Stability of persistence barcodes/diagrams

X topological space, f : X — R function

sublevel-sets filtration — barcode / diagram

barcode = multiset of intervals

diagram = multiset of points

o
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Distances between persistence diagrams

Input: Two persistence diagrams X, Y

Given a partial matching I' : X < Y
cost of a matched pair (z,y) € I': cp(x,y) := ||z — y||5
cost of an unmatched point z € X UY: cp(2) := ||z — z||5

cost of I':

1/p
cp(I') 1= ( Z cp(z,y) + Z Cp(z))

(x, y) matched z unmatched




Distances between persistence diagrams

Input: Two persistence diagrams X, Y

Given a partial matching I' : X < Y:

cost of a matched pair (z,y) € I': cp(x,y) := ||z — y||5
cost of an unmatched point 2 € X LY ¢,(2) := ||z — Z||%
cost of I':

1/p
cp(l') := Z cp(z,y) + Z cp(2)

(x, y) matched z unmatched

Def: p-th diagram distance (extended pseudometric):

dp,(X,Y) := F:)i(niY cp(I)

Def: bottleneck distance:

doo (X, Y) 1= lim_dp(X,Y)




Stability of persistence barcodes/diagrams

Theorem: For any pfd functions f,g: X — R,

doo (dgm f,dgmg) < ||f — gl

<V



A simple (suboptimal) proof

Let f,g: X — R be pfd, and let ¢ = || f — g||co-

e Key observation: {F:}: and {G.}: are e-interleaved w.r.t. inclusion:

VieR, Gi—c C Fy C Gyge
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Let f,g: X — R be pfd, and let ¢ = || f — g||co-

e Key observation: {F:}: and {G.}: are e-interleaved w.r.t. inclusion:
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— Intuition: every homological feature that
appears/dies at time « in the filtration of f
appears/dies at time o+ € at the latest in the
filtration of g, and vice versa.
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A simple (suboptimal) proof

Let f,g: X — R be pfd, and let ¢ = || f — g||co-

e Key observation: {F:}, and {G:}+ are s-interleaved w.r.t. inclusion:

Fo CG: CFo C--- CGran1)e © Fone € Ganr1ye € Fong2)e €

- the filtration {Fs,c }nez is a 2e-discretization of {Fy }acr

- the filtration {G (9,1 1)c fnez is @ 2e-discretization of {Ga }acr

F,,- if nis even

- both filtrations are 2e-discretizations of {H,,- },,czwhere H,,- = { G ifnis odd
ne

— goal: bound distances between diagrams of filtrations and discretizations



A simple (suboptimal) proof

Let f,g: X — R be pfd, and let ¢ = || f — g||co-
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A simple (suboptimal) proof

Let f,g: X — R be pfd, and let ¢ = || f — g||co-

e Discretization = pixelization effect on the barcodes / diagrams:

Pixelization map: Va < 3,

— {(f;ue,fiwza SEARNES
e mai(en ) =

(O By if [ 2] = [&]

Proposition: If f : X — R is pfd, then mo,
induces a bijection dgm f — dgm f*4°.
Moreover, do. (dgm f,dgm f4€) < 2¢.

proof: discretization is an additive functor,
whose effect on each summand (taken
independently) is to discretize its support.




A simple (suboptimal) proof

Let f,g: X — R be pfd, and let ¢ = || f — g||co-

e Back to interleaved filtrations:

Fo CG: CFo C--- CGran1)e © Fone € Ganr1ye € Fong2)e €

F,,- if nis even

Hne = { G, if nis odd

Proposition + triangle inequality = doo(dgm f,dgm g) < 8¢



A simple (suboptimal) proof

Let f,g: X — R be pfd, and let ¢ = || f — g||co-

e Back to interleaved filtrations:

Fo CG: CFo C--- CGran1)e © Fone € Ganr1ye € Fong2)e €

F,,- if nis even

Hne = { G, if nis odd

Proposition + triangle inequality = doo(dgm f,dgm g) < 8¢

o o
Improvement: |doo(dgm f,dgmg) < 3¢ (2n + 2)e o o
(2n + 1)e O—O——®
.\
2ne —~—
e
(2n + 1)e
(2Zne — 2)




From sup-norm perturbation to interleaving

Fy = f((—o00,1])

Let f,g: X — R be pfd, and let ¢ = || f — g||co-
Gt =g ' ((—o0,t])

e Key observation: {F:}: and {G.}: are e-interleaved w.r.t. inclusion:
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From sup-norm perturbation to interleaving

Fy = f((—o00,1])

Let f,g: X — R be pfd, and let ¢ = || f — g||co-
Gt =g ' ((—o0,t])

e Key observation: {F:}: and {G.}: are e-interleaved w.r.t. inclusion:

CRC G CFoe Covt C Fape € Gapynye C o

(homology functor)

o+ — Ho(Fo) = Ho (G:) = Ho(F2e) = -+ = Ho(Fone) = He(G2n+1)e) = -+



From sup-norm perturbation to interleaving

Weak version of interleaving: (used in previous proof)

.. — > H, (ang > H, (F(2n+2)5)
> He(G2n—1)e) > He (G (2n41)e) — -
Interleaving:
He, (Ft—e) > H, (Ft—|—5) He (Fs—l—s) — H, (Ft—i—e)
He (Gy) Ho(Gs) — Ho (G4)
Ho(Ft) Ho(Fs) %Ho(Ft)
Ho (Gi—2) > Ho (Gi4c) Ho(Gste) = Ho(Giye)




From sup-norm perturbation to interleaving

Categorical viewpoint: For M, N : (R, <) — vecty
M (s) > M (t)
e morphism: natural transformation M = N l I
Y
N(s) > N (1)
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(obvious effect on internal maps and morphisms)

3&: M = Mle| given by £(t) := M(t —t+¢)
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e morphism: natural transformation M = N l I
Y
e c-shift/smoothing endofunctor: N(s) ~ N(2)

—lel: M — Mle] st.  Mle|(t) = M(t +¢)
(obvious effect on internal maps and morphisms)
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From sup-norm perturbation to interleaving

Categorical viewpoint: For M, N : (R, <) — vecty
M (s) > M (t)
e morphism: natural transformation M = N l I
Y
e c-shift/smoothing endofunctor: N(s) ~ N(2)

—lel: M — Mle] st.  Mle|(t) = M(t +¢)
(obvious effect on internal maps and morphisms)
3&: M = Mle| given by £(t) := M(t —t+¢)
e c-interleaving: morphisms ¢ : M = Nle] and ¢ : N = M|e] s.t.
M > Me] ——— M[2¢]

% ™~

Nle] > N |[2¢]
e interleaving distance:  d;(M,N) := inf{e | M, N e-interleaved}




From sup-norm perturbation to interleaving

Categorical viewpoint: For M, N : (R, <) — vecty
M (s) > M (t)
e morphism: natural transformation M = N l I
Y
e c-shift/smoothing endofunctor: N(s) ~ N(2)

Theorem: (follows from functoriality of H,)

For f,g: X — R pfd, d;(He({F}+), He({Gt}¢)) < ||f — 9lloo
Theorem: (isometry)

For M, N : (R, <) — vecty, doo(dgm M, dgm N) = d;(M, N)

M s M| —— s M2

% S~

N

N Nle| > N [2¢]
e interleaving distance:  d;(M,N) := inf{e | M, N e-interleaved}

©-
™




From matching to interleaving

[Lesnick 2011] [Chazal et al. 2016]

Given barcodes B, B’ (locally finite sets of intervals of R), and I" : B <+ B':

e for (b,b") matched, the constant modules k;, ks are coo (I')-interleaved

e for b unmatched, £ is coo (I')-interleaved with the trivial module 0
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From matching to interleaving

[Lesnick 2011] [Chazal et al. 2016]

Given barcodes B, B’ (locally finite sets of intervals of R), and I" : B <+ B':

e for (b,b") matched, the constant modules k;, ks are coo (I')-interleaved

e for b unmatched, £ is coo (I')-interleaved with the trivial module 0

— take direct sums to get an interleaving between 69 ky and 69 ky
be B b’ e B’

. . . : <
Note: this construction defines a (not fully) faithful functor Barcodes — vect,iR’—)



From interleaving to matching

Approaches:

interpolation at functional level (soft+hard) [Cohen-Steiner et al. 2005]
discretizations (loose bound) [Chazal et al. 2009]
Interpolation between modules [Chazal et al. 2009-2016]

matchings induced from morphisms [Bauer, Lesnick 2014]

o &~ W -

Hall's marriage theorem [Bjerkevik 2016]



From interleaving to matching

Interpolation between modules:

Given M, N : (R, <) — Vecty with d;(M, N) = ¢, find (Us)o<a<e such that:

o Uy~ M,U: ~N
e V0<a<B<¢ di(Ua,Up) <B—a
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From interleaving to matchin

Interpolation between modules:

Given M, N : (R, <) — Vecty with d;(M, N) = ¢, find (Us)o<a<e such that:
o Uy~ M,U: >~ N
e V0<a<B<¢ di(Ua,Up) <B—a

Embed (R, <) into (R?, <) (w. product order) as A; for an arbitrary t € R

M : (Aop, <) — Vectg N : (Aq, <) — Vectg
e-interleaving (¢, 1) yields functor F': (Ao U A¢, <) — Vectg
interpolating family (U, )o<a<e /‘/‘
= functor G : (A1, <) — Vecty /‘/
/A
use left Kan extension of Ag U A: < Ajg o1: /4 /
| Ag/s s /
G(t) := h_I>nF\s§t6AouAa /1 //

G(s — t) given by universality of colimit /




