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Topological Descriptors
for Geometric Data

Steve Oudot

Resources:

e http://geometrica.saclay.inria.fr/team/Steve.0Oudot/courses/TUM/

e H. Edelsbrunner and J. Harer. Computational topology: an introduction.
American Mathematical Society, 2010.

e S5.0. Persistence Theory: from Quiver Representations to Data Analysis. AMS
Mathematical Surveys and Monographs (209), 2015.



Geometric Data

Input: point cloud equipped with a metric or (dis-)similarity measure

data point = image/patch, geometric shape, protein conformation, patient, Linkedln user...
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Geometric Data

Input: point cloud equipped with a metric or (dis-)similarity measure

data point = image/patch, geometric shape, protein conformation, patient, LinkedIn user
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Context: the data deluge

Data are becoming more and more massive and complex:

e academia
e industry

e general public
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Need scalable and robust methods
to analyze and classify these data

e general public
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Challenges
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Challenges

(source: [Carlsson, Ishkhanov, de Silva,
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"“f 4 million data points in R”

(source: [Lee, Pederson, Mumford 2003])

Motivation: study cognitive representation
of space of images

Topology
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Challenges

4 million data points in R

(source: [Lee, Pederson, Mumford 2003])

Motivation: study cognitive representation
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Topological Data Analysis ( T DA

topological invariants for classification
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Algebraic topology in the 20th century

Algebraic topology in the 21st century
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Topological Data Analysis ( T DA

Properties of topological descriptors:

e invariant under coordinate changes

Mﬂ e stable with respect to perturbations

e informative

Algebraic topology in the 21st century
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The TDA community (as of 2002)

Stanford (G. Carlsson - N qa ﬁ_h‘
) 2 " Duke (H. Edelsbrunner)
R U .‘_“.'?5}3..._-,%_1' |

e 2 research groups (5-10 researchers)



The TDA community (as of 2016)

Edinburgh
IMA, TTI, OSU, U. Conn  \;p; TUK/I 90, ® Jagiellonian U.
o °° o Rut ’ e e ®IST Austria (H. Edelsbrunner)
Stanford (G. Carlsson. etc.) ©® o ULgers (L
‘. ° e ® U. Penn ETH, U..Bologna 2
Pomona Duke (H. Edelsbrunner, etc.) ® Technion Tohoku U.
® CIMAT
AYASDI .
Discover what you don't know. X o
=t o,

®uU. Q.

e 50-100 researchers working on theoretical foundations
e 200-300 researchers at the interface with applications

e very successful applications and company (Ayasdi)



Some applications

e analysis of random, modular and non-modular scale-free networks and
networks with exponential connectivity distribution,

e analysis of social and spatial networks like neurons, genes, online
messages, air passengers, [witter, face-to-face contact, etc.,

e coverage and hole detection in wireless sensor fields,

e multiple hypothesis tracking on urban vehicular data,

e analysis of the statistics of high-contrast image patches,
® Image segmentation,

e 1d signal denoising,

e 3d shape classification/segmentation /matching,

e clustering of protein conformations,

e measurement of protein compressibility,
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Some applications

e analysis of random, modular and non-modular scale-free networks and networks with exponential connectivity distribution,
® analysis of social and spatial networks like neurons, genes, online messages, air passengers, Twitter, face-to-face contact, etc.,
® coverage and hole detection in wireless sensor fields,

e multiple hypothesis tracking on urban vehicular data,

® analysis of the statistics of high-contrast image patches,

® image segmentation,

e 1d signal denoising,

e 3d shape classification/segmentation/matching,

e clustering of protein conformations,

® measurement of protein compressibility,

e® identification of breast cancer subtypes,

e® analysis of activity patterns in the primary visual cortex,

e identification of hidden networks in the U.S. house of representatives,

® analysis of 2d cortical thickness data,

® time series analysis,

e refinement of the classification of NBA players,

e® discrimination of electroencephalogram signals recorded before and during epileptic seizures,
e statistical analysis of orthodontic data,

® measurement of structural changes during lipid vesicle fusion,

® characterization of the frequency and scale of lateral gene transfer in pathogenic bacteria,

® pattern detection in gene expression data,

e® study of the cosmic web and its filamentary structure,



The TDA pipeline in a nutshell
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