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Reminder: the TDA pipeline
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point cloud P

proximity rule homology

barcode (descriptor)

filter P → R persistence

filtration F

The 5 pillars of the theory (persistence theory):

• decomposition theorems (existence of barcodes)

• algorithms (computation of barcodes)

• stability theorems (barcodes as stable descriptors)

• statistical frameworks for barcodes

• vectorizations and kernels on barcodes for learning
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1. Descriptors and stability



- ma recherche s’inscrit dans le contexte de l’analyse exploratoire des donnees, dont l’objectif est l’etude descriptive des structures sous-jacentes aux donnees en vue de leur interpretation ou de leur comparaison. - dans mon cas je m’interesse surtout aux donnees quantitatives de nature geometrique, materialisees generalement par des nuages de points munis de metriques ou de mesures de similariteGeometric Data
Input: point cloud equipped with a metric or (dis-)similarity measure

data point ≡ image/patch, geometric shape, protein conformation, patient, LinkedIn user...
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Goal: describe the structure of
the geometry underlying the data,
for interpretation or summary



• geometric data set / underlying space ≡ compact metric space

• distance between compact metric spaces ≡ Gromov-Hausdorff (GH) distance

X

Y

Z
sX

sY

Mathematical framework
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dGH(X,Y ) := inf
sY :X→Z
sY :Y→Z

dZH(sX(X), sY (Y ))
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• geometric data set / underlying space ≡ compact metric space

• distance between compact metric spaces ≡ Gromov-Hausdorff (GH) distance

Mathematical framework
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• descriptor / signature ≡ persistence diagram / feature vector



[Agarwal et al. 2015] show that it is NP-hard to approximate the GH distance within a factor of 3, even for metric trees

shape space

descriptors space

GH distance

hard to compute

isometries

equality

distance

easy to compute

[Agarwal et al. 2015]

Why use descriptors
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[Agarwal et al. 2015] show that it is NP-hard to approximate the GH distance within a factor of 3, even for metric trees

shape space

descriptors space

GH distance

hard to compute

isometries

equality

distance

easy to compute

Ideally, descriptors distance = GH distance

In reality, ≤

[Agarwal et al. 2015]

Why use descriptors
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[Agarwal et al. 2015] show that it is NP-hard to approximate the GH distance within a factor of 3, even for metric trees

Some descriptors for images / 3d shapes / metric spaces:

• curvature (mean, Gaussian, sectional)

• diameter

• shape context (distribution of distances)

• heat kernel signature (heat diffusion)

• spin image (local neighborhood parametrization)

• wave kernel signature (Maxwell’s equations)

• etc.

• SIFT features (local distribution of gradient orientations)

Why use descriptors
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geometry

statistics
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Input: a finite/compact metric space (X, dX), a basepoint x ∈ X

Signature: the persistence diagram associated with the filtration

Construction: a filtration (nested family of sublevel-sets of real-valued function)

(X, dX) filtration diagram
(geometry)

(persistence)

[ d11 d12 ··· d1n
d21 d22 ··· d2n

···
dn1 dn2 ··· dnn

]

Topological descriptors

x



This signature reveals the structure of the metric space across scales

Input: a compact metric space (X, dX)

Descriptor: dgmR(X, dX) where R stands for Vietoris-Rips filtration

Global topological descriptors

7

(X, dX)

Rips filtration

barcode / diagram

offsets filtration



This signature reveals the structure of the metric space across scales

Input: a compact metric space (X, dX)

Descriptor: dgmR(X, dX) where R stands for Vietoris-Rips filtration

Rt(X, dX)

Global topological descriptors

7

{x0, · · · , xr} ∈ Rt(X, dX) ⇐⇒ t ≥ maxi,j dX(xi, xj)

t/2



This signature reveals the structure of the metric space across scales

Input: a compact metric space (X, dX)

Descriptor: dgmR(X, dX) where R stands for Vietoris-Rips filtration

t/2

Rt(X, dX)

Global topological descriptors

7

{x0, · · · , xr} ∈ Rt(X, dX) ⇐⇒ t ≥ maxi,j dX(xi, xj)
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This equality is fine, since both curves are isometric when equipped with the geodesic distance (their total lengths are the same). The Euclidean distance allows us to differentiate between them.∞
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This equality is not fine, since the two spaces are not isometric. Note that the equality does not come from the sampling itself, but from the definition of the signatures. Fortunately, the Euclidean distance allows us to differentiate between the shapes, even though by a single point.∞
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Theorem: [Chazal, de Silva, O. 2013]
For any compact metric spaces (X, dX) and (Y, dY ),
d∞(dgmR(X, dX), dgmR(Y, dY )) ≤ 2dGH(X,Y ).

Stability

9

∞

∞



the issue with infinite spaces is that they give rise to infinite Rips complexes, whose filtrations may or may not be tame and therefore whose persistence diagrams may not be defined. At least, I will leave the suspense open until Frederic Chazal’s talk.

Theorem: [Chazal, de Silva, O. 2013]
For any compact metric spaces (X, dX) and (Y, dY ),
d∞(dgmR(X, dX), dgmR(Y, dY )) ≤ 2dGH(X,Y ).

Proof outline:

(X, dX )

(Y, dY )

(Z, dZ )

γX

γY

(γX (X) t γY (Y ), dZ )

(R|X|+|Y |, `∞)

id

id

γ

finite

Stability

9



Toy application (unsupervised shape classification)
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60 shapes (represented as point clouds with approximate geodesic distances)
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Toy application (unsupervised shape classification)
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computation time ≈ 1 hour (pacing phase: bottleneck distances computation)



−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

−0.02

−0.01

0

0.01

0.02

0.03

0.04
camel

cat

elephant

face

head

horse

Toy application (unsupervised shape classification)

10



Input: a compact metric space (X, dX), a basepoint x ∈ X

Descriptor: dgm dX(x, ·)

Local topological descriptors

11
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Stability
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Theorem: (local descriptors) [Carrière, O., Ovsjanikov 2015]

Let (X, dX) and (Y, dY ) be two compact length spaces with bounded curvature,
and let x ∈ X and y ∈ Y . If dGH((X,x), (Y, y)) ≤ 1

20
min{%(X), %(Y )}, then

d∞(dgm dX(·, x),dgm dY (·, y)) ≤ 20 dGH((X,x), (Y, y)).

(adaptation of dGH to pointed spaces)

{
(convexity radii)



Prerequisite: dGH(X,Y ) < 1
20

min{%(X), %(Y )}

X =

Y = ∀f, g, d∞(dgm f,dgm g) =∞

dGH(X,Y ) <∞ = %(Y )

Stability
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Theorem: (local descriptors) [Carrière, O., Ovsjanikov 2015]
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note that blue and green are not contiguous after MDS, however they are in signatures space because they are on the shape and the mapping to signatures space is Lipschitz continuous

mapping to R3 via MDS

k-means in R3

Toy application (unsupervised shape segmentation)
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mapping to R3 via MDS

k-means in R3

Toy application (unsupervised shape segmentation)
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Strategy: use k-NN classifier in diagram space (equipped with d∞)

Toy application (supervised shape segmentation)

15



Outline
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1. Descriptors and stability

2. Vectorizations and kernels

3. Statistics

4. Discrimination power



this one possible solution among othersPros:

• information of a different nature

• strong invariance and stability:

Persistence diagrams as descriptors for data

17

• flexible and versatile

dataset 1-parameter family of spaces persistence diagram
(geometry) (algebraic

topology)

Cons:

• space of diagrams is not linear

• positive intrinsic curvature

• slow to compare

d∞(dgmX, dgmY ) ≤ cst dGH(X,Y )



Persistence diagrams as descriptors for data

17

dataset 1-parameter family of spaces persistence diagram
(geometry) (algebraic

topology)

A solution: map diagrams to Hilbert space and use kernel trick

D
(H, 〈· | ·〉)

φ

k(·, ·) := 〈φ(·) | φ(·)〉

(ideally: φ quasi-isometry)



diagrams are turned into families of 1-d functions

diagrams are turned into pixelized images → finite-dimensional vectors• images [Adams et al. 2015]

State of the Art: define φ explicitly (vectorization) via:

Kernels for persistence diagrams

18
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• finite metric spaces [Carrière, O., Ovsjanikov 2015]
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diagrams are turned into 2-d density functions
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• finite metric spaces [Carrière, O., Ovsjanikov 2015]
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• polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kalǐsnik 2016]
{p1, · · · , pn} 7→ (P1(p1, · · · , pn), · · · , Pr(p1, · · · , pn), · · · )
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diagrams are turned into 2-d density functions

diagrams are turned into families of 1-d functions

diagrams are turned into sequences of values

diagrams are turned into finite-dimensional vectors

diagrams are turned into pixelized images → finite-dimensional vectors

if you do the convolution naively as in [Chepushtanova et al. 2015] you don’t get stability; however, a more careful convolution with a carefully weighted kernel allows you to regain stability

• landscapes [Bubenik 2012] [Bubenik, D lotko 2015]

• images [Adams et al. 2015]

• discrete measures:

→ histogram [Bendich et al. 2014]

→ regularize optimal transport [Carrière, Cuturi, O. 2017]

→ heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

→ convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]

State of the Art: define φ explicitly (vectorization) via:

Kernels for persistence diagrams

18

• finite metric spaces [Carrière, O., Ovsjanikov 2015]
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Attention: L2 is not an RKHS, just an ambient Hilbert space in which the RKHS is embedded

note: injective kernels can be made universal by post-composition with a Gaussian kernel

L2(N× R) is defined by taking the product of the counting measure on N and the Lebesgue measure on R, that is:
∫
N×R λ(k, t)dµ =

∑∞
k=1

∫
R λ(k, t)dt

Kernels for persistence diagrams

18

positive (semi-)definiteness

ambient Hilbert space

‖φ(·)− φ(·)‖H ≤ g(dp)

‖φ(·)− φ(·)‖H ≥ f(dp)

universality

algorithmic cost

injectivity

landscapes
discretemetric

spaces

L2(N× R) L2(R2)(Rd, ‖.‖2)

O(n2) O(n2)
f. map: O(n2)

kernel: O(d)

measurespolynomials

`2(R)

f. map: O(nd)

kernel: O(d)

images

(Rd, ‖.‖2)

f. map: O(n2)

kernel: O(d)
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the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)

δx
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birth birth
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Persistence diagrams as discrete measures (I)

19

discreteD µD

µD :=
∑
x∈D δx

measure

∆
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discrete weighting
D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

Pb: µD is unstable (points on diagonal disappear)

measure

w(x) := arctan (c d(x,∆)r), c, r > 0

∆
∆
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discrete weighting
D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

Pb: µD is unstable (points on diagonal disappear)

measure convolution

w(x) := arctan (c d(x,∆)r), c, r > 0

Def: φ(D) is the density function of µwD ∗ N (0, σ) w.r.t. Lebesgue measure

µ̃wD := µwD ∗ N (0, σ)

∆
∆

φ(D) :=
1√
2πσ

∑
x∈D

arctan(cd(x,∆)r) exp

(
−‖ · −x‖

2

2σ2

)
k(D,D′) := 〈φ(D), φ(D′)〉L2(∆×R+)
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discrete weighting

Prop.: [Kusano, Fukumisu, Hiraoka 2016-17]

• ‖φ(D)− φ(D′)‖H ≤ C dp(D,D′).

• φ is injective and exp(k) is universal

D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

measure convolution

µ̃wD := µwD ∗ N (0, σ)

∆
∆

φ(D) :=
1√
2πσ

∑
x∈D

arctan(cd(x,∆)r) exp

(
−‖ · −x‖

2

2σ2

)
k(D,D′) := 〈φ(D), φ(D′)〉L2(∆×R+)



20

Metric distortion in practice
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Application to supervised shape segmentation

21

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape

Foot

Head Torso

Hand

Label = ?

Training Test



Application to supervised shape segmentation

21

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape
(training data)



Application to supervised shape segmentation

21

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape

Accuracies (%) using TDA descriptors (kernels on barcodes):

TDA geometry TDA + geometry

Human 74.0 78.7 88.7
Airplane 72.6 81.3 90.7
Ant 92.3 90.3 98.5
FourLeg 73.0 74.4 84.2
Octopus 85.2 94.5 96.6
Bird 72.0 75.2 86.5
Fish 79.6 79.1 92.3



Application to supervised time series analysis

(time-delay
embedding)

window Rm+1

f : N→ R

TDm,τ (f) :=


f(t)
f(t+τ)

...
f(t+mτ)



TDm,τ

signal embedded data

periodicity circularity

# prominent harmonics (N) min. ambient dimension
(m ≥ 2N)

# non-commensurate freq. intrinsic dimension
(S1 × · · · × S1)

τ : step / delay

mτ : window size

m+ 1: embedding dimension

[J. Perea et al.:”SW1PerS: Sliding windows and 1-persistence scoring”, 2015]

f

22



Taken’s theorem: under sufficient conditions, the map x 7→ TDm,τ (fx) is an embedding of the state space X. Note: instead of varying x, one can also vary the window and step sizes

this is for when the data come from some unknown discrete dynamical system. Formalism: - a state space X - a self map φ : X → X - an observation function g : X → R - an origin x0 ∈ X  discrete time series: f : N→ R defined by f(n) := g ◦ φn(x0), where n stands for the n-th iteration. Then, under regularity conditions on the state space and dynamical system in general (strange attractor), the delay embedding will be a diffeomorphic embedding into Rk if m ≥ 2d where d is the intrinsic dimension of X.

hence no need of a vector space structure on X (no coordinates)

Application to supervised time series analysis

(time-delay
embedding)

window Rm+1

TDm,τ

Contributions of TDA:

inference of:

- periodicity

- harmonics

- non-commensurate freq.

no Fourier transform needed

- underlying state space

X

x

f

φ

R

α

fx(n) := α(φn(x))

Dynamical system:

22



hence no need of a vector space structure on X (no coordinates)

Application to supervised time series analysis

(time-delay
embedding)

window Rm+1

TDm,τ

Contributions of TDA:

inference of:

- periodicity

- harmonics

- non-commensurate freq.

no Fourier transform needed

- underlying state space

f

Dynamical system:

Thm: [Nash, Takens]
Given a Riemannian manifold X of dimension
m
2

, it is a generic property of φ ∈ Diff2(X)
and α ∈ C2(X,R) that

X → Rm+1

x 7→ (α(x), α ◦ φ(x), · · · , α ◦ φm(x))

is an embedding. 22



Application to supervised time series analysis

(time-delay
embedding)

window Rm+1

TDm,τ
f

method / dataset Gyro sensor EEG dataset EMG dataset

SVM + statistical features 67.6± 4.7 44.4± 19.8 15.0± 10.0
SVM + Betti sequence 63.5± 11.3 66.7± 5.6 49.6± 18.2

1-d CNN + dynamic time warping 6.4± 5.1 72.4± 6.1 15.0± 10.0
imaging CNN 18.9± 5.2 48.9± 4.2 10.0± 0.0

1-d CNN + Betti sequence 79.8± 5.0 75.38± 5.7 74.4± 10.6

[Y. Umeda:”Time Series Classification via Topological Data Analysis”, 2017]

22
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1. Descriptors and stability

2. Vectorizations and kernels

3. Statistics

4. Discrimination power



Statistics for persistence diagrams

24

Descriptor

Model

(s
am

plin
g)

(TDA)

(inference)
noise

signal
Data

Statistics:

- signal vs noise discrimination

- convergence rates

- confidence indices/intervals, principal components, etc.



Statistics for persistence diagrams
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H

3 approaches for statistics:

- Fréchet means in diagrams space

- embedding into Hilbert spaces

- push-forwards from data space

(TDA) (vectorization)



1. Fréchet means in diagrams space

25

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA,

clustering (k-means, EM, Mean-Shift, etc.)
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[K. Turner et al.: ”Fréchet means for distributions of persistence diagrams”, 2012]
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∑
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dp(D, Di)
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Given diagrams D1, · · · , Dn:

[K. Turner et al.: ”Fréchet means for distributions of persistence diagrams”, 2012]

⇒ arg min not unique, local minima, numerical issues

Problem: non-convex energy, highly curved space

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA,

clustering (k-means, EM, Mean-Shift, etc.)

mean , , =

barcode distance is a
transportation type
distance  connection
to Optimal Transport



1. Fréchet means in diagrams space
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Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA,

clustering (k-means, EM, Mean-Shift, etc.)

mean , , =

New approach: recast problem in measure space

B 7→ µB

 use relaxations from Optimal Transport (OT):

measures: µB 7→ µB ∗ U[0,ε]2

metric: W2,γ(µBi , µBj )2 := inf
ν

∫
‖x− y‖2dν(x, y) + γ H(ν)

[M. Agueh, G. Carlier: ”Barycenters in the Wasserstein Space”, 2011]

[M. Cuturi, A. Doucet: ”Fast computation of Wasserstein barycenters”, 2014]

strictly convex problem
⇒ unique mean

easy to compute

B

δx

x

birth birth

de
at

h

de
at

h

∆

discrete
µB

µD :=
∑
x∈D δx

measure

∆



2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function



2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Use boundaries of
rank function

Rotate PD
Compute rank function

Rank function is defined as λ(x, y) = rank ιyx

ιyx : H(f−1(−∞, x))→ H(f−1(−∞, y)) induced linear map

x ≤ y =⇒ f−1(−∞, x) ⊆ f−1(−∞, y)



2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function

Landscape Λ : R2 → R is defined as: Λ(i, t) = λbic(t)

Boundaries of rank function: λi(t) = sup{s ≥ 0 : λ(t− s, t+ s) ≥ i}



i.e. measurable when the domain and codomain are equipped with their Borel algebras, i.e. the σ-algebras induced by their open sets

2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Prop: [Bubenik 2015]

‖Λ(dgm )− Λ(dgm ′)‖∞ ≤ d∞(dgm , dgm ′)

Λ is Lipschitz hence Borel measurable⇒



i.e. measurable when the domain and codomain are equipped with their Borel algebras, i.e. the σ-algebras induced by their open sets

a.s. = almost surely: proba of equality converges to 1

2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Prop: [Bubenik 2015]

‖Λ(dgm )− Λ(dgm ′)‖∞ ≤ d∞(dgm , dgm ′)

Λ is Lipschitz hence Borel measurable⇒
Given D1, · · · , Dn ∼ µ iid, let Λ̄n = 1

n

∑n
i=1 Λ(Di)

Thm: (strong law of large numbers) [Bubenik 2015]

If E(‖Λ(µ)‖) < +∞, then Λ̄n
a.s.−→ E(Λ(µ)).



finite first and second moments note: Λ(µ) is a measure on the function space L2(R2) d = convergence in distribution, or weak convergence: cumulative distribution function of empirical measure converges pointwise to that of the true measure

i.e. measurable when the domain and codomain are equipped with their Borel algebras, i.e. the σ-algebras induced by their open sets

a.s. = almost surely: proba of equality converges to 1

2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Prop: [Bubenik 2015]

‖Λ(dgm )− Λ(dgm ′)‖∞ ≤ d∞(dgm , dgm ′)

Λ is Lipschitz hence Borel measurable⇒
Given D1, · · · , Dn ∼ µ iid, let Λ̄n = 1

n

∑n
i=1 Λ(Di)

Thm: (strong law of large numbers) [Bubenik 2015]

If E(‖Λ(µ)‖) < +∞, then Λ̄n
a.s.−→ E(Λ(µ)).

Thm: (central limit theorem) [Bubenik 2015]

If E(‖Λ(µ)‖) < +∞ and E(‖Λ(µ)‖2) < +∞, then

√
n
(
Λ̄n − E(Λ(µ))

) d−→ N (0,Σ(Λ(µ))).



2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Problem: mean landscape is not a landscape



basically, we push the measure on the initial topological space onto the space of persistence diagrams via the filtration+decomposition operator. Now, a random variable of law µ×n is mapped to a random variable taking values in the space of persistence diagrams

∞

0
0

X̂n F(X̂n)

dgmF(X̂n)

(X, dX) compact metric space

µ probability measure supported on X (suppµ = X)

Sample n points iid
according to µ.

Examples:

- F(X̂n) = R(X̂n,dX)

- F(X̂n) = C(X̂n, dX)
- · · ·

Questions:

• Statistical properties of the estimator dgmF(X̂n) ?

3. Push-forwards from data space

26

• Convergence to the ground truth dgmF(X) ? Deviation bounds?



basically, we push the measure on the initial topological space onto the space of persistence diagrams via the filtration+decomposition operator. Now, a random variable of law µ×n is mapped to a random variable taking values in the space of persistence diagrams

∞

0
0

X̂n F(X̂n)

dgmF(X̂n)

(X, dX) compact metric space

µ probability measure supported on X (suppµ = X)

Sample n points iid
according to µ.

Examples:

- F(X̂n) = R(X̂n,dX)

- F(X̂n) = C(X̂n, dX)
- · · ·

Stability thm: d∞(dgmF(X̂n),dgmF(X)) ≤ 2dH(X̂n, X)

P
(

d∞
(

dgmF(X̂n), dgmF(X),
)
> ε
)
≤ P

(
dH(X̂n, X) >

ε

2

)⇒ for any ε > 0,

3. Push-forwards from data space

26



X̂n F(X̂n)(X, dX , µ) n points sampled
i.i.d. according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ X and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem [Chazal, Glisse, Labruère, Michel 2014-15]:

If µ is (a, b)-standard then for any ε > 0:

Deviation inequality

27

P
(

d∞
(

dgmF(X̂n),dgmF(X)
)
> ε
)
≤ 8b

aεb
exp(−naεb)



X̂n F(X̂n)(X, dX , µ) n points sampled
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For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ X and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem [Chazal, Glisse, Labruère, Michel 2014-15]:

If µ is (a, b)-standard then for any ε > 0:

Deviation inequality

27

P
(

d∞
(

dgmF(X̂n),dgmF(X)
)
> ε
)
≤ 8b

aεb
exp(−naεb)

Corollary [Chazal, Glisse, Labruère, Michel 2014-15]:

sup
µ∈P

E
[
d∞

(
dgmF(X̂n), dgmF(X)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b. Moreover, the estimator dgmF(X̂n) is minimax optimal
(up to a logn factor) on the space P of (a, b)-standard probability measures on X.

/ rate of convergence



k ranges from 2100 to 3000 every 100 steps (sample k point clouds each time)

- µ: unif. measure on Lissajous curve X.
- F : distance to X in R2.
- sample k = 300 sets of n points for n =
[2100 : 100 : 3000].
- compute

Ên = Ê[d∞(dgmF(X̂n),dgmF(X))].

- plot log(Ên) as a function of log(log(n)/n).

Numerical illustrations

28



- µ: unif. measure on a torus X.
- F : distance to X in R3.
- sample k = 300 sets of n points for n =
[12000 : 1000 : 21000].
- compute

Ên = Ê[d∞(dgmF(X̂n),dgmF(X))].

- plot log(Ên) as a function of log(log(n)/n).

Numerical illustrations

28



Note: the analysis is asymptotic

Confidence regions

29

Setup: (X,dX , µ) → X̂n → F(X̂n) → dgmF(X̂n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(

d∞

(
dgmF(X̂n),dgmF(X)

)
> cn(α)

)
≤ α

→ confidence region: d∞-ball of radius cn(α) around dgmF(X̂n)

signal

noise



Note: the analysis is asymptotic

Confidence regions

29

Setup: (X,dX , µ) → X̂n → F(X̂n) → dgmF(X̂n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(

d∞

(
dgmF(X̂n),dgmF(X)

)
> cn(α)

)
≤ α

Note: we already have an inequality of this kind but...

P
(

d∞
(

dgmF(X̂n),dgmF(X)
)
> ε
)
≤ 8b

aεb
exp(−naεb)

unknown



Note: the analysis is asymptotic

up to a rescaling by
√
n, this is the cumulative density function of the empirical measure associated with d∗1, · · · , d∗n

Confidence regions

29

Setup: (X,dX , µ) → X̂n → F(X̂n) → dgmF(X̂n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(

d∞

(
dgmF(X̂n),dgmF(X)

)
> cn(α)

)
≤ α

Bootstrap:

• draw X∗ = X∗1 , · · · , X∗n iid from µX̂n (empirical measure on X̂n)

• compute d∗ = d∞
(

dgmF(X∗),dgmF(X̂n)
)

• repeat N times to get d∗1, · · · , d∗N
• let cn(α) be the (1− α) quantile of 1

N

∑N
i=1 I(d∗i ≥ t)

Principle [Efron 1979]: variations of dgmF(X∗) around dgmF(X̂n)

are same as variations of dgmF(X̂n) around dgmF(X).

(ideally)

basically, the class of distance functions needs to be so-called DonskerNote: requires some conditions on (X, dX , µ) and diagram space



Note: the analysis is asymptotic

up to a rescaling by
√
n, this is the cumulative density function of the empirical measure associated with d∗1, · · · , d∗n

Confidence regions

29

Setup: (X,dX , µ) → X̂n → F(X̂n) → dgmF(X̂n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(

d∞

(
dgmF(X̂n),dgmF(X)

)
> cn(α)

)
≤ α

Bootstrap:

• draw X∗ = X∗1 , · · · , X∗n iid from µX̂n (empirical measure on X̂n)

• compute d∗ = d∞
(

dgmF(X∗),dgmF(X̂n)
)

• repeat N times to get d∗1, · · · , d∗N
• let cn(α) be the (1− α) quantile of 1

N

∑N
i=1 I(d∗i ≥ t)

Theorem [Balakrishnan et al. 2013] + [Chazal et al. 2014]:

lim sup
n→∞

P
(

d∞
(

dgmF(X̂n), dgmF(X)
)
> cn(α)

)
≤ α.

(in fact)

dH(X∗, X̂n)



Confidence regions

29

Setup: (X,dX , µ) → X̂1
n, · · · , X̂m

n → φk(D1
n), · · · , φk(Dm

n )

v̄ = 1
m

∑m
i=1 φk(Di

n)

↓
empirical mean feature vector



Confidence regions

29

Setup: (X,dX , µ) → X̂1
n, · · · , X̂m

n → φk(D1
n), · · · , φk(Dm

n )

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(∥∥v̄ − E(φk◦dgm ◦F)∗(µ⊗n)[v]

∥∥
Hk

> cn(α)
)
≤ α

v̄ = 1
m

∑m
i=1 φk(Di

n)

↓

mean feature vector according to the measure induced by µ⊗n

(call it Λµ,n for landscapes)

empirical mean feature vector



Confidence regions

29

Theorem [Chazal et al. 2014]:

lim sup
m→∞

P
(∥∥Λ̄− Λµ,n

∥∥
∞ > cn(α)

)
≤ α.

Bootstrap with landscapes:

• draw Λ∗1, · · · ,Λ∗m iid from 1
m

∑m
i=1 δΛ(Din)

• compute Λ̄∗ = 1
m

∑m
i=1 Λ∗i and d∗ = ‖Λ̄∗ − Λ̄‖∞

• repeat N times to get d∗1, · · · , d∗N
• let cn(α) be the (1− α) quantile of 1

N

∑N
i=1 I( d∗i ≥ t)

Setup: (X,dX , µ) → X̂1
n, · · · , X̂m

n → Λ(D1
n), · · · ,Λ(Dm

n )

Λ̄ = 1
m

∑m
i=1 Λ(Di

n)

↓



Confidence regions

29

Theorem [Chazal et al. 2014]:

lim sup
m→∞

P
(∥∥Λ̄− Λµ,n

∥∥
∞ > cn(α)

)
≤ α.

Bootstrap with landscapes:

• draw Λ∗1, · · · ,Λ∗m iid from 1
m

∑m
i=1 δΛ(Din)

• compute Λ̄∗ = 1
m

∑m
i=1 Λ∗i and d∗ = ‖Λ̄∗ − Λ̄‖∞

• repeat N times to get d∗1, · · · , d∗N
• let cn(α) be the (1− α) quantile of 1

N

∑N
i=1 I( d∗i ≥ t)

Setup: (X,dX , µ) → X̂1
n, · · · , X̂m

n → Λ(D1
n), · · · ,Λ(Dm

n )

Λ̄ = 1
m

∑m
i=1 Λ(Di

n)

↓

|Λ̄∗(t)− Λ̄(t)|

|Λ̄(t)− Λµ,n(t)|

Note: can be done for a fixed t



Confidence regions

29

Bootstrap with landscapes:

• draw Λ∗1, · · · ,Λ∗m iid from 1
m

∑m
i=1 δΛ(Din)

• compute Λ̄∗ = 1
m

∑m
i=1 Λ∗i and d∗ = ‖Λ̄∗ − Λ̄‖∞

• repeat N times to get d∗1, · · · , d∗N
• let cn(α) be the (1− α) quantile of 1

N

∑N
i=1 I( d∗i ≥ t)

Setup: (X,dX , µ) → X̂1
n, · · · , X̂m

n → Λ(D1
n), · · · ,Λ(Dm

n )

Λ̄ = 1
m

∑m
i=1 Λ(Di

n)

↓

Theorem [Chazal et al. 2015]:∥∥Λ̄− Λ(dgmF(X))
∥∥
∞ ≤

∥∥Λ̄− Λµ,n
∥∥
∞+‖Λµ,n − Λ(dgmF(X))‖∞

variance term bias term ≤ C
(

logn
an

)1/b
when µ is (a, b)-standard



Some applications

30

Application 1: 3D shapes classification

From m = 100 subsamples of size n = 300

each mesh has 7K to 40K vertices



these plots represent just 1 of the 3 coordinates in space measured by the accelerometer

Some applications

30

Application 2: walking behaviors classification from smartphone accelerometer data

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!



Outline

31

1. Descriptors and stability

2. Vectorizations and kernels

3. Statistics

4. Discrimination power



How discriminative are persistence diagrams?

32

• Unions of balls — Vietoris-Rips filtrations

point cloud

simplicial filtration

barcode / diagram

offsets filtration



How discriminative are persistence diagrams?

32

• Unions of balls — Vietoris-Rips filtrations

Rt(X, dX)

{x0, · · · , xr} ∈ Rt(X, dX) ⇐⇒ t ≥ maxi,j dX(xi, xj)

t/2



How discriminative are persistence diagrams?

32

• Unions of balls — Vietoris-Rips filtrations

α1 1

dgmR(P, `2) = {(0,+∞)} t {(0, 1)} t {(0, 1)}

⇒ diagrams for different values of α are indistinguishable



How discriminative are persistence diagrams?

32

• Unions of balls — Vietoris-Rips filtrations

Prop: [Folklore]

For any metric tree (X,dX):

dgmR(X,dX) = {(0,+∞)}

⇒ no information on the metric



How discriminative are persistence diagrams?

32

• Unions of balls — Vietoris-Rips filtrations

• Reeb graphs

⇒ Reeb graphs are indistinguishable from their diagrams



this is too large a class of transformations, for our purposes we rather target isometries

How discriminative are persistence diagrams?

32

• Unions of balls — Vietoris-Rips filtrations

• Reeb graphs

• Real-valued functions

Prop: [Folklore]

Given f : X → R and h : Y → X homeomorphism,

dgm f ◦ h = dgm f

⇒ Persistence is invariant under reparametrizations



How discriminative are persistence diagrams?

32

• Unions of balls — Vietoris-Rips filtrations

• Reeb graphs

• Real-valued functions

possible solutions:

• richer topological invariants (e.g. persistent homotopy)

• use several filter functions (concatenation vs multipersistence)



How discriminative are persistence diagrams?

32

• Unions of balls — Vietoris-Rips filtrations

• Reeb graphs

• Real-valued functions

possible solutions:

• richer topological invariants (e.g. persistent homotopy)

• use several filter functions (concatenation vs multipersistence)

Steve Nicolas



note: here, as before, dgm f contains the diagrams of f of all dimensions, overlaid with labels

implicit: PHT(X) = PHT(X,F)

(X, dX) (compact)

R

· · · F = {fw}w∈W

(diagrams, d∞)

dgm fw

PHT(X)={dgm fw | w ∈W}

PHT(X)

Persistent Homology Transform (PHT)

33



note: here, as before, dgm f contains the diagrams of f of all dimensions, overlaid with labels

implicit: PHT(X) = PHT(X,F)

(X, dX) (compact)

R

· · · F = {fw}w∈W

(diagrams, d∞)

dgm fw

PHT(X)={dgm fw | w ∈W}

PHT(X)

Persistent Homology Transform (PHT)

33

Thm: [Turner, Mukherjee, Boyer 2014]

Let F = {〈·, w〉}w∈Sd−1 , where d = 2, 3 is fixed.
Then, PHT is injective on the set of linear embeddings
of compact simplicial complexes in Rd.

w

Sd−1X

Extension: [Turner et al., in progress]

True for arbitrary d and semialgebraic compact sets.



note: here, as before, dgm f contains the diagrams of f of all dimensions, overlaid with labels

implicit: PHT(X) = PHT(X,F)

(X, dX) (compact)

R

· · · F = {fw}w∈W

(diagrams, d∞)

dgm fw

PHT(X)={dgm fw | w ∈W}

PHT(X)

Persistent Homology Transform (PHT)

33

Thm: [Turner, Mukherjee, Boyer 2014]

Let F = {〈·, w〉}w∈Sd−1 , where d = 2, 3 is fixed.
Then, PHT is injective on the set of linear embeddings
of compact simplicial complexes in Rd.

w

Sd−1X

Extension: [Turner et al., in progress]

True for arbitrary d and semialgebraic compact sets.

Corollary: PHT is a sufficient statistic for such sets
⇒ parametric inference



PHT for intrinsic metrics

34

Given (X, dX) compact length space, take F = {dX(·, x)}x∈X



PHT for intrinsic metrics

34

Given (X, dX) compact length space, take F = {dX(·, x)}x∈X

Thm: [O., Solomon 2017]

There is a Gromov-Hausdorff dense subset of the compact
length spaces on which the intrinsic PHT is injective.



this is a countable space (for each fixed numbers of vertices and edges there are only finitely many possible combinatorial graphs) ⇒ we can put a probability mass function on that space. That probability mass function can be derived e.g. from the Erdos-Renyi model

Generic injectivity

35

Generative model:

10
5

6

5

5

1.1

0.9

1.1

1 1

0.9

1

proba. mass function proba. measure with density on R|E|+

metric graph ≡ combinatorial graph (V,E) + edge weights E → R+

mixture ( , )



this is a countable space (for each fixed numbers of vertices and edges there are only finitely many possible combinatorial graphs) ⇒ we can put a probability mass function on that space. That probability mass function can be derived e.g. from the Erdos-Renyi model

Generic injectivity

35

Generative model:

proba. mass function proba. measure with density on R|E|+

metric graph ≡ combinatorial graph (V,E) + edge weights E → R+

Thm: [O., Solomon 2017]

Under this model, there is a full-measure subset of the
metric graphs on which the intrinsic PHT is injective.

mixture ( , )



this is a countable space (for each fixed numbers of vertices and edges there are only finitely many possible combinatorial graphs) ⇒ we can put a probability mass function on that space. That probability mass function can be derived e.g. from the Erdos-Renyi model

Generic injectivity

35

Generative model:

proba. mass function proba. measure with density on R|E|+

metric graph ≡ combinatorial graph (V,E) + edge weights E → R+

Thm: [O., Solomon 2017]

Under this model, there is a full-measure subset of the
metric graphs on which the intrinsic PHT is injective.

mixture ( , )

Aim: PHT as a sufficient statistic for metric graphs
⇒ parametric inference



this one possible solution among othersPros:

• information of a different nature

• strong invariance and stability:

Persistence diagrams as descriptors for data

36
• flexible and versatile

dataset 1-parameter family of spaces persistence diagram
(geometry) (algebraic

topology)

Pros:

• kernel trick

• provable discriminativity on certain
classes of spaces

• quasi-isometric maps to Hilbert space

d∞(dgmX, dgmY ) ≤ cst dGH(X,Y )

• (statistics via push-forwards/pull-backs)


