
tween the persistence modules over N and the graded modules over the polynomial
ring k[t] (mentioned after Theorem 1.4), and they used the structure theorem for
finitely generated modules over a principal ideal domain as decomposition theorem
for finite-dimensional persistence modules over N.

Some time later, Carlsson and de Silva [49] introduced zigzag modules and
connected them to finite-dimensional representations of An-type quivers. This con-
nection induces a decomposition theorem for finite-dimensional zigzag modules via
Gabriel’s theorem.

More recently, Chazal et al. [72] pointed out the connection between persistence
or zigzag modules over finite sets and representations of finitely generated algebras,
and they referred to the work of Auslander [12] and Ringel and Tachikawa [217] to
decompose arbitrary persistence or zigzag modules (including infinite-dimensional
ones) over finite index sets—Theorem 1.9 (i).

In the meantime, Lesnick [179] introduced our community to the work of Webb
[238], which generalizes the decomposition theorem used by Zomorodian and Carls-
son [243] to pointwise finite-dimensional modules over N. Crawley-Boevey [93] fur-
ther extended it to a decomposition theorem for persistence modules over arbitrary
subsets of R under the pointwise finite-dimensionality condition—Theorem 1.9 (ii).
His proof turns out to hold under a somewhat weaker (albeit technical) condi-
tion [95], which gives hope for tackling the interval decomposability question in
greater generality, as will be discussed next.

These results have contributed to shape the theory as we know it today. Among
them, let us point out [49] as a key contribution, for bringing the existence of
quiver theory and its connection to persistence to the attention of our community,
and conversely, for creating an opportunity to advertise persistence among the
representation theory community and stimulate interactions. Besides, Carlsson
and de Silva [49] proposed a genuinely new constructive proof of Gabriel’s theorem
in the special case of An-type quivers, which is self-contained, requires no prior
knowledge of quiver theory, and has eventually led to a practical algorithm for
computing decompositions of zigzag modules [50]. For the interested reader, we
analyze this proof and establish connections to the so-called reflection functors
of Bernstein, Gelfand, and Ponomarev [24] in Section 4.4 of Appendix A.
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28 1. ALGEBRAIC PERSISTENCE

q-tameness versus interval-decomposability. The concepts of interval-decompos-
able and q-tame persistence modules over R are closely related but not identical,
and neither of them is a direct generalization of the other. For instance, the module⊕

j∈J I�b±j , d±j �, where the decorated pairs form a dense subset of the half-plane
above Δ, is interval-decomposable but not q-tame—in fact its persistence measure
is infinite on every rectangle. By contrast, the module

∏
n≥1 I[0,

1
n ] is q-tame but

not interval-decomposable.
Both concepts are related though. As we will see in Chapter 3, q-tame mod-

ules are the limits of pointwise finite-dimensional modules in some metric called
the interleaving distance. Recall that pointwise finite-dimensional modules are
themselves q-tame by definition and interval-decomposable by Theorem 1.9 (ii),
so q-tame modules are limits of (a subset of) the interval-decomposable modules.
Furthermore, Crawley-Boevey [95] proved that any q-tame persistence module V

admits interval-decomposable submodules W whose interleaving distance to V is
zero, so q-tame modules are in fact indistinguishable from interval-decomposable
modules in that metric. This result led Bauer and Lesnick [20] to define the undec-
orated persistence diagram of a q-tame module V directly as the diagram of any
interval-decomposable submodule W of V lying at interleaving distance zero from
V. The upcoming Isometry Theorem (Theorem 3.1) implies that this is a sound
definition, all such submodules W having in fact the same undecorated diagram.

One of these submodules stands out: the so-called radical rad(V), defined as

follows (where V = (Vi, v
j
i )):

(1.21) ∀j ∈ R, rad(V)j =
∑
i<j

im vji .

Although not always pointwise finite-dimensional, rad(V) is interval-decompos-
able [95], furthermore it makes the quotient module U = V/ rad(V) ephemeral7,
that is:

(1.22) ∀i < j ∈ R, rank uj
i = 0.

Thus, every q-tame module is interval-decomposable ‘modulo’ some ephemeral mod-
ule. Chazal, Crawley-Boevey, and de Silva [63] formalized this idea by introducing
the so-called observable category of persistence modules, defined as the quotient
category of q-tame modules ‘modulo’ ephemeral modules in the sense of Serre’s
theory of localization. In this new category, q-tame modules become interval-
decomposable, and (undecorated) persistence diagrams are a complete invariant
for them.

The conclusion of this discussion is that q-tame modules appear as a natural ex-
tension of (a subset of) the interval-decomposable modules. In addition, experience
shows that q-tame modules occur rather widely in applications. For instance, as we
will see in Chapter 7, the Vietoris-Rips and Čech complexes of a compact metric
space have q-tame persistent homology, whereas they can be very badly behaved
when viewed non-persistently. Such examples support the claim that the q-tame
modules are also a natural class of persistence modules to work with in practice.

7In fact, rad(V) is the smallest submodule of V such that the quotient module is ephemeral.
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CHAPTER 2

Topological Persistence

Persistence modules arise naturally as algebraic invariants of families of topo-
logical spaces. Such families, called filtrations, can be viewed as sequences of topo-
logical spaces linked by continuous maps (usually taken to be inclusions). The con-
nection between the topological level and the algebraic level happens through some
functor, typically the homology or cohomology functor, which turns the filtrations
into persistence modules, taking sequences of topological spaces and continuous
maps to sequences of vector spaces and linear maps. Then, persistence diagrams
can be defined for filtrations and used as signatures for functions over topological
spaces. The magic is that the connection between the topological and algebraic
levels remains implicit, so users do not have to manipulate persistence modules
directly in practice, even when computing the persistence diagrams.

This chapter reviews the most common topological constructions from which
persistence modules are derived (Section 1). It also describes how the persistence
of these constructions is computed without an explicit representation of their corre-
sponding persistence modules (Section 2). Here we do not pretend to be exhaustive,
but rather to give the reader a flavor of the variety of the contributions in this area.

Throughout the chapter, unless otherwise mentioned, we will be using singu-
lar homology or cohomology with coefficients in a fixed field k—omitted in the
notations for simplicity.

Prerequisites. We will be assuming familiarity with simplicial complexes as well
as simplicial (resp. singular) homology and cohomology. A good introduction to
these topics can be found in Chapters 1, 4 and 5 of [202]. We will also use some
basic notions of Morse theory, which can be found in Part I of [195].

1. Topological constructions

This section reviews the most common topological constructions in persistence
theory: filtrations and excursion sets, relative and extended filtrations, zigzags and
level sets, and finally kernels, images and cokernels. It is a good opportunity to
introduce some terminology and to set up the notations.

1.1. Filtrations and excursion sets. Filtrations are the simplest kind of
topological constructions and also the most widely used in practice.

Definition 2.1. Given a subset T ⊆ R, a filtration X over T is a family
of topological spaces Xi, parametrized by i ∈ T , such that Xi ⊆ Xj whenever
i ≤ j ∈ T .

Thus, X is a special type of representation of the poset (T,≤) in the category
of topological spaces. X is called (finitely) simplicial if the spaces Xi are (finite)
simplicial complexes and Xi is a subcomplex of Xj whenever i ≤ j. When the Xi

29
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30 2. TOPOLOGICAL PERSISTENCE

are subsets of a common topological space X, with
⋂

i∈T Xi = ∅ and
⋃

i∈T Xi = X,
X is called a filtration of X, and the pair (X,X ) is called a filtered space.

Applying the homology functor to the sequence of spaces and maps in X gives
one persistence module per homology dimension p, denoted Hp(X ). The collection
of these modules for p ranging over all dimensions is called the persistent homology
of X and denoted H∗(X ). Each module Hp(X ) has the homology group Hp(Xi)
as vector space at every index i ∈ T , and the homomorphism Hp(Xi) → Hp(Xj)
induced by the inclusion map Xi ↪→ Xj at any pair of indices i ≤ j ∈ T . The image
imHp(Xi) → Hp(Xj) is sometimes called a p-th persistent homology group of X , by
a natural extension of the concept of p-th homology group to filtrations.

The persistent cohomology H∗(X ) is defined similarly, but the maps are oriented
backwards, so the induced persistence modules are indexed over the ‘backwards
copy’ of the real line R, denoted Rop and defined as follows:

(2.1) Rop = {i | i ∈ R} ordered by i ≤ j ⇔ i ≥ j.

Persistence diagrams. Suppose the modules in H∗(X ) have well-defined persis-
tence diagrams. Then, the superimposition of these diagrams in the extended plane,
with different indices for different homology dimensions, is called the persistence
diagram of the filtration X . It has a decorated version, denoted Dgm(X ), and an
undecorated version, denoted dgm(X ). An illustration is provided in Example 2.4
below.

From Chapter 1 (Theorems 1.9 and 1.13) we know that the persistence modules
in H∗(X ) have well-defined diagrams at least in the following situations:

(i) when the index set T is finite and the modules H∗(X ) are arbitrary,
(ii) when T is arbitrary and the modules H∗(X ) are pointwise finite-dimensional,
(iii) when T = R and the modules H∗(X ) are q-tame.

In case (iii), we say that X itself is q-tame. The kind of filtrations considered
originally were finitely simplicial filtrations over finite index sets [118]. These satisfy
both (i) and (ii). They are still widely used nowadays because they are the ones
handled by algorithms, as we will see in Section 2.

Interpretation. Persistence uses a convenient terminology to read into the per-
sistence diagram of a filtration X . For this it treats X not as a family of topological
spaces but as a single space ‘transforming’ over time. Dgm(X ) encodes then the evo-
lution of the topological structure of that space as the filtration parameter ranges
over the index set T , from low values to high values. Assuming the persistent ho-
mology of X is interval-decomposable, to each decorated point (b±, d±) of Dgm(X )
corresponds an interval in the decomposition of some module Hp(X ), called a p-
dimensional feature of X . At the topological level, this feature materializes as an
independent connected component (p = 0), or hole (p = 1), or void (p = 2), etc.
Its lifespan is encoded in (b±, d±), meaning that the feature is present (alive) in the
current space Xi at every index i ∈ �b±, d±� ∩ T and nowhere else.

Example 2.2. Take the filtration X of the octahedron indexed over {1, 2, 3, 4}
shown in Figure 2.1. Its persistent homology decomposes as follows:

H0(X ) ∼= I[1, 4]⊕ I[2, 2]

H1(X ) ∼= I[3, 3]

H2(X ) ∼= I[4, 4].
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Figure 2.1. A simplicial filtration of the octahedron, indexed over
the set {1, 2, 3, 4}.

Using the terminology just introduced, we interpret the decomposition as follows:
there is a 0-dimensional feature (connected component) living throughout the fil-
tration, while another 0-dimensional feature lives only at time 2, a 1-dimensional
feature (hole) lives only at time 3, and a 2-dimensional feature (void) lives only at
time 4.

By extension, we use the same terminology to read into Dgm(X ) when X is
q-tame, however it is important to bear in mind that the resulting interpretation
will not fully reflect the algebraic structure of H∗(X ) if the latter is not interval-
decomposable.

Let us take this opportunity to emphasize that persistence provides finer in-
formation than just pointwise homology. In the above example, persistence distin-
guishes between the two connected components that appear in X and detects that
one lives throughout the filtration whereas the other is ephemeral. By contrast,
computing the homology of each space Xi in the filtration separately would not
make possible to relate the topological features across indices.

Let us also mention that some authors use the concepts of birth and death of
a feature to interpret interval decompositions. For instance, in the above example,
one would say that the first connected component is born at time 1 and lives on
forever, while the second component is born at time 2 and dies at time 3. This
terminology is well-suited for persistence modules over finite index sets, however
it is unsafe for persistence modules over general subsets of R because it assumes
implicitly that the intervals in the decomposition can be written in the form [b, d),
which is possible in the above example but not always over R—recall Rule 1.10 and
the corresponding discussion in Chapter 1. It must therefore be used with care. As
a side note, let us mention that the death of the component born last when two
components get merged, as occurs at time 3 in Example 2.2, defines the elder rule
mentioned in the general introduction.

Excursion sets. Given a topological space X, a filter of X is a function f :
X → R. Each value i ∈ R gives rise to two excursion sets: the sublevel set
Fi = f−1((−∞, i]), and the superlevel set F i = f−1([i,+∞)). These excursion sets
are usually taken to be closed, and we are following the general trend here.

Consider now the family F≤ of sublevel sets Fi for i ranging over R. This
family is nested, that is, we have Fi ⊆ Fj whenever i ≤ j. Moreover, we have⋂

i∈R
Fi = ∅ and

⋃
i∈R

Fi = X, so F≤ is a filtration of X, called the sublevel-
sets filtration of f . One can also consider the superlevel-sets filtration F≥ of f ,
composed of the superlevel sets F i and indexed over the ‘backwards copy’ of R

defined in (2.1). By default, when mentioning the ‘persistence of a function’, people
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refer to the persistence of its sublevel-sets filtration F≤. The same will be true in
the following unless otherwise stated, and we will be using the following vocabulary
and notations:

• the decorated and undecorated persistence diagrams of f , denoted respec-
tively Dgm(f) and dgm(f), will refer to the ones of F≤,

• the persistent homology and cohomology of f , denoted H∗(f) and H∗(f)
respectively, will refer to the ones of F≤,

• f will be said q-tame whenever F≤ is.

There are important practical cases in which the function f is naturally q-tame.
For instance,

Proposition 2.3 (Chazal et al. [72]). The function f : X → R is q-tame in
the following cases:

(i) when X is finitely triangulable, i.e. homeomorphic to the underlying space
of a finite simplicial complex, and f is continuous,

(ii) when X is locally finitely triangulable, i.e. homeomorphic to the un-
derlying space of a locally finite simplicial complex, and f is continuous,
bounded from below, and proper in the sense that the preimage of any
compact interval is compact.

In both cases the proof that rankH∗(Fi) → H∗(Fj) < +∞ for i < j relies on
inserting some space Y with finitely generated homology between Fi and Fj . More
precisely, Y is composed of the simplices of a sufficiently fine subdivision of X that
intersect Fi.

The conditions on X and f are tight in that we can build examples where f
is no longer q-tame when a single one of them is not met. For instance, X = Z

is locally finitely triangulable and f : n �→ n is continuous and proper but not
bounded fom below, and we have rankH0(Fi) → H0(Fj) = +∞ for any i ≤ j.
This does not mean that the conditions are always necessary though, and in fact
there are many cases where they are not met yet f is still q-tame. For instance, let
X ⊂ R2 be the so-called Hawaiian earring, i.e. the union of the circles of center
( 1
n , 0) and radius 1

n for n ranging over N \ {0}, and let f : X → R be the map

(x, y) �→
{

0 if x = 0
1
x if x > 0

Then, f is q-tame (in fact all its sublevel sets have finite-dimensional 0-homology
and trivial higher-dimensional homology) whereas X is not locally triangulable and
f is not continuous at the origin.

By contrast, putting stronger conditions on X and f results in finer properties
for the persistent homology of f . For instance, if X is a compact manifold and f is
a Morse function, or if X is a finitely triangulable space and f is a piecewise-linear
function, then there is a finite set of values c1 < c2 < · · · < cn−1 < cn such that
the inclusion Fi ↪→ Fj induces isomorphisms of finite rank in homology whenever
(i, j] does not meet any of these values1. The persistent homology H∗(f) is then
constant over each of the intervals (−∞, c1), [c1, c2), · · · , [cn−1, cn), [cn,+∞), and
it decomposes into finitely many interval summands of type I[ck, cl) or I[cn,+∞).

1This is what Cohen-Steiner, Edelsbrunner, and Harer [87] call ‘tameness’ for a function f .
It is a more restrictive condition than q-tameness, however it guarantees that H∗(f) is interval-
decomposable, with half-open intervals.
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The impact on the persistence diagram is that Dgm(f) is finite, with all decorations
pointing to the bottom-left.

Let us give a concrete example, which completes Example 1.11 from Chapter 1.

Example 2.4. Consider the planar curve X and its height function f : X → R

depicted in Figure 1.2. This is a Morse function over a compact manifold, therefore
not only is it q-tame, but its persistent homology is interval-decomposable, with
the following finite decomposition:

H0(f) ∼= I[a,+∞)⊕ I[b, c)⊕ I[d, e)

H1(f) ∼= I[m,+∞),

where m = maxx∈X f(x). The last interval is explained by the fact that a hole
appears in the sublevel-set Fi when parameter i reaches the level m, hole that does
not disappear subsequently because Fi = X = Fm for all i ≥ m. Figure 2.2 shows
the completed decorated persistence diagram of f sketched in Figure 1.2. Notice the
point decorations, which are all pointing to the bottom-left as explained previously.

a

b

c

d

e

m

∞

Figure 2.2. The full persistence diagram of the height function
from Example 1.11. The dimension of each topological feature is
coded in the color of the corresponding diagram point: white for
0, black for 1.
— From Chazal et al. [72].

A natural question to ask is whether all R-indexed filtrations of a topological
space X are sublevel-sets filtrations of functions f : X → R. This is not exactly
the case, as the following simple example shows.

Example 2.5. Take for X the discrete space {a, b, c}, and let X be the following
filtration of X indexed over R:

Xi =

⎧⎪⎨
⎪⎩

{a} if i ≤ 0

{a, b} if i ∈ (0, 1)

{a, b, c} if i ≥ 1.
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Suppose there is a map f : X → R whose sublevel-sets filtration F≤ equals X .
Then,

b ∈ Fi ∀i > 0 ⇒ f(b) ≤ 0,

b /∈ Fi ∀i < 0 ⇒ f(b) ≥ 0,

and so f(b) = 0. But then F0 � b /∈ X0, which contradicts the assumption that
F≤ = X . The mismatch between the two filtrations at time i = 0 can be resolved by
taking open sublevel sets instead of closed sublevel sets, but then another mismatch
appears at time i = 1, with X1 � c /∈ F1.

Nevertheless, the persistence diagrams of sublevel-sets filtrations form a dense
subset of the persistence diagrams of R-indexed filtrations, in the following sense2:

Proposition 2.6. Let X be a q-tame filtration of X. Then, there is a q-tame
function f : X → R whose undecorated persistence diagram coincides with the one
of X . The decorated diagrams Dgm(f) and Dgm(X ) may be different though, as
in Example 2.5. For f one can take for instance the time of appearance function
defined by f(x) = inf{i ∈ R | x ∈ Xi}.

Typical applications. Filtrations, in particular sublevel-sets filtrations, are be-
ing widely used in topological data analysis. Perhaps their most emblematic use is
in inferring the homology of an unknown object from a finite sampling of it, as will
be discussed in Chapters 4 and 5.

1.2. Relative filtrations and extended persistence. Suppose we are given
a topological space X and a filtration X of that space, indexed over T ⊆ R. Beside
the filtration X itself, another object of interest is the family of pairs of spaces
(X,Xi) for i ∈ T , connected by the componentwise inclusion maps (X,Xi) ↪→
(X,Xj) for i ≤ j ∈ T . We will call such a family a relative filtration, denoted (X,X ).
The homology functor turns it into a persistence module over T for each homology
dimension. The collection of these modules is called the persistent homology of the
relative filtration (X,X ), denoted H∗(X,X ). The rest of the terminology introduced
for filtrations can be used verbatim for relative filtrations.

Extended persistence. Cohen-Steiner, Edelsbrunner, and Harer [86] introduced
extended persistence (EP) as a mean to capture a greater part of the homological
information carried by a pair (X, f). Indeed, some but not all of this informa-
tion is captured by the persistent homology of the sublevel-sets filtration F≤ of
f . The idea of extended persistence is to grow the space X from the bottom up
through the sublevel-sets filtration F≤, then to relativize X from the top down with
the superlevel-sets filtration F≥. The resulting persistence module Vp at the p-th
homology level is indexed over the set

Rep = R ∪ {+∞} ∪ Rop,

where Rop is the ‘backwards copy’ of R defined in (2.1). The order on Rep is
completed by i < +∞ < j for all i, j ∈ R. As a poset, Rep is isomorphic to (R,≤),

2This result is a straight consequence of the stability theorem that will be presented in
Chapter 3.
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1. TOPOLOGICAL CONSTRUCTIONS 35

but we will keep it as it is for clarity. The module Vp is defined as follows:

(2.2)

V p
i = Hp(Fi) for i ∈ R

V p
+∞ = Hp(X) ∼= Hp(X, ∅)

V p
i = Hp(X,F i) for i ∈ Rop,

the morphisms between these spaces being induced by the inclusion maps ∅ ↪→ Fi ↪→
Fj ↪→ X and ∅ ↪→ F j ↪→ F i ↪→ X for i ≤ j ∈ R. When this module is q-tame,
e.g. when X is finitely triangulable and f is continuous, its decorated persistence
diagram Dgm(Vp) is well-defined everywhere in the extended plane except on the
diagonal Δ, by a straightforward adaptation of Theorem 1.13. The superimposition
of these diagrams forms the so-called extended persistence diagram of f , which
contains three types of points:

• points with coordinates i ≤ j ∈ R, which belong also to the diagram of the
sublevel-sets filtration F≤ and lie above Δ,

• points with coordinates i ≤ j ∈ Rop, which belong also to the diagram of the
relative filtration (X,F≥) and lie below Δ,

• points with coordinates i ∈ R, j ∈ Rop, which lie on either side of Δ.
These three types of points form respectively the ordinary, the relative, and the
extended parts of the extended persistence diagram of f .

Example 2.7. Consider once again the planar curve X and its height function
f : X → R depicted in Figure 1.2. This is a Morse function over a compact manifold,
therefore the extended persistence modules Vp are interval-decomposable, with the
following finite decompositions:

V0 ∼= I[a,m)⊕ I[b, c)⊕ I[d, e)

V1 ∼= I[m, a)⊕ I[c, b)⊕ I[e, d),

where m = maxx∈X f(x). The corresponding diagram is shown in Figure 2.3.

a b c d e m

a

b

c

d

e

m

Figure 2.3. The extended persistence diagram of the height func-
tion from Example 1.11. The dimension of each topological feature
is encoded in the color of the corresponding diagram point: white
for 0, black for 1. The shape of each diagram point indicates to
which part of the diagram it belongs: the ordinary part for a round
shape, the relative part for a diamond shape, the extended part for
a square shape.
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Notice the symmetry in the diagram of Figure 2.3. It is a general property of
Morse functions over compact manifolds, and a consequence of the Lefschetz duality
between absolute and relative homology groups of complementary dimensions:

Theorem 2.8 (EP Duality [86]). Let f be a Morse function over a compact d-
manifold. Then, the extended persistence diagram of f has the following reflection
symmetries across the diagonal Δ: for all 0 ≤ p ≤ d,

• the ordinary part of Dgm(Vp) and the relative part of Dgm(Vd−p) are mirror
of each other,

• the extended parts of Dgm(Vp) and Dgm(Vd−p) are mirror of each other,
where the Vp are the extended persistence modules derived from f according to ( 2.2).

From this result follows another one relating the extended persistence diagrams
of f and −f . This time the reflections are performed across the minor diagonal
{(x,−x) | x ∈ R}:

Theorem 2.9 (EP Symmetry [86]). Let f be a Morse function over a compact
d-manifold. Then, the extended persistence diagrams of f and −f are mirror of
each other across the minor diagonal {(x,−x) | x ∈ R} in the following sense:

• the ordinary parts of Dgm(Vp) and Dgm(Wd−p−1) are mirror of each other,
• the relative parts of Dgm(Vp) and Dgm(Wd−p−1) are mirror of each other,
• the extended parts of Dgm(Vp) and Dgm(Wd−p) are mirror of each other,

where the Vp and Wp are the extended persistence modules derived respectively from
f and −f .

Edelsbrunner and Kerber [117] make even finer claims in the special case where
X = Sd. Given a Morse function f : Sd → R and two subsets L,W ⊂ Sd—the land
and the water—such that L ∪W = Sd and L ∩W is an (n− 1)-submanifold of Sd,
their land and water theorem shows (under some conditions) that a symmetry exists
between the persistence diagrams of f |L and f |W , which follows from Alexander
duality.

These symmetries are the gem of extended persistence theory, generalizing clas-
sical duality theorems from manifolds to real-valued functions over manifolds in a
way that is both natural and elegant. As we will see in the next section (The-
orem 2.11), they can be further generalized to certain classes of functions over
non-manifold spaces.

Typical applications. Extended persistence has been used by Bendich et al. [22]
to define multiscale variants of the concept of local homology group at a point in a
topological space. These are useful e.g. to infer the local structure and dimension
of an unknown stratified space from a finite sampling of it, which was the main
motivation in the paper.

1.3. Zigzags and level sets. A zigzag Z is a diagram of topological spaces of
the following form, where the maps are inclusions and can be oriented arbitrarily:

(2.3) Z1 Z2 · · · Zn−1 Zn.

Thus, zigzags are a special type of representations of An-type quivers in the category
of topological spaces. Applying the homology functor to a zigzag Z gives one zigzag
module per homology dimension p, denoted Hp(Z). The collection of these modules
is called the persistent homology of Z, denoted H∗(Z). One can also consider its
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persistent cohomology H∗(Z), obtained by applying the cohomology functor. Ac-
cording to Theorem 1.9 (i), the modules in H∗(Z) are always interval-decomposable,
so their persistence diagrams are well-defined. Their superimposition in the plane,
with different indices for different homology dimensions, is called the persistence
diagram of the zigzag Z. Thus, most of the terminology introduced for filtrations
carries over to zigzags.

Level-sets zigzag. Given a topological space X and a function f : X → R, each
interval [i, j] ⊂ R gives rise to a slice F j

i = f−1([i, j]). The slice F i
i is called a

level set. Given a sequence of real values i0 < i1 < · · · < in, consider the following
diagram where all maps are inclusions between slices:

(2.4) F i0
i0

→ F i1
i0

← F i1
i1

→ F i2
i1

← · · · → F in
in−1

← F in
in
.

This diagram is called a level-sets zigzag of f , denoted Z generically. There are as
many such diagrams as there are finite increasing sequences of real values. However,
in some cases there is a class of such zigzags that is ‘canonical’. For instance, when
X is a compact manifold and f is a Morse function, there is a finite set of values
c1 < · · · < cn such that the preimage of each open interval S = (−∞, c1), (c1, c2),
· · · , (cn−1, cn), (cn,+∞) is homeomorphic to a product of the form Y ×S, where Y
has finite-dimensional homology and f is the projection onto the factor S. Then,
choosing i0 < · · · < in that are interleaved with the ci’s as follows:

(2.5) i0 < c1 < i1 < c2 < · · · < in−1 < cn < in,

we have that, up to isomorphism, the persistent homology of Z is independent of
the choice of indices i0, · · · , in. In such a case, Z is called the level-sets zigzag of f :
even though it is not unique, its persistent homology is (up to isomorphism). Note
that the assumptions X compact and f Morse are not exploited in full here. One
obtains the same characterization for Z from any function that is of Morse type in
the following sense:

Definition 2.10 (Carlsson, de Silva, and Morozov [50]). Given a topological
space X, a function f : X → R is of Morse type if there is a finite set of values c1 <
· · · < cn such that the preimage of each open interval S = (−∞, c1), (c1, c2), · · · ,
(cn−1, cn), (cn,+∞) is homeomorphic to a product of the form Y ×S, where Y has
finite-dimensional homology and f is the projection onto the factor S. Moreover,
each homeomorphism Y × S → f−1(S) should extend to a continuous function
Y × S̄ → F

ci+1
ci .

The pyramid. Assume f : X → R is of Morse type as in Definition 2.10, and
let i0 < · · · < in be chosen as in (2.5). Then, one can build a gigantic lattice
of (relative) homology groups of slices, where the maps are induced by inclusions.

With some imagination, this lattice looks like a pyramid of apex H∗(F
in
i0

) seen from
the top—hence its name. It is shown for n = 3 in Figure 2.4.

This pyramid was introduced by Carlsson, de Silva, and Morozov [50] as a
tool to relate the level-sets zigzag Z of f to its extended persistence. Indeed,
the persistent homology of Z appears in the bottom row of the lattice, while the
extended persistent homology of f appears3 in the diagonal H∗(F

i0
i0

) → · · · →
H∗(F

in
i0

) → H∗(F
in
i0
, F in

in
) → · · · → H∗(F

in
i0
, F in

i0
) = 0, and the extended persistent

3Thanks to the fact that f is of Morse type, its extended persistent homology and the diagonal
of the pyramid have the same interval decomposition up to some shifts in the interval endpoints.
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Figure 2.4. The pyramid for n = 3. Each homology group
H∗(F

is
ir

) is identified with the relative homology group H∗(F
is
ir
, ∅).

Moreover, the H∗(F
is
ir
, F is

ir
) are identified with 0, and is

ir
F stands

for the union F ir
i0
∪ F in

is
.

— Based on Carlsson, de Silva, and Morozov [50].

homology of −f in the minor diagonal 0 = H∗(F
in
i0
, F in

i0
) ← · · · ← H∗(F

in
i0
, F i0

i0
) ←

H∗(F
in
i0

) ← · · · ← H∗(F
in
in

).
The remarkable property of the pyramid is that all the diamonds are of the

following type, called Mayer-Vietoris:

H∗(A ∪ C,B ∪D)

H∗(A,B)

��������������
H∗(C,D)

��												

H∗(A ∩ C,B ∩D)

��												

��������������

There is then a bijection between the interval decompositions of any two x-monotone
paths in the pyramid that differ by one diamond. The bijection may slightly shift
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the intervals’ endpoints or their associated homology dimensions, however it does
match the two decompositions completely. This is the so-called Mayer-Vietoris
Diamond Principle4 of Carlsson and de Silva [49].

Thus, by ‘travelling down’ the pyramid, from either the diagonal or the mi-
nor diagonal, to the bottom zigzag, and by applying the Mayer-Vietoris Diamond
Principle at every diamond encountered, one can derive bijections between the
decompositions of the extended persistent homologies of f and −f and the decom-
position of H∗(Z). The details of these bijections are not important, what matters
is that they generalize the EP Symmetry Theorem 2.9 from Morse functions over
manifolds to Morse-type functions over arbitrary topological spaces:

Theorem 2.11 (Pyramid [50]). Let f : X → R be of Morse type. Then, up to
bijections, the extended persistent homologies of f and −f have the same interval
decomposition as the persistent homology of the level-sets zigzag of f .

Typical applications. Beside making possible to generalize the EP Symmetry
Theorem, zigzags have been used as a theoretical tool in the analysis of various
homology inference techniques [107, 221], and as a smaller-sized data structure to
improve their efficiency [208]. We will elaborate on this in Chapters 5 and 7.

1.4. Kernels, images, and cokernels. Suppose we are given two filtrations
X ,Y , together with the promise that X is ‘dominated’ by Y in the sense that
Xi ⊆ Yi for all i ∈ T . Then, the family of inclusion maps Xi ↪→ Yi induces a
morphism between persistence modules Hp(X ) → Hp(Y) at the p-th homology level,
for any homology dimension p. The kernel, image, and cokernel of this morphism
are persistence modules themselves, and they have an interest of their own. For
instance, they are q-tame when both X and Y are, but not only: they can also
sometimes be q-tame when only X , or only Y , or neither, is.

Typical applications. Persistence for kernels, images and cokernels has been
introduced by Cohen-Steiner et al. [89], who used it to refine the method of Bendich
et al. [22] for measuring the local homology of a sampled topological space. As we
will see in Chapter 6, it can also be used effectively to approximate the persistence
diagram of a real-valued function from a finite sampling of its domain.

2. Calculations

Algorithms that compute persistence take in a (finitely) simplicial filtration K
indexed over a finite index set T ⊂ R. Let t1 < · · · < tn be the elements of T , and
let K = Ktn , so the filtration K is written as follows:

(2.6) ∅ ⊆ Kt1 ⊆ Kt2 ⊆ · · · ⊆ Ktn = K.

Define the time of appearance of a simplex σ ∈ K to be

t(σ) = min{ti | σ ∈ Kti}.
The level sets of t are the Kti \Kti−1

, where by convention we let Kt0 = ∅. The
order induced by t on the simplices of K is only partial because it is unspecified
within each level set. However, it is compatible with the incidence relations in K,

4This is the topological counterpart of the Diamond Principle presented in Section 4.4 of
Appendix A. It provides a complete matching between the interval decompositions of the two
x-monotone paths considered. Its proof combines the Diamond Principle with the Mayer-Vietoris
exact sequence associated to the central diamond—see [49, §5.3] for the details.
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40 2. TOPOLOGICAL PERSISTENCE

that is, a simplex never appears in K before its faces. Pick then any total order on
the simplices of K that is compatible both with t and with the incidence relations
within its level sets, and label the simplices of K accordingly:

(2.7) K = {σ1, σ2, · · · , σm}, where i < j whenever t(σi) < t(σj)

or σi is a proper face of σj .

The sequence of simplices σ1, σ2, · · · , σm is the actual input taken in by persistence
algorithms. It defines the following simplicial filtration of K, denoted Kσ:

∅ ⊆ {σ1} ⊆ {σ1, σ2} ⊆ · · · ⊆ {σ1, · · · , σm} = K.

Kσ is a refinement of the original filtration K. It is not strictly equivalent to K
in terms of persistence, however it is closely related to it. The relationship is best
described in terms of half-open intervals5:

Lemma 2.12 (folklore). There is a partial matching between the interval de-
compositions of H∗(K) and H∗(Kσ) such that:

• summands I[i,+∞) of Hp(Kσ) are matched with summands I[t(σi),+∞)
of Hp(K), and vice-versa,

• summands I[i, j) of Hp(Kσ) where t(σi) < t(σj) are matched with sum-
mands I[t(σi), t(σj)) of Hp(K), and vice-versa,

• all other summands of Hp(Kσ), i.e. summands I[i, j) where t(σi) = t(σj),
are unmatched.

This result can be viewed as an instance of the snapping principle that will be
presented in Chapter 3. It asserts that H∗(Kσ) carries a superset of the persistence
information carried by H∗(K), and that there is a simple rule to recover the interval
decomposition of H∗(K) from the one of H∗(Kσ). Hence, from now on we will work
with Kσ instead of K.

Since every simplex of K has its own index in Kσ, each interval summand
I[i, j) in the decomposition of H∗(Kσ) defines a pairing between simplices σi and
σj of K. In persistence terms, the topological feature represented by the interval
summand is created by σi and then destroyed by σj in Kσ. Hence, σi is said to be
creating, or positive, while σj is said to be destroying, or negative. Meanwhile, each
summand I[i,+∞) in the decomposition represents a topological feature created
by the (thus positive) unpaired simplex σi, and living throughout the rest of the
filtration Kσ. This feature is called essential because it corresponds to a non-trivial
element in H∗(K).

It is easy to see that every simplex must be either positive or negative—this is
in fact a consequence of the matrix reduction algorithm that will be presented next.
The partial pairing of the simplices of K describes the persistence of Kσ completely
and is the information sought for by algorithms.

In Section 2.1 below we present the basic matrix reduction algorithm, then in
Section 2.2 we review its improvements and extensions.

5For this we are implicitly extending K to a filtration over R by putting the space Kti at
every real index x ∈ [ti, ti+1), the space K at every index x ≥ tn, and the empty space at every
index x < t1. The summands in the interval decomposition of H∗(K) are then transformed into
interval modules over R by the same process, and by construction they still decompose H∗(K).
We apply the same implicit extension to Kσ.
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2.1. Matrix reduction. At a high level, the approach consists in performing
Gaussian elimination on the matrix of the boundary operator of K while preserving
the column and row orders prescribed by the input filtration.

Details of the algorithm. Given a labelling of the simplices of K as in (2.7),
and the corresponding filtration Kσ of K, the algorithm builds a square m × m
matrix M representing the boundary operator of K. For ease of exposition we
assume that the field of coefficients is Z2, so M is a binary matrix. Specifically,
M has one row and one column per simplex of K, with Mij = 1 if σi is a face
of codimension 1 of σj and Mij = 0 otherwise. Moreover, for the needs of the
algorithm, the rows and columns of M are ordered as the simplices in the sequence
of (2.7). Since the sequence is compatible with the incidence relations in K, the
matrix M is upper-triangular.

Once M is built, the algorithm processes its columns once from left to right.
When processing the j-th column, it keeps adding columns from the left until the
following loop invariant is satisfied: the submatrix spanned by columns 1 through j
has the property that the lowest nonzero entry of every nonzero column lies in a
unique row. The pseudo-code is given in Algorithm 2.1, where low(j,M) denotes the
row index of the lowest nonzero entry in column j of the matrix M—low(j,M) = 0
if column j is entirely zero.

Algorithm 2.1: Matrix reduction

Input: m×m binary matrix M
1 for j = 1 to m do

2 while there exists k < j with low(k,M) = low(j,M) �= 0 do

3 add (modulo 2) column k to column j in M ;

4 end

5 end

Output: the reduced matrix M

Upon termination, the matrix M has the property that the lowest nonzero entry
of every nonzero column lies in a unique row. Its structure is then interpreted as
follows:

• every zero (resp. nonzero) column j corresponds to a positive (resp. neg-
ative) simplex σj ,

• every nonzero column j is paired with the column i = low(j,M) and gives
rise to a summand I[i, j) in the interval decomposition of H∗(Kσ),

• every remaining unpaired zero column j gives rise to a summand I[j,+∞)
in the decomposition.

Example 2.13. Take the simplicial filtration Kσ shown in Figure 2.5. From
the reduced boundary matrix we can read off the interval decomposition of the
persistent homology of Kσ:

H0(Kσ) ∼= I[1,+∞)⊕ I[2, 4)⊕ I[3, 5)

H1(Kσ) ∼= I[6, 7)

Observe that the essential feature I[1,+∞) gives the homology of the solid triangle
as expected.
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Figure 2.5. Left: filtration of a solid triangle (each simplex is
marked with its index in the sequence). Center: the corresponding
boundary matrix M , where simplices are identified with their index
in the sequence, and where stars mark the nonzero entries. Right:
the reduced matrix, where lowest nonzero entries are marked with
1’s while the other nonzero entries are marked with stars.
— Based on Edelsbrunner and Harer [115].

Correctness. The crux of the matter is to prove the previous interpretation
correct. Formally:

Theorem 2.14 (de Silva, Morozov, and Vejdemo-Johansson [99]). Unpon ter-
mination, the simplicial chains σ̂1, · · · , σ̂n represented by the columns of M yield a
partition F �G �H of the index set {1, · · · ,m}, and the lowest nonzero entries in
the columns induce a bijective pairing G ↔ H such that:

(i) For every index i, the chains σ̂1, · · · , σ̂i form a basis of the chain group
of the complex {σ1, · · · , σi},

(ii) For every index f ∈ F , ∂σ̂f is a cycle, i.e. ∂σ̂f = 0,
(iii) For every pair of indices (g, h) given by the pairing G ↔ H, ∂σ̂h = σ̂g

and so ∂σ̂g = 0.

Item (i) is equivalent to the assertion that the leading term of each simplicial
chain σ̂i is σi. Item (ii) asserts that the set F identifies the positive simplices that
do not get paired. Item (iii) asserts that the set G identifies the positive simplices
that do get paired, while the set H identifies the corresponding negative simplices.

The proof of the theorem is a sequence of simple lemmas. Although there is no
record in the official literature, it can be found in some course notes such as [29].
Here we prefer to give the following high-level interpretation.

High-level interpretation. As pointed out after Theorem 1.4, the persistent ho-
mology H∗(Kσ) can be viewed6 as a Z-graded module over the polynomial ring k[t],
so the classical structure theorem for finitely generated graded modules over graded
principal ideal domains guarantees the existence and uniqueness of a decomposi-
tion into interval summands. Furthermore, the proof of the structure theorem for
a given module V shows that the decomposition is given by the Smith normal form
of the matrix of some module homomorphism going from the free module spanned
by the generators of V onto V. In the context of standard, non-persistent homology
over the integers, the homomorphism is induced by the boundary operator of the
simplicial complex under consideration, whose coefficients are in Z—see e.g. [202,
§1.11] for the details. In the context of persistent homology over a field k, the

6Indeed, H∗(Kσ) can be extended to a representation of the poset Z by adding zero vector
spaces and maps outside the range [1,m], so the remark following Theorem 1.4 applies.
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homomorphism is induced by the boundary operator of the simplicial filtration Kσ,
whose coefficients are in k[t]. This provides us with an algorithm for computing per-
sistence: build the matrix of the boundary operator of Kσ, then compute its Smith
normal form over k[t] using Gaussian elimination on the rows and columns, then
read off the interval decomposition. The algorithm is the same as for non-persistent
homology, except the ring of coefficients is k[t] instead of Z.

This approach for computing persistence was first suggested by Zomorodian
and Carlsson [243], who also observed that it is in fact sufficient to reduce the
boundary matrix to a column-echelon form over the field k itself, which has two
benefits: first, Gaussian elimination only has to be applied on the columns of the
matrix; second, and more importantly, there is no more need to compute greatest
common divisors between polynomials. The catch is that now the insertion order of
the simplices must be preserved, so no swaps between columns are allowed, which
means that the reduced matrix is in column-echelon form up to a permutation of the
columns only. When k = Z2, this simplified approach coincides with the original
persistence algorithm designed by Edelsbrunner, Letscher, and Zomorodian [118]
for subcomplexes of the sphere S3. It is the version presented here.

Complexity. The time complexity of the algorithm is at most cubic in the num-
ber m of simplices of K. To see this, observe that the j-th iteration of the for loop
modifies only the j-th column of the matrix, therefore every column k < j is consid-
ered at most once by the inner while loop at that iteration. Moreover, each column
k can store the row number of its lowest entry once and for all after the k-th itera-
tion of the for loop, so finding k such that low(k,M) = low(j,M) at a subsequent
iteration j can be done in time O(j). Thus, the running time of the algorithm
is indeed O(m3). A more careful analysis—see e.g. [115, §VII.2]—using a sparse
matrix representation for M gives a tighter running-time bound7 in O(

∑m
j=1 p

2
j),

where pj = j if simplex σj is unpaired and pj = j − i if σj is paired with σi. The
quantity

∑m
j=1 p

2
j is of the order of m3 in the worst case, and Morozov [199] has

worked out a worst-case example on which the total running time is indeed cubic.
However,

∑m
j=1 p

2
j is typically much smaller than that in practice, where worst-case

scenarios are unlikely to occur and a near-linear running time is usually observed.

Implementations. To our knowledge, all existing implementations of the per-
sistence algorithm work with finite fields of coefficients (some only with Z2) to
avoid numerical issues. There currently are two implementations that follow the
guidelines of [115, §VII.2] using a sparse matrix representation: the first one, by A.
Zomorodian, was destined to be integrated into the C++ library CGAL (http://
www.cgal.org) but was never released; the second one, by D. Morozov, was re-
leased as part of the C++ library Dionysus (http://www.mrzv.org/software/
dionysus/). The other implementations use various tricks to sparsify the data
structures and to optimize for speed, as we will see next.

2.2. Further developments. A lot of progress has been made since the in-
troduction of the original matrix reduction algorithm. Every new contribution has
aimed at a specific type of improvement, whether it be extending the approach
to other topological constructions, or increasing its practical efficiency in terms
of running time and memory usage, or reducing the theoretical complexity of the
problem.

7This bound assumes the dimension of each simplex to be constant.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

http://www.cgal.org
http://www.cgal.org
http://www.mrzv.org/software/dionysus/
http://www.mrzv.org/software/dionysus/
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2.2.1. Extensions of the matrix reduction algorithm. Cohen-Steiner, Edelsbrun-
ner, and Harer [86] adapted the matrix reduction algorithm so it computes extended
persistence, while Cohen-Steiner et al. [89] adapted it to compute persistence for
kernels, images and cokernels. These extensions are fairly straightforward, cast-
ing the considered problems into that of the standard matrix reduction. Other
extensions include:

Persistence over several coefficient fields. Boissonnat and Maria [32] adapted
the method so that it can compute persistence over several finite fields of prime
order at once in a single matrix reduction. Their approach is based on a clever use
of the Chinese Remainder Theorem. The gain in practice is not only in terms of
running time, but also in terms of richness of the output. Indeed, combined with
the Universal Coefficient Theorem, their approach provides information about the
prime divisors of the torsion coefficients of the integral homology groups, which
calculations over a single field typically do not provide.

Zigzag persistence. Carlsson, de Silva, and Morozov [50] considered the problem
of computing zigzag persistence from an input simplicial zigzag. Adapting the
matrix reduction to this context is subtle, partly because the column order is not
known in advance. The adaptation proposed by Carlsson, de Silva, and Morozov
[50] follows the proof of Gabriel’s theorem devised by Carlsson and de Silva [49],
which we outline for the interested reader in Section 4.4 of Appendix A. In practice
it comes down to scanning through the input zigzag once from left to right, loading
a single complex in main memory at a time, and performing sequential simplex
insertions and deletions while maintaining the so-called right filtration and birth
index of the zigzag.

Vineyards. Cohen-Steiner, Edelsbrunner, and Morozov [85] considered the prob-
lem of updating the interval decomposition of the persistent homology of Kσ as the
order in the sequence of simplices changes. They showed how the reduced matrix M
can be updated in time O(m) after a simple transposition, i.e. a transposition be-
tween consecutive simplices in the sequence. From there, any permutation of the
simplex order can be handled by decomposing it into a sequence of simple transposi-
tions. In the worst case, the number of simple transpositions can be up to quadratic
in m and therefore induce a cubic total update time, which is as bad as recomput-
ing persistence from scratch. However, in practical situations the number of simple
transpositions can be much smaller. This approach is particularly well suited for
tracking the evolution of the persistence diagram of a function f : K → R that
changes continuously over time. Indeed, continuous changes in f induce a series
of simple transpositions, whose effect on the diagram can be computed efficiently.
By stacking up all the instances of the diagram over time, one obtains a series of
z-monotone trajectories8, one for each diagram point. Each trajectory is seen as a
vine, and the entire collection is called the vineyard of f . Further details together
with examples of practical applications can be found in [199].

Persistent cohomology. Instead of applying the homology functor to the fil-
tration Kσ, one can apply the cohomology functor and get a reversed sequence
of vector spaces (the cohomology groups) and linear maps induced by inclusions.

8These trajectories are continuous, as guaranteed by the Stability Theorem that will be
presented in Chapter 3.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



2. CALCULATIONS 45

de Silva, Morozov, and Vejdemo-Johansson [100] adapted the matrix reduction tech-
nique so it computes the interval decomposition of such a persistence module, using
the same ingredients as the zigzag persistence algorithm of Carlsson, de Silva, and
Morozov [50]. The beautiful thing about this approach is that homology groups
and cohomology groups over a field are dual to each other, and that the univer-
sal coefficient theorem [152] implies that the persistence diagram obtained by the
cohomology algorithm is in fact the same as the one obtained by the standard per-
sistence algorithm. As both algorithms have the same cubic worst-case running
time, the comparison of their repsective performances is done on practical data. de
Silva, Morozov, and Vejdemo-Johansson [99] have reported the cohomology algo-
rithm to outperform the standard homology algorithm in this respect, although this
advantage seems to fade away when comparing optimized versions. In particular,
it seems to be highly dependent on the data considered.

Simplex annotations. An elegant description of the cohomology algorithm, us-
ing the notion of simplex annotation, has been given by Dey, Fan, and Wang [107].
The idea is to compute the decomposition of the persistent homology of Kσ by
maintaining cohomology bases instead of homology bases. Each basis element is
encoded by the values it takes on the simplices of K, and the collection of these
values for a simplex forms its annotation. Beside its simplicity and efficiency, this
approach applies to more general sequences of simplicial complexes and maps, such
as for instance sequences of inclusions and edge contractions. Although this new
setting reduces easily to the standard setting described in (2.6) by turning each map
into an inclusion in its mapping cylinder [199], the cost of building the cylinders of
all the maps and to glue them together can be high. Therefore, working directly
with the maps themselves is relevant, all the more as the overall complexity of the
approach is proved to remain controllable.

2.2.2. Efficient implementations. As we will see in forthcoming chapters, the
total number m of simplices in the filtered simplicial complex K can be huge in
practice, so it is highly recommended to use time-wise and memory-wise efficient
implementations to compute persistence. Among the few currently available imple-
mentations, there are two main competitors in terms of practical efficiency:

Simplex tree and compressed annotation matrix. Boissonnat and Maria [33] in-
troduced a lightweight data structure to represent simplicial complexes, called the
simplex tree. Roughly speaking, this is a spanning tree of the Hasse diagram of the
simplicial complex K, derived from the lexicographical order on the sorted vertex
sequences representing the simplices of K. It has size O(m) while the full Hasse
diagram has size O(dm), where d is the dimension of K and m is its number of sim-
plices. Combined with a compressed version of the annotation matrix of Dey, Fan,
and Wang [107] developed by Boissonnat, Dey, and Maria [30], this data structure
gives the currently most lightweight sequential algorithm to compute persistence.
Its time performance is on par with the state of the art, outperforming the standard
persistence algorithm by one or two orders of magnitude. The implementation is
available in the C++ library Gudhi (http://pages.saclay.inria.fr/vincent.
rouvreau/gudhi/).

Clear and compress. Bauer, Kerber, and Reininghaus [17] presented a highly
parallelizable version of the matrix reduction algorithm. Their version differs from
the standard version by first computing persistence pairs within local chunks, then
simplifying the unpaired columns, and finally applying standard reduction on the
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simplified matrix. Their implementation is available in the C++ library PHAT

(http://phat.googlecode.com/). The sequential code is reported to outperform
the standard reduction algorithm and to be competitive to other variants with a
good practical behavior. The parallelized version yields reasonable speed-up factors
and demonstrates the usefulness of parallelization for this problem.

2.2.3. Other approaches and theoretical optimizations. As shown by Morozov
[199], the cubic upper bound for the worst-case time complexity of the matrix
reduction algorithm is tight. However, the optimal bound for the persistence com-
putation problem itself still remains unknown. The following contributions have
shed new light on this question. The first item shows that the complexity of the
problem in full generality is subcubic. The second item shows that it can be ex-
pressed in a more output-sensitive way. The third item (which has been known
since [118]) shows that the complexity of the problem can be drastically reduced
under some restrictive assumptions.

Fast matrix multiplication. As mentioned in Section 2.1, the matrix reduction
algorithm is essentially Gaussian elimination with known column order. As such,
it can be optimized by using fast matrix multiplication techniques. Specifically, the
PLU factorization algorithm of Bunch and Hopcroft [43] can be applied with mi-
nor modification to reduce the complexity of the persistence algorithm from O(m3)
down to O(mω), where ω ∈ [2, 2.373) is the best known exponent for multiplying
two m × m matrices. The details of the adaptation can be found in [196]. The
approach has been recently extended by Milosavljevic, Morozov, and Skraba [197]
to handle zigzags, a trickier setting where the order of the columns is not known in
advance. Let us point out that these contributions are mostly theoretical, consid-
ering the technicality of the approach and the size of the constant factors involved
in the complexity bounds.

Rank computation. Chen and Kerber [75] proposed another approach that leads
to an output-sensitive algorithm to compute persistence. Their approach consists
in using the formulas of (1.18) to localize and count the multiplicity of the points
of dgm(Kσ). This requires performing rank computations on submatrices of the
boundary matrix. Given a user-defined threshold δ > 0, the algorithm returns only
those topological features whose lifespan in the filtration is at least δ. The total
running time is O(nδ(1−α)R(m) logm), where nδ(1−α) is the number of topological
features of lifespan at least δ(1 − α) for arbitrarily small α > 0, m is the total
number of simplices in the filtration, and R(m) is the time required to compute
the rank of a binary m×m matrix. Depending on the choice of the rank computa-
tion algorithm, one gets either a deterministic O(nδ(1−α)m

ω logm), or a Las-Vegas

O(nδ(1−α)m
2.28), or a Monte-Carlo O(nδ(1−α)m

2+ε) time algorithm. The algo-
rithm performs no better asymptotically than the standard matrix reduction when
nδ(1−α) = Ω(m), however it does perform better when this quantity is reduced.
The price to pay is that only a subset of the topological features are detected, nev-
ertheless these are the most persistent and therefore also the most relevant ones in
applications, as we will see in the second part of the book.

Union-find. When one is only interested in 0-dimensional homology, computing
persistence boils down to tracking the connected components as they appear and
then are merged in the filtration Kσ. Only the 1-skeleton graph of the simplicial
complex K is involved in the process, with each vertex insertion creating a new
connected component (so each vertex is positive), while an edge insertion either
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Figure 2.6. Left: a planar graph filtered by the order
1, · · · , 12, a, · · · , r. The negative edges (in bold red) form a span-
ning tree of the graph. Right: every negative edge connects two
previously independent connected components, thus forming a hi-
erarchy on the vertices. The persistence pairs are given by the
arrows and their tail in the hierarchy.

merges two components if the edge is negative, or creates a cycle if the edge is
positive—the latter case being ignored. Tracking the component creations and
merges can be done in O(mα(m)) time, where m is the size of the 1-skeleton graph
of K and α denotes the inverse Ackermann function, by means of an efficient union-
find data structure such as a disjoint-sets forest [92]. The total running time of the
persistence algorithm is then O(m logm) because vertices and edges need first to be
sorted according to their time of appearance in Kσ. Thus, computing persistence
is done in near-linear time in this special case. Let us also point out that the
output persistence pairs have several additional features, such as the fact that they
form a spanning tree of the input graph (as in Kruskal’s minimum spanning tree
algorithm), or that they define a hierarchy on the vertices of K, as illustrated in
Figure 2.6. These extra features are instrumental in a number of applications,
including the one presented in Chapter 6.

2.2.4. Preprocessing for faster computations. In addition to the previous ap-
proaches, some techniques have been developed to preprocess the input in order to
speed up the persistence computation. The bottom line is to reduce the size of the
input filtration as much as possible before computing its persistence, in order to
lower the impact of the potentially cubic complexity bound on the total running
time.

Morse theory for filtrations. Given a fixed cell complex K, discrete Morse the-
ory [130] introduces the concept of a discrete vector field as a partial matching
between the cells of K such that the dimensions of the simplices in a matched pair
differ by 1. A discrete flow line is then the concatenation of a sequence of matched
pairs such that two consecutive pairs (σi, τi) and (σi+1, τi+1) satisfy the property
that σi+1 is a face of τi of codimension 1. The theory highlights those vector fields
whose flow lines have no nontrivial cycles, which it calls gradient vector fields. These
are the analogue, in the discrete setting, of the continuous gradient vector fields
of Morse functions defined over smooth manifolds. By analogy, the unpaired cells
are called critical, and together with the incidence relations induced by flow lines
starting and ending at them, they form a cell complex called the Morse complex
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of the gradient vector field. A central result in the theory is that this complex
has the same homology as K. Mischaikow and Nanda [198] have extended these
concepts and results to the filtered setting, introducing the notions of a filtered gra-
dient field and its associated filtered Morse complex, which they prove to have the
same persistent homology as the input filtration. Thus, the filtered Morse complex
can be used instead of the input filtration in the persistence calculation. This is
interesting because the new input size cannot be larger than the previous one, and
in some cases it can be much smaller. The challenge is to find filtered gradient
fields that minimize the number of critical cells, a problem known to be NP-hard in
general [167] but for which heuristics exist. The one proposed by Mischaikow and
Nanda [198] is based on the coreduction homology algorithm of Mrozek and Batko
[200], which they report to give good speed-ups on practical data. The approach
can also be iterated, each time by computing a new filtered gradient field over the
previously obtained filtered Morse complex, in order to further reduce the size of
the filtration, at the price of an increased preprocessing time. An implementation
is available as part of the C++ library Perseus (http://www.sas.upenn.edu/

~vnanda/perseus/index.html).

Complexes from graphs. Specific optimizations can be made for filtrations that
are composed of clique complexes. A clique complex is itself composed of the cliques
of its 1-skeleton graph, and as such it is fully determined by this graph. Rips com-
plexes (defined in Chapter 5) are examples of such complexes. The challenge is
to be able to compute their homology directly from the graph, without perform-
ing the full clique expansion, and with a minimal memory overhead. A seemingly
more accessible goal is to be able to simplify the combinatorial structure of the
complexes while preserving their homology, as cliques are known to have trivial
reduced homology regardless of their size. Several methods have been proposed to
reduce the size of a clique complex K while preserving its homology [8, 242]. The
bottom line is to perform a greedy sequence of simplex contractions and collapses
in K, under some local sufficient conditions ensuring that the homology is pre-
served by these operations. The simplification process takes place at the 1-skeleton
graph level, with some controlled extra bookkeeping, instead of at the full clique
expansion level. It ends when a minimal simplicial complex (or simplicial set) has
been reached, so no more collapses or contractions satisfying the sufficient local
conditions can be applied. The size of the output is not guaranteed to be minimal
in any way, as finding an optimal sequence of collapses or contractions is a hard
problem. However, practical experiments show huge improvements over computing
the full expansion. Unfortunately, as of now these methods only work with single
complexes. Extending them to filtrations is a challenging open problem.
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CHAPTER 3

Stability

As we saw in the previous chapters, an important contribution of persistence
theory has been to introduce persistence diagrams and to promote them as signa-
tures for persistence and zigzag modules, and by extension, for topological filtrations
and functions. Of particular interest is the fact that these signatures do not require
the modules under consideration to be decomposable in the sense of quiver theory,
which gives them more flexibility and a larger potential for applications.

Two fundamental questions remain: are these signatures stable? are they in-
formative? In mathematical terms, we want to know whether (dis-)similar per-
sistence modules have (dis-)similar persistence diagrams, for suitable choices of
(dis-)similarity measures. This is where the Isometry Theorem comes into play and
acts as the cornerstone of the theory:

Theorem 3.1 (Isometry). Let V,W be q-tame persistence modules over R.
Then,

db(dgm(V), dgm(W)) = di(V,W).

The statement of the theorem falls into two parts: on the one hand, the ‘sta-
bility’ part (db(dgm(V), dgm(W)) ≤ di(V,W)), which guarantees that persistence
diagrams are stable signatures for persistence modules; on the other hand, the ‘con-
verse stability’ part (di(V,W) ≤ db(dgm(V), dgm(W))), which guarantees that they
are also informative signatures. The choice of distances is an essential aspect of
the theorem. Roughly speaking, the interleaving distance di between persistence
modules measures how far they are from being isomorphic, while the bottleneck
distance db between locally finite multisets of points in the plane measures the cost
of the best transport plan between them1—see Section 1 for the formal definitions.
In addition to being natural, these metrics give the tightest bounds in the theorem.

The stability part of the Isometry Theorem is reputed to be difficult to prove,
whereas the converse stability part is easy once the stability part is given. We will
review their proofs in Sections 2 and 3 respectively, following the work of Chazal
et al. [72]. Several other proofs exist in the literature, both for the stability part [20,
87] and for the converse stability part [41, 179]. These proofs use somewhat different
languages and various sets of hypotheses. We will give a brief historical account
and put them into perspective in Section 4, where we will also discuss other choices
of metrics.

Prerequisites. This chapter requires no extra background compared to the pre-
vious chapters.

1This metric is oblivious to the decorations in the persistence diagrams, so throughout the
chapter and unless otherwise stated the diagrams under consideration will be undecorated.

49

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



50 3. STABILITY

1. Metrics

We introduce the bottleneck distance first because the intuition behind it is
easier to grasp. We then proceed with the interleaving distance.

1.1. Bottleneck distance. We treat undecorated persistence diagrams as
plain multisets of points in the extended plane R̄2. Given two such multisets P,Q,
a partial matching between P,Q is understood as in graph theory, that is, it is a
subset M of P ×Q that satisfies the following constraints:

• every point p ∈ P is matched with at most one point of Q, i.e. there is at
most one point q ∈ Q such that (p, q) ∈ M ,

• every point q ∈ Q is matched with at most one point of P , i.e. there is at
most one point p ∈ P such that (p, q) ∈ M .

We will use the notation M : P ↔ Q to indicate that M is a partial matching
between P and Q. By convention, the cost of a matched pair (p, q) ∈ M is ‖p−q‖∞,
the 
∞-distance between p and q, while the cost of an unmatched point s ∈ P �Q

is
|sy−sx|

2 , the 
∞-distance between s and its closest point on the diagonal Δ. Note
that these quantities can be infinite when the points considered lie at infinity. The
chosen cost function for partial matchings M : P ↔ Q is the bottleneck cost c(M):

(3.1) c(M) = max

{
sup

(p,q)∈M

‖p− q‖∞, sup
s∈P	Q unmatched

|sy − sx|
2

}
.

The bottleneck distance between the two multisets P,Q is the smallest possible
bottleneck cost achieved by partial matchings between them:

(3.2) db(P,Q) = inf
M :P↔Q

c(M).

Let us give an illustrative example to help the reader grasp the intuition behind
the choice of costs in this definition.

Example 3.2. Take the function f : R → R and its noisy approximation f ′

depicted in Figure 3.1(a) (reproduced from Figure 0.5 in the general introduction),
and consider the persistent homology of their sublevel-sets filtrations, described in
the diagrams of Figure 3.1(b).

The three distinguished minima p′, q′, s′ of f ′ can be viewed as the counter-
parts of the minima p, q, s of f after addition of the noise. Their corresponding
points p’, q’, s’ in dgm(f ′) are therefore naturally matched with the points p, q, s
corresponding to p, q, s in dgm(f). The actual matching between {p, s} and {p’, s’}
does not really matter since the two possible choices give the same cost, points
p, s ∈ dgm(f) having the same location. What matters though is that dgm(f ′) has
two points in the vicinity of p, s, a constraint that is well-captured by the bottle-
neck distance2. The other minima of f ′ are inconsequential and therefore treated
as topological noise, which the bottleneck distance captures by leaving their cor-
responding points in dgm(f ′) unmatched, or equivalently, by matching them with
the diagonal Δ.

2As opposed to other distances between multisets of points, such as the Hausdorff distance.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



1. METRICS 51

R

R

p′

q′

p

q

s

s′

(a) (b)

Figure 3.1. (a) A smooth function f : R → R (red) and a piece-
wise linear approximation f ′ (blue). (b) Superimposition of the
persistence diagrams of f (red) and f ′ (blue).

Let us now focus on the persistent homologies of f and f ′, which decompose
as follows:

H∗(f) ∼= I[px, py)⊕ I[qx, qy)⊕ I[sx, sy),

H∗(f
′) ∼= I[p′x, p

′
y)⊕ I[q′x, q

′
y)⊕ I[s′x, s

′
y) ⊕

⊕
t′∈dgm(f ′)\{p′,q′,s′}

I[t′x, t
′
y).

The cost of a matched pair—say (q, q’)—measures the difference between their
corresponding intervals—[qx, qy) and [q′x, q

′
y)—in the decompositions of H∗(f) and

H∗(f
′). The cost of an unmatched point—say t′ ∈ dgm(f ′) \ {p’, q’, s’}—measures

the smallest possible difference between its associated interval [t′x, t
′
y) and a length-

zero interval. The actual choice of norm in R2 does not matter fundamentally since
all norms are equivalent, however the tightest bounds in the isometry theorem are
achieved using the 
∞-norm.

The bottleneck distance is an extended pseudometric on the multisets of points
in the extended plane. Indeed, it is symmetric, it takes values in [0,+∞], with
db(P,Q) = 0 whenever P = Q, moreover it satisfies the triangle inequality

db(P, S) ≤ db(P,Q) + db(Q,S)

as matchings P ↔ Q and Q ↔ S can be composed in a natural way to get a
matching P ↔ S. It is not a true distance though, even on the multisets not
touching the diagonal Δ, as for instance the multisets Q2 \ Δ and (Q +

√
2)2 \ Δ

are distinct but at bottleneck distance zero—the infimum in (3.2) is zero but not
attained in this case. In [72, theorem 4.10] a compactness argument is used to show
that the infimum in (3.2) is always attained when P,Q are locally finite multisets
in R̄2 \ Δ. This implies that db is a true distance for such multisets, which by
Theorem 1.13 include in particular all undecorated persistence diagrams of q-tame
modules.
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52 3. STABILITY

1.2. Interleaving distance. Let us begin with a special case that carries the
intuition behind the concept of interleaving. Consider two maps f, g : X → R

such that ‖f − g‖∞ ≤ ε. Their sublevel-sets filtrations F and G are interleaved as
follows:

(3.3) ∀i ∈ R, Fi ⊆ Gi+ε and Gi ⊆ Fi+ε.

More precisely, for all indices i ≤ j ∈ R we have the following commutative diagram
of sublevel sets and inclusion maps:

Fi
��














 Fj

��














Gi+ε
�� Gj+ε

Fi+ε
�� Fj+ε

Gi
��

���������
Gj

���������

Fi
��

���
��

��
��

� Fi+2ε

Gi+ε

��

Fi+ε

���
��

��
��

��

Gi
��

����������
Gi+2ε

After applying the homology functor H∗, we get a commutative diagram of vector
spaces and linear maps, which involves the persistence modules H∗(F) and H∗(G)
together with the cross maps φi : H∗(Fi) → H∗(Gi+ε) and ψi : H∗(Gi) → H∗(Fi+ε)
induced at the homology level by Fi ↪→ Gi+ε and Gi ↪→ Fi+ε. For simplicity of
notations we have renamed H∗(F) = V and H∗(G) = W:

(3.4)

Vi
��

φi














 Vj

φj

��
��

��
��

�

Wi+ε
�� Wj+ε

Vi+ε
�� Vj+ε

Wi
��

ψi

���������
Wj

ψj

���������

(3.5)

Vi
��

φi
���

��
��

��
� Vi+2ε

Wi+ε

ψi+ε

��

Vi+ε

φi+ε

���
��

��
��

��

Wi
��

ψi

����������
Wi+2ε

This is what we call an ε-interleaving between persistence modules. As one can
see, it is the direct translation, at the algebraic level, of the interleaving between
filtrations, although it does not actually need filtrations to start with in order to
be stated.

Definition 3.3. Let V,W be two persistence modules over R, and let ε ≥ 0.
An ε-interleaving between V,W is given by two families of linear maps (φi : Vi →
Wi+ε)i∈R and (ψi : Wi → Vi+ε)i∈R such that the diagrams of (3.4) and (3.5)
commute for all i ≤ j ∈ R. The interleaving distance between V and W is

(3.6) di(V,W) = inf {ε ≥ 0 | there is an ε-interleaving between V and W} .

Note that there are no conditions on the persistence modules V,W, which can
be arbitrary as long as they are defined over the same ground field k. When there
is no ε-interleaving between V and W for any ε ≥ 0, we let di(V,W) = +∞.

Let us now rephrase the concept of interleaving in categorical terms, which will
give a nice and compact definition. A family φ = (φi : Vi → Wi)i∈R of linear maps
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1. METRICS 53

such that the leftmost diagram of (3.4) commutes for all i ≤ j ∈ R is called a
morphism of degree ε from V to W. This notion extends the concept of morphism
between persistence modules by adding a shift by ε in the indices. In particular, a
morphism in the classical sense is a morphism of degree 0 in the present context.
We write

Homε(V,W) = {morphisms V → W of degree ε} ,
Endε(V) = {morphisms V → V of degree ε} .

Composition gives a map

Homε′(V,W)× Homε(U,V) → Homε+ε′(U,W).

When U = W, the shift by ε + ε′ prevents the composition from being equal
to the identity 1U. However, there is a natural counterpart to 1U here: the so-

called (ε+ ε′)-shift morphism, noted 1ε+ε′

U
∈ Endε+ε′(U), which is nothing but the

collection of maps (ui+ε+ε′

i )i∈R taken from the persistence module structure on U.
Intuitively, this morphism ‘travels’ along U upwards by ε+ ε′. Then, Definition 3.3
can be rephrased as follows:

Definition 3.3 (rephrased). Two persistence modules V,W over R are ε-
interleaved if there exist φ ∈ Homε(V,W) and ψ ∈ Homε(W,V) such that ψ ◦ φ =
12ε
V

and φ ◦ ψ = 12ε
W

. The interleaving distance between V and W is

(3.6) di(V,W) = inf {ε ≥ 0 | V and W are ε-interleaved} .

Saying that φ ∈ Homε(V,W) and ψ ∈ Homε(W,V) is equivalent to saying that
the diagrams of (3.4) commute for all i ≤ j ∈ R. Meanwhile, having ψ ◦ φ = 12ε

V

and φ◦ψ = 12ε
W

is equivalent to having the diagrams of (3.5) commute for all i ∈ R.
Thus, the two versions of Definition 3.3 are equivalent to each other.

The interleaving distance is an extended pseudometric between the isomor-
phism classes of persistence modules over R. Indeed, di is symmetric, it takes val-
ues in [0,+∞], with di(V,W) = 0 whenever V ∼= W, and moreover di(U,W) ≤
di(U,V) + di(V,W) as ε-interleavings between U,V can be composed with ε′-
interleavings between V,W to obtain (ε+ε′)-interleavings between U,W. However,
di is not a metric since di(V,W) = 0 does not imply V ∼= W. For instance V = I[0, 1]
and W = I(0, 1) are at interleaving distance zero yet nonisomorphic. In fact, they
are ε-interleaved for any ε > 0 but not 0-interleaved, so the infimum in (3.6) is
zero but not attained. If they were 0-interleaved, then by definition they would be
isomorphic.

Beside allowing the isometry theorem to work, the interleaving distance enjoys
the following fundamental properties:

• It is stable in the sense that for any topological space X and functions
f, g : X → R we have di(H∗(F),H∗(G)) ≤ ‖f − g‖∞, where F ,G denote
the sublevel-sets filtrations of f, g.

• It is universal is the sense that any other stable pseudometric d between
persistence modules satisfies d ≤ di.

These properties strongly suggest using persistence modules as algebraic signatures
for topological spaces and their functions, moreover they make the interleaving
distance a natural choice for comparing these signatures. Lesnick [179] proved
these properties under some restrictions on either the persistence modules (which
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54 3. STABILITY

should be interval-decomposable) or on their ground field (which should be prime),
and he conjectured that they should in fact hold without restrictions.

Lesnick’s proof is interesting in its own right, as it shows that the interleaving
distance can be ‘lifted’ from the algebraic level back to the topological level, thus
reversing the effect of the homology functor. More precisely, if two persistence
modules V,W are ε-interleaved, then for any homology dimension p > 0 there are
a CW-complex X and functions f, g : X → R such that V ∼= Hp(F), W ∼= Hp(G),
and ‖f − g‖∞ = ε. Once again, there currently are some restrictions on either the
modules or their ground field for this lifting to work, but the bottomline is that one
can move from the topological level to the algebraic level and back.

2. Proof of the stability part of the Isometry Theorem

We will give two proofs for this part. The first proof yields a loose upper bound
on the bottleneck distance, namely db(dgm(V), dgm(W)) ≤ 3di(V,W), but it is very
simple and geometrically flavored, while the bound obtained, although not tight in
full generality, is nonetheless optimal in some sense. Follows then the proof of
the tight upper bound db(dgm(V), dgm(W)) ≤ di(V,W), which requires more work
with the algebra and in particular the introduction of a novel ingredient.

2.1. A loose bound. The entire proof revolves around some kind of snapping
principle, which we will introduce first. We refer the reader to Figure 3.2 for an
illustration.

nε (n
+
1)
ε

(n
− 1

)ε

(m− 1)ε

mε

(m+ 1)ε

Figure 3.2. The snapping rule: each point moves to the upper-
right corner of the grid cell containing its decoration.

Snapping principle. Given a persistence module V = (Vi, v
j
i ) over R and a

parameter ε > 0, the ε-discretization of V, denoted VεZ, is the restriction of V to
the index set εZ. Its spaces are the Vnε for n ∈ Z, and its maps are the vmε

nε for
n ≤ m ∈ Z. Sometimes it is convenient to extend VεZ to a persistence module
over R by putting the space Vnε at every index i ∈ [nε, (n+ 1)ε). This extension is
performed implicitly in the following description.

The effect of the discretization on the interval decomposition of V (when it
exists) is intuitively clear. The birth of a feature occurring strictly between times
(n − 1)ε and nε is detected only at time nε in VεZ. Similarly, the death of a
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2. PROOF OF THE STABILITY PART OF THE ISOMETRY THEOREM 55

feature occurring strictly between times (m− 1)ε and mε is detected only at time
mε in VεZ. Thus, an interval summand I�b±, d±� with (n − 1)ε < b < nε and
(m−1)ε < d < mε turns into I[nε,mε). In the persistence diagram representation,
the corresponding point (b, d) gets ‘snapped’ to the upper-right corner of the cell
of the grid εZ × εZ it belongs to. In the limit cases where b = nε or d = mε
or both (i.e. point (b, d) belongs to a cell boundary), it is the decoration of (b, d)
that tells where the point must be snapped, using the same rule as before, that is:
(b, d) gets snapped to the upper-right corner of the grid cell its decorated version
(b±, d±) belongs to. This principle is illustrated in Figure 3.2 and formalized for
q-tame modules in the following lemma from [71]—see also [72, §2.9]:

Lemma 3.4 (Snapping). If V is q-tame, then dgm(VεZ) is well-defined and
dgm(VεZ) \ Δ is localized at the grid vertices {(nε,mε)}n<m∈Z̄ where Z̄ = Z ∪
{−∞,+∞}. The multiplicity of each grid vertex is given by the persistence measure
μV of its lower-left cell, according to the following rules3:

(3.7)

mult(nε,mε) = μV([(n− 1)ε, nε] × [(m− 1)ε,mε]),

mult(nε,+∞) = μV([(n− 1)ε, nε] × {+∞}),
mult(−∞, nε) = μV({−∞} × [(n− 1)ε, nε]),

mult(−∞,+∞) = μV({−∞} × {+∞}).
These rules define a partial matching of bottleneck cost at most ε between dgm(V)
and dgm(VεZ).

The proof of this lemma follows the intuition given above for interval-decompos-
able modules. The technical details can be found in [71, 72], where it is also proved
that discretizations can be performed over arbitrary index sets that do not have
limit points in R. For instance, we can discretize V over the index set εZ + ε

2 and
still benefit from the Snapping Lemma 3.4 (with adapted indices in the formulas),
in particular db(dgm(V), dgm(VεZ+ ε

2
)) ≤ ε. This observation will be instrumental

in the upcoming proof of the loose bound.

The proof. Let V = (Vi, v
j
i ) and W = (Wi, w

j
i ) be two q-tame persistence

modules. The goal is to show that db(dgm(V), dgm(W)) ≤ 3ε for all ε > di(V,W).
The case di(V,W) = +∞ is trivial, so let us assume that di(V,W) is finite and,
given ε > di(V,W), let us take two degree-ε morphisms φ ∈ Homε(V,W) and
ψ ∈ Homε(W,V) that form an ε-interleaving of V,W as per Definition 3.3. We
then have (in particular) the following commutative diagram, where parameter n
ranges over Z:

(3.8)

· · · �� V(2n−2)ε

v2nε
(2n−2)ε

��

φ(2n−2)ε ���
��

��
��

�
V2nε

v
(2n+2)ε
2nε ��

φ2nε

���
��

��
��

��
V(2n+2)ε

�� · · ·

· · · �� W(2n−1)ε
w

(2n+1)ε

(2n−1)ε

��

ψ(2n−1)ε

�����������
W(2n+1)ε

��

ψ(2n+1)ε

����������
· · ·

3Here we are using an extended version of the persistence measure of Chapter 1, which
allows singular rectangles at infinity. For this we are following the convention of [72, §2.6], where
μV([p, q]×{+∞}) is defined as the limit limr→+∞ μV([p, q]× [r,+∞]) = minr μV([p, q]× [r,+∞]),
so every point (b, d) with p < b < q and d = +∞ is counted as being inside the rectangle
[p, q] × {+∞} even though its decoration is (b±,+∞−). The persistence measures of rectangles
{−∞} × [r, s] and {−∞} × {+∞} are defined similarly.
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2n
ε

p

q

(2
n
+

2)
ε

2m
ε

(2
m

+
2)
ε

Figure 3.3. Tracking down point p ∈ dgm(V) through its succes-
sive matchings.
— Based on Chazal et al. [71].

This diagram involves three distinguished persistence modules, namely:
• the discretization of V over 2εZ, obtained by following the top row:

V2εZ = · · · �� V(2n−2)ε
�� V2nε

�� V(2n+2)ε
�� · · ·

• the discretization of W over 2εZ + ε, obtained by following the bottom row:

W2εZ+ε = · · · �� W(2n−1)ε
�� W(2n+1)ε

�� · · ·

• the following mixed module, obtained by following the diagonal maps:

U = · · · �� V(2n−2)ε
�� W(2n−1)ε

�� V2nε
�� W(2n+1)ε

�� V(2n+2)ε
�� · · ·

The key observation is that, by commutativity, the modules V2εZ and W2εZ+ε

are also 2ε-discretizations of U. We can then apply the Snapping Lemma to the
four pairs of modules independently: (V,V2εZ), (U,V2εZ), (U,W2εZ+ε), and finally
(W,W2εZ+ε). Each time, Lemma 3.4 gives an upper bound of 2ε on the bottleneck
distance between the persistence diagrams of the two modules considered, so the
triangle inequality gives

db(dgm(V), dgm(W)) ≤ db(dgm(V), dgm(V2εZ)) + db(dgm(V2εZ), dgm(U))

+ db(dgm(U), dgm(W2εZ+ε)) + db(dgm(W2εZ+ε), dgm(W)) ≤ 8ε.

This crude upper bound on the bottleneck distance can be reduced to 3ε by carefully
following the movements of each point of dgm(V) as it is matched successively with
the diagrams of V2εZ, U, W2εZ+ε, and W. The typical situation is depicted in
Figure 3.3: point p ∈ dgm(V) is first matched with q ∈ dgm(V2εZ), then with one
of the four red cross-shaped points in dgm(U), then with one of the blue square-
shaped points in dgm(W2εZ+ε), and finally with some point within the grey area
in dgm(W). All in all, point p has moved by at most 3ε in the 
∞-distance. Since
this is true for any point of dgm(V) and any ε > 3di(V,W), we conclude that
db(dgm(V), dgm(W)) ≤ 3di(V,W).
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2. PROOF OF THE STABILITY PART OF THE ISOMETRY THEOREM 57

Remark. As we know, 3di(V,W) is not a tight upper bound. However, it
becomes so if one replaces the concept of interleaving as of Definition 3.3 by the
weaker version given in (3.8). Indeed, it is easy to build examples of persistence
modules V,W that are thus weakly ε-interleaved but whose persistence diagrams
lie 3ε apart of each other in the bottleneck distance [71].

2.2. The tight bound. The previous proof does not exploit the full power
of interleavings, restricting itself to the weaker version (3.8). The key property
ignored so far is that the set εZ over which discretizations are taken can be shifted
arbitrarily. The novel ingredient that captures this property is commonly referred
to as the Interpolation Lemma, and it is certainly the most subtle part in the proof
of the Isometry Theorem. We will present it first, before giving the proof of the
tight bound.

Interpolation lemma. The idea is to interpolate between pairs of interleaved
persistence modules while maintaining the interleaving property. In other words,
one seeks to find some kind of ‘paths’ of bounded length between persistence mod-
ules in the interleaving distance.

Lemma 3.5 (Interpolation). Suppose V,W are ε-interleaved. Then there is a
1-parameter family (Ux)x∈[0,ε] of persistence modules such that U0 = V, Uε = W,
and Ux,Uy are |y − x|-interleaved for all x, y ∈ [0, ε]. This family is not unique in
general.

Proof outline. There is a nice pictorial representation of the interpolating
family, as an interleaving between persistence modules can itself be thought of as a
representation of a certain poset in the plane. More precisely, consider the standard
partial order on the plane:

(x, y) � (x′, y′) ⇐⇒ x ≤ x′ and y ≤ y′.

For any real number r, define the shifted diagonal

Δr = {(x, y) | y − x = 2r} ⊂ R2.

As a poset, this is isomorphic to the real line, for instance by identifying t ∈ R

with (t − r, t + r) ∈ Δr. Through this, we get a canonical identification between
the persistence modules over R and the representations of the poset Δr. Moreover,
it is not hard to see that a |y − x|-interleaving between two persistence modules
induces a representation of the poset Δx ∪ Δy and vice-versa, which we formalize
as follows:

(3.9)
V,W are |y − x|-interleaved

⇐⇒
∃U ∈ Repk(Δx ∪ Δy) such that U|Δx

= V and U|Δy
= W.

To be more specific, the persistence module structures on V,W are identified re-
spectively with the maps along the shifted diagonals Δx,Δy, while the morphisms
φ ∈ Homε(V,W) and ψ ∈ Homε(W,V) that form the interleaving between V,W are
identified respectively with the families of vertical and horizontal morphisms be-
tween Δx,Δy, the rest of the maps being obtained by composition. See Figure 3.4
for an illustration.

Then, the proof of Lemma 3.5 amounts to showing that, if there exists a rep-
resentation U of the pair of lines Δ0 ∪Δε such that U|Δ0

= V and U|Δε
= W, then
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Δy

Δx

Δy

Δx

Figure 3.4. Identifying φ, ψ with the families of vertical and hor-
izontal morphisms in the representation of Δx ∪ Δy.
— From Chazal et al. [72].

there exists also a representation Ū of the diagonal strip

Δ[0,ε] = {(x, y) | 0 ≤ y − x ≤ 2ε} ⊂ R2

such that Ū|Δ0
= V and Ū|Δε

= W. Indeed, in that case the 1-parameter family of
persistence modules interpolating between V and W is given by the restrictions of
Ū to the shifted diagonals Δx for 0 ≤ x ≤ ε. Let us give the formal construction
of the representation Ū without proof, referring the reader to [72] for the technical
fact checking.

First of all, from V,W we construct the following representations of R2:

A defined by A(x,y) = Vx and a
(z,t)
(x,y) = vzx

B defined by B(x,y) = Wy−ε and b
(z,t)
(x,y) = wt−ε

y−ε

C defined by C(x,y) = Vy and c
(z,t)
(x,y) = vty

D defined by D(x,y) = Wx+ε and d
(z,t)
(x,y) = wz+ε

x+ε

Next, we construct the four morphisms:

1V : A → C defined at (x, y) to be vyx : Vx → Vy

Φ : A → D defined at (x, y) to be φx : Vx → Wx+ε

Ψ : B → C defined at (x, y) to be ψy−ε : Wy−ε → Vy

1W : B → D defined at (x, y) to be wx+ε
y−ε : Wy−ε → Wx+ε

These four morphisms are defined over the region where 0 ≤ y − x ≤ 2ε, i.e.
precisely over the diagonal strip Δ[0,ε]. We now define a morphism A⊕B → C⊕D

by the 2 × 2 matrix: (
1V Ψ
Φ 1W

)
Its image has the desired properties to be our representation Ū. �

Remark. Our construction of Ū shows in fact the stronger statement that
any representation of Δ0 ∪ Δε can be extended to a representation of Δ[0,ε]. The
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extension is not unique, and in our outline we only give one possibility. Other pos-

sibilities include taking the kernel or cokernel of the morphism

(
1V −Ψ
−Φ 1W

)
. The

effect on the interpolation differs from one choice to the next, as will be discussed
at the end of the section.

Proof of the tight bound. Let V = (Vi, v
j
i ) and W = (Wi, w

j
i ) be ε-interleaved

q-tame persistence modules, and let (Ux)x∈[0,ε] be the interpolating 1-parameter
family of modules provided by the Interpolation Lemma 3.5. We will assume for
simplicity that dgm(Ux) has finitely many points for every x ∈ [0, ε]. Otherwise,
an additional compactness argument is needed to finish off the proof, see [72, §4.8].
The proof divides into the following steps:

(1) For any 0 ≤ x ≤ y ≤ ε, it shows that dH(dgm(Ux), dgm(Uy)), the Hausdorff
distance between dgm(Ux) and dgm(Uy), is at most |y − x|.

(2) It shows that db(dgm(Ux), dgm(Uy)) = dH(dgm(Ux), dgm(Uy)) when |y − x|
is small enough.

(3) Using the previous steps, it tracks the changes in dgm(Ux) as parameter x
ranges from 0 to ε, to derive the desired upper bound on db(dgm(V), dgm(W)).

Steps 1 and 2 rely on the following box inequalities, known under the name of
Box Lemma [72, lemma 4.22], where δ denotes the quantity |y − x|, where R =
[p, q]× [r, s] ⊂ R̄2 is any rectangle such that r > q + 2δ, and where Rδ = [p− δ, q +
δ] × [r − δ, s + δ] is its δ-thickening:

(3.10) μUx
(R) ≤ μUy

(Rδ) and μUy
(R) ≤ μUx

(Rδ).

These inequalities relate the persistence measures of Ux,Uy locally, and they are
proven using the machinery introduced in Section 2.1: first the persistence modules
Ux,Uy are discretized over the finite index set {p − δ, p, q, q + δ, r − δ, r, s, s + δ},
second the inequalities are derived from the same point tracking strategy using the
Snapping Lemma 3.4.

Step 1 follows then from (3.10) by letting R converge to a single point of
dgm(Ux), which implies that μUy

must be positive within a δ-thickening of that
point. Step 2 follows along the way, once it has been observed that when δ is
below some threshold δx (typically a fraction of the minimum inter-point distance
in dgm(Ux)), we eventually get μV(R) = μW(Rδ) = μV(R2δ) as R converges to a
single point in dgm(Ux).

For step 3, consider the family of open intervals (x − δx, x + δx). This family
forms an open cover of the compact interval [0, ε], from which a finite subcover can
be extracted, whose elements are centered at the values 0 = x0 < x1 < · · · < xk = ε.
For any consecutive values xi, xi+1, we have from steps 1-2 that

db(dgm(Uxi
), dgm(Uxi+1

)) = dH(dgm(Uxi
), dgm(Uxi+1

)) ≤ |xi+1 − xi|,
which gives db(dgm(V), dgm(W)) ≤ ε as desired, by the triangle inequality.

Remark. To illustrate the proof, Figure 3.5 shows how the interpolation be-
tween persistence modules (here I[0, 4) and I[1, 6)) translates into an interpolation
between their persistence diagrams. As said earlier, the modules interpolation is
not unique, and the figure shows the effects of various choices of parameters, includ-
ing the interleaving parameter ε, on the resulting diagrams interpolation—see [72,
figures 9-10] for further details. It is interesting to note that the interpolated points
in the plane do not always follow shortest paths in the 
∞-distance.
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Figure 3.5. Effects of various interpolation parameters on the
persistence diagrams for the modules I[0, 4) and I[1, 6). Top row:
ε = 2, bottom row: ε = 3. Left column: using cokernels in the
extension part of the proof of Lemma 3.5, center column: using
images, right column: using kernels.
— From Chazal et al. [72].

3. Proof of the converse stability part of the Isometry Theorem

Let V,W be two q-tame persistence modules. The proof that di(V,W)≤ db(dgm(V),
dgm(W)) proceeds in two steps:

(1) It proves the result in the special case where V,W are interval-decomposable,
which is fairly straightforward.

(2) It extends the result to arbitrary q-tame modules by showing that every
such module is the limit, in the interleaving distance, of a sequence of
pointwise finite-dimensional (hence interval-decomposable) modules.

Interval-decomposable case. Let ε > db(dgm(V), dgm(W)), and take an arbi-
trary matching of bottleneck cost at most ε between the two undecorated diagrams.
This defines a partial matching between the interval summands of V and the ones
of U, so the two persistence modules can be decomposed as follows:

V ∼=
⊕
j∈J

Vj , W ∼=
⊕
j∈J

Wj ,

where each pair (Vj ,Wj) is one of the following:

• a pair of matched interval summands, i.e. Vj = Wj = I�b±j , d±j �,
• Vj is an unmatched interval summand and Wj = 0,
• Vj = 0 and Wj is an unmatched interval summand.
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It is then easy to exhibit an ε-interleaving between the two decompositions, by
proceeding independently for each pair (Vj ,Wj) and by taking the direct sums of
the obtained interleaving maps.

General case. Consider the space Pq of q-tame persistence modules, equipped
with the pseudometric di. Let Ppfd ⊂ Pq be the subspace of pointwise finite-
dimensional persistence modules. Take the map

f : Pq × Pq −→ [−∞,+∞], (V,W) �−→ di(V,W)− db(dgm(V), dgm(W)),

where by convention we let f = 0 when both di and db are infinite. The stability
part of Theorem 3.1 implies that V �→ dgm(V) is a 1-Lipschitz map, so f is non-
negative and continuous. Meanwhile, the converse stability part of Theorem 3.1,
specialized to interval-decomposable modules, implies that f = 0 over Ppfd ×Ppfd.
If we can prove that Ppfd is dense in Pq, then, by a continuity argument, we will
have f = 0 over the whole space Pq × Pq, which will conclude the proof of the
converse stability part of Theorem 3.1 in the general q-tame case.

Thus, our task is to prove that every q-tame persistence module V = (Vi, v
j
i )

lies in the topological closure of Ppfd. Given ε > 0, let Vε be the module whose

spaces are V ε
i = im vi+ε

i−ε for i ∈ R, and whose maps are induced by the maps in
V. This module is called the ε-smoothing of V, not to be confused with the εZ-
discretization VεZ introduced in Section 2.1. It is easily seen from the definition
that Vε is pointwise finite-dimensional, and that V,Vε are ε-interleaved. Hence, V
is a limit of the sequence (V1/n)n∈N and therefore lies in the topological closure of
Ppfd.

Remark. It is interesting to note that the continuity argument presented here
actually extends the full Isometry Theorem to q-tame modules, not just the converse
stability part. Therefore, it is enough to prove the Isometry Theorem for pointwise
finite-dimensional modules. This is the approach adopted e.g. in [20].

4. Discussion

Origin of the Isometry Theorem. The original proof of the stability part of
Theorem 3.1 was given by Cohen-Steiner, Edelsbrunner, and Harer [87]. It was a
seminal contribution as it already contained many of the ideas of the modern proofs,
including the Box Lemma and the interpolation argument used in Section 2.2, albeit
in more restrictive forms. The result was stated for the persistent homology of real-
valued functions and had the following flavor4:

Corollary 3.6. Let f, g : X → R be q-tame functions. Then,

db(dgm(f), dgm(g)) ≤ ‖f − g‖∞.

In fact, the version stated in [87] used a more restrictive notion of tameness,
briefly mentioned in Chapter 2 (see Footnote 1 therein), and it added the extra
conditions that X is finitely triangulable and that f, g are continuous. The reason
was that the authors did not have the concept of interleaving between persistence
modules and the corresponding algebraic Interpolation Lemma 3.5 at their disposal.

4This result is a direct consequence of the Isometry Theorem. Indeed, as we saw in Section 1.2,
f, g have ‖f − g‖∞-interleaved sublevel-sets filtrations in the sense of (3.3), so their persistent
homologies are ‖f − g‖∞-interleaved in the sense of Definition 3.3, and Theorem 3.1 applies.
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62 3. STABILITY

To overcome this lack, they interpolated between the functions f, g at the topolog-
ical level, and took the persistent homology of the interpolating function as the
interpolating persistence module. The problem was that this module could become
wild during the process, which led them to add these extra conditions on X, f, g
in order to force the interpolating module to remain tame. While this may look a
small technicality in the analysis, it does have an impact on applications, where it
is common to deal with spaces or maps that do not comply with the requirements,
especially in the presence of noise in the data. Such examples can be found in the
following chapters.

This was the state of affairs until Chazal and Oudot [66] introduced inter-
leavings between filtrations as in (3.3), which eventually led to the concept of
interleaving between persistence modules as in Definition 3.3. Together with D.
Cohen-Steiner and L. Guibas, they reworked the proof of Cohen-Steiner, Edels-
brunner, and Harer [87] within this new context, but were unable to derive a tight
upper bound on the bottleneck distance without the interpolating argument, nor
to turn this argument into a purely algebraic one. Nevertheless, they were able to
prove the loose upper bound of Section 2.1 without it, and this was the first purely
algebraic proof of stability for persistence diagrams.

At that point, the algebraic Interpolation Lemma was still the key missing in-
gredient in the picture. It is M. Glisse who brought it to them and thus made it
possible to complete the algebraic proof of the stability part of the Isometry The-
orem with a tight upper bound [71]. Then, V. de Silva brought them the measure-
theoretic view on the definition of persistence diagrams and the categorical view on
the proof of the algebraic Interpolation Lemma [72].

Recently, Bauer and Lesnick [20] gave a more direct proof of the stability part
of the Isometry Theorem, building the matching between the persistence diagrams
directly from one of the two degree-ε morphisms involved in the ε-interleaving be-
tween the persistence modules. This allowed them to avoid a blind interpolation
argument, and thus to get a better control over the interpolation—recall Figure 3.5.
Meanwhile, Bubenik and Scott [41] then Bubenik, de Silva, and Scott [40] rephrased
the concept of interleaving in categorical terms, generalizing it to representations
of arbitrary posets, and they derived ‘soft’ stability results that bound the inter-
leaving distance in terms of the distance between the topological objects the poset
representations are derived from originally. These are promising new developments
on the subject, which down the road may help tackle the still unresolved question
of defining and proving stability for persistence diagrams of zigzag modules.

The converse stability part of the Isometry Theorem has a more recent history.
To our knowledge, it is Lesnick [179] who gave the first proof, in the context of
pointwise finite-dimensional modules. Around the same time, Chazal et al. [72]
proposed a similar proof and completed it with the continuity argument of Sec-
tion 3, which allowed them to extend the result to q-tame modules. Once again,
Bubenik and Scott [41] rephrased the approach in categorical terms and suggested
the name ‘Isometry Theorem’ for the combination of the stability and converse
stability results.

Balancing the Isometry Theorem. The careful reader may have noticed that the
presentation of the Isometry Theorem given in these pages is somewhat unbalanced.
Indeed, as we saw in Section 1, the interleaving distance di between q-tame persis-
tence modules is only a pseudometric between their isomorphism classes, whereas
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the bottleneck distance db between their undecorated persistence diagrams is a true
metric. This asymmetry is overcome in the so-called observable category, introduced
originally by Chazal, Crawley-Boevey, and de Silva [63] and mentioned briefly at
the end of our Chapter 1. In this quotient category, di becomes a true metric be-
tween the isomorphism classes of q-tame modules, so we have the following clean
and balanced theory thanks to the Isometry Theorem:

Theorem 3.7. For any q-tame modules V and W, the following are equivalent:

• V and W are isomorphic in the observable category,
• the interleaving distance between V and W is zero,
• the bottleneck distance between dgm(V) and dgm(W) is zero,
• dgm(V) and dgm(W) are equal.

Wasserstein distances. Partial matchings between multisets in the plane can
be viewed as transport plans between measures—see [235] for a formal introduction
to optimal transportation theory. In this viewpoint, the bottleneck distance db is
closely related to the Wasserstein distance W∞. Other Wasserstein distances Wp

with p < +∞ can be considered as well, and new stability results can be derived
from the Isometry Theorem, such as:

Theorem 3.8 (Adapted from Cohen-Steiner et al. [88]). Let V,W be q-tame
persistence modules over R. Then,

Wp(dgm(V), dgm(W)) ≤ (Pers(V) + Pers(W))
1
p di(V,W)1−

1
p ,

where Pers(V) =
∑

p∈dgm(V)(py − px) is the total persistence of V.

The problem with this kind of upper bound is that it depends on the total
persistences of the modules, which are unstable quantities. This dependence might
just be an artefact of the proof, which invokes the Isometry Theorem as a black-
box and then manipulates the formulas to make the p-th power appear. Yet, as of
now this is the only known way to bound degree-p Wasserstein distances between
persistence diagrams, and unfortunately the bounds do not seem to be tight as in
the case of the Isometry Theorem.

Signatures for topological spaces and functions. In Section 1 we saw two ways
of building signatures for spaces, functions, or other topological objects. After
building filtrations from these objects, the first approach computes their persistent
homologies and compares them in the interleaving distance, whereas the second
approach computes their persistence diagrams and compares them in the bottle-
neck distance. While the Isometry Theorem guarantees that these two approaches
are equally powerful in terms of stability and discrimination power, persistence di-
agrams are consistently preferred over persistence modules in practice, for several
reasons. First, they are easy to compute from filtrations, as we saw in Section 2
of Chapter 2. Second, they have a canonical representation in the plane, which
is easy to visualize and readily interpretable. Third, and last, the bottleneck dis-
tance between them is comparatively easy to compute as it reduces to a bottleneck
matching problem [115], whereas computing the interleaving distance is polynomi-
ally equivalent to deciding the solvability of some systems of multivariate quadratic
equations [179]. These features make the persistence diagrams a practical tool to
work with in applications, as we will see in the following chapters.
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CHAPTER 4

Topological Inference

Discovering the structure of an unknown geometric object from a finite col-
lection of data samples is becoming ubiquitous in the sciences. Indeed, the recent
explosion in the amount and variety of available data (correlated with the increase
of the world’s technological storage capacity, going e.g. from 2.6 optimally com-
pressed exabytes in 1986 to 15.8 in 1993, over 54.5 in 2000, and to 295 optimally
compressed exabytes in 2007 [157]) calls for effective methods to organize them.

What kind of data are we referring to? Typically, clouds of points equipped with
a notion of distance or (dis-)similarity between the points. A point in such a cloud
can represent for instance a patch in an image, or an image in a collection, or a 3d
shape in a database, or a user in a social network, etc. Examples include the MNIST
handwritten digits database [176], the Columbia Object Image Library [203], the
Princeton Shape Benchmark [223], the Social Computing Data Repository [241],
or the Stanford Large Network Dataset Collection [178]. The exploration of such
data sets serves two purposes: first, to interpret the data and identify intrinsic
phenomena; second, to summarize the properties of the data for further processing
or comparison tasks. In each case, uncovering the geometric structure(s) underlying
the data is a key step, for which the following challenges arise:

(1) The interpretation of the data is tied to the scale at which they are con-
sidered. We gave an illustrative example in the general introduction of
the book (Figure 0.1).

(2) The data can be corrupted by noise and outliers that hinder the iden-
tification of potential underlying structures. An illustration is given in
Figure 4.1.

(3) The data can live in high dimensions, which causes undesired phenomena
(concentration of distances, exponential growth of the metric entropy,
etc.) falling under the hood of the so-called curse of dimensionality. For
instance, the COIL data set [203] has near 50,000 dimensions.

(4) Finally, the data can be massive, which implies that they can no longer
be stored and processed locally. For instance, some of the network data
sets [178] contain hundreds of millions of edges.

These challenges call for the development of data analysis methods that are multi-
scale, robust to noise, and highly parallelizable. But clearly, capturing the structure
of arbitrarily large-dimensional geometric objects is out of reach due to the size of
the required sampling. A common assumption across data analysis is that the
objects underlying the input data have small intrinsic dimension m, regardless of
how large the ambient dimension d may be. For instance, although the COIL data
set [203] has dozens of thousands of dimensions, it lies close to some 1-dimensional
structure as we saw in the general introduction of the book (Figure 0.4). Under
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68 4. TOPOLOGICAL INFERENCE

Noise

Figure 4.1. Matter is believed to be spread unevenly in the Uni-
verse, due to the influence of Gravity. Large-scale simulations sug-
gest that matter gathers around filamentary structures, as shown
in the 3-dimensional data set on the left—where each data point
gives the position of the center of mass of an entire galaxy. How-
ever, physical measurements such as produced by telescopes are
corrupted with noise and outliers hiding the filamentary structures,
as shown on the right.
— The data presented here were produced from the database of the Sloan

Digital Sky Survey [123].

the ‘large d - small m’ assumption, a popular approach to overcome the curse of
dimensionality is to map the data points to some lower-dimensional space, ideally
of dimension proportional to m, a process known as dimensionality reduction. Not
only does it help detect the intrinsic parameters of the data and remove the bad
effects of high dimensionality, but it also reduces the algorithmic complexity of the
problem and makes the use of classical techniques meant for small d applicable.

The recent years have seen the emergence of a new challenge in data analysis:
topology. Indeed, dimensionality reduction assumes implicitly that the topological
structure of the object underlying the data is simple, by assuming for instance linear
or developable manifold structures [27, 230]. By contrast, it happens that modern
datasets carry some nontrivial topology. Examples include the space of image
patches [177], the layout of a wireless sensor field [98], or the energy landscape
of a protein [187]—the first example will be described in detail in Section 5 of
Chapter 5. Uncovering the topological structure carried by such data is paramount
to performing their analysis. This is the subject of topological inference.

Topological inference. The usual setting is described as follows. The ambient
space is Rd, equipped with the Euclidean norm, denoted ‖ · ‖. In this space lives an
object K, say a compact set, that remains unknown or hidden from us. Instead,
we are given a finite set of points P ⊂ Rd, called a point cloud, with the promise
that the points of P live on or close to K in the ambient space. This is captured
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4. TOPOLOGICAL INFERENCE 69

by the Hausdorff distance dH between P and K being small, say ε:

(4.1) dH(K,P ) := max

{
sup
x∈K

inf
p∈P

‖x− p‖, sup
p∈P

inf
x∈K

‖p− x‖
}

= ε,

where the suprema and infima are in fact maxima and minima since both P and K
are compact. Our task is then to uncover the topology of the unknown object K
from the given finite sampling P . As we saw in the general introduction, this prob-
lem is known to be ill-posed, as several objects with different topological types can
be sampled by P in the sense of (4.1). Further evidence of this phenomenon is given
in Figure 4.2, where the object underlying the data can be either a simple closed
curve or a torus. Both objects are perfectly valid underlying structures, however

Figure 4.2. 10, 000 points distributed uniformly along a curve
winding around a torus in R3. From left to right: i-offsets of the
input points for increasing values of i, starting at i = 0. The second
offset carries the homotopy type of the underlying curve, while the
third offset carries the homotopy type of the underlying torus.

the difference between them resides in the scale at which the data are considered.
To give an analogy, looking at the point cloud from far away reveals the torus to
the observer, while looking at it from very close reveals the curve. The problem
of choosing a relevant set of scales is ubiquitous in the literature on data analysis.
This is where persistence theory comes into play: after deriving suitable filtrations
from the input point cloud, such as for instance its offsets filtration defined below,
one can use the persistence algorithm to quantify the importance of each topologi-
cal feature by measuring its persistence across scales. Indeed, topological inference
was and continues to be the most emblematic application of persistence theory, and
one of the main motivations for its development [48].

The approach is backed up by a solid sampling theory that provides sufficient
conditions under which the offsets of a compact set K can be approximated by the
ones of a finite sampling P . To be more specific, the distance to K is defined over
Rd by

(4.2) dK(x) = min
y∈K

‖x− y‖,

and the i-offset of K, denoted Ki, is defined for any level i ∈ R as the sublevel set
d−1
K ((−∞, i]). This set is empty when i < 0, equal to K when i = 0, and one has
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⋃
i∈R

Ki = Rd. Thus, the family of offsets of K for i ranging over R forms a filtration

of Rd, called the offsets filtration of K and denoted K. Similarly, one can define
the distance function dP of P , its i-offsets for all i ∈ R, and its offsets filtration P.
The same goes for any compact set in Rd. Assuming Hausdorff proximity between
K and P as in (4.1) is equivalent to assuming sup-norm proximity between their
distance functions:

(4.3) ‖dK − dP ‖∞ = ε.

This implies in particular that the offsets filtrations of K and P are ε-interleaved
in the sense of (3.3), that is:

(4.4) ∀i ∈ R, Ki ⊆ Pi+ε and Pi ⊆ Ki+ε.

Therefore the persistence diagrams dgm(K) and dgm(P) are ε-close in the bottle-
neck distance, as guaranteed by the Isometry Theorem 3.1. The question now is
whether the topological signal carried by dgm(K) can be distinguished from the extra
topological noise present in dgm(P), despite the fact that the bottleneck matching
between the two diagrams is unknown. The aim of the sampling theory is pre-
cisely to quantify the signal-to-noise ratio in dgm(P) with respect to the sampling
density—measured by ε in (4.1)—on the one hand, with respect to the ‘regularity’
of the geometry of K—measured by some quantity to be defined—on the other
hand. The rationale is that when the signal-to-noise ratio is large enough, the user
can read off the topology of K (more precisely, its homology or cohomology) from
the persistence diagram of P.

We briefly introduce the theory of distance functions in Section 1, and explain
how it acts as a sampling theory for topological inference in Section 2. The filtra-
tions involved in this theory are made of offsets of compact sets, which are contin-
uous objects and therefore not naturally amenable to manipulation on a computer.
For practical purposes it is therefore necessary to replace them by purely combi-
natorial filtrations that carry the same topological information. The mechanism is
described in Section 3, where we introduce the two main simplicial filtrations con-
sidered for this purpose: the so-called Čech filtration and α-complex filtration—the
latter being renamed Delaunay filtration in the following for clarity.

The main interest of our community, as reflected in this chapter, is to lay down
the mathematical foundations of a working pipeline for doing topological inference
on a computer using persistence. The pipeline goes as follows: it takes a point cloud
P as input, builds a simplicial filtration (Čech, Delaunay) on top of P , computes
its persistence barcode using the persistence algorithm or one of its variants from
Chapter 2, and passes the result on to the user for interpretation. Proving this result
correct under various sampling conditions is the topic of this chapter and was the
original aim of our community. Algorithmic questions, including the use of more
lightweight simplicial filtrations to scale up nicely with the size and dimensionality
of the data, started to be addressed later and are therefore deferred to the next
chapter.

Prerequisites. For more background on data analysis we recommend reading
[151], especially Chapter 14. For a survey of linear and non-linear dimensionality
reduction techniques, see [236]. Much of the current chapter is devoted to introduc-
ing distance functions and their inference properties. The literature on the subject
is vast and bears many connections to data analysis. Here we assume no prior expo-
sure to the subject and we restrict ourselves to a few selected results—Theorems 4.1,
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4.4 and 4.7—that are most relevant to us, referring the interested reader to [59] and
the references therein for a more comprehensive survey. The rest of the material
used in the chapter comes from Part 1, with the notable exception of the Nerve
Lemma whose statement is recalled for the reader’s convenience—background on
homotopy equivalences and deformation retractions can be found e.g. in Chapter 0
of [152].

1. Inference using distance functions

As mentioned in the introduction of the chapter, the ambient space is Rd

equipped with the Euclidean norm ‖ · ‖. This is in fact a simplifying assump-
tion, as the concepts and techniques presented in this section, in particular the
generalized gradient vector field and its associated flow, extend naturally to Rie-
mannian manifolds, and beyond that, to Alexandrov spaces [211], so the theory can
be rewritten in this more general context.

1.1. Reach. The set of points y ∈ K that realize the minimum in (4.2) is
called the projection set of x, denoted ΠK(x). This set is never empty, and when
it is a singleton {y} we let πK(x) = y and call y the projection of x. The map
x �→ πK(x) is defined everywhere in Rd except on the medial axis of K, denoted
M(K), which is the set of points x such that |ΠK(x)| ≥ 2. See Figure 4.3 for an
example showing that the medial axis may be neither open nor closed.

Figure 4.3. Left: the medial axis of the boundary of a rectan-
gle, marked in bold lines, is clearly not open. Right: the medial
axis of the same rectangle whose bottom edge has been replaced
by the C1-continuous function x �→ x3 sin 1

x for x ≥ 0 and x �→ 0
for x < 0, does not contain the limit vertical segment above the
C2-discontinuity at x = 0 and is therefore not closed either.
— Reprinted from Lieutier [180]: “Any open bounded subset of Rn has

the same homotopy type as its medial axis”, Computer-Aided Design,

36(11):1029–1046, c©2004, with permission from Elsevier.

The following properties are well-known and easy to prove [128]. They involve
the topological closure of the medial axis, denoted M(K):

• d2
K is continuously differentiable over Rd \ M(K), where its gradient is

2(x− πK(x)). Note that the gradient vanishes on K.
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• dK is 1-Lipschitz over Rd and continuously differentiable over Rd \ (K ∪
M(K)), where its gradient, denoted ∇K , is

(4.5) ∇K(x) =
x− πK(x)

‖x− πK(x)‖ =
x− πK(x)

dK(x)
.

Note that ‖∇K‖ = 1.
• The projection map πK is continuous, so the opposite gradient vector field
−∇K can be integrated into a continuous flow:

(4.6)

R+ × Rd \M(K) −→ Rd \M(K),

(t, x) �−→
{

x− t∇K(x) if t < dK(x),
πK(x) otherwise.

Note however that the gradient field ∇K itself does not always yield a
continuous flow. An illustration is given in Figure 4.3 (right), where the
induced flow has a discontinuity across the limit vertical segment above
the C2-discontinuity of K.

In this context, the reach of K is defined as the minimum distance between K and
its medial axis. Specifically, the Euclidean distance of a point x ∈ K to M(K) is
called the reach of K at x:

(4.7) rch(K,x) = d
M(K)(x),

and the infinimum (in fact minimum) of this quantity over K is the reach of K:

(4.8) rch(K) = min
x∈K

rch(K,x).

The concept of reach was introduced by Federer [128] to define curvature measures
on sets that are neither convex nor C2-continuous—see Figure 4.4 for an example.
The reach at a point x ∈ K is also sometimes called the local feature size at x in
the literature [3].

When a compact set K has positive reach, i.e. when it does not come close to
its medial axis, the flow of (4.6) can be applied in its neighborhood. Applying it to
the points of an offset Kj with j < rch(K) results in a deformation retraction of
that offset to K. Along the way, it also results in weak deformation retractions of
Kj to the offsets Ki with 0 < i < j. Hence, the inclusion maps K ↪→ Ki ↪→ Kj are
homotopy equivalences and therefore induce isomorphisms at the homotopy and
homology levels.

Niyogi, Smale, and Weinberger [206] proposed to reproduce this argument with
the offsets of K replaced by the ones of a sufficiently close point cloud P . The main
bottleneck was to prove that the intersections of the flow lines of K with the offsets
of P are contractible, which they were able to do under the extra condition that K
is a submanifold of Rd. This was the first inference result using distance functions.

Theorem 4.1 (Niyogi, Smale, and Weinberger [206]). Let K be a compact
submanifold of Rd with positive reach. Let P be a point cloud in Rd such that

dH(K,P ) = ε <
√

3
20 rch(K). Then, for any level i ∈

(
2ε,
√

3
5 rch(K)

)
, the offset

Pi deformation retracts onto K, so the inclusion map K ↪→ Pi is a homotopy
equivalence.

It turns out that both the manifold and the positive reach conditions are su-
perfluous, as we will see next.
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Figure 4.4. Some compact sets with positive reach. Left: the
solid polygon is convex, therefore its medial axis is empty and
its reach is infinite. Center: the curve made of two half-circles
connected by two line segments has C2-discontinuities at the gluing
points (marked by squares). Its medial axis is the central horizontal
line segment. Right: the quartic surface called ‘tanglecube’ is C2-
continuous. It is shown here in transparency, superimposed with
an approximation of its inner medial axis. Note that the sets in
Figure 4.3 have zero reach.

1.2. Weak feature size. Although the distance function dK is not differen-
tiable on the medial axis of K, it is possible to extend its gradient to a generalized
gradient function ∇K : Rd \K → Rd as follows:

(4.9) ∇K(x) =
x− c(ΠK(x))

dK(x)
,

where c(ΠK(x)) denotes the center of the minimum enclosing ball of the projection
set ΠK(x). This center plays the role of the projection πK(x) in the original gradi-
ent, and it is in fact equal to it outside M(K), so (4.9) extends (4.5) in a natural
way. We let ∇K = 0 over K by convention, so ∇K is defined over the entire space
Rd. For x /∈ K we have

∇K(x)2 = 1 − r(ΠK(x))2

dK(x)2
,

where r(ΠK(x)) denotes the radius of the smallest enclosing ball of ΠK(x). Equiv-
alently, ‖∇K‖ is the cosine of the half-angle of the smallest cone of apex x that
contains ΠK(x). See Figure 4.5 for an illustration.

Although the generalized gradient vector field ∇K is not continuous, it is locally
semi-Lipschitz in the sense that

(∇K(x)−∇K(y)) · (x− y) ≤ 1

i
(x− y)2

for any i > 0 and any points x, y /∈ Ki. Moreover, the map x �→ ‖∇K(x)‖ is
lower-semicontinuous, meaning that

lim inf
y→x

‖∇K(y)‖ ≥ ‖∇K(x)‖

for any x ∈ Rd. These are important properties since they allow to integrate the
generalized gradient vector field ∇K using Euler schemes. As the integration step
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ΠK(x)

c

dK(x)

r

∇K(x)

α

Figure 4.5. The generalized gradient of the distance to K, where
c and r are shorthands for c(ΠK(x)) and r(ΠK(x)) respectively.
The norm of the gradient is given by ‖∇K(x)‖ = cosα.
— Reprinted from Chazal, Cohen-Steiner, and Lieutier [60]: “A Sampling

Theory for Compact Sets in Euclidean Space”, Discrete & Computational Ge-

ometry, 41(3):461–479, c©2009, with kind permission from Springer Science

and Business Media.

Figure 4.6. Generalized gradient of dK and its associated flow.
Bold lines mark the medial axis, arrows mark the gradient and
also the direction of the flow, circles mark the critical points of dK

located outside of K.
— Based on Lieutier [180].

decreases, the Euler schemes converge uniformly to a continuous flow R+×Rd → Rd

that is right-differentiable and whose right derivative coincides with ∇K [180].
An illustration of the gradient and its flow is given in Figure 4.6. Note that

the flow line l starting at a point x ∈ Rd can be parametrized by arc length, so it is
possible to integrate ‖∇K‖ along l to obtain the value of dK(y) at any downstream
point y. In this respect, ∇K acts as a gradient for dK over Rd. With the new
gradient flow at hand, one can construct the same kind of deformations retractions
as in Section 1.1. However, extending the construction to the entire space Rd

requires to develop a generalized critical point theory.
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Definition 4.2. A point x ∈ Rd is critical if its generalized gradient ∇K(x) is
zero, or equivalently, if x lies in the convex hull of its projection set ΠK(x). A value
v ∈ R is critical if v = dK(x) for some critical point x. In particular, all points of
K are critical, therefore 0 is a critical value.

This definition agrees with the ones from nonsmooth analysis [83] and Riemann-
ian geometry [74, 145]. In particular, we can rely on the following result by Grove
[145], proved independently by Chazal and Lieutier [57] using the generalized gra-
dient flow. This result relates the offsets of K in the same spirit as in Section 1.1,
but for all offset values i > 0. It extends a classical result of Morse theory [195,
theorem 3.1] to the current nonsmooth setting:

Lemma 4.3. If 0 < i < j are such that there is no critical value of dK within
the closed interval [i, j], then Kj deformation retracts onto Ki, so the inclusion
map Ki ↪→ Kj is a homotopy equivalence.

In this context, the weak feature size of K is defined as follows:

(4.10) wfs(K) = inf{i > 0 | i is a critical value of dK}.
It is clear that rch(K) ≤ wfs(K) since the critical points of dK lie either on K or
on its medial axis. The inequality can be strict, as in Figure 4.6, so the class of
compact sets with positive weak feature size is larger than the one of compact sets
with positive reach. It is in fact much larger, containing for instance all polyhedra
or piecewise analytic sets [57].

When wfs(K) is nonzero, Lemma 4.3 guarantees that all the offsets Ki for
i ∈ (0,wfs(K)) are homotopy equivalent. Thus, the weak feature size can be viewed
as ‘the minimum size of the topological features’ of the compact set K. Note that
the homotopy equivalence does not extend to the 0-offset K in general, as 0 is a
critical value of dK by definition, and furthermore there are examples of compact
sets K that do not have the same homotopy type as their small offsets. A well-
known such example is given in Figure 4.7.

Chazal and Lieutier [65] introduced the weak feature size and proposed the
following generalization of Theorem 4.1—see also [87] for a similar result:

Theorem 4.4. Let K be a compact set in Rd with positive weak feature size.
Let P be a point cloud in Rd such that dH(K,P ) = ε < 1

4wfs(K). Then, for any
levels i, j such that ε < i < i + 2ε ≤ j < wfs(K) − ε, the persistent homology
group imH∗(Pi) → H∗(Pj) induced by the inclusion map Pi ↪→ Pj is isomorphic to
H∗(Kr) for any r ∈ (0,wfs(K)).

The result follows from basic rank arguments1 once it has been observed that
the following sequence of inclusions is implied by the hypothesis and (4.4):

Ki−ε ↪→ Pi ↪→ Ki+ε ↪→ Pj ↪→ Kj+ε,

where compositions Ki−ε ↪→ Ki+ε ↪→ Kj+ε induce isomorphisms at the homology
level according to Lemma 4.3.

It is important to note that using persistent homology groups instead of ho-
mology groups of offsets of P is necessary to capture the homology of the small
offsets Kr of K in Theorem 4.4. Indeed, there are cases where there is not a single

1Chazal and Lieutier [65] also proved the result for homotopy groups, for which the proof is
somewhat more elaborate but keeps the same flavor.
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Figure 4.7. The compact set K ⊂ R2 is the union of the four
sets {(x, y) | x = 0, −2 ≤ y ≤ 1}, {(x, y) | 0 ≤ x ≤ 1, y = −2},
{(x, y) | x = 1, −2 ≤ y ≤ 0}, and {(x, y) | 0 < x ≤ 1, y = sin 2π

x }.
This set K is simply connected with positive weak feature size,
however its (small enough) offsets are homeomorphic to annuli and
therefore not homotopy equivalent to K.
— Based on Spanier [228], §2.4.8.

Figure 4.8. Sampling P of the boundary K of a triangle in the
plane. Because of the small angle in the triangle and of the noise
in the sampling, there is not a single level i such that the i-offset
of P captures the homology of K. Only much denser samplings P
have this property, and reducing the angle arbitrarily makes the
threshold in density tend to infinity while keeping the weak feature
size of K constant. Yet, for a fixed angle there is a finite threshold
in density beyond which single offsets of P capture the homology
of K, which suggests that there may be a meaningful intermediate
quantity between the weak feature size and the reach.
— Based on Chazal and Cohen-Steiner [59].

level i such that Pi has the same homological type as Kr. Figure 4.8 gives such an
example, and suggests that there may be an intermediate class of compact sets K
between those with positive weak feature size and those with positive reach, which
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realizes a trade-off between weakening the sampling conditions on P and still cap-
turing the homology of the small offsets Kr from single offsets of P . This is the
‘raison d’être’ of the μ-reach, presented in the next section.

1.3. μ-reach. A point x ∈ Rd is called μ-critical if ‖∇K(x)‖ < μ, and the set
of μ-critical points located outside K is called the μ-medial axis2 of K, denoted
Mμ(K). Note that a point of Rd \ K is 1-critical if and only if it belongs to
the medial axis of K, and μ-critical for all μ > 0 if and only if it is critical in
the sense of Definition 4.2. Thus, outside K, the nested family of μ-medial axes
interpolates between the medial axis from Section 1.1 and the set of critical points
from Section 1.2. In this context, the μ-reach of K, denoted rμ(K), was introduced
by Chazal, Cohen-Steiner, and Lieutier [60] as an interpolating quantity between
the reach and the weak feature size of K, defined as follows—notice the similarity
with (4.8):

(4.11) ∀μ ∈ (0, 1], rμ(K) = min
x∈K

d
Mμ(K)(x).

As μ decreases, Mμ(K) shrinks therefore rμ(K) increases. Moreover, we have
r1(K) = rch(K) on the one hand, and limμ→0+ rμ(K) = wfs(K) provided that
limμ→0+ rμ(K) > 0 on the other hand3. Thus, rμ(K) indeed interpolates between
rch(K) and wfs(K).

The main property of the μ-critical points of dK is to be stable under small
Hausdorff perturbations of K:

Lemma 4.5 (Chazal, Cohen-Steiner, and Lieutier [60]). Let K,K ′ be compact
sets in Rd, and let ε = dH(K,K ′). Then, for any μ-critical point x of dK′ , there is

a (2
√
ε/dK′(x) + μ)-critical point of dK at distance at most 2

√
εdK′(x) from x.

This stability property implies a separation between the critical values of dK′

when K has positive μ-reach:

Lemma 4.6 (Chazal, Cohen-Steiner, and Lieutier [60]). Let K,K ′ be compact
sets in Rd, and let ε = dH(K,K ′). Then, for any μ ∈ (0, 1], there is no critical
value of dK′ within the range (4ε/μ2, rμ(K)− 3ε).

Taking μ = 1 in the above statement gives that the critical points of dK′ are
concentrated around K and its medial axis when K has positive reach, a well-known
separation result (at least in the case of smoothly embedded surfaces) [109].

Applying Lemma 4.6 with K ′ = P in the context of the proof of Theorem 4.4
allows to relate the homotopy type of small offsets of K directly to that of single
offsets of P :

Theorem 4.7 (Chazal, Cohen-Steiner, and Lieutier [60]). Let K be a compact
set in Rd with positive μ-reach for some μ ∈ (0, 1]. Let P be a point cloud in

Rd such that dH(K,P ) = ε < μ2

5μ2+12 rμ(K). Then, for any level i such that
4ε
μ2 ≤ i < rμ(K) − 3ε, the i-offset of P is homotopy equivalent to Kr for any

r ∈ (0,wfs(K)).

2Not to be confused with the λ-medial axis of Chazal and Lieutier [57], which is closely
related but not equal.

3One may have limμ→0+ rμ(K) < wfs(K) when limμ→0+ rμ(K) = 0. For instance, when K

is the union of two tangent disks in the plane, Mμ(K) converges to the emptyset as μ tends to 0,

so wfs(K) = +∞ whereas rμ(K) = 0 for all μ > 0.
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Remark. The statement can be further strengthened into an isotopic recon-
struction theorem involving the level sets of dK and dP . The idea is to use the
stability properties of the generalized gradient vector field to turn it into a C∞-
continuous vector field that is ‘transverse’ to the level sets of dK and dP . Isotopies
between level-sets of K and of P are then derived from the flow induced by this
modified vector field. The details can be found in [61].

1.4. Distance-like functions. As pointed out by Chazal, Cohen-Steiner, and
Mérigot [62], the generalized gradient vector field and its induced flow can be built
not only for the distance to a compact set K, but also for any distance-like function,
i.e. any non-negative function d : Rd → R that satisfies the following axioms:

A1 d(x) tends to infinity whenever x does,
A2 d is 1-Lipschitz, and
A3 d2 is 1-semiconcave, i.e. the map x �→ ‖x‖2 − d2(x) is convex.

The Lipschitz continuity implies that d is differentiable almost everywhere. In
particular, the medial axis, defined as the set of points of Rd where d is not differ-
entiable, has zero d-volume. The semiconcavity imposes further regularity on d, in
particular twice differentiability almost everywhere. It plays a central role in the
proof of existence of the flow induced by the generalized gradient of d.

Suppose now we are working with a given class of objects living in Euclidean
space Rd, such as for instance its compact subsets. Suppose we can derive a
distance-like function fK from each object K, in such a way that the map K �→ fK
is Lipschitz continuous with respect to some metric between objects and to the
supremum distance between distance-like functions. For instance, we saw in (4.3)
that the map K �→ fK is 1-Lipschitz in the class of compact subsets of Rd equipped
with the Hausdorff distance. Then, the analysis of Sections 1.2 and 1.3 can be
reproduced and inference results similar to Theorems 4.4 and 4.7 (up to constant
factors) can be stated.

This observation allows to generalize the topological inference theory beyond
the mere compact subsets of Rd, to other classes of objects such as probability
measures, as we will see in Section 6 of the next chapter.

2. From offsets to filtrations

The results of Section 1 guarantee the existence of offsets (or pairs of offsets) of
the input point cloud P that carry the topology of its underlying object K, under
some sampling conditions. However, the quantities involved in the bounds, such as
the reach or the weak feature size of K, remain unknown, so in practice the user
is left with the difficult question of choosing the ‘right’ offset parameter(s), which
amounts to choosing the ‘right’ scale(s).

This is where persistence comes in. By looking at all scales at once, and by
encoding the evolution of the topology of the offsets across scales, it gives valuable
feedback to the user for choosing relevant scale(s). The choice is guided by the
results of Section 1, which translate into statements about the structure of the
persistence barcode or diagram of the offsets filtration P of P , describing where
and under what form the homology of K appears. The barcode representation is
usually preferred over diagram representation in this context because it is more
readily interpretable, as Figures 4.9 and 4.10 illustrate. We will therefore use it in
the statements.
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Figure 4.9. Barcode of the offsets filtration of the point cloud
from Figure 4.2, drawn on a logarithmic scale. Left/Right arrow
heads indicate left/right-infinite intervals. The sweet range for the
helicoidal curve is roughly (−6.25,−4.8), the one for the torus is
approximately (−3.7, 0). There is also a sweet range (0, 2) for the
solid torus, and a sweet range (2,+∞) for the entire ambient
space R3.

Remark. Before stating the results we must check that P indeed has a well-
defined persistence diagram. It turns out that all distances to compact sets in
Rd have well-defined diagrams. This is a consequence of their being q-tame by
Proposition 2.3 (ii), and it holds regardless of the regularity of the compact sets.

Compact sets with positive weak feature size. If we apply Theorem 4.4 with
i → ε+ and j → (wfs(K)− ε)− on the one hand, with j = i+2ε on the other hand,
then we obtain the following guarantee on the existence of a sweet range over which
the homology of the underlying compact set K can be read off:

Corollary 4.8. Let K be a compact set in Rd with positive weak feature size.
Let P be a point cloud in Rd such that dH(K,P ) = ε < 1

4wfs(K). Then, there is a
sweet range T = (ε, wfs(K)− ε) whose intersection with the barcode of the offsets
filtration P has the following properties:

• The intervals that span T encode the homology of K, in the sense that
their number for each homology dimension p is equal to the dimension of
Hp(Kr), for any r ∈ (0,wfs(K)).

• The remaining intervals have length at most 2ε.

This result partitions the restriction of the barcode of P to the sweet range T
into two classes: on the one hand, the intervals spanning T compose what is called
the topological signal; on the other hand, intervals not spanning T compose what is
called the topological noise4. The ratio of the minimum length of a signal interval
(which is also the width of the sweet range) to the maximum length of a noise in-
terval in T is called the signal-to-noise ratio. Under the hypotheses of the theorem,

it is guaranteed to be at least wfs(K)−2ε
2ε .

4Note that there may be long intervals in the full barcode whose restrictions to T are treated
as topological noise because they do not span T . The theorem guarantees that such intersections
are short.
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Figure 4.10. Persistence diagrams of the offsets filtration of the
point cloud P from Figure 4.2 for homology dimensions 0, 1, 2 (from
left to right). The diagrams are plotted on a log-log scale.

An illustration is given in Figure 4.9, showing the barcode of the offsets filtration
of the point cloud from Figure 4.2. The barcode is represented on a logarithmic
scale to better reveal the phenomena occurring at smaller scales. As expected,
sweet ranges for the helicoidal curve and for the torus appear, but not only. The
barcode also reveals two other underlying structures: the solid torus, and the entire
space Rd at the largest scales. At the other end of the barcode, i.e. at the lowest
scales, the point cloud itself can be viewed as its own underlying space. These
structures are also revealed by the persistence diagram representation, shown in
Figure 4.10, however in a less readable form5, which justifies the use of the barcode
representation in practice.

It is worth pointing out that in this example the sweet ranges contain no topo-
logical noise and therefore have infinite signal-to-noise ratio. This is a consequence
of the underlying structures having positive μ-reach, as we will see next.

Compact sets with positive μ-reach. Applying Theorem 4.7 gives the stronger
guarantee that there exists a sweeter range over which the homology of the compact
set K is encoded with no noise at all (hence an infinite signal-to-noise ratio):

Corollary 4.9. Let K be a compact set in Rd with positive μ-reach for some

μ ∈ (0, 1]. Let P be a point cloud in Rd such that dH(K,P ) = ε < μ2

5μ2+12 rμ(K).

Then, there is a sweeter range T =
[
4ε
μ2 , rμ(K)− 3ε

]
whose intersection with the

barcode of the offsets filtration P has the following properties:

• The intervals that span T encode the homology of K, in the sense that
their number for each homology dimension p is equal to the dimension of
Hp(Kr), for any r ∈ (0,wfs(K)).

• There are no other intervals.

Since compact sets with positive μ-reach also have positive weak feature size,
their sweeter ranges are in fact included in larger sweet ranges. Needless to say
that the bounds on the sweeter range given in Corollary 4.9 indeed lie between the
bounds on the sweet range from Corollary 4.8. As μ goes down while the Hausdorff

5For instance, distinguishing the helicoidal curve from the torus requires some imagination,
although the difference does exist in the abscissae of the diagram points.
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Figure 4.11. Left: a point cloud P surrounded by balls of ra-
dius i. Right: the corresponding Čech complex Ci(P ).

distance ε stays fixed, the sweeter range shrinks until it eventually becomes empty,

when μ passes below
√

4ε
rμ(K)−3ε . This was the phenomenon observed empirically

in the example of Figure 4.8.

3. From filtrations to simplicial filtrations

Offsets of compact sets are continuous objects, as such they are not naturally
amenable to manipulation on a computer. Nevertheless, only their topology matters
in our context, not their geometry. In the special case where the compact set is a
finite point cloud P , its offsets are just finite unions of balls, whose topology can
be accessed through various combinatorial constructions. The most notorious one
among them is the so-called Čech complex6, defined as follows and illustrated in
Figure 4.11:

Definition 4.10. The Čech complex of P of parameter i ∈ R, denoted Ci(P ),
has one k-simplex per (k + 1)-tuple of points of P such that the closed Euclidean
balls of radius i about these points have a nonempty common intersection. The
Čech filtration is the indexed family C(P ) = {Ci(P )}i∈R.

Each Čech complex Ci(P ) is related to the corresponding offset Pi of P through
the Nerve Lemma. Given a collection U = {Ua}a∈A of subspaces of a same topo-
logical space, the nerve N(U) has one k-simplex per (k + 1)-tuple of elements of U
that have a nonempty common intersection. In our case the collection is formed by
the Euclidean balls of radius i centered at the points of P , and its nerve is precisely
the Čech complex Ci(P ). There exist many variations of the Nerve Lemma in the
literature. They usually claim that if the sets Ua are ‘nice’ in some sense, and if
their (k+1)-fold intersections for all k ∈ N are either empty or topologically ‘simple’
in some sense, then the nerve N(U) is homotopy equivalent to the union

⋃
a∈A Ua,

which in our case is precisely the offset Pi. The most classical variant uses open
sets and asks the nonempty intersections to be contractible—see e.g. [152, §4G]:

6Named after E. Čech for its relationship to Čech homology [122].

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



82 4. TOPOLOGICAL INFERENCE

Lemma 4.11 (Nerve). Let X be a paracompact space, and let U be an open
cover of X such that the (k+1)-fold intersections of elements of U are either empty
or contractible for all k ∈ N. Then, there is a homotopy equivalence N(U) → X.

Unfortunately, in our setting the elements of the cover are closed, so the result
does not apply directly. In fact, the Nerve Lemma is generally not true for closed
covers, and finding sufficient conditions under which it holds is a research topic in
its own right, with deep connections to the theory of retracts initiated by Borsuk
[35]. The bottomline is that the Nerve Lemma holds for a closed cover U as soon
as the (k + 1)-fold intersections of its elements are neighborhood retracts in X, i.e.
each intersection V admits a retraction r : W → V from some open neighborhood
W [34]. Luckily for us, this is the case for intersections of finitely many Euclidean
balls.

Chazal and Oudot [66] have extended Lemma 4.11 so it guarantees not only
pointwise homotopy equivalence between the spaces Ci(P ) and Pi for all i ∈ R,
but also equivalence between the filtrations C(P ) and P themselves. The proof is a
straightforward adaptation of the one of Lemma 4.11 found in [152, §4G], and the
conditions under which it adapts to closed covers are the same7:

Lemma 4.12 (Persistent Nerve). Let X ⊆ X ′ be two paracompact spaces, and
let U = {Ua}a∈A and U′ = {U ′

a′}a′∈A′ be open covers of X and X ′ respectively,
based on finite parameter sets A ⊆ A′. Assume that Ua ⊆ U ′

a for all a ∈ A, and
that the (k + 1)-fold intersections of elements of U (resp. of U′) are either empty
or contractible for al l k ∈ N. Then, the homotopy equivalences N(U) → X and
N(U′) → X ′ provided by the Nerve Lemma 4.11 commute with the inclusion maps
X ↪→ X ′ and N(U) ↪→ N(U′) at the homology level, that is, the following diagram
commutes for each homology dimension p:

Hp(X) �� Hp(X
′)

Hp(N(U))

��

�� Hp(N(U′))

��

What this lemma entails is that the homotopy equivalences Ci(P ) → Pi at all
indices i ∈ R, put together, induce an isomorphism between persistence modules
Hp(C(P )) → Hp(P) at each homology dimension p. Hence, up to isomorphism,
the filtrations C(P ) and P have the same persistent homology. The guarantees on
offsets filtrations obtained in Section 2 extend therefore to Čech filtrations:

Corollary 4.13. Let K be a compact set in Rd with positive weak feature size.
Let P be a point cloud in Rd such that dH(K,P ) = ε < 1

4wfs(K). Then, there is

a sweet range T = (ε, wfs(K)− ε) whose intersection with the barcode of the Čech
filtration C(P ) has the same properties as in Corollary 4.8. If in addition K has

positive μ-reach for some μ ∈ (0, 1], and ε < μ2

5μ2+12 rμ(K), then there is a sweeter

range
[
4ε
μ2 , rμ(K)− 3ε

]
⊆ T whose intersection with the barcode of C(P ) has the

same properties as in Corollary 4.9.

7Bendich et al. [22] gave a more direct proof of this result in the special case of covers by
closed Euclidean balls.
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Another notorious combinatorial construction is the so-called α-complex, intro-
duced by Edelsbrunner, Kirkpatrick, and Seidel [113], which we will call i-Delaunay
complex in the following to better emphasize its relationship with the Delaunay tri-
angulation8. It is defined as follows.

Definition 4.14. The i-Delaunay complex of P , denoted Di(P ), has one k-
simplex per (k + 1)-tuple of points of P circumscribed by a ball of radius at most
i containing no point of P in its interior. The Delaunay filtration is the indexed
family D(P ) = {Di(P )}i∈R. It is a filtration of the Delaunay triangulation of P .

As a subcomplex of the Delaunay triangulation of P , the i-Delaunay complex
Di(P ) embeds linearly into Rd under the genericity assumption that there are no
d+ 2 cospherical points and no d+ 1 affinely dependent points in P , which will be
assumed implicitly in the following. For simplicity, the image of Di(P ) through the
linear embedding into Rd will also be denoted Di(P ) by a slight abuse of notations.
This image is known to be contained in the offset Pi, and the connection between
the two is made via a deformation retraction worked out by Edelsbrunner [112]:

Lemma 4.15. For any i ∈ R, the offset Pi deformation retracts onto (the linear
image of) Di(P ), so the inclusion map Di(P ) ↪→ Pi is a homotopy equivalence.

Once again, these homotopy equivalences at all indices i ∈ R, put together,
induce an isomorphism between persistence modules Hp(D(P )) → Hp(P) at each
homology dimension p. Hence, up to isomorphism, the filtrations C(P ), P, and
D(P ) have the same persistent homology, so Corollary 4.13 holds the same with
the Čech filtration C(P ) replaced by the Delaunay filtration D(P ).

Delaunay filtrations are quite popular in small dimensions (d = 2 or 3), where
they can be computed efficiently. Indeed, computing the Delaunay triangulation of
n points takes O(n logn) time in the worst case in the plane, and O(n2) in 3-space.
Moreover, in many practical cases, such as when the points lie on a smooth or
polygonal surface, the size and computation time of the 3d Delaunay triangulation
become near linear [4, 5]. As a matter of fact, the result of Figures 4.9 and 4.10
was computed using the Delaunay filtration.

Unfortunately, the sizes of both the Čech and Delaunay filtrations scale up very
badly with the ambient dimension, so these filtrations become quickly intractable
in practice. Finding more lightweight filtrations or zigzags that can be used as
replacements with theoretical guarantees is the topic of the next chapter.

8In this we are following some authors such as Bauer and Edelsbrunner [16].
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CHAPTER 5

Topological Inference 2.0

In Chapter 4 we focused mostly on the mathematical foundations of a working
pipeline for doing topological inference on a computer. Our aim was to get proof for
the existence of simplicial filtrations whose barcodes can reveal the homology of the
geometric structures underlying the input data, regardless of the actual computing
cost of building these filtrations.

This was also the dominant viewpoint in the early days of the development
of the theory. However, the rapid growth in size and complexity of the data sets
considered in practice quickly made it clear that algorithmic questions needed to
be addressed as well by the theory, or otherwise theory and practice would diverge.
More precisely, there was a need for more lightweight filtrations or zigzags and
for optimized variants of the persistence algorithm, without too much sacrifice
in terms of quality of the output barcodes. The goal was to reduce the overall
memory footprint of the approach, by then—and still by now—its main bottleneck.
The resulting extension of the theory is referred to as ‘version 2.0’ of the inference
pipeline in these pages.

Let us give a concrete example illustrating how important the memory footprint
can be. This is only a toy example, but it is quite revealing of the situation in
practice. Consider the following variant of the data set of Figure 4.2, called the
Clifford data set hereafter: 2, 000 points evenly spaced along the line l : y = 20x
mod 2π in the 2-d flat torus (R mod 2π)2, then mapped onto the Clifford torus in
R4 via the embedding f : (u, v) �→ (cosu, sinu, cos v, sin v). This data set admits
three non-trivial underlying structures: at small scales, the image of l through f ,
which is a closed helicoidal curve on the torus; at larger scales, the torus itself; at
even larger scales, the 3-sphere of radius

√
2 on which the torus is sitting. One

can also see the point cloud itself and R4 as possible underlying structures at
extreme scales. In order to capture the homology of the 3-sphere, the union of
Euclidean balls of radius i about the data points must at least cover it, which

happens only for i ≥
√

4 − 2
√

2 ≈ 1.08. At such parameter values, the Čech
filtration has already become huge, that is, the 4-skeleton of the Čech complex of
parameter i contains more than 31 billion simplices, a size that is at least 2 orders
of magnitude beyond what existing implementations of the persistence algorithm
can handle. On a 24-GB machine, one can store the 4-skeleton of the Čech filtration
and compute its persistent homology within the main memory up to i ≈ 0.625 using
the C++ library Dionysus (http://www.mrzv.org/software/dionysus/). The
corresponding truncated barcode is given in Figure 5.1. As expected, it shows only
the curve and the torus, not the 3-sphere.

Not only is the size of the filtrations a critical issue in its own right, but it
also has a direct impact on the running time of the persistence algorithm as we
saw in Chapter 2. Thus, the efficiency of the whole inference pipeline is driven by
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86 5. TOPOLOGICAL INFERENCE 2.0

Figure 5.1. Truncated barcode of the Čech filtration on the Clif-
ford data set, represented on a logarithmic scale. Due to the trun-
cation at log2(i) = log2(0.625) ≈ −0.678, the intervals encoding
the homology of the torus become right-infinite, while the interval
encoding the 3-homology of the sphere does not appear.
— Reprinted from Oudot and Sheehy [208]: “Zigzag Zoology: Rips Zigzags for

Homology Inference”, Foundations of Computational Mathematics, pp. 1–36,

c©2014, with kind permission from Springer Science and Business Media.

it. Another important though less critical issue in practice is the complexity of the
geometric predicates involved in the construction of the filtrations.

Take for instance the Delaunay filtration. The size of the Delaunay triangula-

tion of an n-points set P in Rd is known to be Θ(n� d
2 ) [189], and the worst-case

lower bound is achieved when the points lie on a curve, so even assuming that P
samples some low-dimensional structure does not help. Meanwhile, the construc-
tion of the Delaunay filtration requires determining whether the circumscribing ball
of d + 1 affinely indepent points includes another given point in its interior. It is
answered by evaluating the sign of the determinant of a (d + 2) × (d + 2) matrix.
Assuming fixed-precision entries, exact evaluation with floating-point arithmetic
uses an overhead budget of O(d) bits and incurs a cubic (in d) bit complexity [37,
84]. This becomes costly when d increases, especially as the predicate needs to be
answered many times.

The Čech complex incurs a similar complexity blowup: as parameter i grows
towards infinity, Ci(P ) eventually becomes the (n − 1)-simplex of vertex set P ,
therefore its size grows up to 2n. When the ambient dimension d is known, it is
possible to maintain only the d-skeleton of Ci(P ), yet the size still grows like Θ(nd)
as n tends to infinity while d remains fixed. Meanwhile, the construction of the Čech
complex requires determining whether a given collection of balls of same radius r
have a nonempty common intersection, which is equivalent to comparing r with the
radius of the smallest Euclidean ball enclosing their centers. This geometric predi-
cate is answered exactly in time linear in the number of balls but superpolynomial
in d [73, 137, 190, 239]. Even though reasonable timings have been reported for a
single instance of the predicate in practice [129, 138], repeated calls to it during the
construction of a Čech complex lead to a substantial overhead in the running time.

The impact in practice is that the Čech and Delaunay filtrations become quickly
intractable to maintain when d increases beyond 3 or 4, as we saw in the example
of Figure 5.1. This is why finding tractable alternatives has been identified as an
essential question for applications. In order to make precise complexity claims and
fair comparisons, we need to state our data model and objectives formally.
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5. TOPOLOGICAL INFERENCE 2.0 87

Data model and objectives. Clearly, capturing the topology of arbitrarily large-
dimensional structures is out of reach due to the size of the required sampling,
which grows exponentially with the dimension of the structures. Therefore, the
usual assumption is that the space underlying the input data has small intrinsic di-
mension, even though the ambient dimension itself may be large. This is a common
assumption across the data analysis literature, and to formalize it in our context
we will use the concept of doubling dimension from metric geometry:

Definition 5.1. The doubling dimension of a metric space (X, d) at scale r is
the smallest positive integer m such that any d-ball of radius r in X can be covered
by 2m balls of radius r/2. The doubling dimension of (X, d) is the supremum of
the doubling dimensions over all scales r > 0.

In the following, the quantity of reference will be the doubling dimension m of
the space underlying the input point cloud. In Rd it is bounded above by O(d),
but as we said it will be assumed much smaller in our data model:

Data model: The input is an n-points set P in Euclidean space
Rd, located ε-close in the Hausdorff distance to some unknown
compact set K with positive weak feature size and small (constant)
doubling dimension m.

Under this data model, and in light of the aforementioned challenges, our task is
to design filtrations or zigzags that fulfill the following objectives:

O1 their size (i.e. total number of simplex insertions or deletions) scales up

only linearly with n and exponentially with m, typically like 2O(m2)n, to
reduce the combinatorial complexity of the inference pipeline,

O2 their construction involves only simple predicates, typically distance com-
parisons, to reduce the bit complexity of the pipeline,

O3 their barcode has a sweet range revealing the homology of K among a
limited amount of noise.

Note that the size bound in objective O1 is independent of the ambient dimension d,
ignoring the space Θ(dn) needed to store the coordinates of the input points. As
we will see, the size bound comes from standard packing arguments involving the
doubling dimension of K. Note also the lack of a precise definition of the sweet range
in objective O3. Generally speaking, the reader can expect the same properties as
in Corollary 4.8, however with some variability in the bounds and amount of noise
in the sweet range from one filtration or zigzag to the next.

Strategy at a glance. The main idea is to use approximation. Suppose for
instance that when building C(P ) we give up on computing the radii of minimum
enclosing balls exactly, but rather we compute them within a multiplicative error
c > 1, for which fully polynomial-time (both in n and in d) algorithms exist [2,
173]. Then, instead of the exact Čech complex filtration C(P ), we will be building

some approximation C̃(P ) that is interleaved multiplicatively with it:

(5.1) ∀i > 0, Ci(P ) ⊆ C̃ci(P ) and C̃i(P ) ⊆ Cci(P ).

This multiplicative interleaving turns into an additive interleaving in the sense
of (3.3) on a logarithmic scale. More precisely, reparametrizing the real line by i �→
2i and calling respectively Clog(P ) and C̃log(P ) the resulting filtrations (C log

i (P ) =

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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C2i(P ) and C̃ log
i (P ) = C̃2i(P )), we have

(5.2) ∀i ∈ R, C log
i (P ) ⊆ C̃ log

i+log2(c)
(P ) and C̃ log

i (P ) ⊆ C log
i+log2(c)

(P ).

In other words, Clog(P ) and C̃log(P ) are log2(c)-interleaved in the sense of (3.3),
therefore their persistence diagrams are log2(c)-close in the bottleneck distance
according to the Isometry Theorem 3.1. When c is close enough to 1, this approx-
imation result can be combined with Corollary 4.13 to guarantee the existence of
sweet ranges in the persistence barcode of the filtration C̃log(P ). The same approach

applies to the Delaunay filtration D(P ) as well. Note the barcode of C̃log(P ) is noth-

ing but the persistence barcode of C̃(P ) represented on a logarithmic scale—called

the logscale persistence barcode of C̃(P ) hereafter.

Simplifying the predicates. This question is addressed by replacing the geomet-
ric predicates involved in the construction of the Čech and Delaunay filtrations
by approximate versions based solely on distance comparisons. This gives rise to
two new combinatorial objects, the so-called (vietoris-)Rips filtration and witness
filtration, which turn out to be interleaved multiplicatively with the Čech filtration
as in (5.1), as we will see in Section 1.

Reducing the size. This question is addressed by introducing new filtrations
or zigzags that are interleaved with the Čech or Delaunay filtrations, not at the
topological level as in (5.1), but at the algebraic level directly. The interleavings
can take various forms, sometimes pretty different from the standard one from
Definition 3.3, so the Isometry Theorem 3.1 does not always help in their analysis.
It is then necessary to develop new theoretical tools for comparing filtrations, or
zigzags, or both. Historically, the size was reduced in two steps: first, to linear
in the number n of input points, with a factor depending exponentially on the
ambient dimension d (Section 2); second, to linear in n with a factor scaling up
(exponentially) with the intrinsic dimension m of the data (Section 3).

Signal-to-noise ratio. An unexpected byproduct of these developments has been
to improve the signal-to-noise ratio of the barcodes inside their sweet ranges. This
is an important contribution as the interpretation of the barcode is still currently
left to the user, so the larger the signal-to-noise ratio, the easier the interpretation.
This aspect is addressed in Section 3.2.

Conclusions. To conclude Chapters 4 and 5 altogether, we provide in Section 4
a summary of the qualities and drawbacks of the various filtrations and zigzags
introduced, with respect to the above three criteria: predicates, size, signal-to-
noise ratio. We also report on the behavior of the inference pipeline on real-life
data in Section 5. Finally, we address the mostly unexplored question of dealing
with the presence of outliers in the input data in Section 6.

Prerequisites. The prerequisites for this chapter are the same as for Chapter 4,
except we will also assume familiarity with the design and analysis of algorithms.
To the unfamiliar reader we recommend reading [92].

1. Simple geometric predicates

In practice it is desirable to use as simple predicates as possible. Ideally, one
aims at reducing them to mere distance comparisons, which can be evaluated in
O(d) time in Rd and performed in arbitrary metric spaces. This is possible using
variants of the Čech filtration such as the following one (illustrated in Figure 5.2):
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1. SIMPLE GEOMETRIC PREDICATES 89

Figure 5.2. A point cloud P (left) and its Rips com-
plex R2i(P ) (right), which is the same as the clique complex of
the 1-skeleton graph of Ci(P )—recall Figure 4.11.

Definition 5.2. The (Vietoris-)Rips complex1 of P of parameter i ∈ R, de-
noted Ri(P ), has one k-simplex per (k + 1)-tuple of points of P whose Euclidean
diameter (maximum pairwise Euclidean distance) is at most i. The (Vietoris-)Rips
filtration is the indexed family R(P ) = {Ri(P )}i∈R.

An equivalent way to define Ri(P ) is as the clique complex (or flag complex) of
the graph having P as vertex set and an edge between any pair of points p, q ∈ P
such that ‖p− q‖ ≤ i. The Rips complex has then one k-simplex per (k + 1)-clique
of the graph, and it is easily seen that the only geometric predicates involved in its
construction are distance comparisons.

In general metric spaces, Čech and Rips filtrations are interleaved multiplica-
tively as follows:

(5.3) ∀i > 0, Ci(P ) ⊆ R2i(P ) and Ri(P ) ⊆ Ci(P ).

Observe that the interleaving is not symmetric, so rescaling the Rips parameter by√
2 gives a new filtration R̃(P ) that is

√
2-interleaved multiplicatively with C(P )

in the sense of (5.1).
In Eudlidean space Rd, de Silva and Ghrist [103] worked out tight interleaving

bounds, where ϑd =
√

d
2(d+1) ∈

[
1
2 ,

1√
2

)
:

(5.4) ∀i > 0, Ci(P ) ⊆ R2i(P ) and Ri(P ) ⊆ Cϑdi(P ).

Thus, rescaling the Rips parameter by
√

2
ϑd

gives a new filtration R̃(P ) that is
√

2ϑd-interleaved multiplicatively with C(P ) in the sense of (5.1).
Combined with Corollary 4.13, these interleavings imply the existence of a

sweet range in the logscale persistence barcode of the Rips filtration R(P ). The
details of the proof rely on mere rank arguments and can be found in [66]—see
also [136]. Here we reproduce the simplest instance of the result, based on (5.3),
which has the least tight constants:

1Originally introduced by L. Vietoris to define homology groups of the Čech type for compact
metric spaces. Later reintroduced by E. Rips for the study of hyperbolic groups, and popularized
by Gromov [143] under the name of Rips complex.
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Figure 5.3. Left: a set L of landmarks (dots) and a set P of
witnesses (squares). Point pa witnesses vertex l2 and edge {l2, l3}.
Point pb witnesses {l3} and {l3, l1}. Point pc witnesses {l1}, {l1, l2}
and {l1, l2, l3}. Therefore, triangle {l1, l2, l3} belongs to the witness
complex W0(L, P ) shown to the right.

Theorem 5.3 (Chazal and Oudot [66]). Let K be a compact set in Rd with
positive weak feature size. Let P be a point cloud in Rd such that dH(K,P ) = ε <
1
9wfs(K). Then, there is a sweet range T = (log2(2ε), log2(wfs(K)− ε)) whose
intersection with the logscale barcode of the Rips filtration R(P ) has the following
properties:

• The intervals that span T encode the homology of K, in the sense that
their number for each homology dimension p is equal to the dimension of
Hp(Kr), for any r ∈ (0,wfs(K)).

• The remaining intervals have length at most 2.

Notice that the amount of noise in the sweet range is constant and does not
go to zero as the sampling density increases. This is a result of the Rips filtration
being interleaved with the Čech filtration only by a constant multiplicative factor.
In subsequent sections we will see other filtrations that are (1 + ε)-interleaved
multiplicatively with the Čech filtration.

Notice also that the interleaving with the Čech filtration only guarantees the
existence of a sweet range in the logscale barcode of the Rips filtration, and not the
existence of a sweeter range over which there would be no noise at all.

Another approximation of interest is the so-called witness filtration. The idea,
illustrated in Figure 5.3, is to use a loose version of the Delaunay predicate, based
only on distance comparisons. For this we select landmark points among the point
cloud P and build a simplicial complex on top of the landmarks set L using the
rest of the points to answer the approximate Delaunay predicate and thus drive the
construction. Specifically, a point p ∈ P is an i-witness for a simplex σ ⊆ L if

(5.5) ‖p− l‖ ≤ ‖p− l′‖ + i for all l ∈ σ and all l′ ∈ L \ σ.
Note that the classical Delaunay predicate corresponds to letting i = 0 and l′ range
over the entire landmarks set L instead of L \ σ in (5.5). In that case, p is called a
strong witness of σ.
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Definition 5.4. Given i ∈ R, the i-witness complex of the pair (L, P ), de-
noted Wi(L, P ), is the maximal simplicial complex of vertex set L whose simplices
are i-witnessed by points of P . The 0-witness complex is called simply the wit-
ness complex of (L, P ). The witness filtration is the indexed family W(L, P ) =
{Wi(L, P )}i∈R.

The witness complex was introduced by de Silva [101], who proved that it is
a subcomplex of the Delaunay triangulation—see [7] for an alternate proof. His
idea was to use it as a lightweight alternative to the Delaunay triangulation, and
a natural question is whether the witness filtration can be interleaved with the
Delaunay filtration in the sense of (3.3). This is not possible unfortunately, as
the inclusion of the i-witness complex in the Delaunay triangulation holds only for
i = 0. Nevertheless, an interleaving with the Čech filtration can be worked out
under some sampling conditions:

Lemma 5.5 (Chazal and Oudot [66]). Let K be a connected compact set in Rd,
and let L ⊆ P ⊂ Rd be finite sets such that

dH(K,P ) ≤ dH(P,L) = ε <
1

8
diam(K),

where diam(K) = max{‖x− y‖ | x, y ∈ K} is the Euclidean diameter of K. Then,

(5.6) ∀i ≥ 2ε, C i
4
(L) ⊆ Wi(L, P ) ⊆ C8i(L).

The same kind of sweet range as in Theorem 5.3 can then be derived for the
logscale barcode of the witness filtration W(L, P ), provided that a relevant choice
of landmarks is made:

Theorem 5.6 (Chazal and Oudot [66]). Let K be a compact set in Rd with
positive weak feature size. Let P be a point cloud in Rd, and L ⊆ P a subset of
landmarks, such that

(5.7) dH(K,P ) ≤ dH(P,L) = ε < min

{
1

8
diam(K),

1

211 + 1
wfs(K)

}
.

Then, there is a sweet range T =
(
log2(4ε), log2(

wfs(K)−ε
8 )

)
whose intersection

with the logscale barcode of the witness filtration W(L, P ) has the following proper-
ties:

• The intervals that span T encode the homology of K, in the sense that
their number for each homology dimension p is equal to the dimension of
Hp(Kr), for any r ∈ (0,wfs(K)).

• The remaining intervals have length at most 6.

Note that the obtained bounds on the sweet range are certainly not optimal,
given the crudeness of the interleaving with the Čech filtration in (5.6). This is
fortunate, as the corresponding sampling condition (5.7) requires an immense sam-
pling to be satisfied. In practice, the witness filtration has been observed to produce
consistently cleaner barcodes than the Rips filtration. In particular, de Silva and
Carlsson [102] conjectured that the topological signal can appear arbitrarily sooner
in the barcode, which they presented as a major motivation for using the witness
filtration over the Čech filtration. Chazal and Oudot [66] proved this conjecture
correct at least in the special case where the compact set K underlying the input
point cloud P is a submanifold of Rd with positive reach:
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Theorem 5.7. There exist a constant c > 0 and a continuous, non-decreasing
map ω : [0, c) → [0, 1

2 ), with ω(0) = 0, such that, for any compact submanifold K

of Rd with positive reach, for any finite sets L ⊆ P ⊂ Rd such that

(5.8) dH(K,P ) ≤ dH(P,L) = ε < c rch(K)

and L is ε-sparse in the sense that

(5.9) ∀l �= l′ ∈ L, ‖l − l′‖ ≥ ε,

the left bound of the sweet range T from Theorem 5.6 becomes log2(ω( ε
rch(K))

2ε) +

O(1).

The properties of ω imply that the quantity ω( ε
rch(K))

2ε is in o(ε) as ε goes

to zero, so the left bound of the sweet range T is arbitrarily smaller than the one
from Theorem 5.6. What this entails is that, given a fixed landmarks set L, the
topological signal appears sooner in the barcode of the witness filtration as the
superset P of witnesses increases. Conversely, given a fixed set of witnesses P , a
careful choice of a subset L of landmarks guarantees the presence of a sweet range
with the same lower bound in the barcode at a reduced algorithmic cost—recall
that the total size of the witness filtration depends only on |L|, not on |P |.

The proof of Theorem 5.7 exploits the relationship that exists between the wit-
ness complex and the so-called restricted Delaunay triangulation, another subcom-
plex of the Delaunay triangulation that plays a key role in the context of manifold
reconstruction [28, 77].

2. Linear size

While the use of Rips and witness filtrations greatly simplifies the geometric
predicates, it does not help in terms of size compared to the Čech or Delaunay
filtrations. Indeed, as the filtration parameter grows towards infinity, the size of
the complexes on an n-points set eventually becomes 2n. Even knowing the ambient
dimension d and computing the d-skeleton of each complex still incurs a Θ(nd) space
complexity. In practice this means that the filtrations cannot be built and stored
in their entirety.

Hudson et al. [161] initiated a new line of work aimed specifically at reducing
the filtration size. Given an n-points set P in Rd, their approach considers the
Delaunay filtration D(P ) and modifies its vertex set P so as to avoid the worst-

case Ω(n� d
2 ) size bound. Specifically, they preprocess P using techniques inspired

by Delaunay refinement, iteratively inserting new points of Rd called Steiner points
into P until the aspect ratios2 of the Voronoi cells of the augmented set P ∪ S are
good enough. This shape quality criterion on the Voronoi cells guarantees that the

size of the Delaunay triangulation of P ∪ S drops down to 2O(d2)(n + |S|) when
the criterion is met. Furthermore, the number of Steiner points needed to meet

the criterion is 2O(d)n, which makes the size of the final triangulation only 2O(d2)n.
Once this preprocessing is done, they build a filtration of the Delaunay triangulation
D(P ∪ S), called the mesh filtration of P and denoted M(P ), which departs from
the classical Delaunay filtration and captures the topology of the offsets of P rather
than that of the offsets of P ∪S. It goes without saying that in order to realize the
benefits of the refinement in terms of size, the Steiner set S is computed without

2By aspect ratio of the Voronoi cell of a point p is meant the ratio between the radii of the
smallest enclosing ball and largest inscribed ball centered at p.
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first constructing the Delaunay triangulation of P , as is possible using the Sparse
Voronoi Refinement (Svr) algorithm of Hudson, Miller, and Phillips [159].

Details. The Svr algorithm takes the n-points set P as input and computes a
Steiner set S such that P ∪ S satisfies the following properties:

(i) P ∪ S is a point sampling of some axis-aligned bounding box B of side
length O(diam(P )) around the input point cloud P ,

(ii) the Voronoi cells of the points of P ∪ S, clipped to B, have aspect ratios
bounded from above by an absolute constant ρ ≥ 2,

(iii) the subcomplex of D(P ∪S) dual to the clipped Voronoi diagram is equal
to the full Delaunay triangulation D(P ∪ S),

(iv) the size of P ∪S is 2O(d)n log2 Δ(P ), where Δ(P ) denotes the spread of P ,
i.e. the ratio of the largest to smallest interpoint distances among the
points of P ,

(v) the size of D(P ∪ S) is 2O(d2)|P ∪ S|.
As shown by Hudson et al. [160], the extra work needed to fill in the entire bounding
box B with point samples is negligible. The Svr algorithm can produce P ∪ S to-
gether with its Delaunay triangulation in near-optimal |D(P∪S)|+2O(d)n log2 Δ(P )
time, where the second term arises from point location costs [159]. This bound is

dominated by 2O(d2)n log2 Δ(P ).
Once both P∪S and its Delaunay triangulation have been built, we can define a

filter f : D(P ∪S) → R as follows, where we slightly abuse notations by identifying
each simplex σ ∈ D(P ∪ S) with its vertex set:

(5.10) ∀σ ∈ D(P ∪ S), f(σ) = max{dP (q) | q ∈ σ}.

Note that if τ is a face of σ then f(τ ) ≤ f(σ), so the filter is compatible with the
incidence relations in D(P ∪S). The mesh filtration M(P ) is then defined formally
as the sublevel-sets filtration of f , that is: for every value i ∈ R, we let Fi be the
subcomplex of D(P ∪ S) made of the simplices σ such that dP (q) ≤ i for all q ∈ σ.

Figure 5.4. Relationship between the offsets and mesh filtra-
tions. Black points belong to P while white points belong to S.
From left to right: the offset Pi superimposed with the Voronoi
diagram of P ∪ S; the Voronoi cells whose centers lie in Pi; the
corresponding dual subcomplex of D(P ∪ S), which is part of the
mesh filtration.
— From Hudson et al. [161].
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Intuitively, the filter of (5.10) sorts the simplices of D(P ∪S) according to their
distances to the input point cloud P , in order to simulate within D(P ∪ S) the
growth of the offsets of P—see Figure 5.4 for an illustration. The fact that the
clipped Voronoi cells have bounded aspect ratios ensures that this simulation pro-
cess works, i.e. that the mesh filtration (or rather its dual filtration of the Voronoi
diagram of P ∪ S) and the offsets filtration are ρ-interleaved multiplicatively3. As
a consequence,

Theorem 5.8 (Hudson et al. [161]). The logscale persistence diagram of the
mesh filtration M(P ) is log2(ρ)-close to the one of the offsets filtration P in the bot-

tleneck distance. Meanwhile, the size of the mesh filtration is 2O(d2)|P | log2 Δ(P ).

Then, assuming the input point cloud P lies ε-close (in the Hausdorff distance)
to some compact set K with positive weak feature size, the same arguments as in
Section 1 prove the existence of a sweet range of type

T = (log2(ε) + O(1), log2(wfs(K))− O(1))

in the logscale barcode of M(P ), where the constants hidden in the big-O notations
depend on the aspect ratio bound ρ.

The problem with Theorem 5.8 is that the guaranteed size bound depends
on the spread of P , an unbounded quantity, therefore it does not comply with
objective O1 stated in the introduction of the chapter. In fact, Miller, Phillips,
and Sheehy [194] showed that it is possible to reduce the size of the superset P ∪S
to 2O(d)|P | by applying the Svr algorithm recursively to well-chosen subsets of
P called well-paced sets. The output is different from the one of the simple Svr

algorithm, however our filter f can be adapted so as to maintain the multiplicative
interleaving between the mesh and offsets filtrations of P . Let us merely state the
end result here and refer the interested reader to [161] for the details.

Theorem 5.9 (Hudson et al. [161]). The logscale persistence diagram of the
modified mesh filtration is log2 ρ-close to the of one the offsets filtration P in the

bottleneck distance. Meanwhile, the size of the modified mesh filtration is 2O(d2)|P |.
Remark. One can even extend the Svr algorithm and adapt the filter so the

induced mesh filtration is (1 + δ)-interleaved multiplicatively with P, for any given
parameter δ > 0. The corresponding Steiner set S has size ( 1δ )O(d)|P |, while the

induced mesh filtration has size ( 1δ )O(d2)|P |. The trade-off is then between the
size of the data structure and the tightness of the interleaving factor between the
offsets and mesh filtrations. Typically, one can take δ = ε so the interleaving factor
converges to 1 as the sampling density goes to infinity.

Theorem 5.9 is illustrated in Figure 5.5, which shows the output of the method
on the Clifford data set described in introduction. As expected from the theory,
the barcode contains sweet ranges not only for the curve and the torus, but also
for the unit 3-sphere. To the 2, 000 input points, the Svr algorithm added approx-
imately 71, 000 Steiner points to achieve an aspect ratio ρ = 3.08 (a value chosen
for technical reasons). The mesh filtration contained a total of 12 million simplices

3There is a catch for small scales because the Delaunay simplices connecting points of P
appear already at time i = 0 in the mesh filtration. Hudson et al. [161] proposed a slight mod-
ification to the filter of (5.10) that allows to get an interleaving over the entire real line. For
simplicity we are overlooking this technicality here.
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Figure 5.5. Logscale barcode of the mesh filtration on the Clif-
ford data set.
— Reprinted from Oudot and Sheehy [208]: “Zigzag Zoology: Rips Zigzags for

Homology Inference”, Foundations of Computational Mathematics, pp. 1–36,

c©2014, with kind permission from Springer Science and Business Media.

and took approximately 1 hour to compute entirely. This is to be compared with
the 31 billion simplices required by the Čech filtration to detect the 3-sphere, as
mentioned in introduction.

3. Scaling up with the intrinsic dimensionality of the data

The size bound provided by Theorem 5.9 is oblivious to the intrinsic dimen-
sionality m of the input data. Indeed, the size of the Steiner set is exponential in
the ambient dimension d regardless of m. As a result, the method from Section 2
becomes quickly intractable as d grows, even though the data points may still live
close to some low-dimensional structure.

3.1. Iterative subsampling. Chazal and Oudot [66] proposed a different
approach to sparsifying the filtrations, inspired from previous work by Guibas and
Oudot [147] on multiscale reconstruction, and based on the following simple idea.
Since the sizes of classical filtrations blow up at large scales, just decimate the vertex
set as the scale increases. Thus, while the filtration parameter grows, the vertex
set shrinks, and ideally some trade-off may be found between keeping a controlled
complex size and still capturing the homology of the various structures underlying
the input data.

Formally, given an n-points set P in Rd and a total order (p1, · · · , pn) on the
points of P , we consider the collection of prefixes {p1, · · · , pi} together with their
associated ‘scales’ εi = dH({p1, · · · , pi}, P ). Since the prefixes grow, we have

ε1 ≥ ε2 ≥ · · · ≥ εn = 0.

Now, given two parameters ρ > η > 0, called multipliers, for each prefix {p1, · · · , pi}
we build two Rips complexes, one of parameter ηεi, the other of parameter �εi,
then we compute the image of the homomorphism hi induced by the inclusion map
Rηεi({p1, · · · , pi}) ↪→ Rρεi({p1, · · · , pi}) at the homology level:

hi : H∗(Rηεi({p1, · · · , pi})) → H∗(Rρεi({p1, · · · , pi})).
The reason why we use a pair of Rips complexes instead of a single Rips complex at
each iteration i stems from the fact that a single Rips complex may fail to capture
the topology of the structure underlying the data, as was already observed for
unions of balls in the counter-example of Figure 4.8.
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The output of the method is the sequence of pairs (εi, im hi). For visualization
purposes, one can replace the images of the homomorphisms hi by their ranks, so
the output becomes the sequence of pairs (εi, rankhi), whose coordinates can be
plotted against each other in the so-called scale-rank plot. An illustration is given in
Figure 5.6, which shows the scale-rank plot obtained on the data set of Figure 4.2.

Figure 5.6. Scale-rank plot (on a logarithmic scale) obtained
from the data set of Figure 4.2. The curves show the rank of
hi for homology dimensions 0, 1 and 2.
— From Chazal and Oudot [66].

The scale-rank plot is readily interpretable: the ranges of scales over which the
ranks stabilize play the role of sweet ranges indicating the presence of underlying
structures with the corresponding homology. In the example of Figure 5.6, the
two main sweet ranges reveal the presence of the curve and of the torus. On
the theoretical side, the interpretation of the scale-rank plot is backed up by the
following more or less immediate consequence of Theorem 5.3:

Corollary 5.10 (Chazal and Oudot [66]). Let ρ and η be multipliers such
that ρ > 8 and 2 < η ≤ ρ

4 . Suppose there is a compact set K ⊂ Rd such that

dH(K,P ) = ε < η−2
2ρ+η wfs(K). Then, for any iterations l > k such that

2ε

η − 2
< εl ≤ εk <

wfs(K)− ε

ρ + 1
,

the range of iterations [k, l] is a sweet range in the sense that for all i ∈ [k, l] the
rank of hi is equal to the dimension of H∗(Kr) for any r ∈ (0,wfs(K)).

In order to analyze the size of the data structure, we need to make an assump-
tion on the order (p1, · · · , pn) on the points of P given as input. Indeed, orders
that insert nearby points first may lead to local oversampling, which of course is not
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desirable. On the contrary, it is better to maintain some kind of uniform subsample
of P as long as possible. This is what furthest-point sampling provides.

Definition 5.11. Given an n-points set P equipped with a metric, furthest
point sampling orders the points of P in the following greedy way. It starts with an
arbitrary point p1 ∈ P . Then, at each iteration i = 2, · · · , n it chooses for pi the
point of P lying furthest away from {p1, · · · , pi−1}, breaking ties arbitrarily. Upon
termination, P = {p1, · · · , pn} is totally ordered.

It is easily seen that every prefix {p1, · · · , pi} in this order is εi-sparse in the
sense of (5.9), i.e.

∀1 ≤ j < k ≤ i, ‖pj − pk‖ ≥ εi.

Then, a standard ball packing argument shows that every vertex is connected to
at most 2O(mi) other vertices in the Rips complexes built at iteration i of the
algorithm, where mi denotes the doubling dimension of the finite metric space
(P, ‖ · ‖) at scale εi. A bound on the number of simplices of the Rips complexes
follows trivially:

Theorem 5.12. Assume the order (p1, · · · , pn) on the points of P is given by
furthest-point sampling. Then, at every iteration i of the algorithm the number of
k-simplices in the pair of Rips complexes Rηεi({p1, · · · , pi}) ⊆ Rρεi({p1, · · · , pi}) is
at most 2O(kmi)i, where mi denotes the doubling dimension of (P, ‖ · ‖) at scale εi.

A few words of explanation are in order here. First of all, the sizes of the Rips
complexes remain at most linear in the number n of input points throughout the
course of the algorithm. However, this does not mean that only a linear number
of simplex insertions or deletions will be needed to maintain the complexes. In the
next section we will see how this cost can be amortized. Second, in Rd the doubling
dimension of (P, ‖ · ‖) is bounded by O(d), so if d is known and only the d-skeleton

of every Rips complex is built, then the size bound itself is bounded by 2O(d2)n,
which is as good as the bound from Section 2. Third, if P happens to sample some
compact set K of doubling dimension m, then Theorem 5.12 guarantees that the
sizes of the O(m)-skeleta of the Rips complexes within the sweet range associated

to K will not exceed 2O(m2)n. If m is known and small enough, then computing
the scale-rank function within the sweet range will be tractable. This does not
mean that it will be so outside the range, however it has been observed in practice
that the sizes of the Rips complexes tend to increase with the scale, so the part
of the scale-rank plot located to the right of the sweet range can be computed
entirely. This justifies to run the algorithm backwards, starting with small scales
(i.e. large prefixes) and ending with large scales (i.e. small prefixes), stopping
when the intrinsic dimensionality of the data at the considered scale becomes too
large. Fourth, m is often unknown in applications, so what practitioners commonly
do is to fix a maximum simplex dimension a priori and hope that their threshold
is large enough. In some cases, reasonable upper bounds on m can be obtained
using dimensionality estimation techniques. Fifth, note that the furthest-point
sampling takes quadratic time (in n) to compute exactly, but that near linear-time
approximations like net-trees [149] can be used instead, with roughly the same
impact on the space complexity of the approach.

3.2. Connecting the short filtrations together. The iterative subsam-
pling algorithm does not quite follow the same philosophy as the previous methods.
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Indeed, instead of building a single filtration or zigzag on top of the input point
cloud P = {p1, · · · , pn}, it builds a sequence of short filtrations Rηεi({p1, · · · , pi}) ⊆
Rρεi({p1, · · · , pi}) that it processes independently from one another. In particular,
homology generators found at consecutive iterations i, i+1 of the algorithm are not
related, so even if the ranks of the homomorphisms hi and hi+1 are the same, it is
unclear whether it is because the topological features at iterations i, i + 1 are the
same or because by chance the same number of features are born and die in-between
the two iterations. Such an example can be found in [147].

The challenge is then to ‘connect’ the short filtrations together, in order to
obtain a single long zigzag. The most natural way to do so is by observing that when
we move from iteration i to i+1, one vertex is added to each Rips complex while the
scale decreases from εi to εi+1, two operations that can be performed sequentially
instead of simultaneously. This gives rise to a big diagram of inclusions relating
the short filtrations across all scales, a representative portion of which is depicted
below, where Pi is a shorthand for the prefix {p1, · · · , pi} (not to be confused with
the i-offset of P , denoted Pi).

(5.11)

Rρεi−1
(Pi) Rρεi(Pi+1)

Rρεi−1
(Pi−1)

�����������
Rρεi(Pi)

�����������

������������
Rρεi+1

(Pi+1)

������������

Rηεi−1
(Pi)

��

Rηεi(Pi+1)

��

Rηεi−1
(Pi−1)

��

�����������
Rηεi(Pi)

��

�����������

������������
Rηεi+1

(Pi+1)

��

������������

Several zigzags can be extracted from this commutative diagram, including:

• The top row · · ·Rρεi−1
(Pi−1) → Rρεi−1

(Pi) ← Rρεi(Pi) → Rρεi(Pi+1) ←
Rρεi+1

(Pi+1) · · · is called the Morozov zigzag (M-ZZ) because it was first
proposed by D. Morozov. The bottom row of the diagram is merely the
same zigzag with a different multiplier.

• The vertical arrows in the diagram induce a morphism between the bottom
and top Morozov zigzags at the homology level. Its image, kernel and
cokernel can be considered. Here we will only consider its image, called
the image Rips zigzag (iR-ZZ) in the following.

• The path · · ·Rηεi−1
(Pi−1) → Rρεi−1

(Pi−1) → Rρεi−1
(Pi) ← Rρεi(Pi) ←

Rηεi(Pi) → Rρεi(Pi) → Rρεi(Pi+1) ← Rρεi+1
(Pi+1) ← Rηεi+1

(Pi+1) · · ·
oscillates between the top and bottom rows of the diagram, and by com-
posing adjacent maps with same orientation we obain the following zigzag
called the oscillating Rips zigzag (oR-ZZ) hereafter:

(5.12)

Rρεi−1
(Pi) Rρεi(Pi+1)

Rηεi−1
(Pi−1)

�����������
Rηεi(Pi)

�����������

������������
Rηεi+1

(Pi+1)

������������
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Providing theoretical guarantees to these zigzags requires to develop novel tools,
since the stability part of the Isometry Theorem 3.1, which was the key ingredient in
the analysis of the persistence modules from the previous sections, currently has no
counterpart for zigzag modules. The strategy we developed by Oudot and Sheehy
[208] is to perform low-level manipulations on the zigzags and their underlying
quivers, so as to turn them progressively into other zigzags with a simple algebraic
structure. In a way, this is the same approach as the one followed by Bernstein,
Gelfand, and Ponomarev [24] to prove Gabriel’s theorem using reflection functors,
except here the functors are replaced by more ad-hoc operations. We will now spend
some time detailing the manipulations and how they are used to derive guarantees
on the barcodes of the Rips zigzags. The unfamiliar reader may safely skip these
details and move on directly to the inference results—Theorem 5.15.

Zigzags manipulations. The manipulations take place at the algebraic level di-
rectly. They are of two types: reversing a single arrow or removing a single node
in the quiver underlying a zigzag module. Here is a formal description:

Lemma 5.13 (Arrow Reversal).

Let V = V1 · · · Vk
v �� Vk+1 · · · Vn be a zigzag mod-

ule. Then, there is a map Vk
�� u

Vk+1 such that v ◦ u|im v = 1im v and u ◦
v|imu = 1imu, and the zigzag module V∗ obtained from V by replacing the arrow

Vk
v �� Vk+1 by Vk

�� u
Vk+1 has the same persistence barcode as V.

When v is injective, u is surjective and u ◦ v is the identity over the domain
of v. Conversely, when v is surjective, u is injective and v ◦ u is the identity over
the codomain of v. These properties are useful when V is part of a commutative
diagram because they help preserve the commutativity after the arrow reversal, as
will be the case in the following. The next operation preserves the commutativity
by construction.

Lemma 5.14 (Space Removal).

Let V be a zigzag module containing Vk
u �� Vk+1

v �� Vk+2 . Then, replacing

Vk
u �� Vk+1

v �� Vk+2 by Vk
v◦u �� Vk+2 in V simply removes the index k

from its barcode, that is: intervals [k, k] disappear, [b, k] becomes [b, k − 1], [k, d]
becomes [k + 1, d], and all other intervals remain unchanged.

The proofs of these lemmas rely on the Interval Decomposition Theorem 1.9.
The outline for Lemma 5.13 goes as follows:

(1) Decompose V into indecomposable modules according to Theorem 1.9. The
decomposition is unique up to isomorphism and permutation of the terms.

(2) For each element W = W1 · · · Wk
w �� Wk+1 · · · Wn

∼= I[b, d] in the decomposition, the map w is either an isomorphism (if b ≤ k <
d) or the zero map. In either case it is reversible without affecting the interval
[b, d]: simply take w−1 if w is an isomorphism, and the zero map otherwise.

(3) V∗ is obtained as the direct sum of the thus modified indecomposable modules,

the reverse map Vk
�� u

Vk+1 being the direct sum of their reverse maps.

The claimed properties on V∗ and u follow by construction.
The outline for Lemma 5.14 is similar.
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Application to Rips zigzags. The previous low-level zigzag manipulations can
be effectively used to relate zigzag modules to one another, in the same spirit as
what interleaving does with persistence modules. As an example, let us consider
the case of the oscillating Rips zigzag (5.12). Assuming that η < ρ

2 , the inclusion

maps between Rips complexes factor through Čech complexes as follows according
to (5.3):

Rρεi−1
(Pi) Rρεi(Pi+1)

C ρ
2 εi−1

(Pi−1)

���������
�� C ρ

2 εi−1
(Pi)

���������

C ρ
2 εi

(Pi)�� ��

���������
C ρ

2 εi
(Pi+1)

���������

Cηεi−1
(Pi−1)

��

�� Cηεi−1
(Pi)

��

Cηεi(Pi)

��

�� �� Cηεi(Pi+1)

��

Rηεi−1
(Pi−1)

���������
Rηεi(Pi)

���������

���������
Rηεi+1

(Pi+1)

���������

All arrows are inclusions here, so this diagram commutes and therefore induces
a commutative diagram at the homology level. Calling gj : H∗(Cηεj (Pj)) →
H∗(C ρ

2 εj
(Pj)) and hj : H∗(Cηεj (Pj+1)) → H∗(C ρ

2 εj
(Pj+1)) the homomorphisms

induced by the vertical arrows at every index j, we have

H∗(Rρεi−1
(Pi)) H∗(Rρεi(Pi+1))

im gi−1

���������
�� imhi−1

���������

im gi�� ��

���������
imhi

���������

H∗(Rηεi−1
(Pi−1))

���������
H∗(Rηεi(Pi))

���������

���������
H∗(Rηεi+1

(Pi+1))

���������

Let us now apply Lemma 5.13 to reverse every arrow H∗(Rηεj (Pj)) → im gj and
every arrow H∗(Rρεj (Pj+1)) ← imhj , so the diagram becomes

H∗(Rρεi−1
(Pi)) H∗(Rρεi(Pi+1))

im gi−1

���������
�� imhi−1

��

�������

im gi�� ��

���������
imhi

��

�������

H∗(Rηεi−1
(Pi−1))
��

�������
H∗(Rηεi(Pi))

���������
��

�������
H∗(Rηεi+1

(Pi+1))

���������

Finally, let us apply Lemma 5.14 to remove all the Rips complexes from the oscil-
lating zigzag module. The result is the curved path in the following diagram:

· · · im gi−1
��

��
��



imhi−1 im gi��
  

��
!!

imhi · · ·��
""
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As it turns out, the above sequence of operations preserves the commutativity
of the diagrams4, therefore the straight-path and curved-path zigzag modules are
in fact the same. Thus, by a sequence of low-level manipulations, we have turned
the oscillating Rips zigzag (5.12) into a zigzag involving only Čech complexes. By
tracking down the changes that occured in the barcode during the sequence of
manipulations, we can relate the barcodes of the two zigzags to each other.

Inference results. Combined with Corollary 4.13, the above manipulations pro-
vide the following theoretical guarantee on the existence of a sweet range in the
barcode of the oscillating Rips zigzag under sufficient sampling conditions:

Theorem 5.15. Let ρ and η be multipliers such that ρ > 10 and 3 < η < ρ−4
2 .

Let K ⊂ Rd be a compact set and let P ⊂ Rd be such that dH(P,K) < ε with

ε < min

{
η − 3

6η
,

η − 3

3ρ + η
,
ρ− 2η − 4

6(ρ− 2η)
,
ρ− 2η − 4

5ρ− 2η

}
wfs(K).

Then, for any indices l > k such that

εl ≥ max

{
3ε

η − 3
,

4ε

ρ− 2η − 4

}
, and

εk < min

{
1

6
wfs(K)− ε,

1

ρ + 1
(wfs(K)− ε)

}
,

the persistence barcode of the oscillating Rips zigzag ( 5.12), restricted to the index
range [k, l], has two types of intervals:

• The intervals that span [k, l] encode the homology of K, in the sense that
their number for each homology dimension p is equal to the dimension of
Hp(Kr), for any r ∈ (0,wfs(K)).

• The remaining intervals are ephemeral, i.e. they have length zero5.

The major difference with the inference results obtained in the previous sec-
tions using Čech, Rips, Delaunay, or mesh filtrations, is that here the amount of
topological noise is reduced to an ephemeral quantity, so the signal-to-noise ratio
within the sweet range is infinite. This is a remarkable property, not even satisfied
by the offsets filtration P itself when the μ-reach of K is zero. A similar theoret-
ical guarantee can be proved for the image Rips zigzag, but not for the Morozov
zigzag. For the latter indeed, a sweet range exists throughout which the topolog-
ical signal persists, however there is currently no known bound on the topological
noise, and whether one exists is still an open question. Since this zigzag involves
a single multiplier instead of two, intuition suggests that there is not enough slack
between different indices to kill the noise, however such a phenomenon has yet to
be observed in experiments.

4This is true generally for space removals but not for arrow reversals. Here we are anticipating
Theorem 5.15, whose sampling assumptions imply that every map H∗(Rρεj (Pj+1)) ← imhj in

the sweet range is injective, so its reverse counterpart H∗(Rρεj (Pj+1)) → im hj is its left inverse

and therefore preserves the commutativity of the corresponding upper triangle. Similarly, every
map H∗(Rηεj (Pj)) → im gj in the sweet range is surjective, so H∗(Rηεj (Pj)) ← im gj is its right

inverse and therefore preserves the commutativity of the corresponding lower triangle.
5Recall our convention from Chapter 1, which is to represent intervals in the finite set

{1, · · · , n} as closed intervals in R. By ‘ephemeral interval’ is therefore meant an interval of
type [i, i].
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Size bounds. Notice that the complexes involved in (5.11) are the same as the
ones from Section 3, so the size bound from Theorem 5.12 applies to the Rips zigzags
as well. More precisely, the size of the considered Rips complex at any given time
remains linear in the input size n and scales up with the intrinsic dimensionality m
of the data. For zigzags there is another important quantity to measure: the total
number of simplex insertions and deletions. Indeed, this quantity drives the runtime
of the zigzag persistence calculation, and it can be arbitrarily large compared to
the size of the largest complex in the zigzag, in contrast to filtrations. The same
kind of ball packing argument as in Theorem 5.12 applies for this quantity, with the
twist that the oscillating Rips zigzag may insert the same simplex multiple times,
which is not the case for the other Rips zigzags. All in all, the following bounds
are derived:

Theorem 5.16. Suppose P is sitting in some metric space of doubling dimen-
sion m. Then, for any k ≥ 0, the total number of k-simplices inserted in the
construction of the Morozov zigzag is at most 2O(km)n, where n is the cardinality
of P . The same bound applies to the image Rips zigzag. For the oscillating Rips
zigzag, the bound becomes 2O(km)n2.

When P is sitting in Rd but Hausdorff-close to some compact set K of doubling
dimension m, then Theorem 5.16 can be applied to the scales within the sweet
range associated to K. Assuming m or a reasonable upper bound is known, the
total number of simplices inserted in the Morozov or image Rips zigzag within the

sweet range is 2O(m2)n, and this quantity becomes 2O(m2)n2 for the oscillating Rips
zigzag.

Figure 5.7. Logscale barcode of the oscillating Rips zigzag after
removal of the ephemeral (length zero) intervals.

Experimental validation. Theorem 5.15 is illustrated in Figure 5.7, which shows
the logscale barcode of the oscillating Rips zigzag computed on the Clifford data
set described in introduction. The ephemeral (length zero) intervals were removed
from the barcode before taking the picture. The barcode obtained with the image
Rips zigzag is similar. These results are to be compared with the ones obtained
previously using the offsets/Čech and mesh filtrations in Figures 5.1 and 5.5. They
can also be compared with the one obtained using the Morozov zigzag in Figure 5.8,
which contains a small amount of noise concentrated around the transition between
the sweet ranges of the torus and of the 3-sphere. Overall the Morozov zigzag
performs well on this particular example, however there currently is no guarantee
that it will do so in general.
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3. SCALING UP WITH THE INTRINSIC DIMENSIONALITY OF THE DATA 103

Figure 5.8. Logscale barcode of the Morozov zigzag after removal
of the ephemeral (length zero) intervals.
— Reprinted from Oudot and Sheehy [208]: “Zigzag Zoology: Rips Zigzags for

Homology Inference”, Foundations of Computational Mathematics, pp. 1–36,

c©2014, with kind permission from Springer Science and Business Media.

filtration/zigzag maximum complex size total number of insertions

Čech > 31, 000, 000, 000 > 31, 000, 000, 000

mesh 12, 000, 000 12, 000, 000

M-ZZ 107, 927 398, 107

iR-ZZ 174, 436 1, 003, 215

oR-ZZ 174, 436 7, 252, 772

Table 5.1. Maximum complex size (number of simplices) and to-
tal number of simplex insertions for various filtrations and zigzags
on the Clifford data set. For filtrations the two quantities are equal.

Theorem 5.16 is illustrated in Table 5.1. Regarding the memory usage, the
relevant quantity for filtrations is the total number of simplex insertions (third
column), which is also the total size of the filtration. For zigzags, the relevant
quantity is the maximum size of the complex at any given time (second column)
because, as we saw in Section 2.2 of Chapter 2, the zigzag persistence algorithm
of Carlsson, de Silva, and Morozov [50] proceeds by scanning through the zigzag
once from left to right, loading a single complex in main memory at a time. On
this front the contribution of the Rips zigzags is eloquent, reducing the number of
simplices stored in main memory at a time from more that 31 billion to less than
200,000. The mesh filtration also does reasonably well, however its performance
is likely to degrade quickly as the ambient dimension increases, even though the
intrinsic dimension stays small. Note that for obvious reasons the memory usage
of the iterative subsampling approach from Section 3 should be comparable to the
one of the Rips zigzags.

Regarding the computation time, the relevant quantity for both filtrations and
zigzags is the total number of simplex insertions (third column). On this front the
performances of the Rips zigzags are more contrasted. While the Morozov zigzag
is remarkably economical, the image and oscillating Rips zigzags are significantly
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104 5. TOPOLOGICAL INFERENCE 2.0

more greedy: the first one because it requires some bookkeeping to maintain two
Rips complexes at any given time, the second one because it inserts the same
simplex multiple times and therefore incurs a quadratic (in n) bound according to
Theorem 5.16. In practice, computing any of the Rips zigzags together with its
barcode takes a few minutes on a single Intel Xeon CPU core running at 2.40 GHz,
meanwhile computing the mesh-based filtration and its barcode takes hours on
a similar architecture, and the computation of the standard Rips filtration never
completes because the main memory gets saturated.

4. Side-by-side comparison

Let us compare the simplicial filtrations and zigzags introduced in this chap-
ter and the previous one with respect to objectives O1 through O3 stated in the
introduction. For a fair comparison, we summarize their respective theoretical guar-
antees in terms of sweet range, memory usage, and computation cost in Table 5.2.

The first message is that the Rips zigzags perform consistently better than the
other constructions on these criteria, and among them, the advantage goes to the
iR-ZZ. This is to be taken with a grain of salt of course, given that the bounds
are worst-case bounds. In practice it is up to the user to choose the construction
that is best adapted to the data. For instance, in small dimensions the Delaunay
filtration is an excellent choice, but in high dimensions or in more general metric
spaces it is preferable to use constructions based only on distance comparisons.

Strictly speaking, the iR-ZZ is the only one among these constructions that fully
fulfills objectives O1 through O3 mentioned in introduction. Others, like the M-ZZ
or oR-ZZ, satisfy almost all the constraints and are viable alternatives in practice.
In fact, the M-ZZ is particularly attractive due to its light weight, so much that it
is recommended as a first approach on new data before trying other more elaborate
constructions. The iterative resampling method from Section 3 is also a lightweight
alternative, with strong guarantees on the noise level, however as we saw it does
not offer a comprehensive picture of the evolution of the topology across scales
since it builds multiple independent short filtrations. The other constructions scale
up fairly badly with the ambient dimension and are therefore not recommended
beyond medium dimensions.

Let us point out the existence of at least two other constructions fulfilling
objectives O1 through O3: the sparse Rips filtration by Sheehy [221], and its variant
by Dey, Fan, and Wang [107]. Their distinctive feature is to induce persistence
modules at the homology level that are (1+O(ε))-interleaved multiplicatively with
the one of the standard Rips filtration, without the need for a multiplicative (1 +
O(ε))-interleaving based on inclusions as in (5.1) at the topological level. Their
corresponding figures are shown in the last row of Table 5.2. The fact that the
noise level is at least the one of the standard Rips filtration makes the sparse
Rips filtration and its variant a less preferred choice in the context of topological
inference. Nevertheless, their ability to approximate the Rips filtration arbitrarily
well makes them an invaluable tool in contexts where the Rips filtration is the main
object of study, such as for instance when it is used as a topological signature for
metric spaces. This aspect will be developed in Chapter 7, which gives the formal
definition of the sparse Rips filtration.

To conclude this discussion, let us mention an interesting recent contribution
of Sheehy [220], who showed how dimensionality reduction via random projections
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Table 5.2. Comparison between the simplicial filtrations and
zigzags of Chapters 4 and 5. The memory usage is measured by
the number of simplices in the current complex at any time, while
the computation cost is measured by the total number of simplex
insertions.
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à la Johnson and Lindenstrauss [166] can be used to map the input point cloud P
to some linear space of dimension O(logn/ε2), in such a way that the logscale
persistence diagram of the offsets filtration P ′ of the image P ′ remains ε-close
to the one of P in the bottleneck distance. The projection can be applied as a
preprocessing step before running the inference pipeline. The complexity bounds
of the various filtrations and zigags introduced in Chapter 5 and this one remain
the same, except d is now replaced by O(logn/ε2). The Delaunay and mesh-based
filtrations are clearly the ones that benefit the most from this operation, however
it does not seem sufficient to make them competitive with Rips-based zigzags or
sparse Rips filtrations in general.

5. Natural images

Let us now check the validity of the inference pipeline against real data. We will
focus on one specific example, derived from the statistics of natural images, which
is emblematic because it was the one put forward by the community for many years.
This example indeed has intersting nontrivial topology, which the inference pipeline
has helped uncover. The data set, described by Lee, Pederson, and Mumford [177],
consists of 4.2 million high-contrast log-intensity 3×3 image patches, sampled from
van Hateren’s collection of still greyscaled images [153]. Each patch is represented
as a point in Euclidean space R9, with each coordinate giving the intensity at a
specific pixel. After a proper contrast normalization, each patch becomes a point
on the unit sphere S7 sitting in R8.

It turns out that the entire sphere S7 is sampled by the data points, yet that
the sampling density along the sphere is highly non-uniform. Lee, Pederson, and
Mumford [177] set as their goal to understand the structure of the high-density
regions, in order to get a better understanding of the cognitive representation of the
space of images, and to obtain more realistic priors for applications such as object
localization, segmentation, image reconstruction, denoising, and compression.

Direct inspection is made difficult by the dimensionality of the data. Figure 5.9
shows the results of various dimensionality reduction techniques on this data set,
after applying a density thresholding (detailed below). These results are consistent
across choices of input parameters, and the majority of them agrees on the overall
structure of the high-density regions, suggesting that the data concentrate around
some 1-d structure with 8 holes: 4 at the front, 4 at the back. The corresponding
geometric representation would be 3 circles that intersect pairwise, with 6 points of
intersection in total—the result of Isomap is the closest one to that representation.

In order to check this insight, de Silva and Carlsson [102] then Carlsson et al.
[54] applied the topological inference pipeline (using witness filtrations) on the data.
Due to algorithmic constraints, they had to pre-process the point cloud—called P
hereafter—by applying the following statistical filters:

(1) As before, they thresholded P by density using the k-th nearest neighbor
density estimator, keeping only the fraction x of the data points with
lowest k-th nearest neighbor distance. Varying k from 1, 200 to 24, 000
and x from 10% to 30%, they obtained a collection Pk,x of high-density
subsets of P—in Figure 5.9 we used k = 1, 200 and x = 30%.

(2) Considering each set Pk,x independently, they selected a subset Qk,x of
5, 000 random points sampled uniformly, which they took as witness set.
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5. NATURAL IMAGES 107

Figure 5.9. Results obtained using various dimensionality reduc-
tion techniques to project the natural images data down to 3 di-
mensions. In the top row, linear techniques: Principal Component
Analysis (PCA), Multi-Dimensional Scaling (MDS). In the bottom
row, non-linear techniques: kernel-PCA with a Gaussian kernel,
Locally Linear Embedding (LLE), Isomap.

(3) Among the points of Qk,x they selected a subset Lk,x of 50 landmarks by
a furthest-point sampling strategy.

After this preprocessing phase, they computed the barcode of the witness filtration
for each pair (Lk,x, Qk,x) separately. A fraction of their results in 1-homology is
reproduced in Figure 5.10, and it show two trends :

• for smaller values of k, the barcodes reveal 5 long bars—Figure 5.10(b),
• for larger values of k, the barcodes reveal only 1 long bar—Figure 5.10(c).

These findings led Carlsson et al. [54] to conjecture that the data are actually
concentrated around three circles with only 4 points of intersection instead of 6,
as depicted in Figure 5.10(a). Indeed, the 5 long bars obtained with small values
of k give the homology of the 3-circles model, while the single long bar obtained
with larger values of k suggests that one of the three circles is prevailing over the
other two.

These conclusions could be questioned because they rely on a selection of only
50 landmarks among millions of data points. In order to provide further valida-
tion, Oudot and Sheehy [208] used Rips zigzags on larger landmarks sets. Starting
from the same preprocessed data, they took the whole sets Qk,x as landmarks and
computed the barcodes of their associated Morozov zigzags up to homology dimen-
sion 3. They then subsampled the data down to 500 points to compute the barcodes
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(a) model with one primary

circle (red) and two nonin-
tersecting secondary circles

(b) Barcode obtained with

k = 1, 200 and x = 30%

(c) Barcode obtained with

k = 24, 000 and x = 30%

Figure 5.10. Experimental results obtained using the witness fil-
tration with 50 landmarks and 5, 000 witnesses.
— Based on de Silva and Carlsson [102].

for dimensions 4 to 7. The barcodes obtained for Qk,x with (k = 1, 200, x = 30%)
and (k = 24, 000, x = 30%) are reported in Figures 5.11 and 5.12 respectively.
They corroborate the results of Figure 5.10.

Figure 5.11. Logscale barcode of the Morozov zigzag on Qk,x

with k = 1, 200 and x = 30%. Homology was computed with Z2-
coefficients.
— Reprinted from Oudot and Sheehy [208]: “Zigzag Zoology: Rips Zigzags for

Homology Inference”, Foundations of Computational Mathematics, pp. 1–36,

c©2014, with kind permission from Springer Science and Business Media.

The 3-circles model has led researchers to believe that the space of high-contrast
3 × 3 patches should also contain some higher-dimensional structure. To uncover
it, Carlsson et al. [54] proposed a parametrization by a space of polynomials in two
variables, which can be represented pictorially as in Figure 5.13. The main circle
in the 3-circles model of Figure 5.10(a) is marked in red, while the two secondary
circles are marked respectively in green and in black. The parametrization identifies
the top and bottom horizontal lines together, and the left and right vertical lines
together modulo a rotation by 180 degrees, so it is a parametrization of the Klein
bottle.
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Figure 5.12. Logscale barcode of the Morozov zigzag on Qk,x

with k = 24, 000 and x = 30%. Homology was computed with
Z2-coefficients.
— Reprinted from Oudot and Sheehy [208]: “Zigzag Zoology: Rips Zigzags for

Homology Inference”, Foundations of Computational Mathematics, pp. 1–36,

c©2014, with kind permission from Springer Science and Business Media.

Figure 5.13. Parametrization of the high-contrast 3× 3 patches.
— Reprinted from Carlsson et al. [54]: “On the Local Behavior of Spaces

of Natural Images”, International Journal of Computer Vision, 76(1):1–12,

c©2007, with kind permission from Springer Science and Business Media.

Validating the Klein bottle model experimentally turned out to be a signif-
icantly more difficult task, as the Klein bottle does not seem to appear in the
barcode of any of the superlevel-sets of the density6. Nevertheless, as reported
by Carlsson et al. [54], direct inspection of the data suggests that the Klein bottle
is really sitting there but may not be statistically significant. The question remains

6Take for instance the results of Figures 5.11 and 5.12. These were obtained by computing
persistent homology over the field of coefficients Z2. This field does not make possible to distin-
guish the torus from the Klein bottle. Therefore, should a sweet range exist for the Klein bottle,
the restriction of the barcode to that sweet range would be similar to the one of the barcodes from
the previous sections, which is clearly not the case.
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open to date, yet the important fact in this story is that the inference pipeline
has provided relevant insights into the geometric structures underlying the data,
which other techniques such as dimensionality reduction could not do because of
the nontrivial topology of these structures.

6. Dealing with outliers

The data model considered so far is limited to bounded Hausdorff noise and
therefore does not allow for the presence of outliers in the data. When this happens,
such as for instance in the natural images data set of Section 5, the current pipeline
leaves the user with no choice but to filter out the outliers in a preprocessing phase,
which raises the tricky question of determining the right amount of filtering.

Chazal, Cohen-Steiner, and Mérigot [62] proposed a different data model that
elegantly takes the presence of outliers into account. Their model replaces the input
n-points set P by its empirical measure μP , defined for any (Borel) subset of Rd as

μP (B) =
1

n
|B ∩ P |.

The distance to P is then replaced by the following distance to its measure μP ,
parametrized by a mass parameter m ∈ (0, 1]:

(5.13) dμP ,m(x) =

√√√√ 1

k

k∑
i=1

‖x− pi(x)‖2,

where k = mn is assumed to be an integer for simplicity, and pi(x) is the i-th
nearest neighbor of x among the points of P . The distance of x to μP is thus the

2-average of the distances of x to its k = mn nearest neighbors in P . As illus-
trated in Figure 5.14 (left and center), increasing the mass parameter m ‘smooths’
the sublevel-sets of dμP ,m and thus makes isolated outliers or small groups of those
disappear from the small sublevel-sets. The choice of m then comes down to a
trafe-off between the amount of noise filtering and level smoothing versus the ap-
proximation accuracy.

More generally, the distance to a measure can be defined for any probability
measure μ supported in Rd. Its formula is the continuous analogue of (5.13), where
the distance to the i-th nearest neighbor of x for a given i ≤ mn is replaced by the
infimum δμ,m′(x) of the radii of the Euclidean balls centered at x that contain at
least a given fraction m′ = i/n of the total mass of μ:

dμ,m(x) =

√
1

m

∫ m

m′=0

δμ,m′(x) dm′.

The distance to a measure satisfies axioms A1 through A3 from Section 1.4 of
Chapter 4, so it is a distance-like function. A generalized gradient flow can then
be defined, which allows to introduce generalized critical values between which the
sublevel sets of dμ,m are homotopy equivalent. Besides, the distance to a measure
is stable with respect to the Wasserstein distance W2: for any probability measures
μ, ν supported in Rd, and for a fixed mass parameter m ∈ (0, 1],

‖dμ,m − dν,m‖∞ ≤ 1√
m

W2(μ, ν).
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Figure 5.14. Sublevel sets of the distance-like functions dP ,
dμP ,m, and dP

μP ,m (shown in this order from left to right) for

m = 3
|P | . The first distance is sensitive to noise and outliers.

The second one is smoother but its sublevel-sets are difficult to
compute. The third one is resilient to noise and its sublevel-sets
are both easy to compute and compact to represent.
— From Buchet et al. [42]: “Efficient and Robust Persistent Homology for

Measures”, in Proceedings of the ACM/SIAM Symposium on Discrete Algo-

rithms, pp. 168–180, 2015. Reprinted with permission.

This stability result makes it possible to interleave the sublevel-sets of the distances
to Wasserstein-close probability measures, and combined with Axioms A1-A3, to
derive inference results for probability measures and their support, in the same
vein as in Section 2 of Chapter 4. The filtrations involved are sublevel-sets filtra-
tions, therefore once again it is necessary to replace them by equivalent simplicial
filtrations in order to make the approach practical.

From sublevel-sets filtrations to simplicial filtrations. The sublevel-sets of dμP ,m

turn out to be unions of balls, as in the case of the distance dP . However, the balls
are no longer centered at the data points, but at their barycenters. Moreover, their
radii are not all the same. Indeed, letting Q denote the set of barycenters of k-points
subsets of P , we have equality between dμP ,m and the so-called power distance to
the weighted set {(q, wq) | q ∈ Q}, defined by

dμP ,m(x) = min
q∈Q

√
‖x− q‖2 + w2

q ,

where the weight wq assigned to the barycenter q of a k-subset {p1, · · · , pk} ⊆ P is7

(5.14) wq =

√√√√1

k

k∑
i=1

‖q − pi‖2.

Hence, for any i ∈ R, the i-sublevel-set of dμP ,m is the union of the Euclidean balls
centered at the points q ∈ Q and of respective radii8

(5.15) ri(q) =
√

i2 − w2
q .

7This quantity is different from dμP ,m(q) because p1, · · · , pk may not be the k nearest neigh-

bors of q in P .
8By convention, a ball is empty when its radius is imaginary.
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112 5. TOPOLOGICAL INFERENCE 2.0

The machinery of Section 3 of Chapter 4 can then be applied to derive simplicial
filtrations on Q that are equivalent to the sublevel-sets filtration of dμP ,m.

Unfortunately, the set Q has size Θ(nk), therefore it cannot be computed or
manipulated directly. Of course, not all balls participate in the union at each
level i, however determining the balls that do participate amounts to computing
the order-k Voronoi diagram of P in Rd, where k = mn, which is classically done
by computing the order-k′ diagrams for all k′ ≤ k successively in expected time

O(n�d
2 k1+� d

2 �) [201]. This is costly even in small dimensions, since m is typically
chosen so k is a constant fraction of n.

The workaround proposed by Guibas, Mérigot, and Morozov [146] is to drop
most of the barycenters and keep only a small and easy-to-compute subset Q′.
Each point q ∈ Q′ is the barycenter of some data point p ∈ P and its k-nearest
neighbors p1, · · · , pk. Its associated weight wq is the same as in (5.14). The power

distance dQ′

μP ,m to the weighted set {(q, wq) | q ∈ Q′} is called the witnessed k-
distance by Guibas, Mérigot, and Morozov [146], who use it as a proxy for the true
distance to measure dμP ,m. This approach is justified by the following multiplicative
interleaving:

(5.16) ∀x ∈ Rd, dμP ,m(x) ≤ dQ′

μP ,m(x) ≤
√

6 dμP ,m(x).

Then, the machinery of Section 3 of Chapter 4 can be applied to build a simplicial
filtration on Q′ that is equivalent to the sublevel-sets filtration of dQ′

μP ,m, and whose

logscale barcode is therefore
log2(6)

2 -close to the one of dμP ,m in the bottleneck
distance. Note that this time we are working with the decimated barycenters set
Q′ of size |Q′| = n instead of the original barycenters set Q, so the approach
becomes tractable.

Buchet et al. [42] proposed another decimation scheme that uses the input
data points as ball centers instead of their barycenters—see Figure 5.14 (right) for
an illustration. The weight associated to each point p ∈ P is simply dμP ,m(p),
and the approximating function is the power distance dP

μP ,m to the weighted set
{(p, dμP ,m(p)) | p ∈ P}. Surprisingly, this modification still allows us to get a
constant-factor multiplicative interleaving as in (5.16):

(5.17) ∀x ∈ Rd,
1√
2

dμP ,m(x) ≤ dP
μP ,m(x) ≤

√
3 dμP ,m(x).

The great advantage of using the input data points as ball centers is that no barycen-
ter calculation is needed any more, so the approach can be applied in arbitrary
metric spaces. Note that the upper bound on dP

μP ,m in (5.17) holds only in Eu-

clidean space Rd. In arbitrary metric spaces it is replaced by
√

5 dμP ,m(x), which
is known to be tight [42].

Lightweight simplicial filtrations. Buchet et al. [42] also introduced weighted
versions of the Rips and sparse Rips filtrations that allow to reproduce a good
fraction of the analysis of this chapter for weighted point sets.

Definition 5.17. Given a weighted point set {(p, wp) | p ∈ P}, the weighted
(Vietoris-)Rips complex of parameter i is the maximal simplicial complex of vertex
set P whose 1-skeleton graph has one edge for each pair (p, q) such that ‖p −
q‖ ≤ ri(p) + ri(q), where ri(q) (resp. ri(p)) is defined as in (5.15). The weighted
(Vietoris-)Rips filtration is the nested family of weighted Rips complexes obtained
by letting parameter i range over R from −∞ to +∞.
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6. DEALING WITH OUTLIERS 113

This filtration is interleaved multiplicatively with the nerve of the union of
balls B(p, ri(p)) just like its unweighted counterpart is interleaved multiplicatively
with the nerve of the union of balls B(p, i), and in fact the interleaving factors are
the same as in (5.3). From this follows an inference result of the same form as
Theorem 5.3.

The sparse version of the weighted Rips filtration is defined as the ‘intersec-
tion’ of two other filtrations: the sparse unweighted Rips, and the weighted Rips.
Specifically, for any i ∈ R, the sparse weighted Rips complex of parameter i is the
intersection of its unweighted counterpart with the weighted Rips complex of same
parameter. This definition may sound a bit awkward, but there is a fundamen-
tal justification to it, which is that the weighted distance is not a true distance
therefore the furthest-point resampling technique from Section 3.1 and its near
linear-time approximations like the net-trees of Har-Peled and Mendel [149] are
not even defined, whereas they are the central building block of the sparse Rips
construction. The size and approximation properties of the sparse Rips filtration,
which will be described in Chapter 7, are maintained in the weighted setting thanks
to this definition.

These contributions to topological inference in the presence of outliers leave
many important questions open, such as for instance how many weighted points are
required to approximate the true distance to measure within a given error. Mérigot
[191] has given a lower bound that is exponential in the ambient dimension in the
case of an additive approximation, but the case of a multiplicative approximation
remains unanswered. This leaves room for future developments in this mostly
unexplored direction of research. In Chapter 8 we will mention other current trends
in topological inference, which remains to date the most active area of application
of persistence.
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CHAPTER 6

Clustering

Unsupervised learning or clustering can be viewed as the zero-dimensional ver-
sion of topological inference, in which the focus is primarily on understanding the
connectivity of the structures hidden in the data. Given a point cloud P , the goal
is to partition P into clusters that best reflect this connectivity. As occurs gener-
ally in topological inference, obtaining the most relevant clustering is an ill-posed
problem, and it is particularly difficult with massive and high-dimensional data sets
where visualization techniques fail.

The breadth of the existing work on clustering [150] shows the high interest this
topic has aroused among the scientific community. Let us recount a few classical
approaches before showing where and how persistence contributes to the problem:

K-means [181] is perhaps the most commonly used approach. Given a fixed
number k of clusters, it tries to place cluster centers and define cluster boundaries
so as to minimize the sum of the squared distances to the center within each cluster.
This minimization problem is known to be NP-hard, so k-means resorts to an iter-
ative expectation-maximization procedure that is guaranteed to converge at least
to some local minimum. This minimum is not guaranteed to be global, however.
Another issue with k-means and its variants is that they produce bad results on
highly non-convex clusters.

Spectral clustering [182] was designed specifically to work on non-convex data.
It first computes an embedding of the data set endowed with a diffusion distance
between the points, given by a Laplacian of some neighborhood graph. Then,
it applies the standard k-means method in the new ambient space. Computing
the embedding requires an eigendecomposition of the Laplacian, which may have
numerical issues as the size of the data grows. The presence of a gap in the spectrum
of the Laplacian gives an indication of the correct number k of clusters. However,
problems arise when there are more than a small number of outliers in the data, in
which case no such gap may exist.

Density thresholding techniques make the assumption that the data points are
drawn from some unknown density function f . Their principle is to threshold the
density at some fixed level t, then treat the connected components of the superlevel
set F t = f−1([t,+∞)) as clusters and the rest of the data as noise. In practice, the
density f is unknown so its superlevel F t needs to be approximated from the data,
which algorithms like DBSCAN [127, 219] do by various graph-based heuristics.
Unfortunately, due to the use of a fixed density threshold t, these techniques do
not respond well to hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Hierarchical clustering [165, §3.2] has been introduced specifically to cope with
multi-scale phenomena, albeit in a purely metric context. It produces a hierarchy
of clusterings (see Figure 6.1), in which the bottom level represents the data points
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116 6. CLUSTERING

Figure 6.1. Left: a point cloud in R and the corresponding den-
drogram produced by single linkage clustering. Right: the hierar-
chy produced by the 0-dimensional persistence algorithm on the
1-skeleton graph of the Rips filtration, with the 0-dimensional bar-
code (vertical segments) marked in bold red lines. The two results
are the same up to horizontal shifts of the vertical segments, which
correspond to choosing arbitrarily the parent and the child each
time a negative edge connects two previously independent con-
nected components in the graph.

forming independent clusters, and the top level represents the entire point cloud
gathered into a single cluster. The intermediate levels are nested in the sense that
clusters cannot be split when travelling up the hierarchy. A convenient representa-
tion of the hierarchy is as a rooted tree, also called a dendrogram. The most popular
algorithms to produce such hierarchies are agglomerative, starting with each point
being its own cluster and merging at each step the two clusters that are most alike
under some notion of (dis-)similarity. For instance, single linkage uses the minimum
inter-point distance as dissimilarity, while complete linkage and average linkage use
respectively the maximum and average inter-point distances. The qualities and
defects of the produced hierarchies depend largely on the choice of (dis-)similarity
between clusters. For instance, hierarchies produced by single linkage tend to suffer
from the so-called ‘chaining effect’ caused by a chain of outlier data points connect-
ing clusters too early in the agglomerative process [174]. Generally speaking, the
main drawback of hierarchical clustering is to make difficult the recovery from bad
clusterings performed in early stages of the construction.

Mode-seeking is another popular approach. Like density thresholding, it as-
sumes the data points to be drawn from some unknown density function f . The
approach consists in detecting the local peaks of f in order to use them as cluster
centers, and in partitioning the data according to their basins of attraction. The
precise notion of the basin of attraction Bp of a peak p varies between references,
yet the bottomline is that Bp corresponds to the subset of the data points that even-
tually reach p by some greedy hill-climbing procedure. This line of work started
in the 70’s, with for instance the graph based hill-climbing algorithm of Koontz,
Narendra, and Fukunaga [170], and was followed by numerous variants and ex-
tensions, including the ambient gradient ascent algorithm Mean-Shift [91] and its
successors [222, 233]. A common issue faced by these techniques is that the gradient
and extremal points of a density function are notoriously unstable, so their approx-
imation from a density estimator can lead to unpredictable results. This is why
methods such as Mean-Shift adopt a proactive strategy that consists in smoothing
the estimator before launching the hill-climbing procedure, which in turn raises the
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1. CONTRIBUTIONS OF PERSISTENCE 117

difficult question of how much smoothing is needed to remove the noise without
affecting the signal, and to obtain the correct number of clusters.

Prerequisites. For more background on clustering we recommend reading Chap-
ter 14 of [151]. The rest of the material used here comes from Part 1.

1. Contributions of persistence

Persistence contributes in two ways to the literature on clustering. First, as a
theoretical tool to improve or generalize the analysis of existing clustering methods.
This is the case e.g. for hierarchical clustering. Second, persistence can be used as
a mean to improve the methods themselves and to make them more efficient, more
general, or more stable. This is the case e.g. for mode seeking.

1.1. Persistence versus hierarchical clustering. As observed already in
the general introduction, persistence is naturally tied to hierarchical clustering. In-
deed, the graph maintained by single linkage is the same as the 1-skeleton graph of
the Rips filtration from Definition 5.2. Consequently, the dendrogram produced by
single linkage contains the same information as the hierarchy induced by the persis-
tence pairs computed by the 0-dimensional persistence algorithm—recall Figure 2.6
and related text in Chapter 2 for the definition of the hierarchy, and see Figure 6.1
for an illustration of the correspondence with the dendrogram. Hence, the inference
results derived in the previous chapters, once specialized to 0-dimensional homology,
provide guarantees on the existence of a sweet range in the dendrograms produced
by single linkage, within which the ‘correct’ number of clusters is inferred.

Another important property of the dendrograms produced by single linkage is
to be stable with respect to perturbations of the input data, as proven by Carlsson
and Mémoli [51]. To formalize their result, we need to elaborate on the connection
between dendrograms and ultrametrics on the input point cloud P—see e.g. [165,
§3.2.3]. There is indeed a way to turn any dendrogram computed by single linkage
into an ultrametric on P , by assigning to each pair of points of P the height of their
lowest common ancestor in the dendrogram. This map turns out to be a bijection.
The resulting ultrametric uP may differ from the original metric dP , however it is
stable in the following sense, where dGH denotes the so-called Gromov-Hausdorff
distance between metric spaces:

Theorem 6.1 (Carlsson and Mémoli [51]). For any finite metric spaces (P, dP )
and (Q, dQ),

dGH((P, uP ), (Q, uQ)) ≤ dGH((P, dP ), (Q, dQ)).

As we will see in Chapter 7 (until which we are deferring the formal definition
of dGH), part of this result1 is a consequence of a more general stability property
of Rips filtrations over compact metric spaces.

Unfortunately, these nice properties—inference of the number of clusters and
stability—are only proven under the bounded Hausdorff noise model, to which the
Gromov-Hausdorff distance is related. This model is very restrictive in the context
of clustering. In particular, it forbids the aforementioned ‘chaining effect’ caused
by outliers, which nonetheless happens in practical situations. The line of work on

1Namely, the stability of the vertical part of the dendrogram (the barcode). The result
of Carlsson and Mémoli [51] shows that the horizontal part of the dendrogram is stable as well in
some sense.
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topological inference in the presence of outliers, presented in Section 6 of Chapter 5,
can be used to extend the guarantees to more general noise models, at the price of
substantial modifications in the filtration and corresponding clustering hierarchy.

1.2. Persistence versus mode seeking. As we saw, mode seeking assumes
the data points to be drawn from some unknown density function f , and it defines
the clusters according to the basins of attraction of the peaks of f . In practice, f is
approximated by some estimator f̃ , whose gradient vector field may be noisy com-
pared to the one of f , thus leading to unpredictable results. Persistence makes it
possible to detect and merge the unstable clusters after their computation, so as to
regain some stability. To be more specific, the persistence diagram of the superlevel-
sets filtration F̃≥ of f̃ provides a measure of prominence for every peak of f̃ , defined
as the persistence of that peak as a 0-dimensional feature in the superlevel-sets fil-
tration F̃≥, and measured by the vertical distance of the corresponding diagram

point to the diagonal y = x. Furthermore, the persistence algorithm applied to F̃≥
organizes the peaks of f̃ into a hierarchy that tells which connected component of
the superlevel set was merged into which other component during the course of the
computation. These two pieces of information—measure of prominence and hier-
archy of peaks—can be used to drive the merging process on the clusters produced
by mode seeking.

Several instances of this strategy have been developed in the literature. The
most general one is due to Chazal et al. [70]. The method, called ToMATo for
Topological Mode Analysis Tool, comes with theoretical guarantees on the number
and location of the produced clusters. We propose to focus on it in the rest of
the chapter. Section 2 provides the details of the algorithm, Section 3 reviews
its theoretical guarantees, Section 4 gives experimental evidence of its practicality,
finally Section 5 presents an extension of the method that can also capture higher-
dimensional topological features in the data, at the price of an increased complexity.

Remark. In order to simplify the exposition, from now on and until the end of
the chapter we will use the notation dgm0(f) as a shorthand for the 0-dimensional
part of the undecorated persistence diagram of the superlevel-sets filtration F≥,
that is,

dgm0(f) = dgm(H0(F≥)).

Unless otherwise mentioned, we will abuse terms and refer to this object simply as
the persistence diagram of f .

2. ToMATo

The method combines the graph-based hill-climbing algorithm of Koontz, Naren-
dra, and Fukunaga [170] with a cluster merging step guided by persistence. As
illustrated in Figure 6.2(b), hill-climbing is very sensitive to perturbations of the

density function f that arise from a density estimator f̃ . Computing the persis-
tence diagram of f̃ makes it possible to quantify the prominences of its peaks and,
in favorable cases, to distinguish those that correspond to peaks of the true den-
sity f from those that are inconsequential. In Figure 6.2(c) for instance, we can
see 2 points (pointed to by arrows) that are further from the diagonal than the

other points: these correspond to the 2 prominent peaks of f̃ (one of them is at
y = −∞ since the highest peak never dies). To obtain the final clustering, it is
enough to merge every cluster of prominence less than a given threshold τ into its
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Figure 6.2. ToMATo in a nutshell: (a) estimation of the under-
lying density function f at the data points; (b) result of the basic
graph-based hill-climbing step; (c) approximate persistence dia-
gram showing 2 points far off the diagonal corresponding to the 2
prominent peaks of f ; (d) final result obtained after merging the
clusters of non-prominent peaks.
— From Chazal et al. [70].

parent cluster in the hierarchy of peaks. As shown in Figures 6.2(c) and 6.2(d), the
persistence diagram gives a precise understanding of the relationship between the
choice of τ and the number of obtained clusters.

2.1. The algorithm. ToMATo takes as input an unweighted graph G, whose
vertex set represents the data points and whose edges connect the points accord-
ing to some user-defined proximity rule. Each vertex i of G must be assigned
a non-negative value f̃(i) corresponding to the estimated density at that point.
In addition, ToMATo takes in a merging parameter τ ≥ 0. The algorithm pro-
ceeds in two steps. The first step implements the graph-based hill-climbing method
of Koontz, Narendra, and Fukunaga [170], which simulates a gradient ascent in the
graph G and partitions the vertex set according to the influence regions of the local
peaks of f̃ in G. The second step implements a variant of the union-find algorithm
for computing 0-dimensional persistence (described in Section 2.2.3 of Chapter 2):

in addition to building a hierarchy of the peaks of f̃ , this variant uses it to merge
the clusters of prominence less than τ into the other clusters. Here are the details:

(1) (Mode-seeking) To compute the initial clusters, ToMATo iterates over the

vertices of G sorted by decreasing f̃ -values : at each vertex i, it simulates
the effect of the gradient of the underlying density function by connecting
i to its neighbor in G with highest f̃ -value, if that value is higher than f̃(i).

Otherwise, all neighbors of i have lower values, so i is declared a peak of f̃ .
The resulting collection of pseudo-gradient edges forms a spanning forest
of the graph, and each tree in this forest can be viewed as the analogue
within G of the basin of attraction of a peak of the true density function
in the underlying continuous domain.

(2) (Merging) To handle merges between trees, ToMATo iterates over the
vertices of G again, in the same order, while maintaining a union-find
data structure U , where each entry corresponds to a union of trees of the
spanning forest. Let us call root of an entry e, or r(e) for short, the vertex

contained in e whose f̃ -value is highest. By definition, this vertex is the
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root of one of the trees contained in e, that is, a local peak of f̃ in G.
During the iteration process, two different situations may occur when a
vertex i is considered:
(a) Vertex i is a peak of f̃ within G, i.e. the root of some tree T . Then,

i creates a new entry e in U , in which T is stored. Let r(e) = i.
(b) Vertex i is not a peak and therefore belongs to some tree stored in

an existing entry ei of U (of which i is not the root). Then, compute
the set E of the entries of U that contain neighbors of i in G. Iterate
over this set in any order, and for each entry e ∈ E considered,
check whether e �= ei and min{f̃(r(e)), f̃(r(ei))} < f̃(i) + τ , that is,
whether the two entries differ and at least one of them has a less-
than-τ -prominent root. If so, then merge e and ei into a single entry
e ∪ ei in U , and let r(e ∪ ei) = arg max{r(e), r(ei)} f̃ , so in effect the
entry with the lower root is merged into the one with the higher root,
as per the elder rule.

Upon termination, the (merged) clusters stored in the entries of the union-find
data structure U form a partition of the vertex set of G, and their roots are the
peaks of f̃ of prominence at least τ within the graph. The output of ToMATo is
then the subset of this collection of clusters that is stored in those entries e such
that f̃(r(e)) ≥ τ . The rest of the data points is stored in entries with roots lower
than τ , so it is treated as background noise and discarded from the data set2.

In addition to the clustering, ToMATo outputs the lifespans of all the entries
that have been created in the union-find data structure during the merging phase.
More precisely, an entry is considered ‘born’ when it is created in U with a single tree
attached to it as described in scenario (a) above, and ‘dead’ when it gets merged into
another entry with higher root as described in scenario (b). For ease of visualization,
the lifespan is represented as a point (x, y) in the plane, where x is the birth time and
y the death time of the entry (y = −∞ if the entry never gets merged into another
one). It is easy to see that the thus obtained planar diagram of points coincides

with the persistence diagram of the scalar field f̃ over the graph G when parameter
τ is set to +∞, as in this case the condition min{f̃(r(e)), f̃(r(ei))} < f̃(i) + τ in
scenario (b) is trivially satisfied so the merging rule is simply the one prescribed by
persistence. When τ < +∞, the entries whose roots are at least τ -prominent never
get merged into other entries, so their corresponding points in the output diagram
are projected down vertically onto the horizontal line y = −∞.

Remark. The output of ToMATo can also be viewed as a hierarchical cluster-
ing, in which every value of τ ≥ 0 is assigned a particular set of clusters. The family
of clusterings obtained for τ ranging from 0 to +∞ is nested as desired, however
the bottom level contains the clusters produced by the mode-seeking step instead
of a collection of singletons. In this respect, ToMATo is really a combination of
mode seeking and hierarchical clustering. In practice ToMATo must be run twice.
In the first run, set τ = +∞ to merge all clusters and compute the persistence

2This extra filtering step stems from the observation that the data points may not be densely
sampled over the entire space. Depending on the proximity rule used in the definition of the
neighborhood graph G, the sparseness of the data in low-density regions may create indepen-
dent connected components that give birth to spurious clusters with infinite prominence — see
Figure 6.7 for an illustrative example.
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diagram dgm0(f̃). Then, using the persistence diagram, choose a value for τ—
which amounts to selecting the number of clusters—and then re-run the algorithm
to obtain the final clustering.

2.2. Implementation details and complexity. In practice the mode-seek-
ing and merging procedures can be run simultaneously during a single pass over
the vertices of the graph G: for each considered vertex i, the pseudo-gradient
edge at i is computed, then the possible merges in the union-find data structure U
are performed—these involve only previously visited vertices. The corresponding
pseudo-code is given in Algorithm 6.1.

Algorithm 6.1: ToMATo

Input: graph G with n vertices, n-dimensional vector f̃ , parameter τ ≥ 0.

1 Sort the vertex indices {1, 2, · · · , n} so that f̃(1) ≥ f̃(2) ≥ · · · ≥ f̃(n);

2 Initialize a union-find data structure U and two vectors g, r of size n;

3 for i = 1 to n do

4 Let N be the set of neighbors of i in G that have indices lower than i;

5 if N = ∅ then // vertex i is a peak of f̃ within G
6 Create a new entry e in U and attach vertex i to it;

7 r(e) ← i; // r(e) stores the root vertex of entry e

8 else // vertex i is not a peak of f̃ within G

9 g(i) ← arg maxj∈N f̃(j); // g stores pseudo-gradient edges

10 ei ← U .find(g(i));

11 Attach vertex i to the entry ei;

12 for j ∈ N do

13 e ← U .find(j);

14 if e �= ei and min{f̃(r(e)), f̃(r(ei))} < f̃(i) + τ then

15 U .union(e, ei);

16 r(e ∪ ei) ← arg max{r(e), r(ei)} f̃ ;

17 ei ← e ∪ ei;

18 end

19 end

20 end

21 end

Output: the collection of entries e of U such that f̃(r(e)) ≥ τ .

The mode-seeking phase takes a linear time in the size of G once the vertices
have been sorted. As for the merging phase, it makes O(n) union and O(m) find
queries to the union-find data structure U , where n and m are respectively the
number of vertices and the number of edges of G. If an appropriate representation
is used for U (e.g. a disjoint-set forest [92]), and if the heads of the pseudo-gradient
edges and the entry roots are stored in separate containers with constant-time
access (e.g. arrays), then the worst-case time complexity of Algorithm 6.1 becomes
O(n logn + mα(n)), where α stands for the inverse Ackermann function.

As for the space complexity, note that the graph G does not have to be stored
entirely in main memory, since only the neighborhood of the current vertex i is
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involved at the i-th iteration of the clustering procedure. The main memory
usage is thus reduced to O(n). The total space complexity still remains O(n + m)
though, as the graph needs to be stored somewhere, e.g. on the disk.

3. Theoretical guarantees

Let X be an m-dimensional Riemannian manifold with positive convexity ra-
dius �(X). Recall that the convexity radius at a point x ∈ X is the supremum
over the values r ≥ 0 such that any geodesic ball of center x and radius r′ < r
is geodesically convex, that is, any two points in that ball are joined by a unique
geodesic of length less than 2r′, and this geodesic is contained in the ball. The
convexity radius �(X) is the infimum of this quantity for x ranging over X.

Let f : X → R be a probability density with respect to the m-dimensional
Hausdorff measure. Assume that f is c-Lipschitz in the geodesic distance, and
that the input data set P has been sampled over X according to f in i.i.d. fashion.
Assume further that the density estimator f̃ approximates the true density f within
an error η ≥ 0 over P , that is,

∀p ∈ P, |f̃(p)− f(p)| ≤ η.

For simplicity, assume also that the geodesic distances in X between the data points
are known exactly. Similar guarantees exist (with slightly degraded constants) for
when they are known within a small error—see e.g. [70] for the details. Take for G
the so-called δ-neighborhood graph of P , which has P as vertex set and one edge for
each pair of points lying within geodesic distance δ of each other. When X = Rd,
this graph is the same as the 1-skeleton graph of the Rips complex of parameter δ
on P , as defined in Chapter 5 (Definition 5.2).

-∞0
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Figure 6.3. Left: The separation of the persistence diagram
dgm0(f) between prominent peaks (region D2) and topological
noise (region D1). Right: The partial matching between dgm0(f)

and dgm0(G̃) induced by the partial interleaving between F≥ and

G̃: the bottleneck cost is fully controlled in the upper-right quad-
rant, while it is controlled only along the x-axis in the bottom-right
quadrant, and it is uncontrolled in the lower-left quadrant.
— From Chazal et al. [70].
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3.1. Number of clusters. The main guarantee is about the number of clus-
ters output by the algorithm, which is related to the number of prominent peaks of
f . The guarantee relies on the following condition on the persistence diagram of f :

Definition 6.2. Given two values d2 > d1 ≥ 0, the persistence diagram
dgm0(f) is called (d1, d2)-separated if every point of dgm0(f) lies either in the region
D1 above the diagonal line y = x− d1, or in the region D2 below the diagonal line
y = x− d2 and to the right of the vertical line x = d2.

This condition formalizes the intuitive notion that the points of dgm0(f) can
be separated between prominent peaks (region D2) and topological noise (region
D1), as illustrated in Figure 6.3 (left). In this respect, it acts very similarly to a
signal-to-noise ratio condition: the larger the prominence gap d2 − d1, the more
clearly the prominent peaks are separated from the noise. In the limit case where
d1 = 0, all peaks of f are at least d2-prominent and none of them is viewed as
noise. The additional condition that the points of D2 must lie to the right of the
vertical line x = d2 follows the description of the extra filtering step performed by
the algorithm after the merging phase, and it stems from the fact that only some
superlevel set of the density f can be densely sampled by the data points.

Theorem 6.3 (Chazal et al. [70]). Assume dgm0(f) is (d1, d2)-separated, with

d2 − d1 > 5η. Then, for any positive parameter δ < min{�(X), d2−d1−5η
5c } and any

threshold τ ∈ (d1 + 2(cδ + η), d2 − 3(cδ + η)), the number of clusters computed by
the algorithm on an input of n sample points drawn at random according to f in
an i.i.d. fashion is equal to the number of peaks of f of prominence at least d2 with
probability at least 1−e−Ω((cδ+η)n), where the constant hidden in the big-Ω notation
depends only on certain geometric quantities (e.g. volumes of geodesic balls) on the
manifold X.

Thus, for right choices of parameters τ and δ, the algorithm outputs the correct
number of clusters with high probability. The larger the prominence gap d2 − d1,
the larger the range of admissible values for τ . Meanwhile, the smaller δ, the larger
the range but also the smaller the probability of success3. The proof of the theorem,
detailed in [70], is rather technical but boils down to the following intuitive steps:

(1) By a simple application of Boole’s inequality, a bound is derived on the
probability that the superlevel set F cδ+η of f is densely sampled by a
subset of the points of P .

(2) Assuming that F cδ+η is indeed densely sampled, an interleaving is worked
out between the superlevel-sets filtration F≥ of the density f and the

filtration G̃ of the neighborhood graph G induced by the estimator4 f̃ .
The interleaving happens at the 0-dimensional homology level directly. It
holds only for filtration parameters t ≥ cδ+η, therefore we call it a partial
interleaving.

(3) The stability part of the Isometry Theorem 3.1 is invoked to derive a

partial matching between the persistence diagrams dgm0(f) and dgm0(G̃)

3This follows the intuition that a minimum point density is required for the connectivity of
the δ-neighborhood graph to reflect the one of some superlevel set of f .

4The time of appearance of a vertex i in G̃ is f̃(i), while the time of appearance of an edge [i, j]

is min{f̃(i), f̃(j)}. This filtration is also known as the upper-star filtration of f̃ in G—see [115,
§V.3].
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Figure 6.4. Influence of the partial matching on the regions D1

and D2. Left: the initial regions, partitioned as D1 = I ∪ II and
D2 = III∪ IV∪V. Center: the perturbed regions. Right: zoom on
part V of region D2.
— From Chazal et al. [70].

from the partial interleaving between F≥ and G̃. As illustrated in Fig-
ure 6.3 (right), the bottleneck cost of the matching is controlled in the
upper-right quadrant [cδ + η,+∞] × [cδ + η,+∞], which is sufficient for
our purpose.

(4) The partial matching perturbs the regions D1 and D2 of Figure 6.3 (left)
as depicted in Figure 6.4. For a small enough choice of δ > 0 compared
to the initial separation (d2 − d1), the perturbed regions remain disjoint,
so they can still be separated using an appropriate value for the merging
parameter τ . For such values, the algorithm outputs the correct number
of clusters.

3.2. Geometric approximation. Another guarantee is about the geometric
approximation of the basins of attraction of the peaks of f by the output clusters.
Obtaining such a guarantee in full generality is hopeless, since the basins of at-
taction are notoriously unstable. There are indeed many examples of very close
functions having very different basins of attraction, and clearly the algorithm can-
not provably-well approximate the unstable parts of the basins, as illustrated in
Figures 6.5 and 6.6. Yet, it can approximate the stable parts, as shown by the
following result:

Theorem 6.4 (Chazal et al. [70]). Under the hypotheses of Theorem 6.3, it
holds with the same probability that for every point p ∈ D2 the algorithm outputs
a cluster C such that C ∩ F t = Bp ∩ P ∩ F t for all values t ∈ [tp + d1 + 5

2 (cδ +
η), f(mp)), where mp is the peak of the density f (in the underlying manifold X)
corresponding to the diagram point p, where Bp denotes the basin of attraction of
mp in the underlying manifold X, and where tp is the first value of t at which Bp

gets connected to the basin of attraction of another peak of f of prominence at least
τ in the superlevel set F t.

Here, by basin of attraction of mp is meant the union of the ascending regions
(or stable manifolds) of all the peaks of f of prominence less than τ that are subor-
dinate to mp in the persistence hierarchy. It depends on the choice of parameter τ ,
which is omitted in the notation for simplicity. In plain words, the theorem says
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Figure 6.5. A function f : [0, 1]2 → R with unstable basins of at-
traction. The three peaks m,m1,m2 have respective prominences
f(m) − f(s2), f(m1) − f(s1), and +∞. When τ > f(m) − f(s2),
the basin of attraction of m is merged into that of m2 at the value
t = f(s2). However, since f(s2) − f(s1) can be made arbitrarily
small compared to f(m1) − f(m), arbitrarily small perturbations
of f compared to the prominence gap f(m1)−f(m)+f(s2)−f(s1)
merge the basin of attraction of m into that of m1 instead.
— From Chazal et al. [70].

Figure 6.6. Outputs of the algorithm obtained from a uniform
sampling of the unit square endowed with the function f of Fig-
ure 6.5. The chosen value for τ gives two clusters. The result is
shown for three increasing values of the neighborhood radius. No-
tice how some values of δ induce a correct merge of the basin of
attraction of m into that of m2, while others induce an incorrect
merge into that of m1.
— From Chazal et al. [70].

that cluster C is the trace of Bp over the point cloud P , until (approximately) the
value tp at which Bp meets the basin of attraction of another τ -prominent peak
of f . Below that value, the cluster may start diverging from the basin, which itself
may start being unstable, as illustrated in Figures 6.5 and 6.6.

The proof of the theorem is technical but the underlying intuition is simple:
above tp, a point of P ∩ Bp cannot escape Bp when following the gradient of f or
any ascending path of f . Indeed, even if the point eventually flows to another peak
of f than mp, that peak must have prominence less than τ therefore its ascending
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126 6. CLUSTERING

region gets merged into Bp. Slightly above tp, even the approximate ascending path
given by the pseudo-gradient edges in the neighborhood graph cannot escape Bp.
We refer the interested reader to [70] for the details of the proof.

4. Experimental results

As an illustration, let us show some experimental results on two types of inputs:
(1.) a structured synthetic data set in R2, where direct data inspection allows us
to check the results visually; (2.) simulated alanine-dipeptide protein conforma-
tions in R21, where the knowledge of the intrinsic parameters of the simulation
allows us to check the results a posteriori. Two density estimators are used in the
experiments: a (truncated) Gaussian kernel estimator, and the so-called weighted
k-nearest neighbor (k-nn) estimator5 proposed by Biau et al. [26]. Each of these
estimators takes in one parameter controlling the amount of smoothing.

4.1. Synthetic data. The data set consists of 10k points sampled from two
twin spirals in the unit square, as shown in Figure 6.2 (a). Using a δ-neighborhood
graph with δ = 0.04, and the weighted k-nn density estimator, we obtain the
persistence diagram in Figure 6.2(c). Choosing τ within the prominence gap we
obtain the clustering shown in Figure 6.2(d). A smaller neighborhood radius, δ =
0.02, gives many infinitely persistent components (Figure 6.7(a)), with all but one
appearing late in the persistence diagram (near the lower-left corner). Components
in this part of the persistence diagram are discarded by the extra filtering step
performed by the algorithm after completion of the merging phase, which removes
much of the background noise—Figure 6.7(b).

0.5 1 1.5 2
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0.4
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1.2

1.4
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1.8

2

2.2
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(a) (b)

Figure 6.7. The twin spirals data set from Figure 6.2, processed
using a smaller neighborhood radius: (a) the persistence diagram;
(b) the final clustering with late appearing connected components
filtered out (in black).
— From Chazal et al. [70].

5Which corresponds to taking the inverse of (a power of) the distance to the empirical
measure (5.13).
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Figure 6.8. Persistence diagrams obtained on the twin spirals
data set of Figure 6.2 using (a) the k-nn graph with k = 35 and
(b) the Delaunay graph. The resulting clusterings are virtually the
same as in Figure 6.2(d).
— From Chazal et al. [70].
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Figure 6.9. Result of spectral clustering on the twin spirals data
set with 10k samples: (a) plot of the first 10 eigenvalues, and
(b) the resulting clustering.
— From Chazal et al. [70].

Results obtained with the k-nn graph (taking k = 35) and the Delaunay graph
are shown in Figure 6.8. Although not identical, they share the same overall struc-
ture with 2 prominent peaks, and the resulting clusterings are virtually identical to
the one in Figure 6.2(d).

For comparison, Figure 6.9 shows the result obtained by spectral clustering [76]
using the k-nn graph on the twin spirals data set with 10k samples. The result is
consistent across choices of input parameters. It is explained by the effect of the
background noise on the k-means procedure in eigenspace.

These results illustrate the good behavior of ToMATo in practice. This is a
general trend of mode-seeking enhanced by persistence, whose specialized instances,
such as the one developed by Paris and Durand [209] for image segmentation, are
reported to behave as well on their respective inputs.
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Figure 6.10. Biological data set: (a) input point cloud, projected
down to the (φ, ψ) domain for visualization purposes; (b) output
persistence diagram represented on a log-log scale with distinct
colors for the 7 prominent peaks; (c) output clustering with 7 clus-
ters and matching colors.
— From Chazal et al. [70].

4.2. Alanine-dipeptide conformations. The data consist of short trajec-
tories of conformations generated by atomistic simulations of the alanine dipep-
tide [79]. Accurate simulation by molecular dynamics must be done at the atomic
scale, generally limiting the length of simulations to picoseconds because of the
small time steps needed to integrate stiff bond length and angle potentials. Biolog-
ically interesting dynamics, however, often occur on the scale of milliseconds. One
solution to this issue is to generate a coarser model using metastable states [162].
These are conformational clusters between which transitions are infrequent and in-
dependent. Such coarser representations are tractable using Markovian models [78–
80] while still allowing for useful simulations. A key problem is the discovery of
these metastable states.

The alanine-dipeptide is a good example because its dynamics are relatively
well-understood: it is a notorious fact that there are only two relevant degrees of
freedom, and these are known a priori. This makes it possible to visualize the
data and clustering results by projecting the points onto these coordinates which
are referred to as φ and ψ (Ramachandran plots), as shown in Figure 6.10(a).
In early work on the subject [79], clustering into 6 clusters was done manually.
Subsequent work [78] tried to automatically recover these 6 clusters, as we do here
using ToMATo.

Our input consists of 960 trajectories, each one made of 200 protein conforma-
tions, each conformation being represented as a 21-dimensional vector with 3 co-
ordinates per atom of the protein backbone. For the experiments we take the tra-
jectories and treat the conformations as 192,000 independent samples in R21. The
metric used on this point cloud is the root-mean-squared deviation (RMSD) after
the best possible rigid matching computed using the method of Theobald [231].
The RMSD distance matrix is our only input. The output is shown in Figure 6.10.

It appears from the persistence diagram that there could be anywhere between
4 and 7 clusters. Indeed, while the purple, orange, green and pink clusters are
by far the most prominent, the following 3 clusters (blue, yellow and red) are
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Figure 6.11. Quantitative evaluation of the quality of the output
of ToMATo on the biological data set: (a) metastability of the ob-
tained clustering versus the number of clusters; (b) corresponding
intervals sorted by decreasing prominence.
— From Chazal et al. [70].

still much more prominent than the rest. To confirm this insight, let us come
back to the original problem of finding clusters that maximize the metastability
as defined in [162]: we compute the metastabilities of all our candidate clusterings,
and we report them in the table and plot of Figure 6.11. These results show that
the metastability increases linearly with the number of clusters, up to 7 clusters,
after which it starts leveling off. So, choosing 4, 5, 6 or 7 clusters does not affect
the metastability significantly, thus confirming the observations made from the
persistence diagram. This is an example of a practical scenario in which the insights
provided by the persistence diagram can be validated a posteriori by exploiting
further application-specific information on the data.

5. Higher-dimensional structure

So far we have been interested in the connectivity of the data set, not on
its higher-dimensional topology. Suppose one of the clusters has the shape of an
annulus, as in the example of Figure 6.12. How can we extract this higher-level
type of information? A natural approach is first to detect the clusters, and second
to run the topological inference pipeline from the previous chapters on every cluster
separately. Beside the aforementioned limitations inherent to the Hausdorff noise
model used in topological inference, this approach depends critically on the quality
of the initial clustering.

A more appealing approach is to generalize ToMATo so that it approximates the
full persistence diagram dgm(f), which captures the entire homological structure of
the superlevel sets of the density f . To this end, assume the data points are sitting
in Rd, and recall that the δ-neighborhood graph G is the same as the 1-skeleton
graph of the Rips complex Rδ(P ), so the filtration G̃ of G built by ToMATo is

made of the 1-skeleton graph of Rδ(F̃
t ∩ P ) at every filtration level t, where F̃ t

denotes the superlevel set of the estimator f̃ . The idea is then to build the full
Rips complex Rδ(F̃

t ∩ P ) at every level t, and to consider the resulting filtration
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Figure 6.12. From the input point cloud equipped with estimated
density values (a), the generalized ToMATo computes a cluster-
ing (b) together with approximations to the persistence diagrams
of the density for all homology dimensions (0 for (c), 1 for (d)),
thus revealing the presence of an annulus-shaped cluster. For bet-
ter readability we used matching colors in (b) and (c).

Rδ(P, f̃)—which differs from the Rips filtration of P in that the Rips parameter δ
remains fixed while the vertex set evolves with the function level.

As we saw in Section 3, under the hypotheses of Theorem 6.3 there is a partial
interleaving between Rδ(P, f̃) and the superlevel-sets filtration F≥ of f at the
0-dimensional homology level. Do such interleavings exist at higher-dimensional
homology levels? This question has been investigated by Chazal et al. [67]. Their

answer is no in general because a single Rips complex Rδ(F̃
t ∩ P ) may fail to

capture the full homological type of the corresponding superlevel set F t of f (even

when f̃ = f), in the same way as a single Rips complex could fail to capture
the full homological type of the space underlying the input data in the context
of topological inference. However, as we saw in Section 3.1 of Chapter 5, a pair
of Rips complexes may succeed. This observation led Chazal et al. [67] to using

a pair of Rips complexes Rδ(F̃
t ∩ P ) ↪→ R2δ(F̃

t ∩ P ) at every filtration level t,
and studying the image of the induced morphism between persistence modules
H∗(Rδ(P, f̃)) → H∗(R2δ(P, f̃)) at the homology level. The image is a submodule
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of H∗(R2δ(P, f̃)), and its full persistence diagram can be computed in time cubic in
the size of R2δ(P ) using the variant of the persistence algorithm for kernels, images
and cokernels developed by Cohen-Steiner et al. [89]—recall Chapter 2, Sections 1.4
and 2.2. This is the generalized version of ToMATo.

Steps 1 through 3 of the proof of Theorem 6.3 unfold as before, except the in-
terleaving worked out at step 2 is somewhat more technical to define and to analyze
for the module imH∗(Rδ(P, f̃)) → H∗(R2δ(P, f̃)) than it is for H0(Rδ(P, f̃)). The
technical details can be found in [67].

Theorem 6.5 (Chazal et al. [67]). Under the hypotheses of Theorem 6.3 (except
the one on the separability of dgm0(f), which is irrelevant here), it holds with the
same probability that the bottleneck distance between the full persistence diagrams
dgm(f) and dgm(imH∗(Rδ(P, f̃)) → H∗(R2δ(P, f̃))) is at most 2cδ+η in the upper-
right quadrant [2cδ + η,+∞] × [2cδ + η,+∞].

Thus, the generalized ToMATo is able to detect higher-dimensional structure
in the data. The full persistence diagram of the density, as approximated by the
algorithm, tells us something about (1) the topology of the individual clusters,
and (2) their interconnectivity in the ambient space, although the two types of
information are mixed up in the diagram and may require some extra work to
be distinguished. Such knowledge is valuable in a range of practical contexts, for
instance in the study of the conformation space of a protein, for which not only the
metastable states but also the transitions between them matter.

On the downside, connections between the basins of attractions of the density f
may happen in highly unstable areas or areas of very low density, and may therefore
require humongous amounts of data points to be detected reliably. This is a general
problem with higher-dimensional structures being more delicate than the clusters
themselves. ToMATo does nothing particular to cope with it.

To conclude, let us mention that Theorem 6.5 has been generalized by Chazal et
al. [67] to arbitrary Lipschitz continuous scalar fields (not just probability densities)
under a sufficiently dense sampling of their domain. Clustering is but one of the
possible applications of this result, and in fact, historically, ToMATo was introduced
as a special (0-dimensional) case of a general method for analyzing scalar fields over
point cloud data.
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CHAPTER 7

Signatures for Metric Spaces

In the previous chapters we were analyzing data sets independently of one
another, putting the emphasis on discovering and characterizing their underlying
geometric structure. Another way of getting insights into a data set is to compare it
against other available data within a collection. This approach provides information
not only on the structure of each data set taken separately, but also on the structure
of the whole collection. This is all the more interesting as the recent years have seen
great advances in the fields of data acquisition and simulation, and huge collections
of digital data have emerged. With the goal of organizing these collections, there is
a need for meaningful notions of similarity between data sets that exhibit invariance
to different transformations of the objects they represent. Problems of this nature
arise in areas such as molecular biology, metagenomics, face recognition, matching
of articulated objects, graph matching, and pattern recognition in general.

Let us give a concrete example: in the context of 3d shape analysis, one typically
wishes to be able to discriminate digital shapes under various notions of invariance.
Many approaches have been proposed for the problem of (pose invariant) shape
classification and recognition, including the work of Hilaga et al. [156], the shape
contexts of Belongie, Malik, and Puzicha [21], the integral invariants of Manay et al.
[185], the eccentricity functions of Hamza and Krim [148], the shape distributions
of Osada et al. [207], the canonical forms of Elad and Kimmel [124], and the shape
DNA and global point signatures based spectral methods of Reuter, Wolter, and
Peinecke [215] and Rustamov [218], respectively. Their common underlying idea
revolves around the computation and comparison of certain metric invariants, or
signatures, so as to ascertain whether two given digital models represent in fact the
same shape under a certain class of transformations.

More generally, signatures can be used to compare features across data, and
to measure the amount by which two data sets (or their underlying objects) differ
from each other. It is then desirable to devise families of signatures that are able to
signal proximity or (dis-)similarity of data in a reasonable way. Although central,
this question is rarely addressed from a formal viewpoint. In particular, the degree
by which two data sets with similar signatures are forced to be similar is in general
not well understood. Conversely, one can ask the more basic question of whether
the similarity between two data sets forces their signatures to be similar. These
questions cannot be completely well formulated until one agrees on: (1) a notion of
equality between data sets, and (2) a notion of (dis)similarity between data sets.
The same questions arise for the continuous objects underlying the data, when such
objects exist.

Metric spaces and Gromov-Hausdorff distance. By regarding data sets as finite
metric spaces, one can use the Gromov-Hausdorff distance [144] as a measure of
dissimilarity between them. This distance generalizes the Hausdorff distance (4.1)
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134 7. SIGNATURES FOR METRIC SPACES

to pairs of sets sitting in different metric spaces, by reporting the smallest achievable
Hausdorff distance through simultaneous isometric embeddings of the sets into a
common space:

Definition 7.1. The Gromov-Hausdorff distance between two metric spaces
(X, dX) and (Y, dY ) is:

(7.1) dGH((X, dX), (Y, dY )) = inf
Z,γX ,γY

dZ
H(γX(X), γY (Y )),

where Z ranges over all metric spaces and γX , γY over all isometric embeddings of
X,Y into (Z, dZ), and where dZ

H denotes the Hausdorff distance in Z.

By endowing the considered data sets with different kinds of metrics, one ob-
tains a great deal of flexibility in the various degrees of invariance that can be
encoded in the measure of dissimilarity. For instance, for a point cloud sitting
in Rd, using the Euclidean metric makes the Gromov-Hausdorff distance invariant
under ambient rigid isometries. In contrast, using intrinsic metrics within the ob-
ject underlying the data makes the Gromov-Hausdorff distance blind to intrinsic
isometries of that object, such as when a same animal is represented in differ-
ent poses—see Figure 7.1. One can also combine intrinsic and extrinsic metrics
to increase the discriminating power of the signatures, as suggested by Bronstein,
Bronstein, and Kimmel [38] in the context of 3d shape comparison.

Figure 7.1. A database containing sixty 3d shapes divided into
six classes.
— Based on Sumner and Popović [229].

Once the finite metric space view on data sets has been adopted, the chal-
lenge is to be able to estimate the Gromov-Hausdorff distance between finite met-
ric spaces, either exactly or approximately. Since direct computation is notoriously
difficult, leading to hard combinatorial problems akin to the quadratic assignment
problem (which is NP hard), easily computable alternatives such as distances be-
tween signatures must be considered. The question becomes then to understand
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how a given family of signatures behaves under perturbations of the data in the
Gromov-Hausdorff distance. Formally, given such a family S together with a metric
d between the signatures, the goal is to evaluate how d relates to dGH, which means
working out tight bounds b, B : R+ → R+ such that the following inequalities

b(dGH((X, dX), (Y, dY ))) ≤ d(s(X, dX), s(Y, dY )) ≤ B(dGH((X, dX), (Y, dY )))

hold for any finite metric spaces (X, dX) and (Y, dY ) and any signature s ∈ S.
Intuitively, the lower bound b measures the discriminative power of the signatures,
while the upper bound B measures their stability. Ideally, a positive b and a finite B
would be desired, to guarantee that replacing the metric spaces by their signatures
is harmless. However such guarantees remain generally out of reach, so it is common
to reduce one’s expectations and merely ask that B be finite (in fact linear), so the
signatures are at least guaranteed to be stable.

Persistence based signatures. In this context, persistence provides a theoreti-
cally sound way of devising signatures for finite metric spaces that are stable with
respect to Gromov-Hausdorff perturbations of the spaces. This approach was first
investigated in the context of size theory [96, 97], exclusively for 0-dimensional ho-
mology and for a restricted class of metric space transformations. The modern view
of persistence makes it possible to generalize the approach to higher-dimensional
homology and arbitrary transformations of the metric spaces. This new line of work
was initiated by Carlsson et al. [47].

The ideas guiding the construction of persistence based signatures come from
the work on topological inference presented in Chapters 4 and 5. When the consid-
ered data set X is a finite point cloud sampled from a compact set K in Euclidean
space, the Euclidean distance to X is known to approximate the distance to K.
Then, the persistence diagram of the distance to X serves as a proxy for the one
of the distance to K. This is a very specific instance of our problem, in which two
metric spaces—X and K— that are nearby in the (Gromov-)Hausdorff distance
have nearby signatures—their persistence diagrams—in the bottleneck distance.

For a general finite metric space (X, dX), the lack of a proper ambient space
makes the persistence diagram of the distance function meaningless. However, we
can still use some of the combinatorial constructions from Chapter 5 instead, in
particular the Rips filtration, whose definition depends on the metric put on X
but not on the ambient space from which this metric is induced. It turns out that
the Rips construction can be adapted to arbitrary metric spaces, whether finite or
infinite. Furthermore, so do the constructions of the Čech and witness filtrations.
Thus, their persistence diagrams, whenever defined, can be used as signatures for
general metric spaces. This is the subject of Section 1.

Stability. Persistence based signatures can be proven stable with respect to
perturbations of the metric spaces in the Gromov-Hausdorff distance. This result
is a direct consequence of the stability part of the Isometry Theorem 3.1 once
an appropriate interleaving between filtrations has been worked out. This is the
subject of Sections 2 and 3. Note that deriving stability results for a general class of
metric spaces and not just finite spaces is useful in applications, e.g. to guarantee
that the signatures computed from finite samplings of a continuous space (e.g. a
3d shape) are meaningful in the sense that they approximate the signatures of that
space.
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136 7. SIGNATURES FOR METRIC SPACES

Interestingly enough, the proof of stability in the case where the space (X, dX)
is finite is simple and has a nice geometric interpretation. In the general case
however, the proof has a more combinatorial flavor and requires a condition of total
boundedness on (X, dX). This means that, for every ε > 0, (X, dX) admits a finite
ε-sample, i.e. a finite subset Pε such that dH(Pε, X) ≤ ε. In particular, every
compact metric space is totally bounded. Such spaces are approximable at every
resolution by finite metric spaces, which explains their good behavior with respect
to persistence. Beyond this class of spaces, the persistence based signatures can
behave wildly, as we will see in Section 3.3.

These stability results have close connections to the line of work initiated
by Hausmann [154], whose aim is to study the properties of single Rips complexes
on various types of metric spaces. When (X, dX) is a closed Riemannian manifold,
Hausmann [154] proved that if i > 0 is sufficiently small then the Rips complex of
X of parameter i is homotopy equivalent to X. This result was later generalized
by Latschev [175], who proved that if (Y, dY ) is sufficiently close to (X, dX) in the
Gromov-Hausdorff distance, then there exists i > 0 such that the Rips complex
of Y of parameter i is homotopy equivalent to X. Recently, Attali, Lieutier, and
Salinas [9] adapted these results to a class of sufficiently regular compact subsets of
Euclidean spaces. For larger classes of compact subsets of Riemannian manifolds,
the homology and homotopy of such sets are encoded in nested pairs of Rips com-
plexes as we saw in Chapter 5, yet it remains still open whether or not a single
Rips complex can carry this topological information.

Metric spaces equipped with functions. The construction of persistence based
signatures extends naturally to metric spaces equipped with functions, without any
extra conditions on the spaces. The previous stability guarantees adapt as well,
under an extended notion of Gromov-Hausdorff distance. This is the subject of
Section 4.

Computing the signatures. As we saw in Chapter 5, the full computation of
Rips or Čech or witness filtrations becomes quickly intractable in practice. Fortu-
nately, there are ways to reduce the computational cost significantly, at the price
of a (controlled) degradation in the quality of the signatures. Section 5 presents
two such ways: one is based on truncating the filtrations (which means computing
simplified signatures), the other is based on building sparsified yet interleaved filtra-
tions (which means computing approximate signatures). In both cases the stability
properties of the signatures are maintained.

Prerequisites. Most of the material used in the chapter comes from Part 1. We
will be assuming familiarity with simplicial complexes, simplicial maps, and the
concept of contiguity between such maps—see Chapter 1 of [202] for an introduction
to these topics.

A concrete example. Before diving into the technical details, and as an appe-
tizer for the reader, let us give an example of application of the persistence based
signatures to shape classification. This example comes from [58].

Figure 7.2 shows a few toy shapes and some approximations to their persistence
based signatures, computed from uniform samplings. Several interesting observa-
tions can be made:
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Figure 7.2. Some toy examples, from left to right: the unit circle,
a helical curve of same length 2π drawn on a torus, the unit sphere,
an ellipsoid whose smallest equatorial ellipse has same length 2π as
the equator of the sphere. On each shape, a uniform 0.0125-sample
has been generated, on top of which various Rips filtrations have
been constructed using different metrics and functions: geodesic
distance and no function (second row), Euclidean distance and
no function (third row), Euclidean distance and 0.2 times the ec-
centricity (fourth row). The corresponding persistence diagrams
are presented in rows 2 through 4, with 0-dimensional features
marked as blue points, 1-dimensional features as red points, and
2-dimensional features as green points.
— From Chazal et al. [58].

• The first two shapes (circle and helicoidal curve on a torus) have the same
length and are therefore intrinsically isometric. As a result, signatures
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138 7. SIGNATURES FOR METRIC SPACES

obtained from geodesic distances are identical whereas signatures based
on Euclidean distances differ. This illustrates the importance of the choice
of metric in practice.

• All the shapes have been ε-sampled for a same value ε, therefore all the
zero-dimensional diagrams look the same in rows 2 and 3. Discrimination
between the shapes is made possible by the higher-dimensional diagrams,
which illustrates the advantage of using persistence over size theory.

• The sphere and ellipsoid cannot be discriminated using their Rips fil-
trations alone, because their diagrams are the same up to rescaling and
small noise (rows 2 and 3). By equipping the shapes with functions such
as the eccentricity, and by computing the corresponding signatures, we
can discriminate between the two shapes. The reason is that the 1- and
2-dimensional diagrams of the ellipsoid are significantly affected by the
eccentricity, whereas the ones for the sphere hardly change due to the
eccentricity being constant over it (row 4).

Let us now turn to a real shape classification problem. The input is the database
of triangulated shapes shown in Figure 7.1. This is an excerpt from the full database
gathered by Sumner and Popović [229]. It comprises 60 shapes from six different
classes: camel, cat, elephant, face, head and horse. Each class contains 10
different poses of the same shape. These poses are richer than just rigid isometries.
The number of vertices in the models ranges from 7K to 30K.

Let us normalize each model Xi and equip it with an approximation di of its
geodesic distance, computed using Dijkstra’s algorithm on the 1-skeleton graph of
the mesh1. Let us then compute a persistence based signature for the metric space
(Xi, di) using a truncated Rips filtration. The signatures are compared against one
another in the bottleneck distance. The resulting distance matrix M is shown in
Figure 7.3 (left). In order to evaluate the discriminative power contained in M , let
us consider a classification task as follows: we randomly select one shape from each
class, form a training set T and use it for performing 1-nearest neighbor classifica-
tion (where nearest is with respect to the metric defined by M) on the remaining
shapes. By simple comparison between the class predicted by the classifier and the
actual class to which the shape belongs, we obtain an estimate of the probability
Pe(M) of mis-classification. We repeat this procedure for 2K random choices of
the training set. Using the same randomized procedure we obtain an estimate of
the confusion matrix for this problem, whose entry (i, j) is the probability that the
classifier will assign class j to a shape when the actual class is i — see Figure 7.3
(center). We obtain Pe(M) = 2%. As Figure 7.3 (right) shows, the classes are well
separated in signature space, which explains the low mis-classification probability.

1. Simplicial filtrations for arbitrary metric spaces

We need to extend the simplicial filtrations introduced in Chapters 4 and 5
to arbitrary metric spaces, so that we can use their persistence diagrams (when-
ever defined) as signatures. Throughout the section the metric space (X, dX) is
arbitrary.

1In this particular application we take advantage of the fact that a mesh is available for each
of the shapes. In full generality, it can be replaced by some neighborhood graph in the ambient
Euclidean metric, with similar guarantees.
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Figure 7.3. Left: estimate of the Gromov-Gausdorff distance
computed on the database of Figure 7.1. Center: estimated con-
fusion matrix for the 1-nearest neighbor classification problem.
Right: MDS plot of the matrix M with labels corresponding to
each class. The overall error is estimated to be 2%.
— From Chazal et al. [58].

1.1. (Vietoris-)Rips filtration. For i ∈ R, we define a simplicial complex
Ri(X, dX) on the vertex set X by the following condition:

σ ∈ Ri(X, dX) ⇔ dX(x, y) ≤ i for all x, y ∈ σ.

Note that Ri(X, dX) is empty for i < 0 and consists of the vertex set X alone for
i = 0. There is a natural inclusion Ri(X, dX) ⊆ Rj(X, dX) whenever i ≤ j. Thus,
the simplicial complexes Ri(X, dX) together with these inclusion maps define a
simplicial filtration R(X, dX) with vertex set X, called the (Vietoris-)Rips filtration
of (X, dX).

1.2. Ambient and intrinsic Čech filtrations. Let L,W be subsets (‘land-
marks’ and ‘witnesses’) of X. For i ∈ R, consider the complex with vertices L and
simplices determined by:

σ ∈ Ci(L,W, dX) ⇔ ∃w ∈ W such that dX(w, l) ≤ i for all l ∈ σ.

The resulting simplicial filtration is denoted by C(L,W, dX) and called the ambient
Čech filtration. The intrinsic Čech filtration of (X, dX) is C(X,X, dX), also denoted
by C(X, dX) for simplicity.

1.3. Witness filtration. Let L,W be once again subsets of X. For any finite
subset σ ⊆ L, and any w ∈ W and i ∈ R, we say that w is an i-witness for the
simplex σ if

dX(w, l) ≤ dX(w, l′) + i for all l ∈ σ and l′ ∈ L \ σ.

We can then define for any i ∈ R a simplicial complex Wi(L,W, dX) by

σ ∈ Wi(L,W, dX) ⇔ ∀τ ⊆ σ, ∃w ∈ W such that w is an i-witness for τ .

An i-witness is obviously a j-witness for any j ≥ i, so there is a natural inclusion
Wi(L,W, dX) ⊆ Wj(L,W, dX). The simplicial complexes Wi(L,W, dX) together
with these inclusion maps define a simplicial filtration W(L,W, dX) with vertex set
L, called the witness filtration. Note that this filtration has nontrivial behaviour
for i < 0, unlike the Rips and Čech filtrations.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



140 7. SIGNATURES FOR METRIC SPACES

(X, dX)

(Y, dY )

(Z, dZ)

γX

γY

γX(X) ∪ γY (Y )

(R|X|+|Y |, l∞)

�Z

�Z

γ

Figure 7.4. Overview of the proof of Theorem 7.2. The input
metric spaces (X, dX) and (Y, dY ) are mapped isometrically to
a common space (Z, dZ), then to (R|X|+|Y |, 
∞) by Lemma 7.3.
There, the point sets are Hausdorff close, therefore their distance
functions are close in the supremum norm, and their persistence
diagrams are close in the bottleneck distance. These diagrams are
also the ones of the nerves of the unions of 
∞-balls that form the
sublevel sets of the distance functions. These nerves happen to be
also Rips complexes, by Lemma 7.4.

2. Stability for finite metric spaces

In the special case of finite metric spaces, the proof of stability for Rips based
signatures is simple and has a nice geometric interpretation—illustrated in Fig-
ure 7.4. We therefore reproduce it in full extent below. Signatures based on Čech
or witness filtrations enjoy similar guarantees, however their analysis turns out to
be more subtle. This is somehow related to the way they interact with the ambient
space, as appears from Section 1. The only stability proofs for these signatures that
we are aware of use the machinery developed in Section 3 for more general metric
spaces, so let us defer their treatment until then.

Theorem 7.2. For any finite metric spaces (X, dX) and (Y, dY ),

(7.2) db (dgm(R(X, dX)), dgm(R(Y, dY ))) ≤ 2 dGH ((X, dX), (Y, dY )) .

The proof relies on the following well-known embedding for finite metric spaces—
see e.g. example 3.5.3 and exercise 3.5.4 in [44]:

Lemma 7.3. Any finite metric space of cardinality n can be isometrically em-
bedded into (Rn, 
∞).

The proof of Theorem 7.2 relies also on a remarkable equality between the Čech
and Rips filtrations of subsets of (Rn, 
∞). This equality holds up to a rescaling
of the Rips parameter by a factor of 2, and it is to be compared with the tight
interleaving (5.4) obtained in the 
2-norm:

Lemma 7.4 (Ghrist and Muhammad [140]). For any X ⊆ Rn and i ∈ R,

Ci(X,Rn, 
∞) = R2i(X, 
∞).

Proof of Theorem 7.2—see Figure 7.4 for a pictorial overview.

Let ε > dGH((X, dX), (Y, dY )). By Definition 7.1, there is a metric space (Z, dZ)
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2. STABILITY FOR FINITE METRIC SPACES 141

and two isometric embeddings γX : X → Z and γY : Y → Z such that

dZ
H(γX(X), γY (Y )) ≤ ε.

Equip the subset γX(X) � γY (Y ) with the induced metric dZ . This new metric
space is finite, therefore it can be embedded isometrically into (Rn, 
∞), where
n = |X|+ |Y |, by Lemma 7.3. Let γ be the isometric embedding. We then have

dR
n

H (γ ◦ γX(X), γ ◦ γY (Y )) = dZ
H(γX(X), γY (Y )) ≤ ε.

Hence, inside (Rn, 
∞), the distance function δX to γ ◦ γX(X) and the distance
function δY to γ ◦ γY (Y ) are ε-close in the supremum norm, so their sublevel-
sets filtrations are ε-interleaved in the sense of (3.3). Moreover, they are q-tame
by Proposition 2.3 (ii), therefore their persistence diagrams are well-defined. The
stability part of the Isometry Theorem 3.1 implies then that

(7.3) db(dgm(δX), dgm(δY )) ≤ ε.

Now, for all i ∈ R, the i-sublevel set of δX is the union of the closed 
∞-balls of
same radius i about the points of γ ◦ γX(X). Since 
∞-balls are hypercubes, they
are convex and therefore their intersections are either empty or contractible. Hence,
the Persistent Nerve Lemma 4.12 applies2 and ensures that

(7.4)
dgm(δX) = dgm (C(γ ◦ γX(X),Rn, 
∞)) ,

dgm(δY ) = dgm (C(γ ◦ γY (Y ),Rn, 
∞)) .

In addition, Lemma 7.4 guarantees that

(7.5)
C(γ ◦ γX(X),Rn, 
∞) = R̄(γ ◦ γX(X), 
∞),

C(γ ◦ γY (Y ),Rn, 
∞) = R̄(γ ◦ γY (Y ), 
∞),

where R̄ denotes the Rips filtration with indices rescaled by a factor of 2. The
rescaling implies

db(dgm(R(γ ◦ γX(X), 
∞)), dgm(R(γ ◦ γY (Y ), 
∞))) =

2 db(dgm(R̄(γ ◦ γX(X), 
∞)), dgm(R̄(γ ◦ γY (Y ), 
∞))).
(7.6)

Finally, since γ ◦ γX and γ ◦ γY are isometric embeddings, we have

(7.7) R(γ ◦ γX(X), 
∞) = R(X, dX) and R(γ ◦ γY (Y ), 
∞) = R(Y, dY ).

Combining (7.3) through (7.7) together, we obtain

db (dgm(R(X, dX)), dgm(R(Y, dY ))) ≤ 2ε.

Since ε was chosen greater than dGH((X, dX), (Y, dY )) but arbitrarily close to it in
the first place, we conclude that

db (dgm(R(X, dX)), dgm(R(Y, dY ))) ≤ 2 dGH ((X, dX), (Y, dY ))

as desired. �
Let us emphasize that the lower bound on the Gromov-Hausdorff distance given

in (7.2) is worst-case tight. For instance, take for X a set of two points at distance
2 and for Y a set of two points at distance 2 + 2ε. Then, (X, dX) and (Y, dY )
can be isometrically embedded into the real line, with X mapped to {0, 2} and Y
mapped to {−ε, 2 + ε}, which shows that their Gromov-Hausdorff distance is at

2The conditions under which this lemma applies to closed covers are satisfied here, since
nonempty intersections of hypercubes are convex and therefore neighborhood retracts in Rn.
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most ε. Now, the persistence diagram of the Rips filtration of (X, dX) is made
of two points, namely (0,+∞) and (0, 2), while the persistence diagram of the
Rips filtration of (Y, dY ) is made of (0,+∞) and (0, 2 + 2ε), hence their bottleneck
distance is 2ε.

3. Stability for totally bounded metric spaces

Theorem 7.2 extends to totally bounded metric spaces as follows. The worst-
case tightness of the bound in (7.8) follows from the one in (7.2).

Theorem 7.5. For any totally bounded metric spaces (X, dX) and (Y, dY ), the
Rips filtrations R(X, dX) and R(Y, dY ) are q-tame, and

(7.8) db (dgm(R(X, dX)), dgm(R(Y, dY ))) ≤ 2 dGH ((X, dX), (Y, dY )) .

The proof is more elaborate than in the finite case, however it better empha-
sizes the mechanisms at work, therefore we also include it here3. It relies on a
different but equivalent definition of the Gromov-Hausdorff distance, introduced
in Section 3.1 and based on correspondences between metric spaces. The concept
of a correspondence leads quite naturally to an interleaving between Rips filtra-
tions that holds in a remarkably general setting, as shown in Section 3.2. One
can obtain (7.8) as an immediate consequence of that interleaving provided that
the persistence diagrams of the Rips filtrations are well-defined. It is indeed not
always the case, but at least for totally bounded metric spaces it is, as shown in
Section 3.3. The analysis can be extended to work with signatures based on Čech
and witness filtrations, as discussed in Section 3.4.

3.1. Gromov-Hausdorff distance via correspondences. Correspondences
are best explained through the concept of multivalued maps.

Multivalued maps. In short, a multivalued map is a ‘one-to-many’ function.

Definition 7.6. A multivalued map C : X ⇒ Y from a set X to a set Y is
a subset of X × Y , also denoted C, that projects surjectively onto X through the
canonical projection πX : X × Y → X. The image C(σ) of a subset σ of X is the
canonical projection of π−1

X (σ) onto Y .

A (single-valued) map f from X to Y is subordinate to C if we have (x, f(x)) ∈
C for every x ∈ X. In that case we write f : X

C→ Y . The composition of two
multivalued maps C : X ⇒ Y and D : Y ⇒ Z is the multivalued map D◦C : X ⇒ Z
defined by:

(x, z) ∈ D ◦ C ⇔ ∃y ∈ Y such that (x, y) ∈ C and (y, z) ∈ D.

The transpose of C, denoted CT , is the image of C through the symmetry map
(x, y) �→ (y, x). Although CT is well-defined as a subset of Y ×X, it is not always
a multivalued map because it may not project surjectively onto Y .

3The uncomfortable reader may safely skip Sections 3.2 and 3.3.
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Correspondences. These are multivalued maps whose graph projects surjec-
tively onto the codomain.

Definition 7.7. A multivalued map C : X ⇒ Y is a correspondence if the
canonical projection C → Y is surjective, or equivalently, if CT is also a multivalued
map.

We immediately deduce, if C is a correspondence, that the identity maps 1X

and 1Y are subordinate respectively to the compositions CT ◦ C and C ◦ CT :

(7.9) 1X : X
CT ◦C �� X , 1Y : Y

C◦CT
�� Y .

Gromov-Hausdorff distance. Given two metric spaces (X, dX), (Y, dY ), the
metric distortion induced by a correspondence C : X ⇒ Y is defined as the quantity

(7.10) distm(C) = sup
(x,y),(x′,y′)∈C

|dX(x, x′)− dY (y, y′)|.

The Gromov-Hausdorff distance dGH((X, dX), (Y, dY )) is then defined as half the
smallest possible metric distortion induced by correspondences X ⇒ Y :

(7.11) dGH((X, dX), (Y, dY )) =
1

2
inf

C:X⇒Y
distm(C).

This quantity is known to be equivalent to (7.1)—see e.g. Theorem 7.3.25 in [44].

3.2. Interleavings. The key to proving Theorem 7.5 is the following bound
on the interleaving distance, which holds for general metric spaces:

Proposition 7.8. For any metric spaces (X, dX) and (Y, dY ),

di (H∗(R(X, dX)), H∗(R(Y, dY ))) ≤ 2 dGH ((X, dX), (Y, dY )) ,

where di denotes the interleaving distance from Chapter 3.

Proof. Given any ε > 2 dGH ((X, dX), (Y, dY )), let C : X ⇒ Y be a corre-
spondence such that distm(C) ≤ ε. Then, it follows easily from (7.10) that any

choice of subordinate map f : X
C→ Y induces a simplicial map Ri(X, dX) →

Ri+ε(Y, dY ) at each i ∈ R, and that these maps commute with the inclusions
Ri(X, dX) ↪→ Rj(X, dX) and Ri+ε(Y, dY ) ↪→ Rj+ε(Y, dY ) for all i ≤ j. Thus, f
induces a degree-ε morphism φ ∈ Homε(H∗(R(X, dX)),H∗(R(Y, dY ))) as per (3.4).

Now, any two subordinate maps f1, f2 : X
C→ Y induce simplicial maps

Ri(X, dX) → Ri+ε(Y, dY ) that are contiguous for all i ∈ R, therefore their in-
duced degree-ε morphisms φ1, φ2 are equal [202, theorems. 12.4 and 12.5]. Thus,
the correspondence C induces a canonical degree-ε morphism

φ ∈ Homε(H∗(R(X, dX)),H∗(R(Y, dY ))).

In the same way, its transpose CT induces another canonical degree-ε morphism

ψ ∈ Homε(H∗(R(Y, dY )),H∗(R(X, dX))).

The compositions CT ◦ C and C ◦ CT induce then respectively

ψ ◦ φ ∈ Hom2ε(H∗(R(X, dX)),H∗(R(X, dX))) and

φ ◦ ψ ∈ Hom2ε(H∗(R(Y, dY )),H∗(R(Y, dY ))),
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which, by (7.9), are equal respectively to the 2ε-shift morphisms 12ε
H∗(R(X,dX)) and

12ε
H∗(R(Y,dY )). Hence, H∗(R(X, dX)) and H∗(R(Y, dY )) are ε-interleaved as per Def-

inition 3.3 (rephrased). Since ε was chosen greater than 2 dGH ((X, dX), (Y, dY ))
but arbitrarily close to it in the first place, the conclusion of the proposition fol-
lows. �

3.3. Tameness of the Rips filtration. With Proposition 7.8 at hand, prov-
ing Theorem 7.5 becomes merely a matter of showing that the Rips filtrations are
q-tame (see below), then applying the stability part of the Isometry Theorem 3.1.

Proposition 7.9. The Rips filtration of a totally bounded metric space is al-
ways q-tame.

Proof. Let (X, dX) be a totally bounded metric space. We must show that

the linear map vji : H∗(Ri(X, dX)) → H∗(Rj(X, dX)) induced by the inclusion

Ri(X, dX) ↪→ Rj(X, dX) has finite rank whenever i < j. Let ε = j−i
2 > 0. Since X

is totally bounded, there exists a finite ε
2 -sample P of X. The set

C =
{
(x, p) ∈ X × P | dX(x, p) ≤ ε

2

}
is then the graph of a correspondence of metric distortion at most ε, so Proposi-
tion 7.8 guarantees that there exists an ε-interleaving between H∗(R(X, dX)) and

H∗(R(P, dX)). Using the interleaving maps, vji factorizes as

H∗(Ri(X, dX)) → H∗(Ri+ε(P, dX)) → H∗(Ri+2ε(X, dX)) = H∗(Rj(X, dX)).

The second space in the sequence is finite-dimensional since Ri+ε(P, dX) is a finite

simplicial complex. Therefore, vji has finite rank. �

Note that q-tameness is the best one can hope for on totally bounded metric
spaces. Indeed, it is easy to construct an example of a compact metric space (X, dX)
such that the homology group H1(R1(X, dX)) has an infinite (even uncountable)
dimension. For instance, consider the union X of two parallel segments in R2

defined by

X = {(x, 0) ∈ R2 | x ∈ [0, 1]} ∪ {(x, 1) ∈ R2 | x ∈ [0, 1]}
and equipped with the Euclidean metric. Then, for any x ∈ [0, 1], the edge
ex = [(x, 0), (x, 1)] belongs to R1(X, dX) but there is no triangle in R1(X, dX)
that contains ex in its boundary. As a consequence, for x ∈ (0, 1] the cycles
γx = [(0, 0), (x, 0)]+ex+[(x, 1), (0, 1)]−e0 are not homologous to 0 and are linearly
independent in H1(R1(X, dX)). Thus, H1(R1(X, dX)) has uncountable dimension.
Note that 1 is the only value of the Rips parameter i for which the homology group
H1(Ri(X, dX)) fails to be finite-dimensional in this example. In fact, it is possible
to construct examples of compact metric spaces on which the set of ‘bad’ values
is arbitrarily large, even though the filtration itself remains q-tame by virtue of
Proposition 7.9—see [64] for such an example.

When the space (X, dX) is not totally bounded, the Rips filtration can behave
wildly, in particular it may cease to be q-tame. For instance, take the space

X = {y2 | y ∈ N} ⊂ N

equipped with the absolute-value metric. Then, for any i ≥ 0, the points x ∈ X such

that x ≥
(
i+1
2

)2
form independent connected components in Ri(X, dX). Hence, all
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3. STABILITY FOR TOTALLY BOUNDED METRIC SPACES 145

the linear maps in the persistence module H0(R(X, dX)) have infinite rank beyond
index i = 0.

3.4. Extension to Čech and witness based signatures. Theorem 7.5 ex-
tends to Čech and witness filtrations in a fairly straightforward manner. The proof
of q-tameness (Proposition 7.9) is in fact the same, while the proof of ε-interleaving
(Proposition 7.8) is roughly the same except that the initial step is slightly more
subtle. This step claims that any linear map subordinate to a correspondence
C : X ⇒ Y of metric distortion at most ε induces a simplicial map between the
complexes considered. While this is obvious for Rips filtrations, it is somewhat
less so for Čech and witness filtrations, even though the proof still relies on simple
applications of the triangle inequality. Let us refer the reader to [64] for the details,
and state the results without proofs:

Theorem 7.10. Let (X, dX) and (Y, dY ) be totally bounded metric spaces, and
let L,L′,W,W ′ ⊆ X. Then,

(i) The intrinsic Čech filtrations C(X, dX) and C(Y, dY ) are q-tame, and

db (dgm(C(X, dX)), dgm(C(Y, dY ))) ≤ 2 dGH ((X, dX), (Y, dY )) .

(ii) The ambient Čech filtrations C(L,W, dX) and C(L′,W ′, dX) are q-tame,
and

db (dgm(C(L,W, dX)), dgm(C(L′,W ′, dX))) ≤ dH(L,L′) + dH(W,W ′).

(iii) The witness filtrations W(L,W, dX) and W(L,W ′, dX) are q-tame, and

db (dgm(W(L,W, dX)), dgm(W(L,W ′, dX))) ≤ 2 dH(W,W ′).

It is worth pointing out that (ii) is well known in the special case where L,L′ ⊆
W = W ′ = X = Rn. The usual argument is based on the Nerve Lemma, as in
the proof of Theorem 7.2, so it relies on the local topological properties of finite-
dimensional normed vector spaces and does not work in general. The above result
shows that the dependence on the Nerve Lemma is in fact not necessary.

Let us also emphasize that L = L′ in (iii). There is indeed no equivalent of (ii)
for witness complexes, as the persistent homology of witness filtrations turns out
to be unstable with respect to perturbations of the set of landmarks, even if the
set of witnesses is constrained to stay fixed (W = W ′). Here is a counterexample.
On the real line, consider the sets W = L = {0, 1} and L′ = {−δ, 0, 1, 1+ δ}, where
δ ∈ (0, 12 ) is arbitrary. Then,

Wi(L,W, 
2) = {[0], [1], [0, 1]}

for all i ≥ 0, whereas

Wi(L
′,W, 
2) = {[−δ], [0], [1], [1 + δ], [−δ, 0], [1, 1 + δ]}

for all i ∈ [δ, 1 − δ). Thus, H∗(W(L,W, 
2)) and H∗(W(L′,W, 
2)) are not ε-
interleaved for any ε < 1 − 2δ, whereas dH(L,L′) = δ can be made arbitrarily
small compared to 1− 2δ. Note that the set of witnesses is fairly sparse compared
to the set of landmarks in this example. This raises several interesting questions,
such as whether densifying W (e.g. taking the full real line) would allow us to
regain some stability.
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146 7. SIGNATURES FOR METRIC SPACES

4. Signatures for metric spaces equipped with functions

The previous stability results extend to metric spaces equipped with real-valued
functions. The corresponding metric is the following. Given two metric spaces
(X, dX) and (Y, dY ), equipped respectively with functions fX : X → R and fY :
Y → R, the functional distortion induced by a correspondence C : X ⇒ Y is
defined as the quantity

distf(C) = sup
(x,y)∈C

|fX(x)− fY (y)|.

The Gromov-Hausdorff distance adapts naturally to this new setting:

(7.12) dGH((X, dX , fX), (Y, dY , fY )) =
1

2
inf

C:X⇒Y
max{distm(C), distf(C)}.

Note that we recover the usual Gromov-Hausdorff distance when fX and fY are
equal constant functions (say zero). The Rips based signature for (X, dX) is
modified as follows for (X, dX , fX): consider the family of simplicial complexes
Ri(f

−1
X ((−∞, i]), dX) for i ranging over R, call this family R(X, dX , fX), and use

its persistence diagram as signature. In view of (7.11)-(7.12), the proof of Propo-
sition 7.8 adapts in a straightforward manner, so we get an interleaving between
the modules H∗(R(X, dX , fX)) and H∗(R(Y, dY , fY )). Moreover, under the extra
condition that the real-valued functions fX , fY are Lipschitz continuous, the proof
of Proposition 7.9 also goes through, proving that the two modules are q-tame.
Hence4,

Theorem 7.11. Let (X, dX) and (Y, dY ) be totally bounded metric spaces,
equipped with functions fX : X → R and fY : Y → R. Then,

di (R(X, dX , fX), R(Y, dY , fY )) ≤ 2 dGH ((X, dX , fX), (Y, dY , fY )) .

Moreover, if fX and fY are Lipschitz continuous, then the modules are q-tame, so

db (dgm(R(X, dX , fX)), dgm(R(Y, dY , fY ))) ≤ 2 dGH ((X, dX , fX), (Y, dY , fY )) .

The Čech and witness based signatures adapt in the same way, with similar
stability guarantees.

5. Computations

Given a finite metric space (X, dX) with n points, the goal is to compute the
signatures from the previous sections efficiently. We will restrict the focus to the
Rips based signature dgm(R(X, dX)), as the challenges and solutions for the other
signatures are similar.

We know from Section 2 of Chapter 5 that the Rips filtration contains 2n sim-
plices in total, so building it explicitly requires at least 2n operations and therefore
becomes quickly intractable in practice. There are two ways around this issue:
first, one may compute only a fraction of the signature by truncating the filtration;
second, one may compute an approximation of the signature by building a sparser
yet interleaved filtration. In both cases we seek theoretical guarantees: in the first
case, we want to maintain the stability properties of the signatures; in the second
case, we want to control the approximation error.

4Theorem 7.5 can be viewed as a special case of Theorem 7.11 in which fX = fY = 0.
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5.1. Partial persistence diagrams via truncated filtrations. Let us start
with the truncation strategy, which was introduced formally by Chazal et al. [58].
We will present it in full generality first, then we will specialize it to the case of
the Rips filtration. Given a space F and a filtration F = {Ft}t∈R of that space,
whose persistence diagram is well-defined, we wish to truncate F at a prescribed
parameter value t = t0. The naive way is as follows:

(7.13) ∀t ∈ R, F
t0

t =

{
Ft if t < t0,

Ft0 if t ≥ t0.

Unfortunately, the resulting filtration F
t0

= {F
t0

t }t∈R does not retain the stability
properties of the original filtration F . Indeed, the points of dgm(F) that lie just

above the line y = t0 are projected vertically at infinity in dgm(F
t0

), whereas small

∞-perturbations may fall right below the line y = t0 and therefore stay in place
after the truncation. We therefore modify the truncation as follows:

(7.14) ∀t ∈ R, F
t0
t =

{
Ft if t < t0,

F if t ≥ t0.

Let F t0
= {F t0

t }t∈R be the resulting filtration. The effect of the new truncation is to
project the persistence diagram of F as follows—see Figure 7.5 for an illustration:

t0

t0

∞

Figure 7.5. Effect of truncating a filtration as per (7.14) on its
persistence diagram.
— From Chazal et al. [58].

Lemma 7.12. There is a matching γ : dgm(F) → dgm(F t0
) such that:

• the restriction of γ to the lower-left quadrant (−∞, t0] × (−∞, t0] is the
identity;

• the restriction of γ to the upper-left quadrant (−∞, t0] × (t0,+∞) is the
vertical projection onto the line y = t0;

• the restriction of γ to the line y = +∞ is the leftward horizontal projection
onto the half-line (−∞, t0] × {+∞};

• finally, the restriction of γ to the half-plane (t0,+∞)×R is the projection
onto the diagonal point (t0, t0).
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148 7. SIGNATURES FOR METRIC SPACES

Since the projection is non-expansive in the bottleneck distance, for any filtered
spaces (F,F) and (G,G) as above we have:

(7.15) db(dgm(F t0
), dgm(Gt0

)) ≤ db(dgm(F), dgm(G)).

This means that the stability results from the previous sections still hold when the
filtrations are replaced by their truncated versions as per (7.14).

In the special case where F is the Rips filtration of a finite metric space (X, dX),

Lemma 7.12 provides a way of computing dgm(Rt0
(X, dX)) without building the

Rips filtration R(X, dX) entirely. This is not obvious, as the definition of the
truncation in (7.14) involves the full simplex over the point set X. The fact is, the
full simplex has trivial reduced homology, therefore the Rips filtration R(X, dX) has
only one essential homology class [c], easily identified as the connected component

created by one of the points of X (chosen arbitrarily). Then, dgm(Rt0
(X, dX)) is

obtained by (1) computing the naive truncated filtration R
t0

(X, dX) as per (7.13),
and (2) projecting its persistence diagram (except the point corresponding to [c])
onto the lower-left quadrant (−∞, t0] × (−∞, t0] as described in Lemma 7.12 and
depicted in Figure 7.5. The overall running time of the procedure is of the same

order as the time needed to compute R
t0

(X, dX), which of course depends on the
choice of threshold t0 but diminishes (eventually becoming linear in the number of
points in X) as t0 gets closer to 0. The price to pay is that the signature becomes
less informative as t0 decreases.

5.2. Approximate persistence diagrams via sparse filtrations. Let us
now focus on the approximation strategy. We will present a sparsification technique
that turns the entire Rips filtration R(X, dX) into a linear-sized filtration, with a
control over the bottleneck distance between the persistence diagrams of the two
filtrations. This strategy was introduced by Sheehy [221] and has since inspired
other contributions [107], including the Rips zigzags from Chapter 5.

The intuition underlying the sparse Rips construction is best described in terms
of unions of balls. Suppose X is a finite point set in Rd, equipped with the Euclidean
distance. Assume our target object is the persistence diagram of the ambient Čech
filtration. By the Persistent Nerve Lemma 4.12, this diagram is the same as the
one of the offsets filtration X .

The principle governing the sparsification is to remove the balls one by one
from the offset Xt =

⋃
x∈X B(x, t) as parameter t increases towards infinity. A

simple criterion to remove a ball B(x, t) safely is to make sure that it is covered
by the other balls. Indeed, in this case the union stays the same after the removal,
so the inclusion map

⋃
y∈X\{x} B(y, t) ↪→

⋃
y∈X B(y, t) = Xt is the identity and

therefore induces an isomorphism at the homology level.
The problem with this criterion is that some balls may never get covered by

the others. In fact, the top row in Figure 7.6 shows a simple example where none
of the balls ever gets covered by the other ones, so the sparsification process does
nothing. The fix consists in perturbing the metric in such a way that the balls that
contribute little to the union eventually get covered by the other ones, as illustrated
in the bottom row of Figure 7.6.

To describe the metric perturbation and the rest of the construction formally,
we now go back to the general setting of a finite metric space (X, dX). Let
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Figure 7.6. Top row: some points on a line. The ball centered at
the white point contributes little to the union of balls. Bottom row:
using the relaxed distance, the new ball is completely contained in
the union of the other balls. This property is key to allowing for
a safe removal of this ball without changing the topology of the
union.
— Reprinted from Sheehy [221]: “Linear-Size Approximations to the

Vietoris-Rips Filtration”, Discrete & Computational Geometry, 49(4):778–

796, c©2013, with kind permission from Springer Science and Business Media.

(x1, · · · , xn) be a total order on the points of X, and let Xi = {1, · · · , i} and
εi = dH(Xi, X) for i = 1, · · · , n. Given a target approximation error ε ∈ (0, 12 ),
we perturb the metric dX by incorporating additive weights that grow with the
filtration parameter t:

(7.16) ∀1 ≤ i, j ≤ n, dt
X(xi, xj) = dX(xi, xj) + st(xi) + st(xj),

where each weight st(xk) is defined by

st(xk) =

⎧⎪⎨
⎪⎩

0 if t ≤ εk−1

ε
1
2

(
t− εk−1

ε

)
if εk−1

ε ≤ t ≤ εk−1

ε(1−2ε)

εt if εk−1

ε(1−2ε) ≤ t

The weight function t �→ st(xk) is depicted in Figure 7.7. It is clearly 1
2 -Lipschitz,

nonnegative, and its effect on the metric is to take xk away from the other points
artificially, so its distance to the rest of the point set looks greater than it is in
reality. The consequence is that its metric balls in the perturbed metric are smaller
than the ones in the original metric, and the choice of parameters makes it so
that they get covered by the other balls eventually, following the intuition from
Figure 7.6.

εk−1
ε

εk−1

ε(1−2ε)
0

st(xk )

Figure 7.7. The additive weight function t �→ st(xk) associated
to point xk ∈ X.
— Reprinted from Sheehy [221]: “Linear-Size Approximations to the

Vietoris-Rips Filtration”, Discrete & Computational Geometry, 49(4):778–

796, c©2013, with kind permission from Springer Science and Business Media.
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150 7. SIGNATURES FOR METRIC SPACES

To simulate the ball growth and removal process in the discrete metric space
(X, dX), the sparse Rips construction relies on Rips complexes. Set ρ = 1

ε(1−2ε)

and consider the Morozov zigzag (M-ZZ) in the perturbed metric dt
X—recall the

definition of the M-ZZ from the top row in (5.11):

(7.17)

· · · Rρεi−1(Xi,d
ρεi−1

X ) Rρεi(Xi+1,d
ρεi
X ) · · ·

Rρεi−1(Xi−1,d
ρεi−1

X )

##���������

����������
Rρεi(Xi,d

ρεi
X )

##��������

����������
Rρεi+1(Xi+1,d

ρεi+1

X )

##��������

�����������

This construction is the combinatorial counterpart of the continuous ball growth
and removal process described previously. Specifically, growing the balls corre-
sponds to increasing the Rips parameter, while removing a ball from the union
corresponds to removing a vertex and its cofaces from the Rips complex. In order
to avoid actual simplex removals and keep a standard filtration, the sparse Rips
construction proceeds by merging the top row of (7.17), that is to say, for every
filtration parameter t > 0 it takes the union

St(X, dX , ε) = Rt(Xi, d
t
X) ∪

n⋃
j=i+1

Rρεj−1
(Xj , d

ρεj−1

X ),

where i ∈ {1, · · · , n} is the value such that5 t ∈ (ρεi, ρεi−1]. This is what we
call the sparse Rips complex of parameter t > 0. In the continuous setting, the
corresponding construction stops the growth of the balls at the time when they
should be removed from the union, instead of actually removing them. The effect
in terms of topological change is the same, while the size overhead remains under
control.

By convention we let S0(X, dX , ε) = X and St(X, dX , ε) = ∅ for t < 0. The
resulting indexed family S(X, dX , ε) = {St(X, dX , ε)}t∈R is called the sparse Rips
filtration. One can check that it is indeed a finite simplicial filtration6 on the point
set X. Assuming the order (x1, · · · , xn) on the points of X is obtained by furthest-
point sampling as in Definition 5.11, the same ball packing argument as the one
used in Section 3.2 of Chapter 5 to bound the total number of simplex insertions
in the M-ZZ allows us to get a linear bound on the size of S(X, dX , ε):

Theorem 7.13. Suppose (X, dX) has doubling dimension m and the order
(x1, · · · , xn) on the points of X is obtained by furthest-point sampling. Then, for
any k ≥ 0, the total number of k-simplices in the sparse Rips filtration S(X, dX , ε)

is at most
(
1
ε

)O(km)
n.

Remark. As pointed out at the end of Section 3.1 in Chapter 5, it takes
quadratic time to compute a furthest-point sampling order naively. However, near
linear-time approximations like net-trees [149] can be used instead, with roughly
the same size complexity and approximation guarantees.

Concerning now the approximation properties of the sparse Rips filtration,
there is an O(ε)-proximity between the logscale persistence diagrams of R(X, dX)
and S(X, dX , ε). The proof proceeds by working out an explicit multiplicative

5By convention we let ε0 = dH(∅,X) = +∞.
6The key point is to show that Rt(Xi,d

t
X ) ⊆ Rt′ (Xi, d

t′
X) for all t ≤ t′, using the fact that

the map t �→ st(xk) is 1
2
-Lipschitz for all k = 1, · · · , n.
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interleaving between the filtrations, not in the sense of inclusions as in (3.3) but
in the sense of continguous maps as in the proof of Proposition 7.8. Specifically, it
shows that for all t > 0 the following diagram of simplicial complexes and simplicial
maps commutes at the simplicial level, i.e. oriented paths sharing the same source
and target complexes induce contiguous maps:

(7.18)

Rt(X, dX) ��

			
			

$$		
			

	

Rt(1+2ε)(X, dX)

St(X, dX , ε)

�� ���������������
�� St(1+2ε)(X, dX , ε)

��

The horizontal maps are the inclusions involved in the filtrations R(X, dX) and
S(X, dX , ε). The vertical maps are also inclusions, since by definition dt

X is at least
dX so

St(X, dX , ε) = Rt(Xi, d
t
X) ∪

n⋃
j=i+1

Rρεj−1
(Xj , d

ρεj−1

X )

⊆ Rt(Xi, dX) ∪
n⋃

j=i+1

Rρεj−1
(Xj , dX) ⊆ Rt(X, dX),

where i ∈ {1, · · · , n} is such that t ∈ (ρεi, ρεi−1]. The diagonal arrow St(X, dX , ε) →
Rt(1+2ε)(X, dX) is also an inclusion, therefore it makes its two incident triangles
commute. The other diagonal arrow Rt(X, dX) → St(1+2ε)(X, dX , ε) is defined as

the simplicial map induced by the projection πt onto Xi in the perturbed metric7:

πt(xk) =

{
xk if k ≤ i,

arg min1≤l≤i d
t
X(xk, xl) otherwise.

The fact that this projection indeed induces a simplicial map from Rt(X, dX) to
St(1+2ε)(X, dX , ε) is a consequence of the fact that it is non-expansive in the per-
turbed metric dt

X . The fact that its incident triangles in (7.18) define contiguous
maps (and therefore commute at the homology level) follows from the fact that all
the simplicial maps induced by projections πt with t ∈ (ρεi, ρεi−1] are contiguous in
Sρεi−1

(X, dX , ε) and Rρεi−1
(X, dX), which is also a consequence of the projection

πt being non-expansive. Let us refer the reader to [221] for the details of the proofs
of these claims.

Thus, (7.18) induces a commutative diagram at the homology level, which de-
fines a multiplicative (1+2ε)-interleaving between the persistence modules H∗(R(X,
dX)) and H∗(S(X, dX , ε)). On a logarithmic scale, this turns into an additive
log2(1 + 2ε)-interleaving, which by the Isometry Theorem 3.1 gives the claimed
approximation guarantee:

Theorem 7.14. The bottleneck distance between the logscale persistence dia-
grams of the filtrations R(X, dX) and S(X, dX , ε) is bounded by log2(1+2ε) = O(ε).

Remark. As pointed out at the end of Section 4 in Chapter 5, approximations
to the Rips filtration such as the sparse Rips filtration can also be used in the
context of topological inference, however they are best suited for scenarios in which

7The case k ≤ i is treated separately in the definition of the projection because in principle
one might have dtX(xk, xl) < dtX(xk, xk), the perturbed metric dtX being not a true metric.
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152 7. SIGNATURES FOR METRIC SPACES

the Rips filtration is the target object, such as this one. For topological inference,
the Rips zigzags from Chapter 5 give the best signal-to-noise ratio in the barcodes,
at a smaller algorithmic cost (the complexity bounds do not involve the quantity 1

ε ).
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CHAPTER 8

New Trends in Topological Data Analysis

Topological inference has been the main practical motivation for the develop-
ment of persistence theory for the last decade or so. As such, it has been assigned a
special place in Part 2 of this book. Yet, another lesson to be learnt from Part 2 is
that the recent years have seen the emergence of novel applications of persistence,
which have defined new needs and raised new challenges for the theory. Gener-
ally speaking, persistence barcodes or diagrams can be used as compact topological
descriptors for geometric data, to be combined with other descriptors for effective
interpretation or comparison. Experience has shown that topological descriptors do
provide complementary information to the other existing descriptors1, which makes
them a valuable addition to the data analysis literature. Yet, there still remains a
long way to go before they become part of the standard toolbox.

The main bottleneck so far has been the space and time complexities of the
pipeline: as we saw in Section 5 of Chapter 5, we are currently able to process a
few thousands of points in a single data set. While this is enough to obtain relevant
inference results (topology is indeed fairly robust to undersampling compared to
other quantities like curvature), it is not enough to make these results statistically
significant and to validate them a posteriori. In this respect, being able to handle
inputs of much larger sizes (say by 2 or 3 orders of magnitude) would be desireable—
see Section 1 below. This is already the case for the 0-dimensional version of
the inference pipeline, which, for instance, has been successfully applied to cluster
millions of points, as we saw in Chapter 6.

Another bottleneck that is becoming obvious now is the lack of a sound statis-
tical framework for the interpretation of the barcodes or diagrams. Currently, these
descriptors are used as an exploratory tool for data mining, and their interpreta-
tion relies entirely on the user. It is desireable to develop visualization and analysis
techniques to help the user ‘read’ the barcodes, identify their relevant parts (the
ones corresponding to relevant scales at which to look at the data), and assess their
statistical significance—see Section 2.

Another bottleneck is the lack of a proper way to apply supervised learning
techniques on collections of barcodes or diagrams. Currently, the signatures are
mostly used in unsupervised learning tasks (e.g. unsupervised shape classification,
as illustrated in Chapter 7), simply because the space of diagrams is not natu-
rally amenable to the use of linear classifiers. Finding ways of defining kernels for
diagrams that would be both meaningful and algorithmically tractable, would be
desireable. This would be a first step towards combining topological data analysis
with machine learning—see Section 3.

1See e.g. [56] for experimental evidence of this phenomenon.
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1. Optimized inference pipeline

There are essentially two ways of optimizing the pipeline: either by reducing
the size of the filtrations or zigzags involved, or by improving the complexity of
computing their persistence diagrams. Both directions have been investigated, as
reported in Chapters 2 and 5. Handling inputs of much larger sizes (by 2 or 3 orders
of magnitude) will require to bring in some new ideas.

Beating the matrix multiplication time? As we saw in Chapter 2, the persistence
algorithm proceeds by a mere Gaussian elimination. As such it can be optimized
using fast matrix multiplication, which reduces the complexity from O(m3) down to
O(mω), where m is the number of simplices in the input filtration and ω ∈ [2, 2.373)
is the best known exponent for multiplying two m ×m matrices. The same holds
for zigzag persistence modulo some adaptations [197].

Whether matrix multiplication time is the true asymptotic complexity of the
persistence computation problem remains open, and to date there is still a large
gap with the currently best known lower bound, which is only linear in m. It was
recently shown that computing the Betti numbers of a (2-dimensional) simplicial
complex with m simplices is equivalent to computing the rank of a sparse matrix
with m nonzero entries [121]. However, it is not known whether the sparsity of
matrices can help in computing the ranks, and more generally whether computing
Betti numbers is easier than computing persistent homology.

Open Questions. Can the question of the asymptotic complexity of the per-
sistence computation problem be settled? Perhaps not in full generality, but in
special cases such as when the filtrations or zigzags are the ones used for homology
inference?

Indeed, worst-case examples such as the ones in [121, 199] are far from the
typical complexes built for homology inference. The latter have a specific structure
inherited from the geometry, which could possibly be exploited using for instance
space partition techniques [149].

Memory-efficient and distributed persistence computation. A simple idea to re-
duce the memory footprint of the persistence algorithm is to cut the boundary
matrix into blocks to be stored on the disk and loaded separately in main memory.
This is the divide-and-conquer idea underlying the fast matrix multiplication ap-
proach, and it could be pushed further towards an algorithm whose memory usage
is fully controlled by the user via the choice of a maximum block size. The main
issue is the book-keeping: although each block can easily be reduced locally, merg-
ing the results on nearby blocks may require non-local operations. This is because
homology itself is global, and the homology generators may be highly non-localized.

The standard tool to merge local homological information into global informa-
tion is the Mayer-Vietoris sequence. It was used e.g. by Zomorodian and Carlsson
[244] to localize topological attributes of a topological space relative to a given
cover of that space. Similar ideas were used by Bauer, Kerber, and Reininghaus
[17] to distribute the persistence calculation. These approaches share a common
limitation, which is that a global step is needed to finalize the calculation, so the
actual memory usage is not controlled.

Open Questions. Is it possible to force all the calculations to remain ‘local’
in the sense that only a constant number of (possibly noncontiguous) blocks of the
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1. OPTIMIZED INFERENCE PIPELINE 157

boundary matrix are concerned at each step? What fraction of these operations
could be performed in parallel? Can the implementation be adapted for a large-scale
deployment, either on a local computer cluster or on the cloud?

Bridging the gap between standard persistence and zigzag persistence compu-
tations. While zigzag constructions such as the Rips zigzags of Chapter 5 can be
proven both lightweight and efficient for inference purposes, their main drawback
is that the current state of the art in zigzag persistence computation is nowhere as
optimized as the one in standard persistence. To give an idea, the best implemen-
tations of the standard peristence algorithm [18, 30] are able to process millions of
simplex insertions per second on a recent machine, whereas in the experiments with
Rips zigzags conducted by Oudot and Sheehy [208], the software was only able to
process a few thousands of simplex insertions per second2.

Open Questions. To what extent can persistence for zigzags be optimized?
Can the gap in performance between standard persistence and zigzag persistence
computations be closed? These questions are becoming essential as zigzags are gain-
ing more and more importance in applications.

A possible strategy is to turn the zigzags into standard filtrations, or rather, to
turn their induced zigzag modules at the homology level into standard persistence
modules. This can be done via sequences of arrow reflections, as in the proof of
existence of interval decompositions for zigzag modules (see Appendix A). Maria
and Oudot [186] started investigating this direction from an algorithmic point of
view, combining arrow reflections with arrow transpositions to compute a compat-
ible homology basis for the input zigzag. Preliminary experiments show that this
approach is competitive versus the state of the art and promising in terms of future
optimizations. In particular:

Open Questions. Can the approach be adapted so as to work with cohomology
instead of homology? Can it benefit then from the recent optimizations for standard
persistence computation, thereby reducing the gap between standard persistence and
zigzag persistence in terms of practical performance?

Lightweight data structures. Somewhat orthogonal to the previous questions
is the choice of data structures in practical implementations. The main challenge
is to find the right trade-off between lightweight and efficiency. For the storage
of simplicial complexes and filtrations, the current trends are: or the one hand,
constant-factor optimizations compared to the full Hasse diagram representation,
with efficient faces and cofaces queries, as offered e.g. by the simplex tree [33];
on the other hand, exponential improvements on specific types of complexes (typ-
ically, Rips complexes) but with slow query times, as offered e.g. by the blockers
data structure [6]. For the persistence computation itself, alternate representations
of the boundary matrix are being explored, such as for instance the annotation
matrix [107] and its compressed version [30].

Open Questions. What is the right trade-off between size reduction and query
optimization in the design of new simplicial complex representations? What would
be the influence on the design and performance of the persistence algorithm?

2And far fewer deletions due to a known limitation in the internal data representation of the
zigzag persistence package in the Dionysus library at the time of the experiment.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



158 8. NEW TRENDS IN TOPOLOGICAL DATA ANALYSIS

Let us point out that there currently is no reference library for persistence
computation. Several implementations are competing, including Plex (http://
comptop.stanford.edu/u/programs/plex.html) and its successor JPlex (http:
//comptop.stanford.edu/u/programs/jplex/), Dionysus (http://www.mrzv.
org/software/dionysus/), Phat (https://code.google.com/p/phat/), Per-

seus (http://www.sas.upenn.edu/~vnanda/perseus/index.html), and Gudhi

(http://pages.saclay.inria.fr/vincent.rouvreau/gudhi/). Each one of them
implements a fraction of the approaches listed in Chapter 2 and possesses its own
strengths and weaknesses. In the future, it would be desireable to unify all these
implementations into a single reference library, for better visibility outside the field.

2. Statistical topological data analysis

Model selection for scale estimation. The general question of choosing relevant
geometric scales at which to process the input data for inference can be cast into a
model selection problem. Broadly speaking, the goal of model selection is to choose
between several predictive models within a given family. A classical answer is, first,
to estimate the prediction error for each model, and second, to select the model
that minimizes this criterion among the family. To perform the second step, cross-
validation or penalization techniques have been well studied and intensively used
with linear models [188].

The approach was adapted by Caillerie and Michel [46] to work with families
of simplicial complexes, which are piecewise linear models. This was done by in-
troducing a least-squares penalized criterion to choose a complex. The method is
limited to minimizing the 
2-distance between the immersed simplicial complex and
the compact set underlying the input point cloud.

Open Questions. Can the method be adapted to minimizing the Hausdorff
distance between the immersed complex and the compact set? Can topological in-
formation such as Betti numbers or persistence barcodes be incorporated into the
penalty criterion?

Statistics on the space of persistence diagrams. The question of assessing the
quality of the produced barcodes is usually addressed by running the inference
pipeline repeatedly on resampled data, and by computing various statistical quanti-
ties on its outputs. The problem is that the space of persistence diagrams (equipped
with the bottleneck distance) is not a flat space, so basic quantities like the mean of
a probability distribution over the persistence diagrams are not naturally defined.
Mileyko, Mukherjee, and Harer [193] gave sufficient conditions on the distribution
so its Fréchet mean exists. Moreover, Turner et al. [232] gave an algorithm that
converges to a local minimum of the second moment of the distribution under some
conditions. Nevertheless, they acknowledged that the mean may not exist in gen-
eral, and that when it does it may not necessarily be unique. The ‘right’ conditions
still remain to be found.

Open Question. Can the existence and uniqueness of a mean persistence dia-
gram be guaranteed under realistic conditions on the distribution over the diagrams?
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Alternate representations of persistence diagrams. A workaround is to map the
persistence barcodes or diagrams to a different space where classical statistical
quantities are well-defined—and preferably also easy to compute. This is the ap-
proach taken by Bubenik [39], who introduced the concept of persistence landscapes.
Roughly speaking, these are obtained by taking the size functions associated to
the persistence diagrams (recall Figure 0.5 from the general introduction) and by
parametrizing their discontinuity lines along the diagonal. This defines an injective
mapping to the space of square-integrable functions over the real line. The gain is
that means can be easily computed in that space, however the loss is that they may
fail to be images of persistence diagrams through the mapping. In other words,
statistical quantities become well-defined and computable, but they no longer have
a meaning in terms of persistence.

Open Question. Can we find other mappings (possibly to other function
spaces) that allow to map means back to the space of persistence diagrams in a
meaningful way?

Convergence rates for persistence diagram estimators. Another option is to
avoid using means at all. A setting in which this is possible is when the distribution
of persistence diagrams is composed of persistence based signatures (e.g. Rips based
signatures, as defined in Chapter 7) of more and more refined point samples of a
fixed probability distribution μ over some metric space. In this case indeed, there is
a ground truth, namely the persistence based signature of the support of μ, and the
goal is to study the convergence of the estimator to the ground truth as the number
of sample points goes to infinity. Taking advantage of the stability properties of
persistence based signatures established in Chapter 7, Chazal et al. [68] derived
bounds on the convergence rate of the estimator that are optimal in the minimax
sense, up to some logarithmic factors.

Open Questions. Can similar bounds be derived for a more general class of
persistence diagram estimators? How can the stability properties of the weighted
Rips filtration (Definition 5.17) be exploited in this context?

Confidence intervals. In a similar context, Balakrishnan et al. [15] then Chazal
et al. [69] derived confidence intervals for persistence diagrams. Such intervals
are useful for discriminating the topological signal from the noise in the persistence
diagrams. Several approaches were investigated for this purpose, including subsam-
pling, concentration of measure, and bootstrapping. The key point was to use them
for a slightly different problem, namely the one of deriving confidence bounds for
the Hausdorff approximation of the support of the probability measure from which
the input points were sampled. The bounds in Hausdorff distance between sam-
ples and support were then turned into bounds in bottleneck distance between the
persistence diagrams, by means of the stability part of the Isometry Theorem—
or rather its functional version stated in Corollary 3.6. The main problem with
this strategy is that it focuses exclusively on the variance terms in the estimation.
Moreover, it misses somewhat the point by estimating the support of the measure
rather than the measure itself. Finally, the analysis generally relies on hypotheses
(e.g. (a, b)-standardness) involving quantities that remain hidden in practice, thus
making the calibration of the methods difficult.
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160 8. NEW TRENDS IN TOPOLOGICAL DATA ANALYSIS

Open Questions. Can the strategy be adapted so as to give control also over
the bias terms? Can the distance to the measure itself be considered instead of the
distance to its support in the approximation? How can the hidden quantities be
estimated in practice?

3. Topological data analysis and machine learning

Kernels for persistence barcodes and diagrams. As we saw, the space of per-
sistence diagrams is not a flat space, which prevents the use of linear classifiers
directly. However, the so-called ‘kernel trick’ can be employed. Indeed, to any
positive-definite kernel defined over a space X corresponds a map from X to some
Hilbert space H, such that the value of the kernel for a pair of elements of X
matches with the scalar product between their images in H. Thus, standard al-
gorithms relying solely on scalar product evaluations, such as linear classification,
k-means, or Principal Component Analysis, can easily be applied. However, this
approach requires to be able to define kernels that are positive-definite in the first
place. Moreover, they should be fast enough to compute regardless of the size and
dimensionality of the data, so the approach can handle large and high-dimensional
data sets.

A standard technique to design positive-definite kernels is to plug the distance
function into a Gaussian kernel. However, this requires the distance function itself
to be negative-definite, which is not the case of the bottleneck distance, whose
behavior is similar to the one of an 
∞-norm. More generally, it is not the case for
any of the Wasserstein distances between persistence diagrams.

A possible workaround is to change the representation of the diagrams. For
instance, we already mentioned the persistence landscapes [39], which map the dia-
grams to square-integrable functions over the real line. Another possible embedding
to function space, proposed by Reininghaus et al. [214], consists in viewing each
diagram as a measure (sum of Dirac masses) and to apply a heat diffusion process
to obtain a square-integrable function over the upper half-plane above the diagonal.
A third possibility, proposed by Carrière, Oudot, and Ovsjanikov [56], is to see each
diagram itself as a finite metric space, and to map it to its so-called shape context
(i.e. the distribution of its sorted pairwise distances), which gives a mapping to a
finite-dimensional vector space. In all three cases, classical kernels (linear, poly-
nomial, Gaussian, etc.) can be applied in the new ambient space. Moreover, each
mapping is provably stable, so the stability properties of persistence diagrams are
preserved. The downside is that the induced kernels on the space of persistence
diagrams are only guaranteed to be positive semidefinite, not positive definite, thus
resulting in a potential loss in discriminative power.

Open Question. Can we design other mappings of persistence diagrams to
normed vector spaces, which would be both stable and with a controlled loss of dis-
criminative power compared to their originating diagrams?

Meaningful metrics or (dis-)similarities via signatures. Descriptors that are
both stable and informative can in turn be used to define relevant distances between
data sets. For instance, recall from Chapter 7 that the natural metric between
3d shapes—the Gromov-Hausdorff distance—is hard to compute or approximate
directly, which motivates the use of signatures that are easier to compare. When the
chosen signatures (or group thereof) are both stable and informative, their pairwise
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3. TOPOLOGICAL DATA ANALYSIS AND MACHINE LEARNING 161

distances can serve as a reliable proxy for the true Gromov-Hausdorff distance. This
is what happens e.g. in the example of Figure 7.3, where the bottleneck distance
between persistence diagrams separates the various classes of shapes nicely. The
question is whether this property holds more generally.

Open Questions. Can we derive general lower bounds on the Gromov-Haus-
dorff distance based on the bottleneck distance between persistence diagrams? Do
such guarantees on the discriminative power of persistence diagrams hold for other
learning applications?

Other topological descriptors. Persistence barcodes and diagrams are but one
class of topological descriptors to be used for data interpretation and comparison.
Among the other existing descriptors, the graphs produced by Mapper [225] have
gained a lot of interest among practitioners. The underlying intuition is the fol-
lowing one. Given a topological space X and an open cover U of that space, we
can use the nerve of that cover as a proxy for the topological structure of X. This
proxy will be correct for instance when the conditions of the Nerve Lemma 4.11 are
satisfied. But how do we choose a relevant cover? This is where the term ‘Mapper’
reveals itself: consider a continuous map f to another topological space Y , choose
a cover U′ of that space, and pull it back via f to a cover of X. More precisely,
define U to be composed of the sets U = f−1(U ′), for U ′ ranging over the elements
of U′. The interest of this pull-back operation is that we can choose a space Y with
a much simpler structure (e.g. a Euclidean space) to serve as ‘parameter space’ for
X. When Y = R, the construction is closely related to the one of the Reeb graph
of f .

Figure 8.1. Left: a cover U of the circle x2 + y2 = 1 pulled back
from the cover U′ = {[−1,−ε); (−1+ε, 1−ε); (ε, 1]} of the interval
Y = [−1, 1] ⊂ R via the height function (x, y) �→ y. Center: the
nerve of U. Right: the nerve of U after refinement.
— Based on Carlsson [48].

Now, it is not always the case that the pulled-back cover U satisfies the condi-
tions of the Nerve Lemma 4.11. In particular, an element U ∈ U may have several
connected components. In that case, it is reasonable to replace U by its various
connected components in U, as illustrated in Figure 8.1. The nerve of the thus
refined cover is closely related to the concept of multinerve introduced by Colin de
Verdière, Ginot, and Goaoc [90]. In the discrete setting, i.e. when X is replaced by
a finite point sample P , the connected components of each set U ∈ U are replaced
by the connected components of the Rips complex of U ∩ P , for some user-defined
Rips parameter.
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162 8. NEW TRENDS IN TOPOLOGICAL DATA ANALYSIS

Open Questions. Can the framework of multinerves, in particular the Homo-
logical Multinerve Theorem of Colin de Verdière, Ginot, and Goaoc [90], be used
to derive theoretical guarantees on the topology of the graphs produced by Mapper?
In the context where the data points are sampled at random from some probability
distribution on X, can we derive bounds on the probability of correctness of the
construction? Can we use statistics to choose a relevant cover of the parameter
space Y to start with, for instance in the case where Y = R? Finally, can we em-
ploy the graphs produced by Mapper in unsupervised learning tasks, e.g. by defining
a distance or (dis-)similarity between the graphs? Or in supervised learning tasks,
e.g. by defining positive-definite kernels over the space of such graphs?
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CHAPTER 9

Further prospects on the theory

The theory itself has had some exciting recent contributions towards greater
generality and flexibility. Pursuing these efforts is important for the future, to find
and explore new applications of the theory.

1. Persistence for other types of quivers

As mentioned in the discussion sections of Chapters 1 and 3, Bubenik and Scott
[41] then Bubenik, de Silva, and Scott [40] proposed to generalize the concept of
persistence module to representations of arbitrary posets. By doing so, they lost
the ability to define complete discrete invariants like persistence barcodes in a sys-
tematic way. Nevertheless, they were able to generalize the concept of interleaving
to this setting, and to derive ‘soft’ stability results that bound the interleaving
distance in terms of the distance between the topological objects the persistence
modules are derived from originally. This is a promising direction toward a gen-
eralization of the theory, and a strong incentive to look beyond linear quivers and
their infinite extensions.

Indeed, there are other quivers of finite type beyond the Dynkin quivers, thanks
to the relations (path identifications) put on them. Escolar and Hiraoka [126]
distinguished several such quivers among a family called the commutative ladders,
depicted as follows and equipped with commutativity relations in every quadrant
and the constraint that the arrow orientations in the top sequence must be the
same as those in the bottom sequence:

•1 •2 · · · •n

•
1′

��

•
2′

��

· · · •
n′

��

Interestingly, up to horizontal arrow orientations, this quiver is the same as the one
considered in persistence for kernels, images and cokernels, introduced in Section 1.4
of Chapter 2. However, here we are interested in the full representation structure,
not just in the kernel, image or cokernel of the morphism between zigzag modules
induced by the vertical arrows. What Escolar and Hiraoka [126] found is that
Gabriel’s theorem extends to the commutative ladders as long as n ≤ 4, so there is
a complete discrete invariant for their finite-dimensional representations. They also
provided an algorithm to compute this invariant, based on the so-called Auslander-
Reiten quivers [13] associated to the commutative ladders. Their approach has
found applications in materials science.
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164 9. FURTHER PROSPECTS ON THE THEORY

Open Questions. Are there other classes of quivers (possibly with relations)
that are of finite type? Can the associated complete discrete invariants be computed
efficiently?

There is also the question of the tame quivers, possibly with relations. Beyond
the classical case of the Euclidean quivers, presented in Appendix A (Figure A.3),
there are examples of quivers with relations that are of tame type. Yakovleva [240]
gave such an example, composed of a chain of commutative squares glued along
common vertices instead of common edges as above. Tame-type quivers have no
complete discrete invariant, however their set of isomorphism classes of indecom-
posable representations is parametrized by a countable family of 1-dimensional va-
rieties (Theorem A.30). This means that the decomposition of a finite-dimensional
representation into indecomposables can be represented as a finite set of parameter
values.

Open Question. Can we design algorithms to decompose the representations
of tame-type quivers into indecomposables, and to represent the decompositions in
the aforementioned parametrization?

This is in fact what Burghelea and Dey [45] did for a certain class of Eu-

clidean quivers of type Ã2n (n > 0), whose arrow orientations along the cycle are
alternating. They gave an algorithm to decompose any finite-dimensional repre-
sentation into indecomposables, which in this particular setting are intervals and
Jordan block matrices1. They also showed how their quiver representations and as-
sociated decompositions apply to the context of persistence for circle-valued maps
f : X → S1.

But perhaps the previous question is too much asking in general. When it is,
we are reduced to designing incomplete discrete invariants. This is e.g. what Edels-
brunner, Jab�lonski, and Mrozek [116] did recently for the Eulclidean quiver of

type Ã0, which is made of one node and one loop, and whose isomorphism classes of
indecomposable representations correspond to the conjugacy classes of Jordan block

matrices2—see Example A.26 in Appendix A. Given a representation V
v−→ V of

the quiver, the invariant used by Edelsbrunner, Jab�lonski, and Mrozek [116] is the
persistence diagram of a certain persistence module defined on the eigenspaces of v.
Although incomplete, this invariant is shown to be easy to compute and informative
in practical scenarios.

The situation for wild-type quivers seems more desperate. Due to the difficulty
of the classification problem, we are once again reduced to deriving some incomplete
discrete invariant. This is what Carlsson and Zomorodian [53] did for the poset Nn

equipped with the order relation x � y iff xi ≤ yi for all i ∈ {1, · · · , n}, which
appears naturally in applications where scale is not the only relevant parameter for
the considered problem, other parameters like density being also important. Just
like the 1-dimensional poset N is related to the category of graded modules over the
polynomial ring k[t] (as pointed out after Theorem 1.4), the n-dimensional poset Nn

is related to the category of n-graded modules over the polynomial ring k[t1, · · · , tn],
whose classification was shown to be wild by Carlsson and Zomorodian [53]. This
motivated the introduction of the (discrete and incomplete) rank invariant, which
records the ranks of the maps vyx for all indices x � y ∈ Nn. Carlsson, Singh, and

1Assuming that the field of coefficients is algebraically closed.
2Assuming once again that the field of coefficients is algebraically closed.
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Zomorodian [52] showed how to compute this invariant using Groebner bases, and
they demonstrated its practicality.

Open Questions. How can we assess the degree to which a given discrete
invariant is incomplete? Generally speaking, what properties should a ‘good’ discrete
invariant satisfy when it is incomplete?

2. Stability for zigzags

While the literature on the stability of persistence modules is becoming abun-
dant, there still lacks a version of the Isometry Theorem 3.1 for zigzags. Even
though their persistence diagrams can be proven to carry relevant information in
the context of topological inference, as we saw in Chapter 5, this information is
still not guaranteed to be fully stable with respect to small perturbations of the
input. Deriving such stability guarantees would be interesting e.g. for using the
persistence diagrams of Rips zigzags as signatures for metric spaces, as we did with
the ones of Rips filtrations and their sparse variants in Chapter 7.

A major limitation with zigzags is that the index set has to be finite, or at
the very least countable. Indeed, there is no clear notion of a zigzag indexed
over R. This is an important limitation as the concept of module interleaving and
its associated stablity properties presented in Chapter 3 apply only to modules
indexed over R.

In fact, as representations of posets, zigzag modules can be interleaved in a cat-
egorical sense, as defined in [40, 41], and a bound on their interleaving distance can
be obtained in terms of the distances between the topological objects the zigzags
are derived from. From there, the question is whether the bound on the interleav-
ing distance implies a bound on the bottleneck distance between their persistence
diagrams.

Open Question. Can we relate the categorical interleaving distance of [40,
41] between zigzag modules and the bottleneck distance between their persistence
diagrams?

A different approach is to connect zigzags to standard filtrations, in order to
benefit from the stability properties of the latter. This is what level-set persistence
does through the pyramid construction and its associated Pyramid Theorem 2.11.
The challenge is to be able to draw the same kind of connection at the algebraic
level directly, so that the algebraic framework developed for the stability of stan-
dard persistence modules can be applied to zigzag modules by proxy. One possible
strategy would be to turn a zigzag module into a standard persistence module
by iteratively reversing its backward arrows, either through the Arrow Reversal
Lemma 5.13, or through the Reflection Functors Theorem A.15 presented in Ap-
pendix A. The question is whether any of these operations can be made canonical,
so that the derived stability result satisfies some kind of universality property.

Open Question. Can we define a canonical way to turn a zigzag module into
a standard persistence module, while preserving (most of) its algebraic structure?

3. Simplification and reconstruction

Finally, let us go back to one of the early motivations of persistence, which
is the topological simplification of real-valued functions [118]. Given a function f
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from a simplicial complex K to R, and a tolerance parameter δ ≥ 0, the goal is to
construct a δ-simplification of f , i.e. a function fδ such that ‖fδ−f‖∞ ≤ δ and the
persistence diagram of (the sublevel-sets filtration of) fδ is the same as the one of
f but with all points within 
∞-distance δ of the diagonal removed. Edelsbrunner,
Morozov, and Pascucci [120] gave a constructive proof that such δ-simplifications
always exist when the underlying space of the complex K is a 2-manifold, possibly
with boundary. They also showed that ‖fδ − f‖∞ may have to be arbitrarily close
to δ. In this context, Attali et al. [11] then Bauer, Lange, and Wardetzky [19] gave
near-linear time (in the complex size) algorithms to compute such δ-approximations,
by exploiting the duality between the 0-dimensional and 1-dimensional parts of
the persistence diagrams—recall the EP Symmetry Theorem 2.9 from Chapter 2.
Attali et al. [11] also showed that no such δ-simplification (or any constant-factor
approximation) may exist when the underlying space of the complex K is a 3-
manifold, even as simple as the 3-sphere. Thus, topological simplification turns out
to be among those topological problems that are easy for surfaces but hard—if at
all feasible—for manifolds of higher dimensions.

Attali et al. [10] pointed out an interesting connection to the reconstruction
problem. Given a point cloud P in Rd, supposedly sampled from some unknown
object X, we want not only to infer the topology of X from P , but also to build a
‘faithful’ reconstruction. Typically, the reconstruction would have to be in the same
homeomorphism class as X, which is useful e.g. for deriving global parametrizations
of X. However, producing such reconstructions usually requires stringent conditions
on X (such as being a submanifold with positive reach) and an immense sampling
size [28, 31, 77]. In weaker versions of the problem, the reconstruction is merely
asked to have the same homotopy type as X, or even just the same homology.
Chazal and Oudot [66] showed how to produce a nested pair of simplicial complexes
K(P ) ⊆ K ′(P ) (in fact, Rips or witness complexes) such that the inclusion map
induces a morphism of the same rank as the corresponding homology group of X—
recall Theorem 5.3 from Chapter 5. The question then was whether one can find
an intermediate complex K(P ) ⊆ K ′′ ⊆ K ′(P ) with the same homology as X.
Attali et al. [10] showed that such an intermediate complex K ′′ does not always
exist, and that determining whether it does is NP-hard, even in R3, by a reduction
from 3-SAT. They also reduced the problem to the one of simplifying real-valued
functions on S3, thus deriving a NP-hardness result for that other problem as well.

Open Questions. What would be a good trade-off between full homeomorphic
reconstruction and mere homology inference? How can persistence help in achieving
this trade-off?
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APPENDIX A

Introduction to Quiver Theory
with a View Toward Persistence

Known as the graphic method within the larger picture of representation theory
for associative algebras, quiver theory has been studied for more than four decades
now, so the reader will find many introductions in the literature1. These intro-
ductions are meant to be very general, with an emphasis on the richness of the
subject and on its multiple connections to other areas of mathematics—excluding
persistence, which is a comparatively recent topic. By contrast, this appendix is
meant to be more focused, and to give a view on the subject that is clearly oriented
toward persistence. This means in particular introducing only the concepts and
results that are most relevant to persistence, illustrating them through carefully-
chosen examples, and proving the results in some special cases once again related
to persistence.

On the whole, the format of the appendix is that of a short course rather than
a survey, which means that the exposition goes into a certain level of detail. This is
required in order to exhibit some of the connections between persistence and quiver
theory. For instance, the reflection functors [24] from quiver theory are closely
related to the Diamond Principle [49] from persistence theory, but as we will see in
Example A.16, the connection happens fairly deep down in the algebra.

The appendix is organized as follows. We define quivers in Section 1 and their
representations in Section 2. We then introduce the classification problem and state
Gabriel’s theorem in Section 3. In Section 4 we give a simple proof of the theorem
in the special case of An-type quivers. We then present a proof in the general
case in Section 5, mostly for completeness. Finally, in Section 6 we present various
extensions of the theorem to more general classes of quivers and representations.
The progression is the same as in Section 1 of Chapter 1, from more general to
more specifically connected to persistence.

Prerequisites. The content of this appendix takes on a very algebraic flavor,
so the learning curve may look somewhat steep to some. Nevertheless, no prior
exposure to quiver representation theory is required. Only a reasonable background
in abstract and commutative algebra is needed, corresponding roughly to Parts I
through III of [111]. Also, some basic notions of category theory, corresponding
roughly to Chapters I and VIII of [184], can be helpful although they are not
strictly required.

1The content of this appendix was compiled from a number of sources, including [36, 93, 104,
172]. See also [106] for a high-level introduction.
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168 A. INTRODUCTION TO QUIVER THEORY WITH A VIEW TOWARD PERSISTENCE

1. Quivers

Definition A.1. A quiver Q consists of two sets Q0, Q1 and two maps h, t :
Q1 → Q0. The elements of Q0 are called the vertices of Q, while those of Q1 are
called the arrows. The head map h and tail map t assign a head ha and a tail ta to
every arrow a ∈ Q1.

Graphically, Q can be represented as a directed graph with one vertex per
element in Q0 and one edge (ta, ha) per element a ∈ Q1. Note that there are
no restrictions on the sets Q0, Q1, so technically this graph is a multigraph (see
Figure A.1 for an illustration), possibly infinite.

•1

a

%%��
��
��
�

•
2

b

��
c

�� •
3

d

���������

e

���������

•

��
��
��
�

• •

�������

�������

Figure A.1. Left: the quiver with Q0 = {1, 2, 3}, Q1 =
{a, b, c, d, e}, h : (a, b, c, d, e) �→ (2, 2, 3, 1, 1), t : (a, b, c, d, e) �→
(1, 2, 2, 3, 3). Right: the underlying undirected graph.

Q is called finite if both sets Q0, Q1 are finite. It is a common practice to
identify the quiver Q with its graph representation, which we will do in the following
to simplify the exposition. We denote by Q̄ the underlying undirected graph of Q.
If Q̄ is (dis-)connected, then Q is called a (dis-)connected quiver. If Q̄ is one of the
diagrams of Figure A.2, then Q is called a Dynkin quiver. As we will see throughout
the appendix, Dynkin quivers play a distinguished role in the theory.

Remark. The diagrams of Figure A.2 are but a subset of the Dynkin diagrams,
which include also Bn (n ≥ 1), Cn (n ≥ 1), F4 and G2—these are the Dynkin
diagrams that contain multiple edges. Interestingly, Dynkin diagrams also play a
prominent role in the classification of simple Lie groups, as do a number of concepts
introduced in the following pages.

2. The category of quiver representations

Definition A.2. A representation of Q over a field k is a pair V = (Vi, va)
consisting of a set of k-vector spaces {Vi | i ∈ Q0} together with a set of k-linear
maps {va : Vta → Vha

| a ∈ Q1}.

Note that the vector spaces and linear maps in V can be arbitrary. In particular,
no composition law is enforced, so if a, b, c ∈ Q1 are such that tc = ta, hc = hb and
ha = tb, then vc does not have to be equal to the composition vb ◦ va. In addition,
the spaces Vi can be infinite-dimensional. We say that V is finite-dimensional if the
sum of the dimensions of its constituent spaces Vi is finite.

Definition A.3. W = (Wi, wa) is a subrepresentation of V = (Vi, wa) if Wi

is a subspace of Vi for all i ∈ Q0 and if wa is the restriction of the map va to the
subspace Wta for all a ∈ Q1.

Morphisms between representations of Q are defined as follows.
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2. THE CATEGORY OF QUIVER REPRESENTATIONS 169

An(n ≥ 1) •
1

•
2

· · · •
n−1

•
n

•n−1





Dn(n ≥ 4) •
1

•
2

· · · •n−2

•n

�����

•2

E6 •
1

•
3

•
4

•
5

•
6

•2

E7 •
1

•
3

•
4

•
5

•
6

•
7

•2

E8 •
1

•
3

•
4

•
5

•
6

•
7

•
8

Figure A.2. The Dynkin diagrams.

Definition A.4. A morphism φ between two k-representations V,W of Q is a
set of k-linear maps φi : Vi → Wi such that the following diagram commutes for
every arrow a ∈ Q1:

Vta

va ��

φta

��

Vha

φha

��

Wta

wa �� Wha

The morphism is called a monomorphism if every linear map φi is injective, an
epimorphism if every φi is surjective, and an isomorphism (denoted ∼=) if every φi

is bijective.

Morphisms between representations are composed pointwise, by composing the
linear maps at each vertex i independently. That is, the composition of φ : U → V

with ψ : V → W is the morphism ψ ◦φ : U → W defined by (ψ ◦φ)i = ψi ◦φi for all
i ∈ Q0. Moreover, for each representation V we have the identity morphism 1V :
V → V defined by (1V)i = 1Vi

for all i ∈ Q0. This turns the representations of Q into
a category, called Repk(Q). The subcategory of finite-dimensional representations
is called repk(Q). Both categories are abelian2, in particular:

• They contain a zero object, called the trivial representation, with all spaces
and all maps equal to 0.

2This follows from the facts that the category of vector spaces over k is itself abelian, and
that compositions of morphisms within Repk(Q) are done pointwise.
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170 A. INTRODUCTION TO QUIVER THEORY WITH A VIEW TOWARD PERSISTENCE

• They have a biproduct, called a direct sum, and defined for any V,W as the
representation V ⊕W with spaces Vi ⊕Wi for i ∈ Q0 and maps va ⊕ wa =(

va 0
0 wa

)
for a ∈ Q1. A nontrivial representation V is called decomposable

if it is isomorphic to the direct sum of two nontrivial representations (called
summands), and indecomposable otherwise.

• Every morphism φ : V → W has a kernel, defined by (kerφ)i = kerφi for all
i ∈ Q0. Similarly, φ has an image and a cokernel, also defined pointwise.

• A morphism φ is a monomorphism if and only if kerφ = 0, an epimorphism
if and only if cokerφ = 0, and an isomorphism if and only if φ is both a
monomorphism and an epimorphism.

Thus, many of the known properties of vector spaces carry over to quiver repre-
sentations. Among the ones that do not carry over, let us mention semisimplicity:
indeed, not all subrepresentations of a given representation V may be summands

of V. For instance, if V = k
1 �� k and W = 0

0 �� k , then W is a subrep-
resentation of V yet it can be easily checked that there is no subrepresentation U

such that V = U ⊕ W. Broadly speaking, such obstructions are consequences of
quiver representations being modules over certain types of associative algebras (see
Section 6.2), and as such not enjoying all the properties of vector spaces, including
semisimplicity. This is what makes the classification of quiver representations a
challenging problem, as we will see next.

3. Classification of quiver representations

One of the central questions in quiver theory is to classify the representations
of a given quiver up to isomorphism. Much of the literature on the subject focuses
on finite-dimensional representations of finite quivers, as even in this simple setting
things go wild pretty quickly, as we whall see in Section 5.2. Extensions of the
theory to infinite quivers and/or infinite-dimensional representations exist, some of
which will be mentioned briefly in Section 6, and in fact this is still an active area of
research. For now and until Section 6, every quiver Q will be finite and repk(Q) will
be the category under consideration. We will also assume without loss of generality
that Q is connected, since otherwise (i.e. when Q is the disjoint union of two quivers
Q′ and Q′′) repk(Q) is isomorphic to the product category repk(Q′)× repk(Q′′), that
is, any representation of Q is the same as a pair of representations, one of Q′, the
other of Q′′, and any morphism between representations of Q is the same as a pair
of morphisms acting on each component separately.

Decompositions. Let the vertex set of Q be Q0 = {1, · · · , n}. Given a represen-
tation V ∈ repk(Q), we define its dimension vector dimV and its dimension dimV

as follows:

dimV = (dimV1, · · · , dimVn)�,

dimV = ‖dimV‖1 =
n∑

i=1

dimVi.

An easy induction on the dimension shows that V has a Remak decomposition,
that is, V can be decomposed into a direct sum of finitely many indecomposable
representations. Moreover, it can be shown that this decomposition is unique up
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3. CLASSIFICATION OF QUIVER REPRESENTATIONS 171

to isomorphism and permutation of the terms in the direct sum, so the category
repk(Q) has the Krull-Schmidt property.

Theorem A.5 (Krull, Remak, Schmidt). Assuming Q is finite, for any V ∈
repk(Q) there are indecomposable representations V1, · · · ,Vr such that V ∼= V1 ⊕
· · · ⊕ Vr. Moreover, for any indecomposable representations W1, · · · ,Ws such that
V ∼= W1⊕· · ·⊕Ws, one has r = s and there is a permutation σ such that Vi

∼= Wσ(i)

for 1 ≤ i ≤ r.

Remark. The decomposability of a quiver representation V is closely tied to
the locality3 of its endomorphism ring End(V). Indeed, when V is decomposable
into a direct-sum of nontrivial subrepresentations U⊕W, the canonical projections
onto U and W are non-invertible endomorphisms of V whose sum is 1V and therefore
invertible, thus End(V) is not a local ring. Conversely, the locality of End(V) when
V is indecomposable and finite-dimensional follows from Fitting’s decomposition
theorem—see e.g. [172, §2] for the details, and note that the finite dimensionality
of V is essential for the proof. From there, the uniqueness of the decomposition in
Theorem A.5 is a direct consequence of Azumaya’s theorem4 [14].

Theorem A.5 turns the original classification problem into that of classify-
ing the indecomposable representations of Q. The difficulty of the task resides
in characterizing the indecomposable representations of Q, which is different from
(and significantly more difficult than) characterizing the representations with no
proper subrepresentation. Indeed, as we saw earlier, not all subrepresentations
are summands, so there are indecomposable representations with proper subrep-

resentations. Recall for instance our previous example V = k
1 �� k , which is

indecomposable yet admits W = 0
0 �� k as a subrepresentation (but not as a

summand).
The first major advance on this classification problem was made by Gabriel

[133], and it was the starting point for the development of the quiver represen-
tation theory. Gabriel’s result charaterizes the so-called finite type quivers, i.e.
the quivers that have a finite number of isomorphism classes of indecomposable
finite-dimensional representations.

Theorem A.6 (Gabriel I). Let Q be a finite connected quiver and let k be a
field. Then, Q is of finite type if and only if Q is Dynkin, i.e. if and only if Q̄ is one
of the diagrams of Figure A.2.

The fascinating thing about this result is that it does not rely on a particular
choice of base field k or arrow orientations. It introduces a dichotomy on the finite
connected quivers, between those (very few) that have finite type and those that
do not5.

This is but the first part of Gabriel’s result. The second part (Theorem A.11)
is a refinement of the ‘if’ statement, providing a complete characterization of the

3A ring is called local when it has a unique maximal proper left or right ideal, or equivalently,
when the sum of any two non-invertible elements in the ring is itself non-invertible.

4Invoking Azumaya’s theorem in the finite-dimensional setting is somewhat excessive, because
the theorem holds in greater generality and can be replaced by a more direct dimension argument
in this special case [172, §2]. Nevertheless, it explains why locality is desirable for endomorphism
rings of indecomposable representations in general.

5There is in fact a trichotomy, as we will see in Section 6.1.
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172 A. INTRODUCTION TO QUIVER THEORY WITH A VIEW TOWARD PERSISTENCE

isomorphism classes of indecomposable representations of a Dynkin quiver Q by
identifying them with the elements of a certain root system that we will now de-
scribe. The identification happens through the map V �→ dimV, which takes values
in Nn, so the analysis takes place in Zn, the free abelian group having Q0 as basis.

Euler and Tits forms. A vector in Zn is called positive if it belongs to Nn \{0},
i.e. if it is nonzero and its coordinates are nonnegative. The dimension vectors of
nontrivial representations of Q are such vectors.

Definition A.7. The Euler form of Q is the bilinear form 〈−,−〉Q : Zn×Zn → Z

defined by

(A.1) 〈x, y〉Q =
∑
i∈Q0

xiyi −
∑
a∈Q1

xtayha
.

Its symmetrization
(x, y)Q = 〈x, y〉Q + 〈y, x〉Q

is called the symmetric Euler form.

Treating elements in Zn as column vectors, we can rewrite the symmetric Euler
form as follows:

(x, y)Q = x�CQy,

where CQ = (cij)i,j∈Q0
is the symmetric matrix whose entries are

cij =

{
2 − 2|{loops at i}| if i = j;
−|{arrows between i and j}| if i �= j.

Definition A.8. The Tits form is the quadratic form qQ associated with the
Euler form, that is:

qQ(x) = 〈x, x〉Q =
1

2
(x, x)Q =

1

2
x�CQx.

Note that neither the symmetric Euler form nor the Tits form depend on the
orientations of the arrows in Q. Their interest for us lies in their ability to distinguish
Dynkin quivers from the rest of the connected quivers:

Theorem A.9. A finite connected quiver Q is Dynkin if and only if its Tits
form qQ is positive definite (i.e. qQ(x) > 0 for any nonzero vector x ∈ Zn).

Proof outline. The “only if” part of the statement is proved easily by in-
spection. For instance, considering a quiver Q of type An (see Figure A.2), we
have:

qQ(x) =
∑
i∈Q0

x2
i −
∑
a∈Q1

xtaxha
=

n∑
i=1

x2
i −

n−1∑
i=1

xixi+1

=
n−1∑
i=1

1

2
(xi − xi+1)

2 +
1

2
x2
1 +

1

2
x2
n,

(A.2)

which is non-negative, and which is equal to zero only when all the terms in the
sum are zero, that is, when x1 = x2 = · · · = xn−1 = xn = 0.

The “if” part of the statement is proved by contraposition: assuming Q is
not Dynkin, we find a nonzero vector x ∈ Zn such that qQ(x) ≤ 0. The key
observation is that the underlying undirected graph Q̄ must contain one of the
diagrams of Figure A.3 as a subgraph. Now, for every such diagram, letting Q′ be
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Ã0 •0

•0

����
����

����

����
����

����
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Figure A.3. The Euclidean diagrams.

the corresponding subquiver of Q, it is easy to check by inspection the existence of
a nonzero vector x′ ∈ Z|Q′

0| such that qQ′(x
′) = 0 (take for instance x = (1, · · · , 1)�

when Q̄′ = Ãn). Then, one of the following three scenarios occurs:
• Q′ = Q, in which case letting x = x′ gives qQ(x) = qQ′(x

′) = 0, and so qQ is not
positive definite.

• Q′
0 = Q0 and Q′

1 � Q1, in which case letting x = x′ gives qQ(x) < qQ′(x
′) = 0

by definition of the Tits form, so qQ is indefinite.
• Q′

0 � Q0, in which case let i be a vertex of Q \ Q′ that is connected to Q′ by
an edge a (this vertex exists since Q is connected), and let x = 2x′ + bi where
bi is the i-th basis vector in Zn. This gives qQ(x) ≤ 4qQ′(x

′) + x2
i − xtaxha

=
0 + 1 − 2 < 0, so once again qQ is indefinite.

�

A simple adaptation of the proof shows the following result as well—see [172, §4]:
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174 A. INTRODUCTION TO QUIVER THEORY WITH A VIEW TOWARD PERSISTENCE

Assuming Q is finite and connected, its Tits form qQ is positive semidefinite
(i.e. qQ(x) ≥ 0 for all x ∈ Zn) if and only if Q̄ belongs to the diagrams of
Figures A.2 and A.3.

Combined with Theorem A.9, this result classifies the finite connected quivers into
3 categories: the Dynkin quivers, whose underlying undirected graph is Dynkin and
whose Tits form is positive definite; the tame quivers, whose underlying undirected
graph is Euclidean and whose Tits form is positive semidefinite but not definite;
the rest, called wild quivers, whose Tits form is indefinite. The second and third
categories are considered as one in Gabriel’s theorem, however they play an impor-
tant part in the theory beyond, as we will see in Section 6.1 where the terms tame
and wild find their justification.

Roots. A root of qQ is any nonzero vector x ∈ Zn such that qQ(x) ≤ 1, and we
denote by ΦQ the set of roots of Q. When Q is a Dynkin quiver, qQ is positive definite,
so ΦQ = {x ∈ Zn | qQ(x) = 1} and ΦQ enjoys the properties of a root system, among
which the following one plays a key part in Gabriel’s theorem:

Proposition A.10. If Q is Dynkin, then ΦQ is finite.

Proof outline. We can view qQ indifferently as a quadratic form on Zn, Qn

or Rn. Since qQ is positive definite on Zn, it is also positive definite on Qn, and by
taking limits it is positive semidefinite on Rn. But since qQ is positive definite on
Qn, its matrix is invertible in Q and therefore also in R, so qQ is also positive definite
on Rn. Then, its sublevel set {x ∈ Rn | qQ(x) ≤ 1} is an ellipsoid, which implies
that it is bounded and so its intersection with the integer lattice Zn is finite. �

Theorem A.11 (Gabriel II). Suppose Q is a Dynkin quiver with n vertices.
Then, the map V �→ dimV induces a bijection between the set of isomorphism
classes of indecomposable representations of Q and the set ΦQ∩Nn of positive roots of
qQ. In particular, the set of isomorphism classes of indecomposable representations
of Q is finite, by Proposition A.10.

This is a refinement of the “if” part of Theorem A.6. Once again, the result
is independent of the choices of base field k and arrow orientations. It implies in
particular that there is at most one isomorphism class of indecomposable represen-
tations per dimension vector. Intuitively, this means that once the dimensions of
the vector spaces in the representation are fixed, there is only one choice (at most)
of linear maps between the spaces to make the representation indecomposable, up
to isomorphism.

Example A.12 (An). Let us use Theorem A.11 to identify the isomorphism
classes of indecomposable representations of a quiver Q of type An. It follows
from (A.2) that every positive root of qQ is of the form (0, · · · , 0, 1, · · · , 1, 0, · · · , 0)�,
with the first and last 1’s occurring at some positions b ≤ d within the range [1, n].
The corresponding indecomposable representations V of Q have a space isomor-
phic to k at every vertex i ∈ [b, d], and a zero space at every other vertex. The
maps from or to zero spaces are trivially zero, while the maps between consecutive
copies of k are isomorphisms because otherwise V could be further decomposed.
Thus, every such V is isomorphic to the following representation, called an interval
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4. REFLECTIONS 175

representation and denoted IQ[b, d]:

(A.3) 0
0 · · · 0

0
0

k
1 · · · 1

k
0

0
0 · · · 0

0︸ ︷︷ ︸
[1, b−1]

︸ ︷︷ ︸
[b, d]

︸ ︷︷ ︸
[d+1, n]

Sections 4 and 5 below are devoted to the proof of Gabriel’s theorem. Several
proofs coexist in the literature, including Gabriel’s original proof. The one pre-
sented below is due to Bernstein, Gelfand, and Ponomarev [24] and is of a special
interest to us. First of all, it emphasizes clearly the fact that the indecomposable
representations are determined by their sole dimension vectors. Second, it uses
reflection functors, which we know have close connections to persistence.

In Section 4 we introduce the reflection functors and give a simple proof of
Gabriel’s theorem in the special case of An-type quivers, which we connect to the
work of Carlsson and de Silva [49]. For the interested reader, Section 5 provides a
proof of Gabriel’s theorem in the general case.

4. Reflections

Let Q be a finite connected quiver. We call a vertex i ∈ Q0 a sink if all arrows
incident to i are incoming, that is, if there is no arrow a ∈ Q1 such that ta = i.
Symmetrically, we call i a source if all arrows incident to i are outgoing, that is, if
there is no arrow a ∈ Q1 such that ha = i. In particular, an isolated vertex is both
a sink and a source.

For each sink or source vertex i ∈ Q0, we denote by si the reflection at vertex i.
More precisely, siQ is the quiver obtained from Q by reversing the direction of all
arrows incident to i.

Example A.13. Let Q be the following quiver:

•
1

�� •
2

•
3

�� •
4

�� �� •
5

Then, vertices 1 and 4 are sources, vertices 2 and 5 are sinks, and vertex 3 is neither
a source nor a sink. The corresponding reflections give the following quivers:

s1Q : •
1

•
2

�� •
3

�� •
4

�� �� •
5

s2Q : •
1

•
2

�� �� •
3

•
4

�� �� •
5

s4Q : •
1

�� •
2

•
3

�� �� •
4

•
5

��

s5Q : •
1

�� •
2

•
3

�� •
4

�� •
5

��

Notice how s2 and s4 turned vertex 3 into a sink and a source respectively. This
property will be useful for defining Coxeter functors in Secton 4.2.
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176 A. INTRODUCTION TO QUIVER THEORY WITH A VIEW TOWARD PERSISTENCE

4.1. Reflection functors. Let i ∈ Q0 be a sink. For every representation
V = (Vi, va) ∈ repk(Q), we define a representation R+

i V = (V ′
i , v

′
a) ∈ repk(siQ) as

follows. For all j �= i, set V ′
j = Vj , and define V ′

i to be the kernel of the map

ξi :
⊕
a∈Qi

1

Vta −→ Vi, (xta)a∈Qi
1
�−→

∑
a∈Qi

1

va(xta),

where Qi
1 = {a ∈ Q1 | ha = i} is the subset of arrows of Q that are incident to

vertex i (these are all incoming arrows). Define now linear maps between the spaces
V ′
j as follows. For each arrow a ∈ Q1, if a /∈ Qi

1 then set v′a = va; if a ∈ Qi
1, then

let b denote the reverse arrow, and set v′b to be the composition

V ′
tb

= V ′
i = ker ξi ↪−→

⊕
c∈Qi

1

Vtc −→ Vta = V ′
ta = V ′

hb
,

where the map before the direct sum is the canonical inclusion, and the map after
the direct sum is the canonical projection onto its component Vta . Given now a
morphism φ : V → W between two representations V,W ∈ repk(Q), the morphism
φ′ = R+

i φ : R+
i V → R+

i W is defined by φ′
j = φj for all j �= i and by φ′

i being the
restriction of the map ⊕

a∈Qi
1

φta :
⊕
a∈Qi

1

Vta →
⊕
a∈Qi

1

Wta

to V ′
i = ker ξi. It can be readily checked that these mappings define a functor from

the category repk(Q) to repk(siQ).
Dually, given a source vertex i ∈ Q0, to every representation V = (Vi, va) ∈

repk(Q) we associate a representation R−
i V = (V ′

i , v
′
a) as follows. For all j �= i, let

V ′
j = Vj , and define V ′

i as the cokernel of the map

ζi : Vi −→
⊕
a∈Qi

1

Vha
, x �−→ (va(x))a∈Qi

1
,

where Qi
1 = {a ∈ Q1 | ta = i} denotes once again the subset of arrows of Q that are

incident to i (these are all outgoing arrows). Define now linear maps between the
spaces V ′

j as follows. For each arrow a ∈ Q1, if a /∈ Qi
1 then set v′a = va; if a ∈ Qi

1,
then let b denote the reverse arrow, and set v′b to be the composition

V ′
tb

= V ′
ha

= Vha
↪−→

⊕
c∈Qi

1

Vhc
−→ coker ζi = V ′

i = V ′
hb
,

where the map before the direct sum is the canonical inclusion, and the map after
the direct sum is the canonical quotient map (i.e. the quotient map modulo the
image of ζi). Finally, given a morphism φ : V → W between two representations
V,W ∈ repk(Q), the morphism φ′ = R−

i φ : R−
i V → R−

i W is defined by φ′
j = φj for

all j �= i and by φ′
i being the map induced by⊕

a∈Qi
1

φha
:
⊕
a∈Qi

1

Vha
→
⊕
a∈Qi

1

Wha

on the quotient space V ′
i = coker ζi. Once again, these mappings define a functor

from the category repk(Q) to repk(siQ).
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The question that comes to mind is whether the functors R+
i and R−

i are
mutual inverses. It turns out that this is not the case, as each one of them nullifies
the so-called simple representation Si, which has zero vector spaces everywhere
except at vertex i where it has the space k. Nevertheless, R+

i and R−
i do become

mutual inverses if we restrict ourselves to the full subcategory of repk(Q) consisting
of the representations of Q having no summand isomorphic to Si. Let us illustrate
these claims through a simple example.

Example A.14. Let Q be the quiver of Example A.13, and let V be some
representation of Q:

V1
va �� V2 V3

vb�� V4
vc��

vd �� V5

Applying R+
5 to V, we get the following representation:

V1
va �� V2 V3

vb�� V4
vc�� ker vd� ���

Applying now R−
5 to R+

5 V, we obtain:

V1
va �� V2 V3

vb�� V4
vc��

mod ker vd �� V4/ ker vd

Thus, by the first isomorphism theorem, we have R−
5 R+

5 V
∼= V whenever V5 =

im vd. When this is not the case, we have V ∼= R−
5 R+

5 V ⊕ Sr5, where Sr5 is made
of r = dim coker vd copies of the simple representation S5. In particular, if V is
composed only of copies of S5, then R−

5 R+
5 V is the trivial representation.

Let us now apply R+
2 to V. The result is the top row in the following commu-

tative diagram, where π1, π3 denote the canonical projections from the direct sum
V1 ⊕ V3 to its components:

V1 ker va + vb�� ��
��

��

V3 V4
vc��

vd �� V5

V1 ⊕ V3

π1

&&�����������
π3

��

Applying now R−
2 to R+

2 V, we obtain the top row in the following commutative
diagram, where the vertical arrow is the canonical quotient map:

V1
��

(−,0)

''
��

��
��

��
��

��
��

��
V1⊕V3

ker va+vb
V3

��

(0,−)

((��
��
��
��
��
��
��

V4
vc��

vd �� V5

ker va + vb
� � �� V1 ⊕ V3

��

va+vb �� V2

Again, by the first isomorphism theorem, there is a unique injective map φ2 :
V1⊕V3

ker va+vb
→ V2 such that the diagram augmented with φ2 still commutes. Letting

φi = 1Vi
for all i �= 2, we obtain a monomorphism φ = (φi)i∈Q0

: R−
2 R+

2 V → V.
This monomorphism becomes an isomorphism whenever V2 = im va +vb, and when
this is not the case, we have V ∼= R−

2 R+
2 V⊕ Sr2 where r = dim coker va + vb.
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Bernstein, Gelfand, and Ponomarev [24] proved these empirical findings to be
general properties of the reflection functors R±

i . Their proof is based on the same
argument as the one used in Example A.14, and the interested reader may refer
directly to their paper for the details, or to [104, theorem 1.18] for a more recent
treatment. The statement of the theorem is reproduced below in a form that will
be practical to us in the following.

Theorem A.15 (Reflection Functors). Let Q be a finite connected quiver and
let V be a representation of Q. If V ∼= U ⊕W, then for any source or sink i ∈ Q0,
R±

i V
∼= R±

i U⊕R±
i W. If now V is indecomposable:

1. If i ∈ Q0 is a sink, then two cases are possible:
• V ∼= Si: in this case, R+

i V = 0.
• V � Si: in this case, R+

i V is nonzero and indecomposable, R−
i R+

i V
∼= V, and

the dimension vectors x of V and y of R+
i V are related to each other by the

following formula:

(A.4) yj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xj if j �= i;

−xi +
∑
a∈Q1

ha=i

xta if j = i.

2. If i ∈ Q0 is a source, then once again two cases are possible:
• V ∼= Si: in this case, R−

i V = 0.
• V � Si: in this case, R−

i V is nonzero and indecomposable, R+
i R−

i V
∼= V, and

the dimension vectors x of V and y of R−
i V are related to each other by the

following formula:

(A.5) yj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xj if j �= i;

−xi +
∑
a∈Q1

ta=i

xha
if j = i.

Before we proceed any further, let us see what Theorem A.15 entails for quivers
of type An. In the example below we are assuming Gabriel’s theorem holds for the
sake of the exposition.

Example A.16. Let Q be a quiver of type An, and let i ∈ Q0 be a sink. Then,
any representation V ∈ repk(Q) and its reflection W = R+

i V can be represented as
follows since they share the same spaces Vj = Wj for j �= i:

(A.6)

Vi

V1 · · · Vi−1

����������
Vi+1

##��������

· · · Vn

Wi

##��������

����������

By Gabriel’s theorem, we know that V ∼=
⊕r

j=1 IQ[bj , dj ], where each IQ[bj , dj ] is

the interval representation associated with some interval [bj , dj ] according to (A.3).
Then, Theorem A.15 says that R+

i V
∼=
⊕r

j=1R
+
i IQ[bj , dj ], where each summand is
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either zero or an interval representation, determined according to the following set
of rules:

(A.7) R+
i IQ[bj , dj ] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if i = bj = dj ;
IsiQ[i + 1, dj ] if i = bj < dj ;
IsiQ[i, dj ] if i + 1 = bj ≤ dj ;
IsiQ[bj , i− 1] if bj < dj = i;
IsiQ[bj , i] if bj ≤ dj = i− 1;
IsiQ[bj , dj ] otherwise.

As we will see in Section 4.4, in the language of persistence theory, the quadrangle
in (A.6) is called a diamond, and the above set of conversion rules between the
decompositions of V and of its reflection R+

i V is known as the Diamond Principle.

A consequence of Theorem A.15 is that the value of the Tits form at the
dimension vectors of indecomposable representations is either preserved or sent to
zero by R±

i .

Corollary A.17. Let Q be a finite connected quiver and let V be an indecom-
posable representation of Q. Then, for any source or sink i ∈ Q0,

• either V ∼= Si, in which case qsiQ(dimR±
i V) = 0,

• or qsiQ(dimR±
i V) = qQ(dimV).

The proof is a short calculation, which we reproduce below for completeness.

Proof. If V ∼= Si, then by Theorem A.15 we have R±
i V = 0, therefore

qsiQ(dimR±
i V) = 0. Assume now that V � Si, and let i be a sink without loss

of generality, the case of a source being similar. Let also x denote dimV and y
denote dimR±

i V for simplicity. Then, by (A.4) and Definition A.8 we have:

qsiQ(y) =
∑
j∈Q0

y2
j −

∑
a∈Q1

ytayha = y2
i +

∑
j �=i

y2
j −

∑
a∈Q1
ha=i

ytayi −
∑
a∈Q1
ha �=i

ytayha

=

⎛
⎜⎜⎝−xi +

∑
a∈Q1
ha=i

xta

⎞
⎟⎟⎠

2

+
∑
j �=i

x2
j −

∑
a∈Q1
ha=i

xta

⎛
⎜⎜⎝−xi +

∑
a∈Q1
ha=i

xta

⎞
⎟⎟⎠−

∑
a∈Q1
ha �=i

xtaxha

= x2
i −2xi

∑
a∈Q1
ha=i

xta +

⎛
⎜⎜⎝

∑
a∈Q1
ha=i

xta

⎞
⎟⎟⎠

2

+
∑
j �=i

x2
j +xi

∑
a∈Q1
ha=i

xta −

⎛
⎜⎜⎝

∑
a∈Q1
ha=i

xta

⎞
⎟⎟⎠

2

−
∑
a∈Q1
ha �=i

xtaxha

=
∑
j∈Q0

x2
j −

∑
a∈Q1

xtaxha = qQ(x).

�
4.2. Coxeter functors. From now on we assume that the quiver Q is acyclic,

i.e. that it contains no oriented cycle. Then, Q represents a partial order on its
vertex set Q0. Take an arbitrary total order on Q0 that is compatible with the
partial order given by Q, and relabel the elements in Q0 = {1, · · · , n} according to
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180 A. INTRODUCTION TO QUIVER THEORY WITH A VIEW TOWARD PERSISTENCE

that total order, so that we have ta < ha for every arrow a ∈ Q1. Consider now
the following combinations of reflections on Q, where the order of operations is from
right to left:

c+ = s1s2 · · · sn−1sn;

c− = snsn−1 · · · s2s1.

Observe that vertex i is a sink in (si+1 · · · sn)Q and a source in (s1 · · · si−1)Q, there-
fore c+ and c− are well-defined. Observe also that c±Q = Q since every arrow in
Q gets reversed twice. Thus, c+ and c− do not modify the quiver Q, and their
corresponding functors,

C+ = R+
1 R+

2 · · · R+
n−1R+

n , and

C− = R−
nR−

n−1 · · · R−
2 R−

1 ,

are endofunctors repk(Q) → repk(Q). They are called Coxeter functors because of
their connection to the Coxeter transformations in Lie group theory. The following
property is an immediate consequence of Theorem A.15 and Corollary A.17:

Corollary A.18. Let Q be a finite, connected and acyclic quiver, and let C± be
defined as above. Then, for any indecomposable representation V of Q, either C±V
is indecomposable or C±V = 0. In the first case we have qQ(dim C±V) = qQ(dimV),
while in the second case we have qQ(dim C±V) = 0.

Let us now see the effects of the Coxeter functors on the indecomposable rep-
resentations of quivers of type An. For simplicity, let us begin with the quiver with
all arrows oriented forwards, which is called the linear quiver and denoted Ln.

Example A.19 (Ln). Consider the linear quiver Ln:

•
1

�� •
2

�� · · · �� •
n−1

�� •
n

The natural order on the integers is the only one compatible with Ln. Given an
indecomposable representation V of Ln, let (x1, x2, · · · , xn−1, xn)� = dimV, and
apply the Coxeter functor C+ corresponding to the sequence of reflections c+ =
s1 · · · sn. By Theorem A.15, we have:

dimR+
nV = 0 or (x1, x2, · · · , xn−1, xn−1 − xn)

�,

dimR+
n−1R+

nV = 0 or (x1, x2, · · · , xn−2 − xn, xn−1 − xn)
�,

· · ·
dimR+

2 · · ·R+
n−1R+

nV = 0 or (x1, x1 − xn, · · · , xn−2 − xn, xn−1 − xn)
�,

dim C+
V = dimR+

1 R+
2 · · ·R+

n−1R+
nV = 0 or (−xn, x1 − xn, · · · , xn−2 − xn, xn−1 − xn)

�.

Thus, either dim C+V = 0 or xn = 0, since a dimension vector must have nonneg-
ative coordinates. In the latter case, dim C+V = (0, x1, x2, · · · , xn−2, xn−1)

�. By
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iterating this process further, we get:

dim C+
V = 0 or (0, x1, x2, · · · , xn−2, xn−1)

�,

dim C+C+
V = 0 or (0, 0, x1, · · · , xn−3, xn−2)

�,

· · ·
dim C+ · · · C+︸ ︷︷ ︸

n−1 times

V = 0 or (0, 0, 0, · · · , 0, x1)
�,

dim C+ · · · C+︸ ︷︷ ︸
n times

V = 0.(A.8)

Thus, C+ · · · C+V eventually goes to 0 when V is an indecomposable represen-
tation of the linear quiver. Bernstein, Gelfand, and Ponomarev [24] proved that
this property carries over to An-type quivers, and beyond that, to any Dynkin
quiver Q—see Proposition A.24 in Section 5. However, one does not need such a
strong result to proceed with the proof of Gabriel’s theorem. It is enough to find
a combination of reflection functors that sends the indecomposable representations
of Q to 0. When Q is of type An, such a sequence can be obtained easily through
the following reduction to the linear quiver.

Example A.20 (An). Let Q be of type An. If Q is not the linear quiver, then let
i1 < i2 < · · · < ir be the heads of backward arrows. By performing the sequence of
reflections s1 · · · si1 on Q, we obtain the same quiver except that the arrow between
i1 and i1 + 1 is now a forward arrow. By repeating this process for i2, · · · , ir, we
finally get the linear quiver. The corresponding sequence of reflection functors sends
every indecomposable representation V of Q either to 0 or to an indecomposable
representation of the linear quiver. We can now apply the functor C+ a sufficient
number of times to send the representation to 0, as in (A.8). To summarize:

(A.9) C+ · · · C+︸ ︷︷ ︸
n times

R+
1 · · ·R+

ir
· · ·R+

1 · · ·R+
i2
R+

1 · · · R+
i1
V = 0.

4.3. Proof of Gabriel’s theorem for An-type quivers. We now have the
required material to prove the “if” part of Theorem A.6 in the special case where
Q is a quiver of type An.

Let V be an indecomposable representation of Q. According to (A.9), there is
a sequence of indices i1, · · · , is, possibly with repetitions, such that R+

is
· · ·R+

i1
V =

0. Assume without loss of generality that this is a minimal such sequence, so
R+

is−1
· · ·R+

i1
V �= 0. Then, by Theorem A.15, R+

is−1
· · · R+

i1
V is isomorphic to the

simple representation Sis , and every representation R+
ij
· · · R+

i1
V for j < s is inde-

composable. It follows by Corollary A.17 that

qQ(dimV) = qsi1Q(dimR+
i1
V) = · · ·

· · · = qsis−1
···si1Q(dimR+

is−1
· · · R+

i1
) = qsis−1

···si1Q(dim Sis) = 1.

Thus, dimV is a positive root of qQ, which, according to (A.2), implies that

dimV = (0, · · · , 0, 1, · · · , 1, 0, · · · , 0)�,

with the first and last 1’s occurring at some positions b ≤ d within the range [1, n].
So, V has a space isomorphic to k at every vertex i ∈ [b, d] and a zero space at
every other vertex. The maps from or to zero spaces are trivially zero, while the
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182 A. INTRODUCTION TO QUIVER THEORY WITH A VIEW TOWARD PERSISTENCE

maps between consecutive copies of k are isomorphisms because otherwise V could
be further decomposed. Thus, V is isomorphic to the interval representation IQ[b, d]
introduced in (A.3).

To summarize, every isomorphism class of indecomposable representations of Q
contains at least one of the (finitely many) interval representations, while of course
every interval representation belongs to at most one of the isomorphism classes, so
the “if” part of Theorem A.6 is proved.

From there we can also prove Theorem A.11, by identifying the set of isomor-
phism classes of indecomposable representations of Q with the set of interval rep-
resentations. This boils down to showing (i) that different interval representations
cannot be isomorphic, and (ii) that every interval representation is indecomposable.
Item (i) is a direct consequence of the fact that different interval representations
have different dimension vectors. Item (ii) follows from the fact that the endomor-
phism ring of an interval representation is isomorphic to the field k and therefore
local6.

4.4. Connection to the proof of Carlsson and de Silva [49]. We will first
introduce the Diamond Principle and establish a direct link to reflection functors.
We will then focus on the proof of Gabriel’s theorem and relate it to the one given
in Section 4.3.

Remark. Interestingly enough, reflection functors were introduced in [24] as a
tool to prove Gabriel’s theorem, whereas the Diamond Principle came as a byprod-
uct of the decomposition theorem in [49]. The version in [24] is stronger because it
does not assume the existence of a decomposition.

4.4.1. Diamond Principle. Let Q be an An-type quiver that has a sink i, and
let siQ denote the quiver obtained from Q by applying the reflection si at node i.
Given two finite-dimensional representations, V ∈ repk(Q) and W ∈ repk(siQ), that
differ only by the spaces Vi,Wi and their incident maps, we can form the following
diagram where the central quadrangle is called a diamond:

(A.10)

Vi

V1 · · · Vi−1

vc

����������
Vi+1

vd

##��������

· · · Vn

Wi

wa

##�������� wb

����������

The diamond is said to be exact if im f = ker g in the following sequence

Wi
f

�� Vi−1 ⊕ Vi+1
g

�� Vi

where7 f : x �→ (wa(x), wb(x)) and g : (x, y) �→ vc(x)+vd(y). Carlsson and de Silva
[49] proved the following result:

6Item (ii) can also be proven directly using elementary linear algebra. See e.g. Proposition 2.4
in [49].

7For convenience we are departing slightly from [49], by letting g be an addition instead of a
subtraction. This modification has no incidence on the result, since one can replace the map vd
by −vd in the representation V and get an isomorphic representation.
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Theorem A.21 (Diamond Principle). Given V and W as above, suppose that
the diamond in (A.10) is exact. Then, the interval decompositions of V and W are
related to each other through the following matching rules:

• summands IQ[i, i] and IsiQ[i, i] are unmatched,
• summands IQ[i, d] are matched with summands IsiQ[i + 1, d], and IQ[i + 1, d]
with IsiQ[i, d],

• summands IQ[b, i] are matched with summands IsiQ[b, i − 1], and IQ[b, i − 1]
with IsiQ[b, i],

• every other summand IQ[b, d] is matched with IsiQ[b, d].

The similarity of this result with the one from Example A.16 is striking. In
fact, it is easy to prove that both results imply each other in a natural way (see
below), so the Diamond Principle can really be viewed as the expression of the
Reflection Functors Theorem A.15 in the special case of An-type quivers.

Proof. Proving that Theorem A.21 implies the result from Example A.16 is
just a matter of checking that the diamond in (A.6) is exact, which is immediate
using the definition of R+

i V.
Let us now prove Theorem A.21 using the result from Example A.16. Given

V,W as in (A.10) and assuming the diamond is exact, the claim is that W is isomor-
phic to U⊕K, where U = R+

i V and where K =
⊕r

j=1 IsiQ[i, i] is the representation

of siQ made of r = dim ker f copies of the interval representation IsiQ[i, i]. The
theorem follows from this claim and (A.7).

To prove the claim, recall from the definition of R+
i V and from our exactness

hypothesis that we have Uj = Vj for all j �= i and Ui = ker g = im f . Therefore,
given an arbitrary complement C of ker f in Wi, the first isomorphism theorem
states that f |C is an isomorphism onto its image Ui. Now, let us pick an arbitrary
isomorphism of vector spaces h : ker f → Ki, and let us define an isomorphism of
representations φ : W → U⊕K as follows:

φj =

⎧⎨
⎩

1Vj
if j �= i;

f |C ⊕ h =

(
f |C 0
0 h

)
if j = i.

Checking that φ is indeed a morphism composed of invertible linear maps is straight-
forward. �

4.4.2. Proof of Gabriel’s theorem for An-type quivers. Let us fix an An-type
quiver Q and focus on the finite-dimensional representations of Q. Such a represen-
tation V is called (right-)streamlined if every forward map is injective and every
backward map is surjective. For instance, the representation shown in (1.11) is
streamlined if every map v2k+1 is injective and every map v2k+2 is surjective.

Intuitively, for an interval-decomposable representation V, to be streamlined
means that there can be no interval summand of V that ends before the final index
n. This intuition is formalized in the following result by Carlsson and de Silva [49].

Proposition A.22.
• An interval representation IQ[b, d] is streamlined if and only if d = n.

• A direct sum
⊕k

i=1 V
i of representations of Q is streamlined if and only if

every summand Vi is streamlined.

Thus, an interval-decomposable representation V of Q is streamlined if and only
if its interval decomposition is of type

⊕
i IQ[bi, n].
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By extension, a representation V is streamlined up to index i if every forward
map Vj → Vj+1 (j < i) is injective and every backward map Vk ← Vk+1 (k < i) is
surjective. In particular, every representation is streamlined up to index 1.

The proof of Carlsson and de Silva [49] proceeds in two steps:

(1) it shows that every representation V of Q decomposes as a direct sum
V1 ⊕ · · · ⊕ Vk where each summand Vi is streamlined up to index i and
trivial (with zero spaces and maps) beyond;

(2) it shows that each summand Vi decomposes in turn as a direct sum of
interval representations

⊕
j IQ[bj , i].

Step 1 is proved by a simple induction on the length n of Q and does not bring any
particular insight into the problem. Let us therefore refer to [49] for the details.
Step 2 is more interesting. It boils down to showing that any streamlined repre-

sentation V = V1
v1

V2
v2 · · ·

vn−1

Vn of Q decomposes as a direct sum⊕
i IQ[bi, n]. For this, Carlsson and de Silva [49] introduce a new tool that proves

very handy: the right filtration of V.

Definition A.23. the right filtration of V, noted RV, is a filtration (i.e. a
nested sequence of subspaces) of the vector space Vn, defined recursively as follows:

• if n = 1, then RV = (0, V1);
• else (n > 1),

(A.11) RV =

⎧⎨
⎩ (vn−1(R0), · · · , vn−1(Rn−1), Vn) if vn−1 : Vn−1 → Vn,

(0, v−1
n−1(R0), · · · , v−1

n−1(Rn−1)) if vn−1 : Vn−1 ← Vn,

where 0 = R0 ⊆ · · · ⊆ Rn−1 = Vn−1 is the right filtration of

V1
v1

V2
v2 · · ·

vn−2

Vn−1 .

The k-th element in the right filtration of V is written RV[k]. Note that the recursive
definition maintains the filtration property, that is,

0 = RV[0] ⊆ RV[1] ⊆ · · · ⊆ RV[n− 1] ⊆ RV[n] = Vn.

The transformation V → RV defines a functor from repk(Q) to the category of
finite-dimensional n-filtered k-vector spaces. This functor induces a ring homomor-
phism from the endormorphism ring of V to the one of RV. The crux of the matter
is that this ring homomorphism turns out to be an isomorphism when V is stream-
lined. Hence, in this case, the decomposition structures of V and RV are the same,
since, as we saw after Theorem A.5, direct summands correspond to idempotents
in the endomorphism ring—see also [164].

Thus, step 2 of the proof reduces to showing that the right filtration RV admits
a decomposition (a standard result), and so the following correspondence is easily
established by Carlsson and de Silva [49]:

(A.12) V ∼=
n⊕

i=1

IQ[i, n]ci where ci = dimRV[i]/RV[i− 1].

In other words, the multiplicities of the interval summands IQ[i, n] in the decompo-
sition of V are given by the dimensions of the quotients of consecutive elements in
the right filtration RV.
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This proof is constructive in that it induces the following high-level algorithm
for decomposing an arbitrary representation V ∈ repk(Q) into interval summands.
The algorithm proceeds from left to right along the quiver Q, considering indices 1
through n sequentially. At every index i, it restricts the focus to the subquiver Q[1, i]
spanned by nodes 1 through i, and to the representation V[1, i] of Q[1, i] induced
by V. The right filtration of V[1, i] is obtained from the one of V[1, i−1] using (A.11),
and the multiplicities of the interval summands IQ[j, i] for j = 1, · · · , i are computed
from the right filtration using (A.12). These summands are then pruned out of the
direct-sum decomposition of V (this step is important to maintain the invariant
that V[1, i] is streamlined at the time when index i is reached). Upon termination,
all the interval summands IQ[b, d] of V have been extracted, in the lexicographical
order on the pairs (d, b).

This procedure is closely related to the one based on reflection functors, pre-
sented in Section 4.3. To see this, take the linear quiver Ln as our quiver Q, and recall
Example A.19. Each application of the Coxeter functor C+ = R+

1 R+
2 · · ·R+

n−1R+
n

on V prunes out the interval representations IQ[i, n] (1 ≤ i ≤ n) from the direct-sum
decomposition of V, in the decreasing order of their left endpoints i, while shifting
the other interval representations IQ[i, j] (1 ≤ i ≤ j < n) upwards to IQ[i+ 1, j + 1].
After applying the Coxeter functor n times, all the interval summands IQ[b, d] of V
have been extracted, in an order that is the inverse of the one from [49].

When Q is an arbitrary An-type quiver, the procedure from Section 4.3 is a
combination of the previous one with a novel ingredient from [50]. Recall from
Example A.20 that we apply the following sequence of reflections, where i1 < · · · <
ir are the heads of the backward arrows in Q, in order to turn Q into the linear
quiver Ln:

(A.13) s1 · · · sirs1 · · · sir−1
· · · s1 · · · si1 .

By doing so, we actually travel down a big pyramid-shaped lattice, shown in Fig-
ure A.4 for the case n = 5. Every maximal x-monotone path in this pyramid corre-
sponds to a unique An-type quiver. Each reflection in the sequence (A.13) makes us
travel down one diamond in the pyramid, and the corresponding reflection functor
modifies our quiver accordingly. Starting from Q, there may be different sequences
of reflections that lead to the linear quiver Ln at the bottom of the pyramid, but
it turns out that the corresponding sequences of reflection functors give isomorphic
results [24, lemma 1.2]. Thus, the transformation of our initial representation into
a representation of Ln is canonical, even though the sequence of reflections itself is
not.

This approach is very similar to the one used by Carlsson, de Silva, and Morozov
[50] to relate the so-called level-sets zigzags and extended persistence (see Section 1.3
in Chapter 2), except here we work in a general setting where we can ‘lose’ some
summands in the interval decomposition of our representation along the way down
the pyramid. Once we reach the bottom, the Coxeter functor can be applied n
times as before to prune out the remaining interval summands.

All in all, the summands IQ[b, i1], · · · , IQ[b, ir] are extracted first, in an order
that depends on the order in which the diamonds of the pyramid are visited8, and

8For instance, with the sequence (A.13), the summands IQ[b, i1] are pruned first, then the
summands IQ[b, i2], etc.
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Figure A.4. The pyramid travelled down when turning an A5-
type quiver into L5.

then the rest of the summands are extracted in an order that is the inverse of the
one from [49].

5. Proof of Gabriel’s theorem: the general case

This section provides a proof of Gabriel’s theorem (Theorems A.6 and A.11)
in the general case. The proof is divided into two parts: the “if” part, which
shows that for every Dynkin quiver there are finitely many isomorphism classes of
indecomposable representations; the “only if” part, which shows that this finiteness
property holds only for Dynkin quivers.

5.1. The “if” part. We will present the proof of Bernstein, Gelfand, and
Ponomarev [24] based on reflection functors. The outline is the same as in Sec-
tion 4.3, but the details are more subtle because the indecomposable representations
of a general Dynkin quiver are not naturally identified with interval representations.

A short detour. Before proceeding with the proof itself, let us recall the result
on the nilpotency of Coxeter functors, which was mentioned in passing between
Examples A.19 and A.20 in Section 4.2.
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5. PROOF OF GABRIEL’S THEOREM: THE GENERAL CASE 187

Proposition A.24 ([24]). Let Q be a Dynkin quiver, and let V be an indecom-
posable representation of Q. Then, for any total order on Q0 that is compatible with
Q, there is a finite r such that C+ · · · C+︸ ︷︷ ︸

r times

V = 0.

The proof of this result considers the subgroup of automorphisms Zn → Zn

generated by the maps (A.4) and (A.5) for i ranging over Q0 = {1, 2, · · · , n}. This
group is called the Weyl group, denoted by WQ. It preserves the Tits form qQ, so
the set ΦQ of roots of qQ is stable under its action. When Q is Dynkin, ΦQ is finite,
so each element of WQ induces a permutation on the set ΦQ. Moreover, the simple
representations Si verify qQ(dim Si) = 1, therefore ΦQ contains the entire basis of
Zn. As a result, WQ can be embedded as a subgroup of the permutation group of
ΦQ and is therefore finite.

The following result is an easy consequence of the finiteness of WQ. The proof
is based on a fixed-point argument—see [24, lemma 2.3] for the details. In the
statement we abuse notations and write C+x for the image of a vector x ∈ Zn

under the action of the element of WQ corresponding to the Coxeter functor C+ (we
will do the same with reflection functors in the following):

Lemma A.25 ([24]). Let Q be a Dynkin quiver, and let x be a positive root of
qQ. Then, for any total order on Q0 that is compatible with Q, there is a finite r
such that the vector C+ · · · C+︸ ︷︷ ︸

r times

x is non-positive.

Letting x = dimV in the lemma implies that dimV is eventually sent to some
non-positive vector under the repeated action of C+. At that stage, the image of V
itself must be 0, which concludes the proof of Proposition A.24.

Remark. Bernstein, Gelfand, and Ponomarev [24] also showed that C±V and
C±x are in fact independent of the choice of total order on Q0, as long as that order
is compatible with Q. Thus, C+ and C− are uniquely defined for each quiver Q,
and the clause “for any total order on Q0 that is compatible with Q” can be safely
removed from the statements of Proposition A.24 and Lemma A.25. This fact is
not used in the proof of Gabriel’s theorem as it is presented here though.

The proof. Given a Dynkin quiver Q and an indecomposable representation V,
we know from Proposition A.24 that there is a sequence of indices i1, · · · , is, possibly
with repetitions, such that R+

is
· · ·R+

i1
V = 0. Assuming without loss of generality

that this is a minimal such sequence, we deduce as in Section 4.3 that R+
is−1

· · ·R+
i1
V

is the simple representation Sis , from which, using Corollary A.17, we conclude
that the dimension vector of V is a positive root of qQ. Thus, V �→ dimV maps
indecomposable representations of Q to positive roots of qQ.

To prove the “if” part of Theorem A.6, we need to show that the map V �→
dimV is an injection from the isomorphism classes of indecomposable representa-
tions of Q to the set of positive roots of qQ. Suppose V and W are nonisomorphic
indecomposable representations sharing the same dimension vector. Then, the se-
quence of reflections R+

is−1
· · ·R+

i1
that sends V to Sis also sends dimV to dim Sis ,

and therefore it sends W to an indecomposable representation with the same di-
mension vector as Sis . But since Sis is obviously the only representation with that
dimension vector (up to isomorphism), we have R+

is−1
· · ·R+

i1
W ∼= Sis . Applying
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now the mirrored sequence of reflections, we obtain:

W ∼= R−
i1
· · ·R−

is−1
R+

is−1
· · · R+

i1
W ∼= R−

i1
· · · R−

is−1
Sis

∼= R−
i1
· · ·R−

is−1
R+

is−1
· · ·R+

i1
V ∼= V.

Thus, the map V �→ dimV is injective. Combined with Proposition A.10, this fact
implies that there are only finitely many isomorphism classes of indecomposable
representations of Q, hereby proving the “if” part of Theorem A.6.

To prove Theorem A.11, we also need to show that the map V �→ dimV is
surjective. Let x ∈ Nn be a root of qQ. According to Lemma A.25, there is a
sequence of indices i1, · · · , is, possibly with repetitions, such that the sequence of
reflections R+

is
· · ·R+

i1
sends x to a non-positive root of qQ. Assuming without loss

of generality that this is a minimal such sequence, we deduce that R+
is−1

· · ·R+
i1

sends x to the vector (0, · · · , 0, 1, 0, · · · , 0)� with a single 1 at position is. This
is the dimension vector of the simple representation Sis , which we know is inde-
composable. Therefore, R−

i1
· · ·R−

is−1
Sis is also indecomposable (because nonzero)

and has x as dimension vector. This proves that the map V �→ dimV is surjective
from the isomorphism classes of indecomposable representations of Q to the set of
positive roots of qQ.

5.2. The “only if” part. We will give two different proofs of the “only if”
part of Theorem A.6. The first one is both direct and self-contained, requiring no
extra mathematical background. However, it is based on an exhaustive enumera-
tion, so it is quite lengthy and tedious, and not really enlightening. This is why
we also give a second proof, which on the contrary is both compact and elegant,
with a more geometric flavor, but whose details require some notions in algebraic
geometry. Gabriel himself adopted the first proof and mentioned the second one
briefly in his original paper [133].

5.2.1. Direct inspection. The proof goes by contraposition. Let Q be a finite
connected quiver, and assume Q is not Dynkin. Then, as we observed already in
the proof of Theorem A.9, Q̄ must contain one of the diagrams of Figure A.3 as a
subgraph. Denoting Q̃ the restriction of Q to that subgraph, we have that any rep-
resentation of Q̃ can be extended to a representation of Q by assigning trivial spaces
to the remaining vertices and trivial maps to the remaining arrows. This process
turns the indecomposable representations of Q̃ into indecomposable representations
of Q in a way that preserves the isomorphism classes. Hence, if we can exhibit
an infinite family of pairwise nonisomorphic indecomposable representations for Q̃,
then we can conclude that Q itself also has a similar family.

Thus, the proof of the “only if” part of Theorem A.6 reduces to enumerating
all the quivers whose underlying graphs are Euclidean, and for each one of them,
exhibiting an infinite family of pairwise nonisomorphic indecomposable representa-
tions. This is what Gabriel did in his original proof, and we refer the interested
reader to [133] for the complete enumeration—see also [104, theorem 1.23] for a
more recent treatment. Here we restrict ourselves to a few noteworthy excerpts.

Example A.26 (Ã0). Let Q be the quiver with one vertex and one loop. Fix
the space V0 to be kn, so a representation is given by a linear map kn → kn or,
equivalently, by an n× n matrix M . Two representations with matrices M,N are
isomorphic if and only if there is an invertible matrix B such that NB = BM ,
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5. PROOF OF GABRIEL’S THEOREM: THE GENERAL CASE 189

meaning that M,N lie in the same conjugacy class. Therefore, the Jordan block
matrices Jλ,n for λ ∈ k give pairwise nonisomorphic indecomposable representa-
tions. If k is an infinite field, then we get an infinite number of isomorphism
classes of indecomposable representations. Otherwise, it suffices to let n range over
N \ {0} to get an infinite number. Note that when k is algebraically closed, the
isomorphism classes of indecomposable representations correspond exactly to the
conjugacy classes of the Jordan block matrices.

Example A.27 (Ãn, n ≥ 1). Let Q be a quiver of type Ãn, n ≥ 1. We put space
k at every vertex of Q, and identity maps at all the arrows except one where we put
λ times the identity for an arbitrary scalar λ. Then, the various choices of λ ∈ k
give pairwise nonisomorphic indecomposable representations. More generally, given
r ∈ N \ {0}, we put kr at every vertex, and identity maps at all the arrows except
one where we put the Jordan block matrix Jλ,r for an arbitrary scalar λ. The
various choices of λ ∈ k once again give pairwise nonisomorphic indecomposable
representations.

Example A.28 (D̃n). Consider the following quiver Q of type D̃4:

•1

))!!
!!!

!!!
!!!

!! •3

**"""
"""

"""
"""

"

•
2

•
0

++""""""""""""" •
4

,,!!!!!!!!!!!!!

This quiver has a historical interest, since it is for its study that Gelfand and
Ponomarev [139] introduced the reflection functors.

Consider the following representation of Q, where λ is an arbitrary scalar:

k
( 1
0 )

--##
###

###
###

## k
( 1
1 )

..$$$
$$$

$$$
$$$

$

k2

k
( 0
1 )

//$$$$$$$$$$$$$
k

( 1
λ )

00#############

The various choices of λ ∈ k give pairwise nonisomorphic indecomposable repre-
sentations of Q. More generally, for any r ∈ N \ {0} and λ ∈ k, the following
representations are indecomposable and pairwise nonisomorphic:

kr (
1kr

0

)

))!!
!!!

!!!
!!!

!! kr(
1kr

1kr

)

**"""
"""

"""
"""

"

k2r

kr

(
0

1kr

)
++"""""""""""""

kr

(
1kr

Jλ,r

)
,,!!!!!!!!!!!!!
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Indecomposable representations for D̃n can be obtained from this one by inserting
a string of spaces k2r linked by identity maps in place of vertex 2.

Remark. This is but one possible choice of arrow orientations in the quiver
D̃n. All the other choices have to be considered as well, thus making the enumer-
ation tedious. In fact, reflection functors give a way of switching between arrow
orientations, with a predictable effect on the representations of the corresponding
quivers. This greatly helps reduce the length of the enumeration, since basically
a single choice of arrow orientations needs to be considered for every diagram9 of
Figure A.3. Let us emphasize however that the enumeration proof does not rely on
the reflection functors in any essential way.

5.2.2. Tits’ geometric argument. Tits proposed a simple and elegant proof with
a geometric flavor for the “only if” part of Theorem A.6. This proof stresses the role
played by the Tits form in Gabriel’s theorem. Although the details use certain facts
from algebraic geometry, the outline does not require to introduce any additional
concepts. We refer the reader to [36] for a formal treatment.

Assume as before that Q is a finite connected quiver with vertex set Q0 =
{1, · · · , n}. Let us fix a nonzero vector x = (x1, · · · , xn)� ∈ Nn and restrict the
focus to those representations of Q that have x as dimension vector. For any such
representation V, we choose arbitrary bases so that each space Vi is identified with
kxi and each linear map va is identified with an xha

×xta matrix. Thus, V is viewed
as an element of the following space (an algebraic variety over the field k):

repk(Q, x) =
⊕
a∈Q1

Matxha×xta
(k).

Given any isomorphism φ : V → W, we have φi ∈ GLxi
(k) for all i ∈ Q0, and by

Definition A.4 we have wa ◦ φta = φha
◦ va, or rather wa = φha

◦ va ◦ φ−1
ta , for all

a ∈ Q1. Thus, φ can be viewed as an element of the following (algebraic) group:

GLx(k) =
n∏

i=1

GLxi
(k)

which acts (algebraically) on V ∈ repk(Q, x) by conjugation, that is:

(A.14) ∀a ∈ Q1, (φ · V)a = φha
◦ va ◦ φ−1

ta .

This group action is key to understanding the structure of the space of representa-
tions of Q, as the isomorphism classes in repk(Q, x) coincide with the orbits of the
action:

∀V,W ∈ repk(Q, x), V ∼= W ⇐⇒ W ∈ GLx(k) · V.
These orbits satisfy the following orbit-stabilizer type theorem:

∀V ∈ repk(Q, x), dim GLx(k)− dim GLx(k) · V = dim{φ ∈ GLx(k) | φ · V = V},
where the stabilizer {φ ∈ GLx(k) | φ · V = V} has dimension at least 1 in our
context since it contains the set {λ1GLx(k) | λ ∈ k}, whose members are acting
trivially on V according to (A.14). Thus,

∀V ∈ repk(Q, x), dim GLx(k)− dim GLx(k) · V ≥ 1.

9Except Ãn (n ≥ 0), which has undirected loops and is therefore treated differently, as
described in Examples A.26 and A.27.
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Assume now that the quiver Q is of finite type. This implies by Theorem A.5 that
there can only be finitely many isomorphism classes in repk(Q, x). Equivalently,
repk(Q, x) decomposes into finitely many orbits of GLx(k). It follows10 that at
least one of these orbits must have full dimension. Thus,

dim GLx(k)− dim repk(Q, x) ≥ 1,

which can be rewritten as

qQ(x) ≥ 1

since the dimensions of GLx(k) and repk(Q, x) are
∑

i∈Q0
x2
i and

∑
a∈Q1

xtaxha

respectively. This proves that, when Q is of finite type, qQ(x) is positive for any
dimension vector x ∈ Nn \ {0}. We extend this property to any vector x ∈ Zn \ {0}
by observing that qQ(x) ≥ qQ((|x1|, · · · , |xn|)�). It follows then from Theorem A.9
that Q is Dynkin.

6. Beyond Gabriel’s theorem

Four decades of active research in quiver theory have resulted in the devel-
opment of a vast and rich literature on the subject, with many connections to
other areas of mathematics. Here we restrict the exposition to few selected topics
that are relevant to persistence theory. For more comprehensive overviews, see for
instance [94, 104].

6.1. Tame and wild quivers. The correspondence between the isomorphism
classes of indecomposable representations of a quiver and the positive roots of its
Tits form given in Theorem A.11 was generalized by Kac [168] to arbitrary quivers,
provided the base field k is algebraically closed.

Theorem A.29 (Kac I). Assuming the base field is algebraically closed, the
set of dimension vectors of indecomposable representations of an arbitrary finite
connected quiver Q is precisely the set of positive roots of its Tits form. In particular,
this set is independent of the arrow orientations in Q.

The difference with the Dynkin case is that the correspondence is no longer
one-to-one. To be more precise, Kac’s result distinguishes between two types of
positive roots x of qQ:

• those that satisfy qQ(x) = 1 are called real roots,
• those that satisfy qQ(x) ≤ 0 are called imaginary roots.

In the Dynkin case, all positive roots are real, and Gabriel’s theorem asserts that
the correspondence between these and the dimension vectors of indecomposable
representations is one-to-one. In the general case, Kac’s theorem asserts the fol-
lowing.

Theorem A.30 (Kac II). Assume the base field is algebraically closed. Given
an arbitrary finite connected quiver Q, to each real root of qQ corresponds exactly one
isomorphism class of indecomposable representations of Q, and to each imaginary
root x of qQ corresponds an r(x)-dimensional variety of isomorphism classes of
indecomposable representations of Q, where r(x) = 1 − qQ(x).

10This implication is not trivial. Nevertheless, it follows the intuition from affine geometry
that a finite union of subspaces cannot cover the ambient space unless at least one element in the
union has full dimension.
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In light of Theorem A.9 and its following remark, this result classifies the
finite connected quivers into 3 categories, thus refining Gabriel’s dichotomy into a
trichotomy:

• The Dynkin quivers, whose underlying graphs are the diagrams of Figure A.2
and whose Tits forms are positive definite. Those have finitely many isomor-
phism classes of indecomposable representations, one per positive real root.
This coincides with Gabriel’s theorem.

• The tame quivers, whose underlying graphs are the diagrams of Figure A.3
and whose Tits forms are positive semidefinite. Those have 1-dimensional
varieties of isomorphism classes of indecomposable representations, one per
positive imaginary root. Moreover, it can be shown11 that their Tits forms
have a 1-dimensional radical and therefore only countably many imaginary
roots. As a consequence, such quivers have countably many 1-dimensional
varieties of isomorphism classes of indecomposable representations. For in-
stance, the quiver of type Ã0 has a uniformly zero Tits form and Z as radical.
As depicted in Example A.26, each dimension vector (n) ∈ Z gives rise to a
family of isomorphism classes of indecomposable representations parametrized
by λ ∈ k, one isomorphism class per Jordan block matrix Jλ,n.

• The wild quivers, whose Tits forms are indefinite. Those admit higher-
dimensional varieties of isomorphism classes of indecomposable representa-
tions. For instance, the quiver with 1 node and 2 loops admits an (n2 + 1)-
dimensional family of isomorphism classes of indecomposable representations
per vector space dimension n. The fact that the number of parameters needed
to describe the family can be arbitrarily large means that describing explic-
itly the set of indecomposable representations is essentially an impossible task.
This is in fact true for any wild quiver (hence the name), as it turns out that
the problem will be at least as hard as it is for this particular quiver.

Remark. Tame quivers have also been studied in their own right, and a com-
plete classification of their indecomposable representations was provided indepen-
dently by Donovan and Freislich [110] and Nazarova [204]. This happened around
the same time as Gabriel’s theorem, and almost a decade before Kac’s theorem.

6.2. Quivers as algebras. An important aspect of quiver theory is its con-
nection to the representation theory of associative algebras. In some sense, a quiver
can be viewed as an algebra, and its representations can be viewed as modules over
that algebra. Let us describe the connection briefly.

Paths and cycles in a quiver Q are understood in the same way as in (directed)
graph theory. A path in Q is a finite sequence of arrows ar · · · a1 such that hai

= tai+1

for 1 ≤ i < r. If har
= ta1

, then the path is called a cycle. Here, r denotes the
length of the path. To each vertex i ∈ Q0 we associate a trivial path ei of length
zero.

Definition A.31. The path algebra of a quiver Q, noted kQ, is the k-algebra
having as basis the set of all paths in Q. The product in the algebra is defined by
linearity and by the following product rule for two paths ar · · · a1 and bs · · · b1:

(A.15) (ar · · · a1) · (bs · · · b1) =

{
ar · · · a1bs · · · b1 if ta1

= hbs ,
0 otherwise.

11See [172, lemma 4.1.3] for a proof.
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The following properties are straightforward. First, kQ is an associative algebra.
Second, when Q0 is finite, kQ has a unit element, namely 1 =

∑
i∈Q0

ei. Third, kQ

is finite-dimensional (as a k-vector space) if and only if there are only finitely many
different paths in Q, i.e. if and only if Q is finite and acyclic.

Representations of a finite quiver Q can be viewed as left modules over its path

algebra. Indeed, given V = (Vi, va) ∈ Repk(Q), equip X =
⊕
i∈Q0

Vi with the scalar

multiplication induced by k-linearity from the rule:

(ar · · · a1) · x = var
◦ · · · ◦ va1

(xta1
) ∈ Vhar

⊆ X

for any path ar · · · a1 in Q and any vector x =
∑

i∈Q0
xi ∈ X. This turns V into a

kQ-module. Conversely, any left kQ-module M can be turned into a representation
by letting Vi = eiM for each i ∈ Q0, where ei is the trivial path at vertex i, and by
letting each k-linear map va : Vta → Vha

be induced by the kQ-module structure
on M . It can be shown12 that these conversions define an equivalence of categories
between Repk(Q) and the category of kQ-modules.

Proposition A.32. For a finite quiver Q, Repk(Q) is equivalent to the category
of left kQ-modules.

Thus, classifying the representations of a finite quiver Q is the same as classifying
the left modules over its path algebra kQ. As we saw earlier, when Q is acyclic, kQ
is a finite-dimensional algebra over a field, therefore it is an Artin algebra. The
representation theory of Artin algebras [13] can then be used to classify its left
modules, including the infinite-dimensional ones. Of particular interest to us is the
following result, proven independently by Auslander [12] and Ringel and Tachikawa
[217]:

Theorem A.33. Let A be an Artin algebra. If A has only a finite number of
isomorphism classes of finitely generated indecomposable left modules, then every
indecomposable left A-module is finitely generated, and every left A-module is a
direct sum of indecomposable modules.

Gabriel’s theorem ensures that the hypothesis of Theorem A.33 is satisfied by
kQ when Q is Dynkin. In this case, both theorems combined together give the
following:

Corollary A.34. For a Dynkin quiver Q, every indecomposable representa-
tion in Repk(Q) has finite dimension, and every representation in Repk(Q) is a
direct sum of indecomposable representations. In particular, Q has finitely many
isomorphism classes of indecomposable representations, and all of them are finite-
dimensional.

Moreover, as we saw in Section 3, the finite-dimensional indecomposable repre-
sentations of Q have local endomorphism rings, so Azumaya’s theorem applies and
the decomposition of any representation in Repk(Q) is unique up to isomorphism
and permutation of the terms.

Remark. These properties hold for Dynkin quivers, but not for finite (even
acyclic) quivers in general. There are indeed examples of infinite-dimensional rep-
resentations of tame (acyclic) quivers that are indecomposable, and whose endo-
morphism rings are not local. See e.g. [172, §2] for such an example.

12See [13, theorem III.1.5] for a proof.
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In the special case where Q is of type An, we know from Example A.12 that
the indecomposable finite-dimensional representations of Q are the interval repre-
sentations IQ[b, d], so Corollary A.34 and its following paragraph assert that every
representation of Q, whether of finite or infinite dimension, decomposes essentially
uniquely as a direct sum of interval representations.

6.3. Quivers as categories. In categorical terms, quivers are defined as func-
tors from the Kronecker category • ��

�� • having 2 objects and 2 morphisms
(plus identities) to the category of sets. This is really the categorical version of
Definition A.1.

A quiver Q itself can be turned into a category Q, where the objects are the
vertices of Q and where there is one morphism per (possibly trivial) path in Q,
the composition rule for morphisms being induced by the product rule (A.15) for
paths13. Given two vertices i, j ∈ Q0, the number of morphisms in Hom(i, j) is
equal to the number of different paths from i to j in Q. It is finite for all i, j ∈ Q0

if and only if Q is acyclic. A representation of Q over some field k is then a functor
from Q to the category of k-vector spaces, and a morphism between representations
is just a natural transformation between functors.

Among the (small) categories that can be constructed this way, the category Z
corresponding to the poset (partially ordered set) (Z,≤) is of particular interest to
persistence. It has one object per integer and one morphism per couple (i, j) such
that i ≤ j. It is derived from the (infinite) quiver Z having Z as vertex set and an
edge i → i+1 for every integer i, using the previous path construction. Webb [238]
has extended Gabriel’s theorem to this quiver. The uniqueness of the decomposition
follows once again from Azumaya’s theorem, since the endomorphism ring of any
interval representation is isomorphic to the field k and therefore local.

Theorem A.35. Any representation V of the quiver Z such that the spaces
(Vi)i∈Z are finite-dimensional is a direct sum of interval representations.

Remark. Webb’s proof does not work with representations of the quiver Z

directly, but rather with Z-graded modules over the graded ring of polynomials
k[t]. Indeed, any representation (Vi, vi)i∈Z of Z can be viewed as a Z-graded module
X =

⊕
i∈Z

Vi over k[t], the grading being induced by the action of t as follows:

∀i ∈ Z, ∀xi ∈ Vi, t · xi = vi(xi) ∈ Vi+1.

Conversely, any module X =
⊕

i∈Z
Vi over k[t] that is equipped with a grading

(vi : Vi → Vi+1)i∈Z can be viewed as a representation of the quiver Z. This corre-
spondence is known to induce an equivalence of categories between Repk(Z) and the
category of Z-graded modules over k[t]. In light of this equivalence, Theorem 1.4
is a generalization of the classical structure theorem for finitely generated (graded)
modules over a (graded) principal ideal domain [163].

6.4. Quivers as posets. Every poset (P,�) gives rise to a category P, in
which the objects are the elements of P and there is a unique morphism per couple
x � y. As it turns out, not all poset categories can be derived from a quiver using
the construction of Section 6.3. For instance, the poset (P,�) whose Hasse diagram

13Notice how this construction is similar in spirit to that of the path algebra kQ. It is a
common practice to identify a quiver with its path algebra and with its corresponding category.
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is the following gives a category P in which the two morphisms c ◦ a and d ◦ b are
identified.

(A.16)

•4

•2

c

���������
•3

d

���������

•
1

a

��������� b

���������

By contrast, the construction of Section 6.3 on the quiver (A.16) gives a category
with the same objects as P but with two morphisms 1 → 4, the paths ca and db
being considered different. The concept that unifies these two constructions is the
one of a quiver with relations, also called a bound quiver. In short, this is a quiver Q
in which some of the paths with common sources and targets are considered equal,
or more generally, some linear combinations of these paths in the path algebra kQ
are zeroed out.

Definition A.36. A relation on a quiver Q is a k-linear combination of paths
sharing the same source and target vertices. A quiver with relations is a pair (Q, I)
where Q is a quiver and I is an ideal of kQ spanned by relations. The quotient
algebra kQ/I is called the path algebra of (Q, I).

Every poset (P,�) is equivalent (as a category) to some quiver with relations.
To see this, take the quiver having one vertex per element in P and one directed
edge i → j per couple i ≺ j (do not connect i to itself), and equip that quiver with
the relations induced by the transitivity of �. These relations identify all the paths
sharing the same source and target vertices, so the resulting quiver with relations
is equivalent (as a category) to (P,�).

A representation V of a quiver with relations (Q, I) is defined formally as a left
module over the path algebra kQ/I. Intuitively, the linear relations between paths
encoded in the ideal I induce linear relations between compositions of linear maps
in V. When (Q, I) is equivalent (as a category) to a poset (P,�), V is also called a
representation of (P,�) as it defines a functor from the corresponding category P
to the category of k-vector spaces.

The posets that are most relevant to us are the sets T ⊆ R equipped with
the natural order ≤ on real numbers. As a functor from the poset category T to
the category of k-vector spaces, a representation of (T,≤) defines k-vector spaces

(Vi)i∈T and k-linear maps (vji : Vi → Vj)i≤j∈T satisfying the following constraints:

(A.17)
vii = 1Vi

for every i ∈ T , and

vki = vkj ◦ v
j
i for every i ≤ j ≤ k ∈ T .

Crawley-Boevey [93] has extended Theorem A.35 to this setting. His proof tech-
nique corresponds to a specialized version of the functorial filtration method devel-
oped in quiver theory [216]. The uniqueness of the decomposition once again follows
from Azumaya’s theorem.

Theorem A.37. Given T ⊆ R, any representation V of (T,≤) such that the
spaces (Vi)i∈T are finite-dimensional is a direct sum of interval representations.
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Remark. Definition A.36 follows Gabriel [132]. More recent references such
as [13] add the extra condition that the relations in the quiver should only involve
paths of length at least 2. This condition is justified in the context of the represen-
tation theory for associative algebras. There is indeed a deep connection between
finite-dimensional algebras over algebraically closed fields and quivers with rela-
tions, the bottomline being that every such algebra A is equivalent14 to the path
algebra of an essentially unique quiver with relations (Q, I). Uniqueness relies in a
critical way on the assumption that the relations in I involve no path of length less
than 2, as otherwise extra arrows can be added to Q arbitrarily and zeroed out in
the relations.

14In the sense that the left modules over A and over kQ/I form equivalent categories. This
is known as Morita equivalence in the literature.
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[37] H. Brönnimann and M. Yvinec. “Efficient exact evaluation of signs of deter-
minants”. In: Algorithmica 27.1 (2000), pp. 21–56 (cit. on p. 86).

[38] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. “Topology-invariant
similarity of nonrigid shapes”. In: Intl. Journal of Computer Vision (IJCV)
81.3 (2009), pp. 281–301 (cit. on p. 134).

[39] P. Bubenik. “Statistical Topological Data Analysis using Persistence Land-
scapes”. In: Journal of Machine Learning Research 16 (2015), pp. 77–102
(cit. on pp. 159, 160).

[40] P. Bubenik, V. de Silva, and J. Scott. Metrics for generalized persistence
modules. Research Report arXiv:1312.3829 [math.AT]. 2013 (cit. on pp. 27,
62, 163, 165).

[41] P. Bubenik and J. Scott. “Categorification of Persistent Homology”. In: Dis-
crete and Computational Geometry (2014). To appear (cit. on pp. 27, 49,
62, 163, 165).

[42] M. Buchet, F. Chazal, S. Y. Oudot, and D. Sheehy. “Efficient and
Robust Persistent Homology for Measures”. In: Proceedings of the
ACM-SIAM symposium on Discrete algorithms. 2015, pp. 168–180. doi:
10.1137/1.9781611973730.13 (cit. on pp. 111, 112).

[43] J. R. Bunch and J. Hopcroft. “Factorization and Inversion by Fast Matrix
Multiplication”. In: Mathematics of Computation 28.125 (1974), pp. 231–
236 (cit. on p. 46).

[44] D. Burago, Y. Burago, and S. Ivanov. A Course in Metric Geometry. Vol. 33.
Graduate Studies in Mathematics. Providence, RI: American Mathematical
Society, 2001 (cit. on pp. 140, 143).

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

papers/CGLcourseNotes/main.pdf
http://dx.doi.org/10.1137/1.9781611973730.13


200 BIBLIOGRAPHY

[45] D. Burghelea and T. K. Dey. “Topological persistence for circle-valued maps”.
In: Discrete & Computational Geometry 50.1 (2013), pp. 69–98 (cit. on
p. 164).

[46] C. Caillerie and B. Michel. “Model Selection for Simplicial Approximation”.
In: Foundations of Computational Mathematics 11.6 (2011), pp. 707–731
(cit. on p. 158).

[47] G. Carlsson, A. Zomorodian, A. Collins, and L. J. Guibas. “Persistence Bar-
codes for Shapes”. In: International Journal of Shape Modeling 11.2 (2005),
pp. 149–187 (cit. on p. 135).

[48] G. Carlsson. “Topology and data”. In: Bulletin of the American Mathemat-
ical Society 46.2 (2009), pp. 255–308 (cit. on pp. vii, 69, 161).

[49] G. Carlsson and V. de Silva. “Zigzag Persistence”. In: Foundations of Com-
putational Mathematics 10.4 (2010), pp. 367–405 (cit. on pp. 14, 27, 39, 44,
167, 175, 182–186).

[50] G. Carlsson, V. de Silva, and D. Morozov. “Zigzag Persistent Homology and
Real-valued Functions”. In: Proceedings of the Twenty-fifth Annual Sym-
posium on Computational Geometry. SCG ’09. 2009, pp. 247–256 (cit. on
pp. 27, 37–39, 44, 45, 103, 185).

[51] G. Carlsson and F. Mémoli. “Characterization, Stability and Convergence
of Hierarchical Clustering Methods”. In: J. Machine Learning Research 11
(Aug. 2010), pp. 1425–1470 (cit. on p. 117).

[52] G. Carlsson, G. Singh, and A. Zomorodian. “Computing multidimensional
persistence”. In: Algorithms and computation. Springer, 2009, pp. 730–739
(cit. on p. 164).

[53] G. Carlsson and A. Zomorodian. “The Theory of Multidimensional Persis-
tence”. In: Discrete and Computational Geometry 42.1 (May 2009), pp. 71–
93 (cit. on p. 164).

[54] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian. “On the Local
Behavior of Spaces of Natural Images”. In: Int. J. Comput. Vision 76.1 (Jan.
2008), pp. 1–12. doi: 10.1007/s11263-007-0056-x (cit. on pp. 8, 106–109).

[55] H. Carr, J. Snoeyink, and U. Axen. “Computing contour trees in all dimen-
sions”. In: Proceedings of the eleventh annual ACM-SIAM symposium on
Discrete algorithms. Society for Industrial and Applied Mathematics. 2000,
pp. 918–926 (cit. on p. 7).

[56] M. Carrière, S. Y. Oudot, and M. Ovsjanikov. “Stable Topological Signatures
for Points on 3D Shapes”. In: Computer Graphics Forum (proc. Symposium
on Geometry Processing) (2015) (cit. on pp. 155, 160).

[57] F. Chazal and A. Lieutier. “The λ-medial axis”. In: Graphical Models 67.4
(2005), pp. 304–331 (cit. on pp. 75, 77).

[58] F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Mémoli, and S. Y. Oudot.
“Gromov-Hausdorff Stable Signatures for Shapes using Persistence”. In:
Computer Graphics Forum (proc. Symposium on Geometry Processing) (2009),
pp. 1393–1403. doi: 10.1111/j.1467-8659.2009.01516.x (cit. on pp. 8,
136, 137, 139, 147).

[59] F. Chazal and D. Cohen-Steiner. “Geometric Inference”. In: Tessellations in
the Sciences. To appear. Springer-Verlag, 2013 (cit. on pp. 71, 76).

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

http://dx.doi.org/10.1007/s11263-007-0056-x
http://dx.doi.org/10.1111/j.1467-8659.2009.01516.x


BIBLIOGRAPHY 201

[60] F. Chazal, D. Cohen-Steiner, and A. Lieutier. “A Sampling Theory for Com-
pact Sets in Euclidean Space.” In: Discrete & Computational Geometry 41.3
(2009), pp. 461–479 (cit. on pp. 74, 77).

[61] F. Chazal, D. Cohen-Steiner, and A. Lieutier. “Normal Cone Approximation
and Offset Shape Isotopy”. In: Comput. Geom. Theory Appl. 42.6-7 (2009),
pp. 566–581 (cit. on p. 78).

[62] F. Chazal, D. Cohen-Steiner, and Q. Mérigot. “Geometric Inference for Prob-
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Anderson, J. A. Arns, É. Aubourg, S. Bailey, E. Balbinot, and et al. “SDSS-
III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way,
and Extra-Solar Planetary Systems”. In: The Astronomical Journal 142.3,
72 (2011), p. 72. doi: 10.1088/0004-6256/142/3/72 (cit. on p. 68).

[124] A. Elad and R. Kimmel. “On Bending Invariant Signatures for Surfaces.”
In: IEEE Trans. Pattern Anal. Mach. Intell. 25.10 (2003), pp. 1285–1295
(cit. on p. 133).

[125] K. J. Emmett and R. Rabadan. “Characterizing Scales of Genetic Recombi-
nation and Antibiotic Resistance in Pathogenic Bacteria Using Topological
Data Analysis”. In: arXiv preprint arXiv:1406.1219 (2014) (cit. on p. 8).

[126] E. Escolar and Y. Hiraoka. Persistence Modules on Commutative Ladders
of Finite Type. Research Report arXiv:1404.7588 [math.AT]. 2014 (cit. on
p. 163).

[127] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. “A density-based algorithm
for discovering clusters in large spatial databases with noise”. In: Proc. 2nd
Internat. Conf. on Knowledge Discovery and Data Mining (KDD-96). AAAI
Press, 1996, pp. 226–231 (cit. on p. 115).

[128] H. Federer. “Curvature Measures”. In: Trans. Amer. Math. Soc. 93 (1959),
pp. 418–491 (cit. on pp. 71, 72).
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