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Outline

Monday: introduction to TDA and singular homology (Steve)

uesday: 1-d persistence theory (Nicolas + Steve)

Wednesday: applications to data analysis (Steve)

Thursday: multi-dimensional persistence (Nicolas)

Friday: Persistence and Sheaf theory (Nicolas)



Context: the data deluge

Data are becoming ever more massive and complex:

e academia
e industry

e general public
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Need scalable and robust methods
to analyze and classify these data

e general public
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Challenges

(source: [Carlsson, Ishkhanov, de Silva,
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"“f 4 million data points in R”

(source: [Lee, Pederson, Mumford 2003])

Motivation: study cognitive representation
of space of images
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Topological Data Analysis (T DA)

algebraic invariants for classification

Algebraic topology

Applied algebraic topology

compact set

topological descriptors for inference and comparison
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Topological Data Analysis ( T DA

Bo

Properties of topological descriptors:

e invariance under reparametrizations

M, e stability under perturbations

e discrimination power

Applied algebraic topology

compact set " ,"
topological descriptors for inference and comparison » Sl
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Example: Materials Sciences

Nanoporous material (zeolite ~~ nanofilter)

[Y. Lee et al.: Quantifying similarity of pore-geometry in nanoporous materials, 2017]
6
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Example: Materials Sciences

Nanoporous material (zeolite ~~ nanofilter)

cavities (size, shape, network) determine
the material’'s physical properties

— need for descriptors that can:

capture shapes hidden in data

reveal these shapes to users

be used as features for learning

[Y. Lee et al.: Quantifying similarity of pore-geometry in nanoporous materials, 2017]



Example: Materials Sciences
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— effective classification and retrieval, explainable properties

[Y. Lee et al.: Quantifying similarity of pore-geometry in nanoporous materials, 2017]
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The TDA community (as of 2002)

Stanford (G. Carlsson - N qa ﬁ_h‘
) 2 " Duke (H. Edelsbrunner)
R U .‘_“.'?5}3..._-,%_1' |

e 2 research groups (5-10 researchers)



The TDA community (as of 2016)

Edinburgh
IMA, TTI, OSU, U. Conn  \;p; TUK/I 90, ® Jagiellonian U.
o °° o Rut ’ e e ®IST Austria (H. Edelsbrunner)
Stanford (G. Carlsson. etc.) ©® o ULgers (L
‘. ° e ® U. Penn ETH, U..Bologna 2
Pomona Duke (H. Edelsbrunner, etc.) ® Technion Tohoku U.
® CIMAT
AYASDI .
Discover what you don't know. X o
=t o,

®uU. Q.

e 50-100 researchers working on theoretical foundations
e 200-300 researchers at the interface with applications

e very successful applications and company (Ayasdi)



Some applications

e analysis of random, modular and non-modular scale-free networks and
networks with exponential connectivity distribution,

e analysis of social and spatial networks like neurons, genes, online
messages, air passengers, [witter, face-to-face contact, etc.,

e coverage and hole detection in wireless sensor fields,

e multiple hypothesis tracking on urban vehicular data,

e analysis of the statistics of high-contrast image patches,
® Image segmentation,

e 1d signal denoising,

e 3d shape classification/segmentation /matching,

e clustering of protein conformations,

e measurement of protein compressibility,
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Some applications

e analysis of random, modular and non-modular scale-free networks and networks with exponential connectivity distribution,
® analysis of social and spatial networks like neurons, genes, online messages, air passengers, Twitter, face-to-face contact, etc.,
® coverage and hole detection in wireless sensor fields,

e multiple hypothesis tracking on urban vehicular data,

® analysis of the statistics of high-contrast image patches,

® image segmentation,

e 1d signal denoising,

e 3d shape classification/segmentation/matching,

e clustering of protein conformations,

® measurement of protein compressibility,

e® identification of breast cancer subtypes,

e® analysis of activity patterns in the primary visual cortex,

e identification of hidden networks in the U.S. house of representatives,

® analysis of 2d cortical thickness data,

® time series analysis,

e refinement of the classification of NBA players,

e® discrimination of electroencephalogram signals recorded before and during epileptic seizures,
e statistical analysis of orthodontic data,

® measurement of structural changes during lipid vesicle fusion,

® characterization of the frequency and scale of lateral gene transfer in pathogenic bacteria,

® pattern detection in gene expression data,

e® study of the cosmic web and its filamentary structure,



The TDA pipeline in a nutshell
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The TDA pipeline in a nutshell

. f
o © °
°
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proximity rule homology
o — —
filter: X — R persistence
°
°
® o
point cloud P filtration F

The 5 pillars of the theory (persistence theory):
e decomposition theorems (existence of barcodes)
e algorithms (computation of barcodes)

e stability theorems (barcodes as stable descriptors)

e statistical frameworks for barcodes

e vectorizations and kernels on barcodes for learning barcode (descriptor)
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What are barcodes?

X topological space
f: X—-R f

persistence

Y
Dg f

descriptor: persistence barcode / diagram

encodes the topological structure of the pair (X, f) 10



Inside the black box

Generalized Morse theory:

ANNALS OF MATHEMATICS
Vol. 41, No. 2, April, 1940

RANK AND SPAN IN FUNCTIONAL TOPOLOGY

By MARsTON MORSE
(Received August 9, 1939)

1. Introduction.

The analysis of functions F on metric spaces M of the type which appear in
variational theories is made difficult by the fact that the critical limits, such as
absolute minima, relative minima, minimax values etc., are in general infinite in
number. These limits are associated with relative k-cycles of various dimen-
sions and are classified as 0-limits, 1-limits etec. The number of k-limits suitably
counted is called the k* type number m; of F. The theory seeks to establish
relations between the numbers m; and the connectivities pr of M. The numbers

pr are finite 1n the most important applications. It is otherwise with the
numbers my .

11



Inside the black box

Generalized Morse theory:

o Nested family (filtration) of sublevel-sets [} = f~1((—o0,t]) for t € R
e Track the evolution of the topology throughout the family

R A

<Y
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Inside the black box

Generalized Morse theory:

o Nested family (filtration) of sublevel-sets [}y = f~1((—o0,t]) for t € R

e Track the evolution of the topology throughout the family
e Finite set of intervals (barcode) encodes births/deaths of topological features

e Alternate representation as a multiset
of points in the plane (diagram).
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Example: distance function

fp X RQ — R
T — min,ep ||z — pl|2

topology:

e connected components

e holes

e voids ... 12
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Example: distance function

fp X RQ — R
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Example: distance function

fpl RQ%R

T — mingep ||z — pl|2

topology:

e connected components

e holes

e voids ...
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Example: distance function

fp X Rz — R
T — mingep ||z — pl|2

homology
topology:

e connected components

e holes

e Vvoids ...
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Homology of sublevel sets

NINNTNNTNNY

(homology functor)

(o) o1y . (1) . (%)

2 2 s 2 20 g2
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Homology of sublevel sets

NINNTNNTNNY

today (homology functor)

(o) o1y . (1) (%)

kaQ%k%kZHkQ

tomorrow




Intuition behind homology

An invariant that captures "holes” of all dimensions in a topological space
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Intuition behind homolo

An invariant that captures "holes” of all dimensions in a topological space
r=y <=  dvyst {x,y} =0y
L —Y
v=0 <« I st Ay =0

Y1 =7v2 < dXst y1 Uy =0X
71— )2

T, Y, Y,V V1,2, 2,2 : elements of some module

O : linear operator

cycles < ker 0 boundaries < im 0 homology < ker 9/im 0
14



