Stability of persistence barcodes/diagrams

X topological space, $f:X\to\mathbb{R}$ function sublevel-sets filtration \to barcode / diagram

barcode ≡ multiset of intervals

Stability of persistence barcodes/diagrams

X topological space, $f:X\to\mathbb{R}$ function sublevel-sets filtration \to barcode / diagram

Distances between persistence diagrams

Input: Two persistence diagrams X, Y

Given a partial matching $\Gamma: X \leftrightarrow Y$:

cost of a matched pair $(x,y) \in \Gamma$: $c_p(x,y) := ||x-y||_{\infty}^p$

cost of an unmatched point $z \in X \sqcup Y$: $c_p(z) := ||z - \bar{z}||_{\infty}^p$

cost of Γ :

$$c_p(\Gamma) := \left(\sum_{(x,\,y) \text{ matched}} c_p(x,y) \, + \sum_{z \text{ unmatched}} c_p(z)\right)^{1/p}$$

Distances between persistence diagrams

Input: Two persistence diagrams X, Y

Given a partial matching $\Gamma: X \leftrightarrow Y$:

cost of a matched pair $(x,y) \in \Gamma$: $c_p(x,y) := ||x-y||_{\infty}^p$

cost of an unmatched point $z \in X \sqcup Y$: $c_p(z) := ||z - \bar{z}||_{\infty}^p$

cost of Γ :

$$c_p(\Gamma) := \left(\sum_{(x,\,y) \text{ matched}} c_p(x,y) \; + \sum_{z \text{ unmatched}} c_p(z)\right)^{1/p} \tag{2}$$

Def: *p*-th diagram distance (extended pseudometric):

$$d_p(X,Y) := \inf_{\Gamma: X \leftrightarrow Y} c_p(\Gamma)$$

Def: bottleneck distance:

$$d_{\infty}(X,Y) := \lim_{p \to \infty} d_p(X,Y)$$

Stability of persistence barcodes/diagrams

Theorem: For any pfd functions $f, g: X \to \mathbb{R}$,

$$d_{\infty}(\operatorname{dgm} f, \operatorname{dgm} g) \le ||f - g||_{\infty}$$

Let $f,g:X\to\mathbb{R}$ be pfd, and let $\varepsilon=\|f-g\|_{\infty}$.

$$G_t := f^{-1}((-\infty, t])$$

$$G_t := g^{-1}((-\infty, t])$$

• Key observation: $\{F_t\}_t$ and $\{G_t\}_t$ are ε -interleaved w.r.t. inclusion:

$$\forall t \in \mathbb{R}, \ G_{t-\varepsilon} \subseteq F_t \subseteq G_{t+\varepsilon}$$

Let $f,g:X\to\mathbb{R}$ be pfd, and let $\varepsilon=\|f-g\|_{\infty}$.

$$G_t := f^{-1}((-\infty, t])$$

$$G_t := g^{-1}((-\infty, t])$$

• Key observation: $\{F_t\}_t$ and $\{G_t\}_t$ are ε -interleaved w.r.t. inclusion:

$$\forall t \in \mathbb{R}, \ G_{t-\varepsilon} \subseteq F_t \subseteq G_{t+\varepsilon}$$

ightarrow Intuition: every homological feature that appears/dies at time α in the filtration of f appears/dies at time $\alpha+\varepsilon$ at the latest in the filtration of g, and vice versa.

Let $f,g:X\to\mathbb{R}$ be pfd, and let $\varepsilon=\|f-g\|_{\infty}$.

$$G_t := f^{-1}((-\infty, t])$$

$$G_t := g^{-1}((-\infty, t])$$

• Key observation: $\{F_t\}_t$ and $\{G_t\}_t$ are ε -interleaved w.r.t. inclusion:

$$F_0 \subseteq G_{\varepsilon} \subseteq F_{2\varepsilon} \subseteq \cdots \subseteq G_{(2n-1)\varepsilon} \subseteq F_{2n\varepsilon} \subseteq G_{(2n+1)\varepsilon} \subseteq F_{(2n+2)\varepsilon} \subseteq \cdots$$

Let
$$f,g:X\to\mathbb{R}$$
 be pfd, and let $\varepsilon=\|f-g\|_{\infty}$.

$$F_t := f^{-1}((-\infty, t])$$
$$G_t := g^{-1}((-\infty, t])$$

• Key observation: $\{F_t\}_t$ and $\{G_t\}_t$ are ε -interleaved w.r.t. inclusion:

$$F_0 \subseteq \subseteq F_{2\varepsilon} \subseteq \cdots \subseteq$$

$$\subseteq F_{2n\varepsilon} \subseteq$$

$$\subseteq F_{(2n+2)\varepsilon} \subseteq \cdots$$

- the filtration $\{F_{2n\varepsilon}\}_{n\in\mathbb{Z}}$ is a 2ε -discretization of $\{F_{\alpha}\}_{\alpha\in\mathbb{R}}$

Let $f, g: X \to \mathbb{R}$ be pfd, and let $\varepsilon = \|f - g\|_{\infty}$.

$$G_t := f^{-1}((-\infty, t])$$

$$G_t := g^{-1}((-\infty, t])$$

• Key observation: $\{F_t\}_t$ and $\{G_t\}_t$ are ε -interleaved w.r.t. inclusion:

$$\subseteq G_{\varepsilon} \subseteq$$

$$\subseteq G_{\varepsilon} \subseteq \cdots \subseteq G_{(2n-1)\varepsilon} \subseteq \subseteq G_{(2n+1)\varepsilon} \subseteq$$

$$\subseteq G_{(2n+1)\varepsilon} \subseteq$$

$$\subset \cdots$$

- the filtration $\{F_{2n\varepsilon}\}_{n\in\mathbb{Z}}$ is a 2ε -discretization of $\{F_{\alpha}\}_{\alpha\in\mathbb{R}}$
- the filtration $\{G_{(2n+1)\varepsilon}\}_{n\in\mathbb{Z}}$ is a 2ε -discretization of $\{G_{\alpha}\}_{\alpha\in\mathbb{R}}$

Let $f,g:X\to\mathbb{R}$ be pfd, and let $\varepsilon=\|f-g\|_{\infty}$.

$$G_t := f^{-1}((-\infty, t])$$

$$G_t := g^{-1}((-\infty, t])$$

• Key observation: $\{F_t\}_t$ and $\{G_t\}_t$ are ε -interleaved w.r.t. inclusion:

$$F_0 \subseteq G_{\varepsilon} \subseteq F_{2\varepsilon} \subseteq \cdots \subseteq G_{(2n-1)\varepsilon} \subseteq F_{2n\varepsilon} \subseteq G_{(2n+1)\varepsilon} \subseteq F_{(2n+2)\varepsilon} \subseteq \cdots$$

- the filtration $\{F_{2n\varepsilon}\}_{n\in\mathbb{Z}}$ is a 2ε -discretization of $\{F_{\alpha}\}_{\alpha\in\mathbb{R}}$
- the filtration $\{G_{(2n+1)\varepsilon}\}_{n\in\mathbb{Z}}$ is a 2ε -discretization of $\{G_{\alpha}\}_{\alpha\in\mathbb{R}}$
- both filtrations are 2ε -discretizations of $\{H_{n\varepsilon}\}_{n\in\mathbb{Z}}$,where $H_{n\varepsilon}=\left\{\begin{array}{c} F_{n\varepsilon} \ \text{if } n \ \text{is even} \\ G_{n\varepsilon} \ \text{if } n \ \text{is odd} \end{array}\right.$

Let
$$f,g:X\to\mathbb{R}$$
 be pfd, and let $\varepsilon=\|f-g\|_{\infty}$.

$$G_t := f^{-1}((-\infty, t])$$

$$G_t := g^{-1}((-\infty, t])$$

• Key observation: $\{F_t\}_t$ and $\{G_t\}_t$ are ε -interleaved w.r.t. inclusion:

$$F_0 \subseteq G_{\varepsilon} \subseteq F_{2\varepsilon} \subseteq \cdots \subseteq G_{(2n-1)\varepsilon} \subseteq F_{2n\varepsilon} \subseteq G_{(2n+1)\varepsilon} \subseteq F_{(2n+2)\varepsilon} \subseteq \cdots$$

- the filtration $\{F_{2n\varepsilon}\}_{n\in\mathbb{Z}}$ is a 2ε -discretization of $\{F_{\alpha}\}_{\alpha\in\mathbb{R}}$
- the filtration $\{G_{(2n+1)\varepsilon}\}_{n\in\mathbb{Z}}$ is a 2ε -discretization of $\{G_{\alpha}\}_{\alpha\in\mathbb{R}}$
- both filtrations are 2ε -discretizations of $\{H_{n\varepsilon}\}_{n\in\mathbb{Z}}$,where $H_{n\varepsilon}=\left\{\begin{array}{c} F_{n\varepsilon} \text{ if } n \text{ is even} \\ G_{n\varepsilon} \text{ if } n \text{ is odd} \end{array}\right.$

→ goal: bound distances between diagrams of filtrations and discretizations

Let $f,g:X\to\mathbb{R}$ be pfd, and let $\varepsilon=\|f-g\|_{\infty}$.

$$G_t := f^{-1}((-\infty, t])$$

$$G_t := g^{-1}((-\infty, t])$$

Discretization ⇒ pixelization effect on the barcodes / diagrams:

Let
$$f,g:X \to \mathbb{R}$$
 be pfd, and let $\varepsilon = \|f-g\|_{\infty}$.

$$G_t := f^{-1}((-\infty, t])$$

$$G_t := g^{-1}((-\infty, t])$$

Discretization ⇒ pixelization effect on the barcodes / diagrams:

Pixelization map: $\forall \alpha \leq \beta$,

$$\pi_{2\varepsilon}(\alpha,\beta) = \begin{cases} (\lceil \frac{\alpha}{2\varepsilon} \rceil 2\varepsilon, \lceil \frac{\beta}{2\varepsilon} \rceil 2\varepsilon) & \text{if } \lceil \frac{\beta}{2\varepsilon} \rceil > \lceil \frac{\alpha}{2\varepsilon} \rceil \\ (\frac{\alpha+\beta}{2}, \frac{\alpha+\beta}{2}) & \text{if } \lceil \frac{\beta}{2\varepsilon} \rceil = \lceil \frac{\alpha}{2\varepsilon} \rceil \end{cases}$$

Proposition: If $f: X \to \mathbb{R}$ is pfd, then $\pi_{2\varepsilon}$ induces a bijection $\operatorname{dgm} f \to \operatorname{dgm} f^{2\varepsilon}$. Moreover, $\operatorname{d_{\infty}}(\operatorname{dgm} f, \operatorname{dgm} f^{2\varepsilon}) \le 2\varepsilon$.

proof: discretization is an **additive functor**, whose effect on each summand (taken independently) is to discretize its support.

Let $f,g:X\to\mathbb{R}$ be pfd, and let $\varepsilon=\|f-g\|_{\infty}$.

$$G_t := f^{-1}((-\infty, t])$$

$$G_t := g^{-1}((-\infty, t])$$

Back to interleaved filtrations:

$$F_0 \subseteq G_{\varepsilon} \subseteq F_{2\varepsilon} \subseteq \cdots \subseteq G_{(2n-1)\varepsilon} \subseteq F_{2n\varepsilon} \subseteq G_{(2n+1)\varepsilon} \subseteq F_{(2n+2)\varepsilon} \subseteq \cdots$$

$$H_{n\varepsilon} = \left\{ egin{array}{l} F_{narepsilon} & ext{if } n ext{ is even} \ G_{narepsilon} & ext{if } n ext{ is odd} \end{array}
ight.$$

Proposition + triangle inequality $\Rightarrow d_{\infty}(\operatorname{dgm} f, \operatorname{dgm} g) \leq 8\varepsilon$

Let $f,g:X \to \mathbb{R}$ be pfd, and let $\varepsilon = \|f-g\|_{\infty}$.

$$G_t := f^{-1}((-\infty, t])$$

$$G_t := g^{-1}((-\infty, t])$$

Back to interleaved filtrations:

$$F_0 \subseteq G_{\varepsilon} \subseteq F_{2\varepsilon} \subseteq \cdots \subseteq G_{(2n-1)\varepsilon} \subseteq F_{2n\varepsilon} \subseteq G_{(2n+1)\varepsilon} \subseteq F_{(2n+2)\varepsilon} \subseteq \cdots$$

$$H_{n\varepsilon} = \left\{ egin{array}{l} F_{narepsilon} & ext{if } n ext{ is even} \ G_{narepsilon} & ext{if } n ext{ is odd} \end{array}
ight.$$

Proposition + triangle inequality $\Rightarrow d_{\infty}(\operatorname{dgm} f, \operatorname{dgm} g) \leq 8\varepsilon$

Improvement: $d_{\infty}(\operatorname{dgm} f, \operatorname{dgm} g) \leq 3\varepsilon$

Let $f,g:X\to\mathbb{R}$ be pfd, and let $\varepsilon=\|f-g\|_{\infty}$.

$$G_t := f^{-1}((-\infty, t])$$

$$G_t := g^{-1}((-\infty, t])$$

• Key observation: $\{F_t\}_t$ and $\{G_t\}_t$ are ε -interleaved w.r.t. inclusion:

$$\forall t \in \mathbb{R}, \ G_{t-\varepsilon} \subseteq F_t \subseteq G_{t+\varepsilon}$$

Let $f,g:X\to\mathbb{R}$ be pfd, and let $\varepsilon=\|f-g\|_{\infty}$.

$$G_t := f^{-1}((-\infty, t])$$

$$G_t := g^{-1}((-\infty, t])$$

• Key observation: $\{F_t\}_t$ and $\{G_t\}_t$ are ε -interleaved w.r.t. inclusion:

$$\cdots \subseteq F_0 \subseteq G_{\varepsilon} \subseteq F_{2\varepsilon} \subseteq \cdots \subseteq F_{2n\varepsilon} \subseteq G_{(2n+1)\varepsilon} \subseteq \cdots$$

$$\cdots \to \mathrm{H}_{\bullet}(F_0) \to \mathrm{H}_{\bullet}(G_{\varepsilon}) \to \mathrm{H}_{\bullet}(F_{2\varepsilon}) \to \cdots \to \mathrm{H}_{\bullet}(F_{2n\varepsilon}) \to \mathrm{H}_{\bullet}(G_{(2n+1)\varepsilon}) \to \cdots$$

Weak version of interleaving: (used in previous proof)

Interleaving:

Categorical viewpoint: For $M, N : (\mathbb{R}, \leq) \to \text{vect}_k$

ullet morphism: natural transformation $M \Rightarrow N$

Categorical viewpoint: For $M, N : (\mathbb{R}, \leq) \rightarrow \text{vect}_k$

For
$$M,N:(\mathbb{R},\leq) o \mathsf{vect}_k$$

- morphism: natural transformation $M \Rightarrow N$
- ε -shift/smoothing endofunctor:

$$-[\varepsilon]: M \longmapsto M[\varepsilon]$$
 s.t. $M[\varepsilon](t) = M(t+\varepsilon)$

(obvious effect on internal maps and morphisms)

$$\exists \ \xi: M \Rightarrow M[\varepsilon] \ \text{given by} \ \xi(t) := M(t \to t + \varepsilon)$$

$$M(s) \longrightarrow M(t)$$

$$\downarrow \qquad \qquad \downarrow$$

$$N(s) \longrightarrow N(t)$$

Categorical viewpoint: For $M, N : (\mathbb{R}, \leq) \rightarrow \text{vect}_k$

- ullet morphism: natural transformation $M \Rightarrow N$
- ε -shift/smoothing endofunctor:

$$-[\varepsilon]: M \longmapsto M[\varepsilon]$$
 s.t. $M[\varepsilon](t) = M(t+\varepsilon)$

(obvious effect on internal maps and morphisms)

$$\exists \ \xi : M \Rightarrow M[\varepsilon] \ \text{given by} \ \xi(t) := M(t \to t + \varepsilon)$$

ullet ε -interleaving: morphisms $\phi:M\Rightarrow N[arepsilon]$ and $\psi:N\Rightarrow M[arepsilon]$ s.t.

Categorical viewpoint: For
$$M, N : (\mathbb{R}, \leq) \rightarrow \text{vect}_k$$

- ullet morphism: natural transformation $M\Rightarrow N$
- ε -shift/smoothing endofunctor:

$$-[\varepsilon]: M \longmapsto M[\varepsilon]$$
 s.t. $M[\varepsilon](t) = M(t+\varepsilon)$

(obvious effect on internal maps and morphisms)

$$\exists \ \xi : M \Rightarrow M[\varepsilon] \ \text{given by} \ \xi(t) := M(t \to t + \varepsilon)$$

• ε -interleaving: morphisms $\phi: M \Rightarrow N[\varepsilon]$ and $\psi: N \Rightarrow M[\varepsilon]$ s.t.

• interleaving distance:
$$d_i(M,N) := \inf\{\varepsilon \mid M,N \in \varepsilon \text{-interleaved}\}$$

 $M(s) \longrightarrow M(t)$

Categorical viewpoint: For $M, N : (\mathbb{R}, \leq) \to \text{vect}_k$

- ullet morphism: natural transformation $M\Rightarrow N$
- ε -shift/smoothing endofunctor:

$$M(s) \longrightarrow M(t)$$

$$\downarrow \qquad \qquad \downarrow$$

$$N(s) \longrightarrow N(t)$$

Theorem: (follows from functoriality of H_{\bullet})

For
$$f, g: X \to \mathbb{R}$$
 pfd, $d_i(H_{\bullet}(\{F_t\}_t), H_{\bullet}(\{G_t\}_t)) \leq ||f - g||_{\infty}$

Theorem: (isometry)

For
$$M, N : (\mathbb{R}, \leq) \to \mathsf{vect}_k$$
, $d_{\infty}(\operatorname{dgm} M, \operatorname{dgm} N) = d_i(M, N)$

• interleaving distance: $d_i(M, N) := \inf\{\varepsilon \mid M, N \in \text{-interleaved}\}$

From matching to interleaving

[Lesnick 2011] [Chazal et al. 2016]

Given barcodes B, B' (locally finite sets of intervals of \mathbb{R}), and $\Gamma: B \leftrightarrow B'$:

- ullet for (b,b') matched, the **constant modules** $k_b,k_{b'}$ are $c_{\infty}(\Gamma)$ -interleaved
- ullet for b unmatched, k_b is $c_{\infty}(\Gamma)$ -interleaved with the **trivial module** 0

From matching to interleaving

[Lesnick 2011] [Chazal et al. 2016]

Given barcodes B,B' (locally finite sets of intervals of \mathbb{R}), and $\Gamma:B\leftrightarrow B'$:

- ullet for (b,b') matched, the **constant modules** $k_b,k_{b'}$ are $c_\infty(\Gamma)$ -interleaved
- ullet for b unmatched, k_b is $c_\infty(\Gamma)$ -interleaved with the **trivial module** 0
- o take direct sums to get an interleaving between $igoplus_{b\in B} k_b$ and $igoplus_{b'\in B'} k_{b'}$

From matching to interleaving

[Lesnick 2011] [Chazal et al. 2016]

Given barcodes B, B' (locally finite sets of intervals of \mathbb{R}), and $\Gamma: B \leftrightarrow B'$:

- ullet for (b,b') matched, the **constant modules** $k_b,k_{b'}$ are $c_\infty(\Gamma)$ -interleaved
- ullet for b unmatched, k_b is $c_{\infty}(\Gamma)$ -interleaved with the **trivial module** 0
- o take direct sums to get an interleaving between $igoplus_{b\in B} k_b$ and $igoplus_{b'\in B'} k_{b'}$

Note: this construction defines a (not fully) faithful functor Barcodes o vect $_k^{(\mathbb{R},\leq)}$

Approaches:

- 1. interpolation at functional level (soft+hard) [Cohen-Steiner et al. 2005]
- 2. discretizations (loose bound) [Chazal et al. 2009]
- 3. interpolation between modules [Chazal et al. 2009-2016]
- 4. matchings induced from morphisms [Bauer, Lesnick 2014]
- 5. Hall's marriage theorem [Bjerkevik 2016]

Interpolation between modules:

Given $M, N : (\mathbb{R}, \leq) \to \mathsf{Vect}_k$ with $d_i(M, N) = \varepsilon$, find $(U_\alpha)_{0 < \alpha < \varepsilon}$ such that:

- $U_0 \simeq M$, $U_\varepsilon \simeq N$
- $\forall 0 \leq \alpha \leq \beta \leq \varepsilon$, $d_i(U_\alpha, U_\beta) \leq \beta \alpha$

Interpolation between modules:

Given $M, N : (\mathbb{R}, \leq) \to \mathsf{Vect}_k$ with $d_i(M, N) = \varepsilon$, find $(U_\alpha)_{0 < \alpha < \varepsilon}$ such that:

- $U_0 \simeq M$, $U_{\varepsilon} \simeq N$
- $\forall 0 < \alpha < \beta < \varepsilon$, $d_i(U_\alpha, U_\beta) < \beta \alpha$

Embed (\mathbb{R}, \leq) into (\mathbb{R}^2, \leq) (w. product order) as Δ_t for an arbitrary $t \in \mathbb{R}_+$

$$M: (\Delta_0, \leq) \to \mathsf{Vect}_k$$
 $N: (\Delta_\varepsilon, \leq) \to \mathsf{Vect}_k$

$$N:(\Delta_{\varepsilon},\leq) o \mathsf{Vect}_k$$

 ε -interleaving (ϕ, ψ) yields functor $F: (\Delta_0 \cup \Delta_{\varepsilon}, \leq) \to \mathsf{Vect}_k$

Interpolation between modules:

Given $M, N : (\mathbb{R}, \leq) \to \mathsf{Vect}_k$ with $d_i(M, N) = \varepsilon$, find $(U_\alpha)_{0 < \alpha < \varepsilon}$ such that:

- $U_0 \simeq M$, $U_{\varepsilon} \simeq N$
- $\forall 0 < \alpha < \beta < \varepsilon$, $d_i(U_\alpha, U_\beta) < \beta \alpha$

Embed (\mathbb{R}, \leq) into (\mathbb{R}^2, \leq) (w. product order) as Δ_t for an arbitrary $t \in \mathbb{R}_+$

$$M: (\Delta_0, \leq) \to \mathsf{Vect}_k$$
 $N: (\Delta_\varepsilon, \leq) \to \mathsf{Vect}_k$

$$N:(\Delta_{\varepsilon},\leq) o \mathsf{Vect}_k$$

 ε -interleaving (ϕ, ψ) yields functor $F: (\Delta_0 \cup \Delta_{\varepsilon}, \leq) \to \mathsf{Vect}_k$

interpolating family $(U_{\alpha})_{0 < \alpha < \varepsilon}$

 \equiv functor $G:(\Delta_{[0,\varepsilon]},\leq)\to \mathsf{Vect}_k$

Interpolation between modules:

Given $M, N : (\mathbb{R}, \leq) \to \mathsf{Vect}_k$ with $d_i(M, N) = \varepsilon$, find $(U_\alpha)_{0 \leq \alpha \leq \varepsilon}$ such that:

- $U_0 \simeq M$. $U_{\varepsilon} \simeq N$
- $\forall 0 < \alpha < \beta < \varepsilon$, $d_i(U_\alpha, U_\beta) < \beta \alpha$

Embed (\mathbb{R}, \leq) into (\mathbb{R}^2, \leq) (w. product order) as Δ_t for an arbitrary $t \in \mathbb{R}_+$

$$M: (\Delta_0, \leq) \to \mathsf{Vect}_k \qquad \qquad N: (\Delta_\varepsilon, \leq) \to \mathsf{Vect}_k$$

$$N:(\Delta_{\varepsilon},\leq) o \mathsf{Vect}_k$$

 ε -interleaving (ϕ, ψ) yields functor $F: (\Delta_0 \cup \Delta_{\varepsilon}, \leq) \to \mathsf{Vect}_k$

interpolating family $(U_{\alpha})_{0 < \alpha < \varepsilon}$

$$\equiv$$
 functor $G:(\Delta_{[0,\varepsilon]},\leq)\to \mathsf{Vect}_k$

use left Kan extension of $\Delta_0 \cup \Delta_\varepsilon \hookrightarrow \Delta_{[0,\varepsilon]}$:

$$G(t) := \varinjlim F|_{s \le t \in \Delta_0 \cup \Delta_\varepsilon}$$

 $G(t):=\varinjlim F|_{s\leq t\in\Delta_0\cup\Delta_\varepsilon}$ $G(s\to t) \text{ given by universality of colimit}$

