
Topological Signatures



- ma recherche s’inscrit dans le contexte de l’analyse exploratoire des donnees, dont l’objectif est l’etude descriptive des structures sous-jacentes aux donnees en vue de leur interpretation ou de leur comparaison. - dans mon cas je m’interesse surtout aux donnees quantitatives de nature geometrique, materialisees generalement par des nuages de points munis de metriques ou de mesures de similarite

Input: set of data points with metric or (dis-)similarity measure

data point ≡ point on 3d shape, image patch, atom/site in protein, Facebook user, etc.

Geometric Data

1



- ma recherche s’inscrit dans le contexte de l’analyse exploratoire des donnees, dont l’objectif est l’etude descriptive des structures sous-jacentes aux donnees en vue de leur interpretation ou de leur comparaison. - dans mon cas je m’interesse surtout aux donnees quantitatives de nature geometrique, materialisees generalement par des nuages de points munis de metriques ou de mesures de similarite

Input: set of data points with metric or (dis-)similarity measure

data point ≡ point on 3d shape, image patch, atom/site in protein, Facebook user, etc.

Geometric Data

1



- ma recherche s’inscrit dans le contexte de l’analyse exploratoire des donnees, dont l’objectif est l’etude descriptive des structures sous-jacentes aux donnees en vue de leur interpretation ou de leur comparaison. - dans mon cas je m’interesse surtout aux donnees quantitatives de nature geometrique, materialisees generalement par des nuages de points munis de metriques ou de mesures de similarite

Input: set of data points with metric or (dis-)similarity measure

data point ≡ point on 3d shape, image patch, atom/site in protein, Facebook user, etc.

Geometric Data

1



- ma recherche s’inscrit dans le contexte de l’analyse exploratoire des donnees, dont l’objectif est l’etude descriptive des structures sous-jacentes aux donnees en vue de leur interpretation ou de leur comparaison. - dans mon cas je m’interesse surtout aux donnees quantitatives de nature geometrique, materialisees generalement par des nuages de points munis de metriques ou de mesures de similarite

Input: set of data points with metric or (dis-)similarity measure

data point ≡ point on 3d shape, image patch, atom/site in protein, Facebook user, etc.

Geometric Data

1



point out that all examples on the slide are taken from applications in geometry processing. The same will hold throughout the talk. However, the approach is general and can be applied on biological data as well.Why Compare Geometric Data

2

Comparisons between geometric data sets or parts thereof occur in:

• classification (organizing large databases)

TOSCA

Shape Benchmark
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same as distance comparisons in sorting or identification algortithms

point out that all examples on the slide are taken from applications in geometry processing. The same will hold throughout the talk. However, the approach is general and can be applied on biological data as well.Why Compare Geometric Data

2

Comparisons between geometric data sets or parts thereof occur in:

• classification (organizing large databases)

• partial/global matching (finding the best mapping between data sets)

• retrieval (searching in databases)

data comparison is
the basic building block

• segmentation and labelling



Mathematical Framework
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• geometric data set ≡ compact metric space

Euclidean distance

geodesic distance
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• geometric data set ≡ compact metric space

Euclidean distance

geodesic distance

diffusion distance

· · ·
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• geometric data set ≡ compact metric space

• distance between data sets ≡ Gromov-Hausdorff (GH) distance
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Mathematical Framework

3

• geometric data set ≡ compact metric space

• distance between data sets ≡ Gromov-Hausdorff (GH) distance

- stable ≡ variations with GH-distance and base point location are controlled

• signature ≡ persistence diagram (choose the filtration)

- multi-scale ≡ reflects the structure of the shape across scales

- global/local ≡ attached to the whole shape / to a base point(s)



[Agarwal et al. 2015] show that it is NP-hard to approximate the GH distance within a factor of 3, even for metric trees

Why use Signatures

4

data space

signatures space

GH distance

hard to compute

isometries

equality

distance

easy to compute

[Bronstein2 , Kimmel 2006]

[Mémoli 2007]

[Agarwal et al. 2015]
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[Agarwal et al. 2015] show that it is NP-hard to approximate the GH distance within a factor of 3, even for metric trees

Why use Signatures

4

data space

signatures space

GH distance

hard to compute

isometries

equality

distance

easy to compute

Ideally, signatures distance = GH distance

In reality, ≤

[Bronstein2 , Kimmel 2006]

[Mémoli 2007]

[Agarwal et al. 2015]



[Agarwal et al. 2015] show that it is NP-hard to approximate the GH distance within a factor of 3, even for metric trees

Why use Signatures

4

Some descriptors for images / 3d shapes / metric spaces:

• curvature (mean, Gaussian, sectional)

• diameter

• shape context (distribution of distances)

• heat kernel signature (heat diffusion)

• spin image (local neighborhood parametrization)

• wave kernel signature (Maxwell’s equations)

• etc.

• SIFT features (local distribution of gradient orientations)
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Outline

1. Global topological signatures

2. Local topological signatures

3. Kernels for topological signatures
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Outline

2. Local topological signatures

3. Kernels for topological signatures

1. Global topological signatures



This signature reveals the structure of the metric space across scales

Global Topological Signatures

6

Input: a compact metric space (X, dX)

Signature:

∞
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1-dimensional homology generators

0-dimensional homology generators

dgmF(X, dX), where F(X, dX) is some simplicial filtration over
X derived from dX (proxy for union of balls)



This signature reveals the structure of the metric space across scales

Global Topological Signatures

6

Input: a compact metric space (X, dX)

Signature: dgmF(X, dX), where F(X, dX) is some simplicial filtration over
X derived from dX (proxy for union of balls)

→ popular choices:

t

- Čech/Nerve filtration C(X, dX)

- (Vietoris)-Rips filtration R(X, dX)

Ct(X, dX)

R2t(X, dX)



This signature reveals the structure of the metric space across scales

Global Topological Signatures

6

Input: a compact metric space (X, dX)

Signature: dgmF(X, dX), where F(X, dX) is some simplicial filtration over
X derived from dX (proxy for union of balls)

→ popular choices:

t

- Čech/Nerve filtration C(X, dX)

- (Vietoris)-Rips filtration R(X, dX)

Ct(X, dX) = R2t(X, dX)



Signatures of some elementary shapes (approximated from finite samples):
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This equality is fine, since both curves are isometric when equipped with the geodesic distance (their total lengths are the same). The Euclidean distance allows us to differentiate between them.

Signatures of some elementary shapes (approximated from finite samples):
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This equality is not fine, since the two spaces are not isometric. Note that the equality does not come from the sampling itself, but from the definition of the signatures. Fortunately, the Euclidean distance allows us to differentiate between the shapes, even though by a single point.

Signatures of some elementary shapes (approximated from finite samples):
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Theorem: [Chazal, de Silva, O. 2013]
For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (dgmR(X, dX), dgmR(Y, dY )) ≤ 2dGH(X,Y ).

8

Variants and extensions:

- Čech / Nerve filtrations

- precompact metric spaces

- (dis-)similarity measures

- Witness complex filtrations (landmarks fixed)

Stability



Theorem: [Chazal, de Silva, O. 2013]
For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (dgmR(X, dX), dgmR(Y, dY )) ≤ 2dGH(X,Y ).

8

The bound is worst-case tight...

X = 1

Y =
1 + 2ε

dGH(X,Y ) = ε

dgmR(X, dX) = {(0,∞), (0, 1)}

dgmR(Y, dY ) = {(0,∞), (0, 1 + 2ε)}

⇒ d∞B (dgmR(X, dX), dgmR(Y, dY )) = 2ε

Stability



Theorem: [Chazal, de Silva, O. 2013]
For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (dgmR(X, dX), dgmR(Y, dY )) ≤ 2dGH(X,Y ).

this means that the distance between our signatures is still only a lower bound on the Gromov-Hausdorff distance. In particular, in the example below we see that the signatures distance can be zero even though the spaces are different (with strictly positive GH distance).

- any one-to-one mapping X → Y has a metric distortion of 1 - any correspondence has a metric distortion of at least 1

8

The bound is worst-case tight... but it is still only an upper bound

X = 1

Y =

dGH(X,Y ) = 1
2

dgmR(X, dX) = {(0,∞), (0, 1), (0.1)}

dgmR(Y, dY ) = {(0,∞), (0, 1), (0, 1)}

⇒ d∞B (dgmR(X, dX), dgmR(Y, dY )) = 0

1

1

1 1

2

Stability



the issue with infinite spaces is that they give rise to infinite Rips complexes, whose filtrations may or may not be tame and therefore whose persistence diagrams may not be defined. At least, I will leave the suspense open until Frederic Chazal’s talk.

Theorem: [Chazal, de Silva, O. 2013]
For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (dgmR(X, dX), dgmR(Y, dY )) ≤ 2dGH(X,Y ).

8

Proof outline:

(X, dX )

(Y, dY )

(Z, dZ )

γX

γY

(γX (X) t γY (Y ), dZ )

(R|X|+|Y |, `∞)

id

id

γ

Stability
finite



balls grow at least like arb in measure. Note that if X is, say, a k-dimensional manifold, then b = k∀x ∈ suppµ, ∀r > 0, µ(B(x, r) ≥ min{1, arb}.

9

(X, dX): compact metric space

P: proba. measures µ on X satisfying the (a,b)-standard condition:

Convergence Rates



balls grow at least like arb in measure. Note that if X is, say, a k-dimensional manifold, then b = k

Suppose for instance that X is a k-manifold. Then, b = k, and so the signature of the finite sampling converges to the one of X at rate logn
n

.

∀x ∈ suppµ, ∀r > 0, µ(B(x, r) ≥ min{1, arb}.

9

Theorem. [Chazal, Glisse, Labruère, Michel 2014]

sup
µ∈P

E
[
dB

(
dgmR(X̂n), dgmR(suppµ)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b. Moreover, the estimator dgmR(X̂n)
is minimax optimal on the space P up to a logn factor.

(X, dX): compact metric space

Given µ ∈ P, let X̂n = {X1, · · · , Xn} be sampled i.i.d. according to µ.

P: proba. measures µ on X satisfying the (a,b)-standard condition:

Convergence Rates



support estimation derived from classical covering arguments → gives non-asymptotic deviation bound

balls grow at least like arb in measure. Note that if X is, say, a k-dimensional manifold, then b = k

Suppose for instance that X is a k-manifold. Then, b = k, and so the signature of the finite sampling converges to the one of X at rate logn
n

.

∀x ∈ suppµ, ∀r > 0, µ(B(x, r) ≥ min{1, arb}.

9

Theorem. [Chazal, Glisse, Labruère, Michel 2014]

sup
µ∈P

E
[
dB

(
dgmR(X̂n), dgmR(suppµ)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b. Moreover, the estimator dgmR(X̂n)
is minimax optimal on the space P up to a logn factor.

(X, dX): compact metric space

Given µ ∈ P, let X̂n = {X1, · · · , Xn} be sampled i.i.d. according to µ.

P: proba. measures µ on X satisfying the (a,b)-standard condition:

- upper bound: Hausdorff estimation of suppµ + stability

- lower bound: Le Cam’s lemma

Proof:

�

Convergence Rates



These observations bring up the question of how good our signatures are in practice.

10

Experimental results:

Application: Unsupervised Classification
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Outline

1. Global topological signatures

2. Local topological signatures

3. Kernels for topological signatures



Local Topological Signatures

Associate PD / FV to every point

12



Local Topological Signatures

Associate PD / FV to every point

12

choice of filtration(s)?

stability guarantees?



Local Topological Signatures

12

Input: a compact Riemannian manifold (X, dX), a basepoint x ∈ X

Signature: the persistence diagram of the filtration, denoted dgm dx0

Construction: filtration of the sublevel sets of dx0(·) = dX(x0, ·)



Stability

13

(adaptation of dGH to pointed spaces)

{

Theorem: [Carrière, O., Ovsjanikov 2015]
Let (X, dX) and (Y, dY ) be compact Riemannian manifolds. Let x0 ∈ X
and y0 ∈ Y . If dGH((X,x0), (Y, y0)) ≤ 1

20
min{%(X), %(Y )}, then

d∞B (dgm dx0 , dgm dy0) ≤ 20 dGH((X,x0), (Y, y0)). (convexity radius)

{

X

Y

Z
γX

γY

x0

y0



Stability

13

Prerequisite: dGH(X,Y ) < 1
20

min{%(X), %(Y )}

X =

Y =
d∞B (dgm f,dgm g) =∞

dGH(X,Y ) <∞ = %(Y )

Theorem: [Carrière, O., Ovsjanikov 2015]
Let (X, dX) and (Y, dY ) be compact Riemannian manifolds. Let x0 ∈ X
and y0 ∈ Y . If dGH((X,x0), (Y, y0)) ≤ 1

20
min{%(X), %(Y )}, then

d∞B (dgm dx0 , dgm dy0) ≤ 20 dGH((X,x0), (Y, y0)).



Application: Unsupervised Segmentation

14

Experimental results:

- input: shapes from the TOSCA database, in mesh form

- select a few base points by hand on each shape

- approximate geodesic distances to base points using the 1-skeleton graph

- use the PDs of the PL interpolations over the meshes as signatures



Application: Unsupervised Segmentation

14
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Experimental results:

∞
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Application: Unsupervised Segmentation
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Experimental results:
∞

∞∞
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note that blue and green are not contiguous after MDS, however they are in signatures space because they are on the shape and the mapping to signatures space is Lipschitz continuous

Application: Unsupervised Segmentation

14

Experimental results:

mapping to R3 via MDS

k-means in R3
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Experimental results:

mapping to R3 via MDS

k-means in R3
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Outline

1. Global topological signatures

2. Local topological signatures

3. Kernels for topological signatures
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1-dimensional homology generators

0-dimensional homology generators

Persistence Diagrams as Signatures

finite metric space / basepoint filtration persistence diagram

Pros:

• topological signatures carry complementary information

• stability properties, e.g. d∞B (R(X),R(Y )) ≤ 2dGH(X,Y )



having long construction times is fine as long as comparisons can be made fast, but here the bottleneck distance takes superquadratic time in the number of diagram points

this implies that linear classifiers cannot be used → PDs have been mostly used in unsupervised learning applications so far
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• the space of persistence diagrams is not a Hilbert space
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∞
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1-dimensional homology generators

0-dimensional homology generators

• signatures are slow to compute and (more importantly) to compare

• the space of persistence diagrams is not a Hilbert space

Persistence Diagrams as Signatures

finite metric space / basepoint filtration persistence diagram

Pros:

Cons:

• topological signatures carry complementary information

• stability properties, e.g. d∞B (R(X),R(Y )) ≤ 2dGH(X,Y )

→ define kernels on the space of diagrams

→ explicit mapping to feature space
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The Kernel Trick

X : be a space in which we want to compare/classify elements

• feature map φ : X → H equipped with inner product < ·, · >H

• lift training/testing data to H through φ then solve learning problem
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The Kernel Trick

X : be a space in which we want to compare/classify elements

• feature map φ : X → H equipped with inner product < ·, · >H

• lift training/testing data to H through φ then solve learning problem

• observation: many learning methods use only inner product

→ do not lift the data, instead compute the k(x, y) =< φ(x), φ(y) >H



the sum is in fact the scalar product [c1, · · · , cn]K[c1, · · · , cn]T , where K is the gram matrix (k(xi, xj))ij . For fixed (xi)i this theorem is just the existence of an inner product preserving embedding of the points, which is proven via the SVD of K.
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The Kernel Trick

X : be a space in which we want to compare/classify elements

• feature map φ : X → H equipped with inner product < ·, · >H

• lift training/testing data to H through φ then solve learning problem

• observation: many learning methods use only inner product

→ do not lift the data, instead compute the k(x, y) =< φ(x), φ(y) >H

Def.: A reproducing kernel is a map k : X × X → R such that
k(·, ·) =< φ(·), φ(·) >H for some pair (φ,H).

Thm.: [Moore, Aronszajn]
A pair (φ,H) exists whenever k is positive semidefinite, i.e.∑n
i,j=1 cicj k(xi, xj) ≥ 0 for all n ∈ N, c1, · · · , cn ∈ R, and x1, · · · , xn ∈ X .
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The Kernel Trick
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The Kernel Trick
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map to function space L2

17

View persistence diagrams as:

• empirical measures:

• roots of polynomials [Di Fabio, Ferri 2015]

• landscapes [Bubenik 2012] [Bubenik, D lotko 2015]

• metric spaces [Carrière, O., Ovsjanikov 2015]

map to finite-dim. vector space

Kernels for Persistence Diagrams

→ histogram [Bendich et al. 2014]

→ density estimator [Chepushtanova et al. 2015]

→ heat diffusion [Bauer et al. 2015]



Be careful that these stability results hide some differences, in particular in the constants. Basically, results involving p = ∞ have absolute constants bu the other results incur a dependence on the total p-persistence for landscapes or total number of diagram points (dimension) for shape contexts. For heat diffusion, the constant is absolute for d1
B but then the stablity result known for d1

B has a constant that depends itself on the total persistence

same here: this is for all the landscapes, for just one it is O(n)

this is for all the landscapes, for just one it is O(n logn)

18

Side-by-side Comparison

landscapes empirical measures metric spaces
[Bubenik 2012] [Bauer et al. 2015] [Carrière, O. , Ovsjanikov 2015]

feature space: L2(N × R)→ L2(R2) feature space: L2(R2) feature space: `p → (RD, `p)

feature map: explicit (comb. construction) feature map: explicit (closed form solution) feature map: explicit (comb. construction)

kernel(s): linear, Gaussian, etc. kernel(s): kσ kernel(s): linear Gaussian, etc.

complexity on n-points diagrams:

- feature map: O(n2)

- kernel: O(n2)

complexity on n-points diagrams:

- feature map: N/A (or discretize...)

- kernel: O(n2)

complexity on n-points diagrams:

- feature map: O(n2)

- kernel: O(D)

stability: stability: ‖ · ‖2 ≤ O(d1B(·)) stability:

injective feature map injective feature map non-injective feature map

→ psd kernel→ pd kernel?→ pd kernel?

kernel is additivekernels on diagrams are not additive kernels on diagrams are not additive

‖ · ‖∞ ≤ O(d∞B )

‖ · ‖p ≤ O(Pers d∞B (·))

‖ · ‖∞ ≤ O(d∞B )

‖ · ‖p ≤ O(D1/p d∞B (·))
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B has a constant that depends itself on the total persistence
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this is for all the landscapes, for just one it is O(n logn)
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[Bubenik 2012] [Bauer et al. 2015] [Carrière, O. , Ovsjanikov 2015]

feature space: L2(N × R)→ L2(R2) feature space: L2(R2) feature space: `p → (RD, `p)

feature map: explicit (comb. construction) feature map: explicit (closed form solution) feature map: explicit (comb. construction)

kernel(s): linear, Gaussian, etc. kernel(s): kσ kernel(s): linear Gaussian, etc.

complexity on n-points diagrams:

- feature map: O(n2)

- kernel: O(n2)

complexity on n-points diagrams:

- feature map: N/A (or discretize...)

- kernel: O(n2)

complexity on n-points diagrams:

- feature map: O(n2)

- kernel: O(D)

stability: stability: ‖ · ‖2 ≤ O(d1B(·)) stability:

injective feature map injective feature map non-injective feature map

→ psd kernel→ pd kernel?→ pd kernel?

kernel is additivekernels on diagrams are not additive kernels on diagrams are not additive

‖ · ‖∞ ≤ O(d∞B )

‖ · ‖p ≤ O(Pers d∞B (·))

‖ · ‖∞ ≤ O(d∞B )

‖ · ‖p ≤ O(D1/p d∞B (·))

metric spaces
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(shape context)
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Φ = φ4 ◦ φ3 ◦ φ2 ◦ φ1

(shape context)
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(5, 4, 3, 0, · · · )

distribution of distances

sorted sequence

with finite support

distance matrix

finite metric space

(5, 4, 3, 0, · · · , 0)

finite-dimensional vector

∈ `∞

∈ (RD, `∞)

∈ P∞(R2)

∈ P∞(R)

Stability Properties

φ1

φ2

φ3

φ4

Φ = φ4 ◦ φ3 ◦ φ2 ◦ φ1

(shape context) W∞(P,Q) = infm:P→Q supp∈P ‖p−m(p)‖∞
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distribution of distances

sorted sequence

with finite support

distance matrix

finite metric space

(5, 4, 3, 0, · · · , 0)

finite-dimensional vector

a’

b’

c’

+
[ εaa εab εac
εba εbb εbc
εca εcb εcc

]
ε

ε

ε

εxy ∈ [−2ε,+2ε]

∈ `∞

∈ (RD, `∞)

∈ P∞(R2)

∈ P∞(R)

2ε

(5± 2ε, 4± 2ε, 3± 2ε, 0, · · · )
?

(5± 2ε, 4± 2ε, 3± 2ε, 0 · · · , 0)

?

Stability Properties

φ1

φ2

φ3

φ4

Φ = φ4 ◦ φ3 ◦ φ2 ◦ φ1

(shape context) W∞(P,Q) = infm:P→Q supp∈P ‖p−m(p)‖∞
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(5, 4, 3, 0, · · · )

distribution of distances

sorted sequence

with finite support

distance matrix

finite metric space

(5, 4, 3, 0, · · · , 0)

finite-dimensional vector

a’

b’

c’

+
[ εaa εab εac
εba εbb εbc
εca εcb εcc

]
ε

ε

ε

εxy ∈ [−2ε,+2ε]

∈ `∞

∈ (RD, `∞)

∈ P∞(R2)

∈ P∞(R)

2ε

(5± 2ε, 4± 2ε, 3± 2ε, 0, · · · )
?

?

Stability Properties

φ1

φ2

φ3

φ4

Φ = φ4 ◦ φ3 ◦ φ2 ◦ φ1

(further truncation)

(shape context) W∞(P,Q) = infm:P→Q supp∈P ‖p−m(p)‖∞

(5± 2ε, 4± 2ε)
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Adding the diagonal

• useful for when point clouds have different
cardinalities

• diagonal has infinite multiplicity
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Adding the diagonal

• useful for when point clouds have different
cardinalities

• some points may prefer the diagonal to other points
to reduce the cost of the matching

→ replace W∞(X,Y ) with

d∞B = inf
m:X↔Y

max

{
sup

p matched

‖p−m(p)‖∞, sup
p unmatched

‖p− p̄‖∞
}

• diagonal has infinite multiplicity
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Adding the diagonal

• useful for when point clouds have different
cardinalities

• some points may prefer the diagonal to other points
to reduce the cost of the matching

→ replace W∞(X,Y ) with

d∞B = inf
m:X↔Y

max

{
sup

p matched

‖p−m(p)‖∞, sup
p unmatched

‖p− p̄‖∞
}

Problem: generates instability in distance matrix (d∞B << W∞)

• diagonal has infinite multiplicity

Solution: change the metric



x̄1

20

Adding the diagonal

x1

x2

x3

 Dij = min{ ‖xi − xj‖∞,
‖xi − x̄i‖∞,
‖xj − x̄j‖∞}



1

2

0

(7.2, 7.2, 5.6, 4, 4, 4, 0, · · · )

distribution of distances

sorted sequence

(finite support)

distance matrix

finite-dimensional vector

φ1

φ2

φ3

φ4

Φ = φ4 ◦ φ3 ◦ φ2 ◦ φ1

x̄2

x̄3

(7.2, 7.2, 5.6, 4, 4, 4, 0, · · · , 0)

(7.2, 7.2, 5.6, 4)

7.25.64
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Stability

Theorem: [Carrière et al. 2015] For any persistence diagrams X,Y ,
for any feature space dimension D, ‖Φ(X)− Φ(Y )‖∞ ≤ 2d∞B (X,Y )
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Stability

Theorem: [Carrière et al. 2015] For any persistence diagrams X,Y ,
for any feature space dimension D, ‖Φ(X)− Φ(Y )‖∞ ≤ 2d∞B (X,Y )

∀p ≥ 1, ‖Φ(X)− Φ(Y )‖p ≤ 2D1/pd∞B (X,Y )
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Stability

Theorem: [Carrière et al. 2015] For any persistence diagrams X,Y ,
for any feature space dimension D, ‖Φ(X)− Φ(Y )‖∞ ≤ 2d∞B (X,Y )

∀p ≥ 1, ‖Φ(X)− Φ(Y )‖p ≤ 2D1/pd∞B (X,Y )

• case p =∞ useful for retrieval and NN-classifiers (fast proximity queries)

• case p = 2 useful for linear / kernel-based classifiers (scalar product)



Application: supervised segmentation

22

Approach 1: use k-NN classifier in feature space (RD, `∞)



this is to smooth the segments’ boundaries

Application: supervised segmentation

22

Approach 1: use k-NN classifier in feature space (RD, `∞)

Approach 2: use linear classifier (SVM) in feature space (RD, `2)

+ graph cut [Kalogerakis et al. 2010]



this is to smooth the segments’ boundaries

rand index = fraction of pairs of points in the same segment or in different segments in both the query shape result and in the ground truth

Application: supervised segmentation

22

Approach 1: use k-NN classifier in feature space (RD, `∞)

Approach 2: use linear classifier (SVM) in feature space (RD, `2)

SB5 SB5+PDs
Human 21.3 11.3

Cup 10.6 10.1
Glasses 21.8 25.0
Airplane 18.7 9.3

Ant 9.7 1.5
Chair 15.1 7.3

Octopus 5.5 3.4
Table 7.4 2.5
Teddy 6.0 3.5
Hand 21.1 12.0

SB5 SB5+PDs
Plier 12.3 9.2
Fish 20.9 7.7
Bird 24.8 13.5

Armadillo 18.4 8.3
Bust 35.4 22.0
Mech 22.7 17.0

Bearing 25.0 11.2
Vase 26.4 17.8

FourLeg 25.6 15.8

percentage of mislabelling (100−rand index)

+ graph cut [Kalogerakis et al. 2010]



the two given shapes X,Y (seen as measured spaces) are replaced by the functional spaces L2(X), L2(Y ), and correspondences m : X → Y are replaced by linear maps L2(Y )→ L2(X) via the pullback m−1. The spaces L2(X) and L2(Y ) are assign bases from the Laplace-Beltrami operator → reduction to finite dimensions by tail-cutting. Then, every linear map is a matrix in these bases.

Application: non-rigid shape matching

23

Approach: use framework of functional maps [Ovsjanikov et al. 2012]

- compute an optimal linear map that best preserves a set of signatures (vectors)

- derive a point-to-point correspondence from this map (via indicator functions)

- evaluate the quality of the correspondence



Application: non-rigid shape matching

23

Approach: use framework of functional maps [Ovsjanikov et al. 2012]

topological signatures (last 30 indices) have a high influence on the choice of optimal map



each plot corresponds to a particular class of shapes - blue curve = ground truth (derived from the optimal correspondence) → not perfect because of tail-cutting in Laplace-Beltrami eigenbasis - yellow curve = optimum w/o topological signatures - red curve = optimal adding in the topological signatures

Application: non-rigid shape matching

23

Approach: use framework of functional maps [Ovsjanikov et al. 2012]

distance to ground-truth correspondence
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Application: non-rigid shape matching

23

Approach: use framework of functional maps [Ovsjanikov et al. 2012]

correspondences in flat regions are improved by topological signatures



therefore they are good candidates to be added to your usual pool of signatures

why should one use topological signatures?

24

Wrap-Up

∞

0.25

0

0

0.5

0.75

finite metric space / basepoint Filtration persistence diagram

(7.2, 5.3, 5.3, 3.4, 0, · · · , 0)

feature vector

[ d11 d12 ··· d1n
d21 d22 ··· d2n

···
dn1 dn2 ··· dnn

]

• they provide complementary information

• they can be computed and mapped to feature spaces efficiently

• topological descriptors are provably stable


