Université du Luxembourg March 12 - 16, 2018

Topological Descriptors for Geometric Data

Reminder: the TDA pipeline

Outline

1. Descriptors and stability

2. Vectorizations and kernels

3. Statistics

4. Discrimination power

Outline

1. Descriptors and stability

2. Vectorizations and kernels

3. Statistics

4. Discrimination power

Geometric Data

Input: point cloud equipped with a metric or (dis-)similarity measure

data point \equiv image/patch, geometric shape, protein conformation, patient, LinkedIn user...

Geometric Data

Input: point cloud equipped with a metric or (dis-)similarity measure

data point \equiv image/patch, geometric shape, protein conformation, patient, LinkedIn user...

- geometric data set / underlying space \equiv compact metric space
- distance between compact metric spaces \equiv Gromov-Hausdorff (GH) distance

Mathematical framework

- geometric data set / underlying space \equiv compact metric space
- distance between compact metric spaces \equiv Gromov-Hausdorff (GH) distance

Mathematical framework

- geometric data set / underlying space \equiv compact metric space
- distance between compact metric spaces \equiv Gromov-Hausdorff (GH) distance

Mathematical framework

- geometric data set / underlying space \equiv compact metric space
- distance between compact metric spaces \equiv Gromov-Hausdorff (GH) distance

- geometric data set / underlying space \equiv compact metric space
- distance between compact metric spaces \equiv Gromov-Hausdorff (GH) distance
- \bullet descriptor / signature \equiv persistence diagram / feature vector

Why use descriptors

Why use descriptors

Why use descriptors

Some descriptors for images / 3d shapes / metric spaces:

- diameter
- curvature (mean, Gaussian, sectional)
- shape context (distribution of distances)
- heat kernel signature (heat diffusion)
- wave kernel signature (Maxwell's equations)
- spin image (local neighborhood parametrization)
- SIFT features (local distribution of gradient orientations)
- etc.

Some descriptors for images / 3d shapes / metric spaces:

- diameter
- curvature (mean, Gaussian, sectional)
- shape context (distribution of distances)
- heat kernel signature (heat diffusion)
- wave kernel signature (Maxwell's equations)
- spin image (local neighborhood parametrization)
- SIFT features (local distribution of gradient orientations)
- etc.

geometry statistics

Topological descriptors

Input: a finite/compact metric space (X, d_X) , a basepoint $x \in X$

Construction: a filtration (nested family of sublevel-sets of real-valued function)

Signature: the persistence diagram associated with the filtration

Global topological descriptors

Input: a compact metric space (X, d_X)

Descriptor: dgm $\mathcal{R}(X, d_X)$ where \mathcal{R} stands for Vietoris-Rips filtration

Global topological descriptors

Input: a compact metric space (X, d_X)

Descriptor: dgm $\mathcal{R}(X, d_X)$ where \mathcal{R} stands for Vietoris-Rips filtration

 $\{x_0, \cdots, x_r\} \in R_t(X, \mathrm{d}_X) \quad \Longleftrightarrow \quad t \ge \max_{i,j} \mathrm{d}_X(x_i, x_j)$

Global topological descriptors

Input: a compact metric space (X, d_X)

Descriptor: dgm $\mathcal{R}(X, d_X)$ where \mathcal{R} stands for Vietoris-Rips filtration

 $\{x_0, \cdots, x_r\} \in R_t(X, d_X) \quad \Longleftrightarrow \quad t \ge \max_{i,j} d_X(x_i, x_j)$

Stability

Theorem: [Chazal, de Silva, O. 2013] For any compact metric spaces (X, d_X) and (Y, d_Y) , $d_{\infty}(\operatorname{dgm} \mathcal{R}(X, d_X), \operatorname{dgm} \mathcal{R}(Y, d_Y)) \leq 2d_{\operatorname{GH}}(X, Y)$.

Stability

finite **Theorem:** [Chazal, de Silva, O. 2013] For any compact metric spaces (X, d_X) and (Y, d_Y) , $d_{\infty}(\operatorname{dgm} \mathcal{R}(X, d_X), \operatorname{dgm} \mathcal{R}(Y, d_Y)) \leq 2d_{\operatorname{GH}}(X, Y).$

Proof outline:

Toy application (unsupervised shape classification)

60 shapes (represented as point clouds with approximate geodesic distances)

Toy application (unsupervised shape classification)

computation time ≈ 1 hour (pacing phase: bottleneck distances computation)

Toy application (unsupervised shape classification)

Local topological descriptors

Input: a compact metric space (X, d_X) , a basepoint $x \in X$

Descriptor: $\operatorname{dgm} \operatorname{d}_X(x, \cdot)$

Stability

Theorem: (local descriptors) [Carrière, O., Ovsjanikov 2015] Let (X, d_X) and (Y, d_Y) be two compact length spaces with bounded curvature, and let $x \in X$ and $y \in Y$. If $d_{GH}((X, x), (Y, y)) \leq \frac{1}{20} \min\{\varrho(X), \varrho(Y)\}$, then $d_{\infty}(\operatorname{dgm} d_X(\cdot, x), \operatorname{dgm} d_Y(\cdot, y)) \leq 20 \ d_{GH}((X, x), (Y, y))$.

(adaptation of d_{GH} to pointed spaces)

(convexity radii)

Stability

Theorem: (local descriptors) [Carrière, O., Ovsjanikov 2015] Let (X, d_X) and (Y, d_Y) be two compact length spaces with bounded curvature, and let $x \in X$ and $y \in Y$. If $d_{GH}((X, x), (Y, y)) \leq \frac{1}{20} \min\{\varrho(X), \varrho(Y)\}$, then $d_{\infty}(\operatorname{dgm} d_X(\cdot, x), \operatorname{dgm} d_Y(\cdot, y)) \leq 20 \ d_{GH}((X, x), (Y, y)).$ (adaptation of d_{GH} to pointed spaces) (convexity radii)

Prerequisite: $d_{GH}(X, Y) < \frac{1}{20} \min\{\varrho(X), \varrho(Y)\}$

$$d_{\mathrm{GH}}(X,Y) < \infty = \varrho(Y)$$

 $\forall f, g, d_{\infty}(\operatorname{dgm} f, \operatorname{dgm} g) = \infty$

Toy application (unsupervised shape segmentation)

Toy application (unsupervised shape segmentation)

Toy application (supervised shape segmentation)

Strategy: use k-NN classifier in diagram space (equipped with d_{∞})

Outline

1. Descriptors and stability

2. Vectorizations and kernels

3. Statistics

4. Discrimination power

Persistence diagrams as descriptors for data

Pros:

- strong invariance and stability: $d_{\infty}(\operatorname{dgm} X, \operatorname{dgm} Y) \leq \operatorname{cst} d_{\operatorname{GH}}(X, Y)$
- information of a different nature
- flexible and versatile

Cons:

- slow to compare
- space of diagrams is not linear
- positive intrinsic curvature

Persistence diagrams as descriptors for data

A solution: map diagrams to Hilbert space and use kernel trick

State of the Art: define ϕ explicitly (vectorization) via:

• images [Adams et al. 2015]

State of the Art: define ϕ explicitly (vectorization) via:

- images [Adams et al. 2015]
- finite metric spaces [Carrière, O., Ovsjanikov 2015]

State of the Art: define ϕ explicitly (vectorization) via:

- images [Adams et al. 2015]
- finite metric spaces [Carrière, O., Ovsjanikov 2015]
- polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kališnik 2016] $\{p_1, \dots, p_n\} \mapsto (P_1(p_1, \dots, p_n), \dots, P_r(p_1, \dots, p_n), \dots)$

 $\begin{array}{c|c} a & b & c \\ a & 0 & 4 & 5 \\ b & 4 & 0 & 3 \\ c & 5 & 3 & 0 \end{array}$

State of the Art: define ϕ explicitly (vectorization) via:

- images [Adams et al. 2015]
- finite metric spaces [Carrière, O., Ovsjanikov 2015]
- polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kališnik 2016] $\{p_1, \dots, p_n\} \mapsto (P_1(p_1, \dots, p_n), \dots, P_r(p_1, \dots, p_n), \dots)$
- landscapes [Bubenik 2012] [Bubenik, Dłotko 2015]

 $\begin{array}{c|c} a & c & c \\ a & 0 & 4 & 5 \\ b & 4 & 0 & 3 \\ c & 5 & 3 & 0 \end{array}$ 5

State of the Art: define ϕ explicitly (vectorization) via:

- images [Adams et al. 2015]
- finite metric spaces [Carrière, O., Ovsjanikov 2015]
- polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kališnik 2016] $\{p_1, \dots, p_n\} \mapsto (P_1(p_1, \dots, p_n), \dots, P_r(p_1, \dots, p_n), \dots)$
- landscapes [Bubenik 2012] [Bubenik, Dłotko 2015]
- discrete measures:
 - \rightarrow histogram [Bendich et al. 2014]
 - ightarrow regularize optimal transport [Carrière, Cuturi, O. 2017]
 - ightarrow convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]
 - \rightarrow heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

		metric			discrete
	images	spaces	polynomials	landscapes	measures
ambient Hilbert space	$(\mathbb{R}^d, \ .\ _2)$	$(\mathbb{R}^d, \ .\ _2)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
positive (semi-)definiteness					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \le g(\mathbf{d}_p)$					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \ge f(\mathbf{d}_p)$	×	×	×	×	
injectivity	×	×			
universality	×	×	×	×	
algorithmic cost	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$

	images	metric spaces	polynomials	landscapes	discrete measures
ambient Hilbert space	$(\mathbb{R}^d, \ .\ _2)$	$(\mathbb{R}^d, \ .\ _2)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
positive (semi-)definiteness				\checkmark	\checkmark
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \le g(\mathbf{d}_p)$				\checkmark	\checkmark
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \ge f(\mathbf{d}_p)$	×	×	×	×	\checkmark
injectivity	×	×			\checkmark
universality	×	×	×	×	
algorithmic cost	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$

Pb: μ_D is unstable (points on diagonal disappear)

 $w(x) := \arctan(c \operatorname{d}(x, \Delta)^r), c, r > 0$

Pb: μ_D is unstable (points on diagonal disappear) $w(x) := \arctan (c \operatorname{d}(x, \Delta)^r), c, r > 0$

Def: $\phi(D)$ is the density function of $\mu_D^w * \mathcal{N}(0, \sigma)$ w.r.t. Lebesgue measure

$$\langle \phi(D) := \frac{1}{\sqrt{2\pi\sigma}} \sum_{x \in D} \arctan(c \operatorname{d}(x, \Delta)^r) \exp\left(-\frac{\|\cdot - x\|^2}{2\sigma^2}\right)$$
$$\langle k(D, D') := \langle \phi(D), \phi(D') \rangle_{L_2(\Delta \times \mathbb{R}_+)}$$

Prop.: [Kusano, Fukumisu, Hiraoka 2016-17]

- $\|\phi(D) \phi(D')\|_{\mathcal{H}} \leq C d_p(D, D').$
- ϕ is injective and $\exp(k)$ is universal

$$\langle \phi(D) := \frac{1}{\sqrt{2\pi\sigma}} \sum_{x \in D} \arctan(c \operatorname{d}(x, \Delta)^r) \exp\left(-\frac{\|\cdot - x\|^2}{2\sigma^2}\right)$$
$$\langle k(D, D') := \langle \phi(D), \phi(D') \rangle_{L_2(\Delta \times \mathbb{R}_+)}$$

Metric distortion in practice

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

(training data)

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

Accuracies	(%)	using	TDA	descriptors	(kernels	on	barcodes):
------------	-----	-------	-----	-------------	----------	----	----------	----

	TDA	geometry	TDA + geometry
Human	74.0	78.7	88.7
Airplane	72.6	81.3	90.7
Ant	92.3	90.3	98.5
FourLeg	73.0	74.4	84.2
Octopus	85.2	94.5	96.6
Bird	72.0	75.2	86.5
Fish	79.6	79.1	92.3

 $f:\mathbb{N}\to\mathbb{R}$

J	signal	embedded data
$\mathrm{TD}_{m,\tau}(f) := \begin{bmatrix} f(t) \\ f(t+\tau) \\ \vdots \\ f(t+m\tau) \end{bmatrix}$	periodicity	circularity
τ : step / delay	# prominent harmonics (N)	min. ambient dimension $(m \ge 2N)$
m au: window size	# non-commensurate freq.	intrinsic dimension $(\mathbb{S}^1 \times \mathbb{S}^1)$
m+1: embedding dimension		

Contributions of TDA:

inference of:

- periodicity
- harmonics
- non-commensurate freq.
- underlying state space
- no Fourier transform needed

Contributions of TDA:

inference of:

- periodicity
- harmonics
- non-commensurate freq.
- underlying state space

no Fourier transform needed

Dynamical system:

Thm: [Nash, Takens] Given a Riemannian manifold X of dimension $\frac{m}{2}$, it is a **generic property** of $\phi \in \text{Diff}_2(X)$ and $\alpha \in C^2(X, \mathbb{R})$ that

$$X \to \mathbb{R}^{m+1}$$
$$x \mapsto (\alpha(x), \alpha \circ \phi(x), \cdots, \alpha \circ \phi^m(x))$$

is an embedding.

method / dataset	Gyro sensor	EEG dataset	EMG dataset
SVM + statistical features	67.6 ± 4.7	44.4 ± 19.8	15.0 ± 10.0
SVM + Betti sequence	63.5 ± 11.3	66.7 ± 5.6	49.6 ± 18.2
1-d CNN + dynamic time warping	6.4 ± 5.1	72.4 ± 6.1	15.0 ± 10.0
imaging CNN	18.9 ± 5.2	48.9 ± 4.2	10.0 ± 0.0
1-d CNN + Betti sequence	79.8 \pm 5.0	75.38 \pm 5.7	74.4 \pm 10.6

[Y. Umeda:" Time Series Classification via Topological Data Analysis", 2017]

Outline

1. Descriptors and stability

2. Vectorizations and kernels

3. Statistics

4. Discrimination power

Statistics for persistence diagrams

Statistics:

- signal vs noise discrimination
- convergence rates
- confidence indices/intervals, principal components, etc.

Statistics for persistence diagrams

3 approaches for statistics:

- Fréchet means in diagrams space
- embedding into Hilbert spaces
- push-forwards from data space

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA, clustering (k-means, EM, Mean-Shift, etc.)

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA, clustering (k-means, EM, Mean-Shift, etc.)

No coordinates ~> means as minimizers of variance (Fréchet means)

Given diagrams D_1, \dots, D_n : $\overline{D} \in \underset{D}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_i \mathrm{d}_p (D, D_i)^2$

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA, clustering (k-means, EM, Mean-Shift, etc.)

No coordinates ~> means as minimizers of variance (Fréchet means)

Given diagrams D_1, \cdots, D_n :

$$\bar{D} \in \underset{D}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i} \mathrm{d}_{p}(D, D_{i})^{2}$$

Problem: non-convex energy, highly curved space

 $\Rightarrow \arg \min$ not unique, local minima, numerical issues

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA, clustering (k-means, EM, Mean-Shift, etc.)

No coordinates \rightsquigarrow means as minimizers of variance (Fréchet means)

Given diagrams D_1, \cdots, D_n :

$$\bar{D} \in \underset{D}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i} \mathrm{d}_{p}(D, D_{i})^{2}$$

barcode distance is a transportation type distance ↔ connection to Optimal Transport

Problem: non-convex energy, highly curved space

 $\Rightarrow \arg \min$ not unique, local minima, numerical issues

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA, clustering (k-means, EM, Mean-Shift, etc.)

New approach: recast problem in measure space

$$B \mapsto \mu_B$$

$$B \mapsto \mu_B$$

$$B \mapsto \mu_B$$

$$B \mapsto \mu_B$$

 \rightsquigarrow use relaxations from Optimal Transport (OT):

measures: $\mu_B \mapsto \mu_B * \mathcal{U}_{[0,\varepsilon]^2}$

[M. Agueh, G. Carlier: "Barycenters in the Wasserstein Space", 2011]

metric:
$$W_{2,\gamma}(\mu_{B_i},\mu_{B_j})^2 := \inf_{\nu} \int ||x-y||^2 d\nu(x,y) + \gamma H(\nu)$$

[M. Cuturi, A. Doucet: "Fast computation of Wasserstein barycenters", 2014]

strictly convex problem
⇒ unique mean
easy to compute

 $\mu_D := \sum_{x \in D} \delta_x$

birth

Rank function is defined as $\lambda(x, y) = \operatorname{rank} \iota_x^y$

Boundaries of rank function: $\lambda_i(t) = \sup\{s \ge 0 : \lambda(t - s, t + s) \ge i\}$ Landscape $\Lambda : \mathbb{R}^2 \to \mathbb{R}$ is defined as: $\Lambda(i, t) = \lambda_{\lfloor i \rfloor}(t)$

Persistence Landscape [Bubenik 2015]

Prop: [Bubenik 2015]

 $\|\Lambda(\operatorname{dgm})-\Lambda(\operatorname{dgm}')\|_\infty \leq d_\infty(\operatorname{dgm},\operatorname{dgm}')$

> Λ is Lipschitz hence Borel measurable

Thm: (central limit theorem) [Bubenik 2015] If $E(\|\Lambda(\mu)\|) < +\infty$ and $E(\|\Lambda(\mu)\|^2) < +\infty$, then $\sqrt{n} \left(\bar{\Lambda}^n - E(\Lambda(\mu))\right) \xrightarrow{d} \mathcal{N}(0, \Sigma(\Lambda(\mu))).$
2. Hilbert space embedding

Questions:

- Statistical properties of the estimator $\operatorname{dgm} \mathcal{F}(\widehat{X}_n)$?
- Convergence to the ground truth $\operatorname{dgm} \mathcal{F}(X)$? Deviation bounds?

$$\mathbb{P}\left(\mathrm{dgm}\,\mathcal{F}(\widehat{X}_n),\mathrm{dgm}\,\mathcal{F}(X),\right) > \varepsilon\right) \le \mathbb{P}\left(\mathrm{d}_{\mathrm{H}}(\widehat{X}_n,X) > \frac{\varepsilon}{2}\right)$$

Deviation inequality

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in X$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^b, 1)$.

Theorem [Chazal, Glisse, Labruère, Michel 2014-15]:
If
$$\mu$$
 is (a, b) -standard then for any $\varepsilon > 0$:
 $\mathbb{P}\left(d_{\infty}\left(\operatorname{dgm}\mathcal{F}(\widehat{X}_{n}), \operatorname{dgm}\mathcal{F}(X)\right) > \varepsilon\right) \leq \frac{8^{b}}{a\varepsilon^{b}}\exp(-na\varepsilon^{b})$

Deviation inequality / rate of convergence

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in X$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^b, 1)$.

Theorem [Chazal, Glisse, Labruère, Michel 2014-15]:
If
$$\mu$$
 is (a, b) -standard then for any $\varepsilon > 0$:
 $\mathbb{P}\left(d_{\infty}\left(\operatorname{dgm}\mathcal{F}(\widehat{X}_{n}), \operatorname{dgm}\mathcal{F}(X)\right) > \varepsilon\right) \leq \frac{8^{b}}{a\varepsilon^{b}}\exp(-na\varepsilon^{b})$
Corollary [Chazal, Glisse, Labruère, Michel 2014-15]:

$$\sup_{\mu\in\mathcal{P}}\mathbb{E}\left[d_{\infty}\left(\operatorname{dgm}\mathcal{F}(\widehat{X}_{n}), \operatorname{dgm}\mathcal{F}(X)\right)\right] \leq C\left(\frac{\log n}{n}\right)^{1/b},$$

where C depends only on a, b. Moreover, the estimator $\operatorname{dgm} \mathcal{F}(\widehat{X}_n)$ is minimax optimal (up to a $\log n$ factor) on the space \mathcal{P} of (a, b)-standard probability measures on X. 27

Numerical illustrations

- μ : unif. measure on Lissajous curve X. - \mathcal{F} : distance to X in \mathbb{R}^2 .
- sample k = 300 sets of n points for n = [2100:100:3000].
- compute

$$\widehat{\mathbb{E}}_n = \widehat{\mathbb{E}}[\mathrm{d}_{\infty}(\mathrm{dgm}\,\mathcal{F}(\widehat{X_n}), \mathrm{dgm}\,\mathcal{F}(X))].$$

- plot $\log(\widehat{\mathbb{E}}_n)$ as a function of $\log(\log(n)/n)$.

Numerical illustrations

- μ : unif. measure on a torus X. - \mathcal{F} : distance to X in \mathbb{R}^3 . - sample k = 300 sets of n points for n = [12000 : 1000 : 21000].
- compute

$$\widehat{\mathbb{E}}_n = \widehat{\mathbb{E}}[\mathrm{d}_{\infty}(\mathrm{dgm}\,\mathcal{F}(\widehat{X_n}), \mathrm{dgm}\,\mathcal{F}(X))].$$

- plot $\log(\widehat{\mathbb{E}}_n)$ as a function of $\log(\log(n)/n)$.

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n \to \mathcal{F}(\widehat{X}_n) \to \operatorname{dgm} \mathcal{F}(\widehat{X}_n)$$

Goal: given $\alpha \in (0,1)$, estimate $c_n(\alpha) \ge 0$ such that

$$\limsup_{n \to \infty} \mathbb{P}\left(\mathrm{d}_{\infty} \left(\mathrm{dgm} \,\mathcal{F}(\widehat{X}_n), \mathrm{dgm} \,\mathcal{F}(X) \right) > c_n(\alpha) \right) \leq \alpha$$

 \rightarrow confidence region: d_{∞} -ball of radius $c_n(\alpha)$ around $\operatorname{dgm} \mathcal{F}(\widehat{X}_n)$

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n \to \mathcal{F}(\widehat{X}_n) \to \operatorname{dgm} \mathcal{F}(\widehat{X}_n)$$

Goal: given $\alpha \in (0,1)$, estimate $c_n(\alpha) \ge 0$ such that

$$\limsup_{n \to \infty} \mathbb{P}\left(\mathrm{d}_{\infty} \left(\mathrm{dgm} \, \mathcal{F}(\widehat{X}_n), \mathrm{dgm} \, \mathcal{F}(X) \right) > c_n(\alpha) \right) \le \alpha$$

Note: we already have an inequality of this kind but...

$$\mathbb{P}\left(\mathrm{dgm}\,\mathcal{F}(\widehat{X}_n),\mathrm{dgm}\,\mathcal{F}(X)\right) > \varepsilon\right) \leq \frac{8^b}{0\varepsilon^b}\exp(-na\varepsilon^b)$$

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n \to \mathcal{F}(\widehat{X}_n) \to \operatorname{dgm} \mathcal{F}(\widehat{X}_n)$$

Goal: given $\alpha \in (0,1)$, estimate $c_n(\alpha) \ge 0$ such that

$$\limsup_{n \to \infty} \mathbb{P}\left(\mathrm{d}_{\infty} \left(\mathrm{dgm} \,\mathcal{F}(\widehat{X}_n), \mathrm{dgm} \,\mathcal{F}(X) \right) > c_n(\alpha) \right) \leq \alpha$$

Bootstrap: (ideally)

- draw $X^* = X_1^*, \dots, X_n^*$ iid from $\mu_{\widehat{X}_n}$ (empirical measure on \widehat{X}_n)
- compute $d^* = d_{\infty} \left(\operatorname{dgm} \mathcal{F}(X^*), \operatorname{dgm} \mathcal{F}(\widehat{X}_n) \right)$
- repeat N times to get d_1^*, \cdots, d_N^*
- let $c_n(\alpha)$ be the (1α) quantile of $\frac{1}{N} \sum_{i=1}^N I(d_i^* \ge t)$

Principle [Efron 1979]: variations of dgm $\mathcal{F}(X^*)$ around dgm $\mathcal{F}(\widehat{X}_n)$ are same as variations of dgm $\mathcal{F}(\widehat{X}_n)$ around dgm $\mathcal{F}(X)$.

Note: requires some conditions on (X, d_X, μ) and diagram space

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n \to \mathcal{F}(\widehat{X}_n) \to \operatorname{dgm} \mathcal{F}(\widehat{X}_n)$$

Goal: given $\alpha \in (0,1)$, estimate $c_n(\alpha) \ge 0$ such that

$$\limsup_{n \to \infty} \mathbb{P}\left(\mathrm{d}_{\infty} \left(\mathrm{dgm} \,\mathcal{F}(\widehat{X}_n), \mathrm{dgm} \,\mathcal{F}(X) \right) > c_n(\alpha) \right) \leq \alpha$$

Bootstrap: (in fact)

- draw $X^* = X_1^*, \cdots, X_n^*$ iid from $\mu_{\widehat{X}_n}$ (empirical measure on \widehat{X}_n)
- compute $d^* = d_{\infty} \left(\dim \mathcal{F}(X^*), \dim \mathcal{F}(\widehat{X}_n) \right) d_{\mathrm{H}}(X^*, \widehat{X}_n)$

• repeat N times to get
$$d_1^*, \cdots, d_N^*$$

• let $c_n(\alpha)$ be the $(1 - \alpha)$ quantile of $\frac{1}{N} \sum_{i=1}^N I(d_i^* \ge t)$

Theorem [Balakrishnan et al. 2013] + [Chazal et al. 2014]:

$$\limsup_{n \to \infty} \mathbb{P}\left(\mathrm{d}_{\infty} \left(\mathrm{dgm} \, \mathcal{F}(\widehat{X}_n), \mathrm{dgm} \, \mathcal{F}(X) \right) > c_n(\alpha) \right) \leq \alpha.$$

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n^1, \cdots, \widehat{X}_n^m \to \phi_k(D_n^1), \cdots, \phi_k(D_n^m)$$

 \downarrow
empirical mean feature vector $\longrightarrow \overline{v} = \frac{1}{m} \sum_{i=1}^m \phi_k(D_n^i)$

Goal: given $\alpha \in (0,1)$, estimate $c_n(\alpha) \ge 0$ such that

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n^1, \cdots, \widehat{X}_n^m \to \Lambda(D_n^1), \cdots, \Lambda(D_n^m)$$

 \downarrow
 $\overline{\Lambda} = \frac{1}{m} \sum_{i=1}^m \Lambda(D_n^i)$

Bootstrap with landscapes:

- draw $\Lambda_1^*, \cdots, \Lambda_m^*$ iid from $\frac{1}{m} \sum_{i=1}^m \delta_{\Lambda(D_n^i)}$
- compute $\bar{\Lambda}^* = \frac{1}{m} \sum_{i=1}^m \Lambda_i^*$ and $d^* = \|\bar{\Lambda}^* \bar{\Lambda}\|_{\infty}$
- repeat N times to get d_1^*, \cdots, d_N^*
- let $c_n(\alpha)$ be the (1α) quantile of $\frac{1}{N} \sum_{i=1}^N I(d_i^* \ge t)$

```
Theorem [Chazal et al. 2014]:
\limsup_{m\to\infty} \mathbb{P}\left(\left\|\bar{\Lambda} - \Lambda_{\mu,n}\right\|_{\infty} > c_n(\alpha)\right) \leq \alpha.
```

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n^1, \cdots, \widehat{X}_n^m \to \Lambda(D_n^1), \cdots, \Lambda(D_n^m)$$

 \downarrow
 $\overline{\Lambda} = \frac{1}{m} \sum_{i=1}^m \Lambda(D_n^i)$

Bootstrap with landscapes:

- draw $\Lambda_1^*, \cdots, \Lambda_m^*$ iid from $\frac{1}{m} \sum_{i=1}^m \delta_{\Lambda(D_n^i)}$
- compute $\bar{\Lambda}^* = \frac{1}{m} \sum_{i=1}^m \Lambda_i^*$ and $d^* = \|\bar{\Lambda}^* \bar{\Lambda}\|_{\infty}$
- repeat N times to get $d_1^*, \cdots, d_N^* = |\bar{\Lambda}^*(t) \bar{\Lambda}(t)|$
- let $c_n(\alpha)$ be the (1α) quantile of $\frac{1}{N} \sum_{i=1}^N I(d_i^* \ge t)$

Theorem [Chazal et al. 2014]:
 Note: can be done for a fixed t

$$\lim_{m \to \infty} \mathbb{P} \left(\left\| \bar{\Lambda} - \Lambda_{\mu,n} \right\|_{\infty} > c_n(\alpha) \right) \le \alpha.$$

$$\bar{|\Lambda(t) - \Lambda_{\mu,n}(t)|$$

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n^1, \cdots, \widehat{X}_n^m \to \Lambda(D_n^1), \cdots, \Lambda(D_n^m)$$

 \downarrow
 $\overline{\Lambda} = \frac{1}{m} \sum_{i=1}^m \Lambda(D_n^i)$

Bootstrap with landscapes:

- draw $\Lambda_1^*, \cdots, \Lambda_m^*$ iid from $\frac{1}{m} \sum_{i=1}^m \delta_{\Lambda(D_n^i)}$
- compute $\bar{\Lambda}^* = \frac{1}{m} \sum_{i=1}^m \Lambda_i^*$ and $d^* = \|\bar{\Lambda}^* \bar{\Lambda}\|_{\infty}$
- repeat N times to get d_1^*, \cdots, d_N^*
- let $c_n(\alpha)$ be the (1α) quantile of $\frac{1}{N} \sum_{i=1}^N I(d_i^* \ge t)$

Theorem [Chazal et al. 2015]:
$$\|\bar{\Lambda} - \Lambda(\operatorname{dgm} \mathcal{F}(X))\|_{\infty} \leq \|\bar{\Lambda} - \Lambda_{\mu,n}\|_{\infty} + \|\Lambda_{\mu,n} - \Lambda(\operatorname{dgm} \mathcal{F}(X))\|_{\infty}$$
variance term
bias term $\leq C \left(\frac{\log n}{an}\right)^{1/b}$ when μ is (a, b) -standard

Some applications

Application 1: 3D shapes classification

From m = 100 subsamples of size n = 300

Some applications

Application 2: walking behaviors classification from smartphone accelerometer data

spatial time series (accelerometer data from the smarphone of users).
 no registration/calibration preprocessing step needed to compare!

Outline

1. Descriptors and stability

2. Vectorizations and kernels

3. Statistics

4. Discrimination power

• Unions of balls — Vietoris-Rips filtrations

simplicial filtration

• Unions of balls — Vietoris-Rips filtrations

 $\{x_0, \cdots, x_r\} \in R_t(X, \mathrm{d}_X) \quad \Longleftrightarrow \quad t \ge \max_{i,j} \mathrm{d}_X(x_i, x_j)$

• Unions of balls — Vietoris-Rips filtrations

 $\operatorname{dgm} \mathcal{R}(P, \ell_2) = \{(0, +\infty)\} \sqcup \{(0, 1)\} \sqcup \{(0, 1)\}$

 \Rightarrow diagrams for different values of α are indistinguishable

• Unions of balls — Vietoris-Rips filtrations

```
Prop: [Folklore]
For any metric tree (X, d_X):
\operatorname{dgm} \mathcal{R}(X, d_X) = \{(0, +\infty)\}\Rightarrow \text{ no information on the metric}
```


- Unions of balls Vietoris-Rips filtrations
- Reeb graphs

 \Rightarrow Reeb graphs are indistinguishable from their diagrams

- Unions of balls Vietoris-Rips filtrations
- Reeb graphs
- Real-valued functions

Prop: [Folklore] Given $f:X \to \mathbb{R}$ and $h:Y \to X$ homeomorphism, $\deg f \circ h = \deg f$

\Rightarrow Persistence is invariant under reparametrizations

- Unions of balls Vietoris-Rips filtrations
- Reeb graphs
- Real-valued functions

possible solutions:

- richer topological invariants (e.g. persistent homotopy)
- use several filter functions (concatenation vs multipersistence)

- Unions of balls Vietoris-Rips filtrations
- Reeb graphs
- Real-valued functions

possible solutions:

- richer topological invariants (e.g. persistent homotopy)
- use several filter functions (concatenation vs multipersistence)

Persistent Homology Transform (PHT)

Persistent Homology Transform (PHT)

Persistent Homology Transform (PHT)

PHT for intrinsic metrics

Given (X, d_X) compact length space, take $\mathcal{F} = \{d_X(\cdot, x)\}_{x \in X}$

PHT for intrinsic metrics

Given (X, d_X) compact length space, take $\mathcal{F} = \{d_X(\cdot, x)\}_{x \in X}$

Thm: [O., Solomon 2017]

There is a Gromov-Hausdorff dense subset of the compact length spaces on which the intrinsic PHT is injective.

Generative model:

Generative model:

Thm: [O., Solomon 2017] Under this model, there is a full-measure subset of the metric graphs on which the intrinsic PHT is injective.

Generative model:

Thm: [O., Solomon 2017]

Under this model, there is a full-measure subset of the metric graphs on which the intrinsic PHT is injective.

Aim: PHT as a sufficient statistic for metric graphs \Rightarrow parametric inference

Persistence diagrams as descriptors for data

Pros:

- strong invariance and stability: $d_{\infty}(\operatorname{dgm} X, \operatorname{dgm} Y) \leq \operatorname{cst} d_{\operatorname{GH}}(X, Y)$
- information of a different nature
- flexible and versatile

Pros:

- quasi-isometric maps to Hilbert space
- kernel trick
- provable discriminativity on certain classes of spaces
- (statistics via push-forwards/pull-backs) 36