
Learning Smooth Objects by Probing

Jean-Daniel Boissonnat
INRIA

2004, route des lucioles
06902 Sophia-Antipolis

boissonn@sophia.inria.fr

Leonidas J. Guibas
Dept. Computer Science

Stanford University
Stanford, CA 94305

guibas@cs.stanford.edu

Steve Oudot
INRIA

2004, route des lucioles
06902 Sophia-Antipolis

soudot@sophia.inria.fr

ABSTRACT
We consider the problem of discovering a smooth unknown
surface S bounding an objectO in R

3. The discovery process
consists of moving a point probing device in the free space
around O so that it repeatedly comes in contact with S.
We propose a probing strategy for generating a sequence
of surface samples on S from which a triangulated surface
can be generated which approximates S within any desired
accuracy. We bound the number of probes and the number
of elementary moves of the probing device. Our solution
is an extension of previous work on Delaunay refinement
techniques for surface meshing. The approximating surface
we generate enjoys the many nice properties of the meshes
obtained by those techniques, e.g. exact topological type,
normal approximation, etc.

Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Curve, surface, solid, and object representations

General Terms: Algorithms, Theory

Keywords: Manifold learning, blind surface approxima-
tion, interactive surface reconstruction, surface meshing, De-
launay refinement

1. INTRODUCTION
A great deal of work in computational geometry and re-

lated communities has focussed on the problem of surface
reconstruction from scattered data points sampled on the
surface. The computational geometry community was the
first to describe local sampling conditions under which the
geometry of the underlying surface can provably be approx-
imated well and its topology fully recovered [2, 3]. These
sampling conditions, however, may require prior informa-
tion about the surface that is not readily available or may
be verified and tested only after the fact (that is, after all the
samples have been taken), if at all. As a result undesirable
oversampling or undersampling may occur — in the former
case sampling effort is wasted; in the latter provable recon-
struction is impossible. In practice, the difficulty of testing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’05, June 6–8, 2005, Pisa, Italy.
Copyright 2005 ACM 1-58113-991-8/05/0006 ...$5.00.

these conditions means that the reconstruction algorithm is
applied without concern for theoretical guarantees.
A different and much less explored approach is to use the

sampling conditions to guide the sampling process as the
samples are being generated. Certain physical acquisition
processes can allow this type of fine control over the sam-
pling process. In this paper we consider the problem of dis-
covering the shape of an unknown object O of R

3 through
an adaptive process of probing its surface from the exterior.
A probe is issued along a ray whose origin lies outside O
and returns the first point of O hit by the ray. Successive
probes may require the probing device to be moved through
the free space outside O. The goal is to find a strategy for
the sequence of probes that guarantees a precise approxi-
mation of O after a minimal number of probes. Note that
this problem involves an interesting bootstrapping issue, as
the underlying surface is only known to the probing algo-
rithm through the samples already taken. Thus, differently
from most existing work in surface reconstruction, the data
are not given all at once prior to the reconstruction phase
but must instead be computed iteratively, each new probe
depending on the outcomes of the previous probes. Further-
more, collision avoidance between the probing device and O
must be observed at all times.
Given a surface of known positive reach (with a positive

lower bound on its local feature size), the probing strategy
proposed in this paper is inspired from Chew’s algorithm [8]
for Delaunay-based mesh refinement. Delaunay balls bound-
ing surface facets are refined if they are too big. This refine-
ment process is accomplished by moving our point probing
device among current or prior edges of the dual Voronoi dia-
gram known to lie in free space, before issuing a probe along
the Voronoi edge dual to the facet to be refined. Our main
contribution in this paper is the new probing algorithm pro-
posed, the data structures used to find collision-free paths
for the probing device, and the analysis of the total cost
of this sampling procedure, including the number of probes
made, the displacement cost for moving the device, and the
combinatorial complexity of the construction. Our approach
suggests numerous open problems that deserve further inves-
tigation.

1.1 Previous work
The above problem belongs to the class of geometric prob-

ing problems, pioneered by Cole and Yap [9]. Geometric
probing, also known as blind approximation or interactive
reconstruction, is motivated by applications in robotics. In
this context, our probe model described above is called a tac-
tile or finger probe. Geometric probing finds applications in

198

other areas and gave rise to several variants. In particular,
other probe models have been studied in the literature, e.g.
line probes (a line moving perpendicular to a direction), X-
ray probes (measuring the length of intersection between a
line and the object), as well as their counterparts in higher
dimensions.
We classify the probing algorithms into two main cate-

gories, exact or approximate, depending on whether they
return the exact shape of the probed object or an approx-
imation. An exact probing algorithm can only be applied
to shapes that can be described by a finite number of pa-
rameters like polygons and polyhedra. In fact, most of the
work on exact geometric probing is for convex polygons and
polyhedra. See [18] for a survey of the computational lit-
erature on the subject. Although it has been shown that,
using enhanced finger probes, a large class of non convex
polyhedra can be exactly determined [1, 6], exact probing is
too restrictive for most practical applications.
Approximate probing algorithms overcome this deficiency

by considering the accuracy of the desired reconstruction as
a parameter. The goal is to find a strategy that can discover
a guaranteed approximation of the object using a minimal
number of probes. The general problem is ill-posed, since
we cannot conclude anything about the shape of the object
if we have only local information about the shape. Some
global information or prior knowledge is required to restrict
the class of shapes being approximated. An important class
is the class of convex shapes. Probing strategies have been
proposed for planar convex objects using line probes [14, 16]
and some other probe models are analyzed by Rote [17]. Ob-
serve that approximating a convex object using hyperplane
probes is nothing else than approximating its supporting
function.
As far as we know, probing non convex (non polyhedral)

objects has not been studied. The problem has some simi-
larity with surface approximation. In particular, the march-
ing cube algorithm [15] and our recent Delaunay refinement
surface mesh generator [5] provide blind approximations of
a surface since the surface needs to be known only through
an oracle that typically decides whether a line segment in-
tersects the surface or not. However, the probing problem
differs from surface approximation in an essential way: we
cannot place the probing device at will anywhere but need
to plan the motion of the probing device to its next prob-
ing location. Differently from the convex case, we cannot
simply probe from infinity and need to determine finite po-
sitions outside the object where to place the probing device.
Moreover, in order to reach such positions, we need to de-
termine paths along which the probing device can be safely
moved without colliding with the object.

1.2 Statement of the problem
Let O be a bounded open set of R

3 and S its boundary.
The goal is to approximate S by a probing tool that can
locate points on S. The following assumption allows us to
localize O within R

3, preventing indefinite searches.

A1 For every connected component Oi of O, we know a
point oi that belongs to Oi.

Assumption A2 bounds the area of interest and allows us
to obtain initial locations and paths for the probing device
without bumping into O.

A2 We know a convex and compact subset Ω of R
3 that

contains S (and hence also O). We denote by ∂Ω the bound-
ary of Ω.

We have at our disposal a probing device, which is an
oracle that, once placed at some point p of R

3 \ O, can be
oriented towards any direction d and then tasked to return
the first point of transverse intersection between S and the
ray defined by (p, d). The probing device can move freely
in R

3 \ O but cannot penetrate O. Such a device can be
constructed in practice, using for instance a laser with three
DOFs of displacement and two DOFs of rotation, that can
cast a ray in any direction and measure its distance to the
point where the ray hits the object.
We assume that the probing device provides exact infor-

mation. The outcome of a probe is a point on the boundary
of the object.
We need also to define the accuracy measure for our recon-

struction. The accuracy will be measured by the Hausdorff
distance. Since the measured points are on the boundary S
of the object, the accuracy of the reconstruction will be ε
iff any point of S is at distance at most ε from a measured
point. In other words, the set E of measured points is a
ε-sample of S.
As mentioned above, to be able to make any reconstruc-

tion claims, we need to restrict the class of shapes we probe.
We consider here those with positive reach. The reach of a
surface S, denoted by rch(S), is the infimum over S of the
distance of a point of S to the medial axis of S. The reach
has been previously used in many contexts and has received
various names: reach [12], normal injectivity radius [7], min-
imum local feature size [3], etc. Having a positive reach is
ensured if S is C1,1, i.e. S is C1 and its normal vector field
is Lipschitz [12].

A3 We know a positive constant εS ≤ rch(S).

Finally, we need a model of computation to analyze the
complexity of our algorithm. Following the perception-action-
cognition paradigm, we distinguish between the information
or probing cost, the displacement cost, and the combinato-
rial cost. This distinction is also reminiscent of the difference
made between combinatorial and informational complexity
in the work on information-based computation [19, 20]. The
probing cost measures the number of probes and indicates
the amount of information that becomes available to our al-
gorithm. The displacement cost accounts for the motion of
the probing device. The combinatorial cost measures the
arithmetic operations and comparisons required, as well as
the maintenance cost of the data structures. It is not possi-
ble in general to optimize all costs simultaneously.

1.3 Overview of the paper
Under assumptions A1-A3, we show in this paper that S

can be approximated by a triangulated surface Ŝ within any
desired accuracy. Moreover, Ŝ recovers the exact topology
of S and the error on the normal deviation of the facets of
Ŝ is also bounded.
The paper is organized as follows. Since our solution is

an extension of previous work on Delaunay refinement for
surface meshing [5, 8], we recall Chew’s algorithm and its
main properties in Section 2. In Section 3 we describe the
probing algorithm, present its main properties in Section 4,

199

and analyze its complexity in Section 5. In these sections,
the surface S is assumed to be connected, for simplicity. The
case of a surface with more than one connected component
will be analyzed in the journal version of the paper.

2. CHEW’S ALGORITHM
Chew’s surface mesh generator is a greedy incremental

algorithm that inserts sample points on S and maintains
the Delaunay triangulation of the sample E restricted to S,
defined below.

Data structure. Given a point set E ⊂ S, the Delaunay
triangulation of E restricted to S, Del|S(E), is the subset of
the 3-dimensional Delaunay triangulation Del(E) of E made
of the facets whose dual Voronoi edges intersect S. Every
point of intersection of a Voronoi edge with S is the center
of a ball of Del|S(E), i.e. a Delaunay ball centered on S. In
practice, only a subset of Del|S(E) can be computed, since S
is known through an oracle ω that is not assumed to detect
all the intersection points of S with the edges of the Voronoi
diagram of E. The subset of Del|S(E) that ω detects is noted
Delω|S(E) and stored as a subcomplex of Del(E). Each time
a point is added to E, only the part of the Voronoi diagram
that has changed after the insertion of the point has to be
queried by the oracle ω.

Algorithm. Chew’s algorithm takes as input the surface
S, a positive value ε, as well as an optional initial point sam-
ple E. If no initial point sample is given, then the algorithm
constructs one in the same way as our probing algorithm –
see Section 3.1. Delω|S(E) is then computed querying every
edge of the Voronoi diagram of E using oracle ω.
At each iteration, the algorithm inserts a new point into

E and updates Delω|S(E). Each point inserted into E is the
center of a bad ball of Delω|S(E), that is, a ball of Del|S(E)
whose center c has been detected by ω and whose radius
is greater than ε. The algorithm stops when there are no
more bad balls of Delω|S(E), which will eventually happen
if ε is positive since S is compact. Upon termination, the
algorithm returns E as well as Ŝ = Delω|S(E).

Guarantees on the output. In [5], we proved that Chew’s

algorithm returns a triangulated complex Ŝ that is a good
approximation of S provided that the following conditions
are satisfied:

H1 Ŝ is a manifold without boundary;

H2 Ŝ has vertices on all the connected components of S;

H3 Every facet f of Ŝ is circumscribed by a ball of Del|S(E),
of center c ∈ S and of radius at most ε for ε < 0.091 rch(S).

Theorem 2.1. Under H1-H3, we have:

– Ŝ is ambient isotopic to S;
– the Hausdorff distance between Ŝ and S is at most

4.5
diam(S)
rch(S)2

ε2 = O
(

ε2
)

;

– Ŝ approximates S, in terms of normals and area, within
an error of O(ε);

– S is covered by the balls of Del|S(E) that circumscribe

facets of Ŝ;
– E is a 2ε-sample of S: ∀x ∈ S, |E ∩B(x, 2ε)| ≥ 1.

Moreover, it is proved in [5] that E is sparse: an r-sample
E′ is sparse if there is a constant κ that does not depend on
S nor on r, such that ∀x ∈ S, |E′ ∩B(x, r)| ≤ κ. Thus,

Theorem 2.2. [Theorem 5.4 of [5]]

|E| = O
(∫∫

S
dx
ε2

)

= O
(

Area(S)

ε2

)

, where the constant in

the O does not depend on S nor on ε.

In order to construct a PL approximation of S within a
Hausdorff error of δ > 0, it suffices to take:

ε = rch(S)

√

δ

4.5 diam(S)

The size of the output point set is then O
(

ε−2
)

= O
(

δ−1
)

,
which is optimal in the convex case [13]. Notice that the
constraint on ε given by H3 yields a constraint on δ: δ <
0.04 diam(S). In practice, rch(S) can be approximated by
εS , and diam(S) by the diameter of Ω.

3. THE PROBING ALGORITHM
For the sake of clarity, we assume that S is connected. We

defer the treatment of several connected components to the
full version of the paper. According to A1, we know a point
o ∈ O.
If we except the moves of the probing device, our algo-

rithm is very similar to Chew’s algorithm. The main differ-
ence concerns the oracle that is used to discover the surface
S. In our case, to check whether a Voronoi edge e intersects
S or not, we must first move our probing device to one of its
endpoints. This requires two things: first, that at least one
endpoint v of e be located in R

3 \ O; second, that we know
a free path from R

3 \Ω (where the probing device can move
freely) to v, i.e. a continuous curve included in R

3 \ O that
goes from R

3 \ Ω to v.

Definition 3.1. Given a point set E, the Voronoi graph
of E, VG(E), is the graph made of the vertices and edges of
the Voronoi diagram of E.

Our basic intuition is to constrain the probing device to
move along the edges of VG(E) \ O, which are called the
free edges1. A difficulty arises from the fact that, when a
new point p is inserted in E, some of the current Voronoi
vertices and edges may disappear. It follows that portions of
VG(E)\O that could be reached by the probing device from
R

3 \ Ω before the insertion of p may no longer be reachable
afterwards — see Figure 1 for an illustration.
To overcome this difficulty, once a free path π(v) from

R
3\Ω to some Voronoi vertex v has been found, we store π(v)

in memory so that v will remain reachable by the probing
device permanently. Hence our paths are made of two types
of edges: edges that belong to the current Voronoi graph,
and edges that do not but were edges in some former Voronoi
diagram.
By moving the probing device along our free paths, and by

probing from each visited Voronoi vertex towards its neigh-
bor vertices in Vor(E), we can detect a subset I of the points
of VG(E)∩S and construct a subcomplex of Del|S(E) called
the visible restricted Delaunay triangulation of E, or simply
Delv|S(E). Every point of I is the center of a Delaunay

1More generally, any object (point, segment, curve etc.)
that lies outside O is said to be free.

200

Figure 1: The insertion of the red point splits

VG(E) \ O into two connected components, one of

which is then no longer reachable from R
3 \ Ω. Old

Voronoi edges are dashed.

ball, called ball of Delv|S(E), that circumscribes a facet of
Delv|S(E).

3.1 Data structure
We proceed as in Chew’s algorithm, by storing Delv|S(E) as

a subcomplex of Del(E). Inside every Delaunay tetrahedron,
we mark each of the four facets as being or not being part of
Delv|S(E). This way, every Delaunay facet is marked twice
since it belongs to two Delaunay tetrahedra.
In order to store the paths for the probing device, every

Voronoi vertex2 v is given a pointer prev to the previous
vertex on a path from R

3 \Ω to v. By convention, v.prev =
NULL means that we know no free path from R

3\Ω to v. In
such a case, v is said to be inactive. Otherwise, v is called
active.
If a newly created Voronoi vertex v belongs to R

3\Ω, then
we set v.prev ← v since v can be reached by the probing
device. In particular, an infinite Voronoi vertex (i.e. the
endpoint at infinity of an unbounded Voronoi edge) always
lies outside Ω, which is compact. Thus, the prev field of an
infinite vertex is never NULL. If v belongs to Ω, then we
initialize v.prev← NULL.
To construct and then update Delv|S(E), we use a rou-

tine named detect access, introduced in Figure 2. Start-
ing from an active vertex vstart, detect access performs a
depth-first traversal of VG(E) \ O to see which previously
inactive vertices can be reached by the probing device from
vstart through free edges of the Voronoi graph.

Initial construction. Given an initial point set E of S,
we compute Delv|S(E) by moving the probing device succes-
sively to all the vertices of VG(E) that lie outside Ω (includ-

2In practice, it is its dual Delaunay tetrahedron that we
consider. However, for simplicity, we will identify Delaunay
tetrahedra with Voronoi vertices in the sequel.

detect access (vstart):
// Precondition: vstart is active
foreach neighbor v of vstart do

probe edge [vstart, v];
if ([vstart, v] ∩ S 6= ∅) then

add the dual of [vstart, v] to Delv|S(E);
else if (v.prev = NULL) then

// v becomes active
if (v ∈ Ω) then

v.prev← vstart;
end if

move the probing device from vstart to v;
detect access (v);
move the probing device from v to vstart;

end if

end foreach

Figure 2: Routine detect access

ing the infinite vertices3). For every such vertex v, we set
v.prev← v and then we call detect access on v.
After the initialization phase, every Voronoi vertex that

can be reached from R
3\Ω by walking along edges of VG(E)\

O is active. Moreover, every active vertex is given a free path
to R

3 \ Ω.

Update. Each time a new point p is to be inserted in
E, we update Delv|S(E) as follows:
• before the insertion, we look at the active vertices of
Vor(E) that no longer exist in Vor(E ∪ {p}). By defini-
tion, they lie in V(p), the cell of p in Vor(E ∪{p}). We keep
these vertices in memory and we leave their prev pointers
unchanged. This way, every active vertex will remain active
in the sequel and will keep its path to R

3 \ Ω.
• after the insertion, we look at the new vertices of the
Voronoi diagram (including the infinite ones), which by def-
inition are the vertices of V(p). For any such vertex v, we
need to determine whether v can be reached from R

3 \ Ω
through edges of VG(E) \ O:

– either v ∈ R
3 \ Ω, in which case we set v.prev← v,

we move the probing device to v and we call de-

tect access on v.
– or v ∈ Ω, in which case we look at the only neighbor
v′ of v that is not a vertex of V(p). If v′ is active and
if edge [v, v′] is free (which we can easily determine
since [v, v′] is included in a former Voronoi edge that
has been probed from v′), then we move the probing
device to v′ and we call detect access on v′.

3.2 The algorithm
The algorithm takes as input a user-defined value ε such

that 0 < ε < 0.091 εS , which by A3 is less than 0.091 rch(S).
As explained in Section 2, ε can be chosen with respect to
a certain threshold δ < 0.04 diam(S), such that the output
of the algorithm will be a PL approximation of S within a
Hausdorff error of δ.

3Processing the infinite vertices in the same manner as the
other ones simplifies the presentation but is not quite satis-
factory since it involves moving the probing device to infin-
ity. However, this can be avoided easily by clipping VG(E)
by ∂Ω and calling detect access on all the intersection
points of ∂Ω ∩VG(E).

201

The algorithm starts by computing an initial point set E
made of three points of S. To do so, it places the probing
device at a point p of ∂Ω and probes from p towards point
o. Since o ∈ O and p ∈ R

3 \ O, the probing device finds
a point a ∈ S, such that the segment [p, a] is free. The
algorithm then chooses two other directions, very close to
direction [p, a), so that the probing device will find two other
points of S, namely b and c, such that triangle (a, b, c) is
circumscribed by a sphere centered on S of radius at most
ε/3. The algorithm sets E = {a, b, c} and builds Delv|S(E)
as described in Section 3.1. By construction, (a, b, c) is a
facet of Delv|S(E). Moreover, as shown in [5] (Lemma 7.1),

(a, b, c) will remain in Del|S(E) throughout the process4.
For this reason, we call it a persistent facet. The bad balls of
Delv|S(E), i.e. the balls of Delv|S(E) whose radii are greater
than ε, are stored in a priority queue Q where they are
sorted by decreasing radius.
After the construction of the initial point set, the algo-

rithm works as Chew’s algorithm, using the probing de-
vice to answer the oracle. Specifically, the data structure
is Delv|S(E), and the bad balls of Delv|S(E) are stored in Q.
While Q is not empty, the algorithm retrieves from Q the
bad ball B(c, r) of largest radius and inserts its center c in
E. The algorithm then updates Delv|S(E) as described in
Section 3.1, and updates Q as follows:

– the former bad balls that disappear because of the
insertion of c are removed from Q;

– the new bad balls that are created by the insertion of
c are inserted in Q.

The algorithm stops when Q is empty, that is, when no
ball of Delv|S(E) is bad. The algorithm then returns E and
Delv|S(E).

4. CORRECTNESS OF THE ALGORITHM
AND QUALITY OF THE APPROXIMA-
TION

In this section, we analyze the probing algorithm. We
prove that it terminates in Section 4.1. In Section 4.2, we
exhibit two invariants that are instrumental in proving the
geometric properties of the output surface in Section 4.3.
The analysis of the complexity of the algorithm is deferred
to Section 5.

4.1 Termination
After the initialization phase, every point that is inserted

in E belongs to S and is the center of a Delaunay ball of
radius greater than ε. It follows that the points inserted
in E are at distance at least ε from one another. Since ε
is positive and S is compact, only finitely many points are
inserted in E.

4.2 Invariants of the algorithm

Proposition 4.1. The following assertions hold through-
out the course of the algorithm:
P1 All active Voronoi vertices can be reached from R

3 \
Ω by moving the probing device along current or former
Voronoi edges.

4Notice however that (a, b, c) is not guaranteed to remain in
Delv|S(E).

P2 Any two Voronoi vertices that lie in the same con-
nected component of VG(E)\O have the same status, active
or inactive.

Proof. We proceed by induction. Clearly, (P1) and (P2)
are verified after the initialization phase. Let us now con-
sider a step of the algorithm during which a new point (say
p) is inserted in E and Delv|S(E) is updated. Our induction
hypothesis is the following:

IH Assertions (P1) and (P2) hold in set E before the
insertion of p.

We will prove successively that (P1) and (P2) are still ver-
ified after the insertion of p. In the sequel, E denotes the
point sample before the insertion of p.

(P1) Let v be a vertex that is active after the insertion
of p.
P1.1 If v existed and was already active before the inser-
tion of p, then its path π(v) to R

3 \ Ω remains unchanged
since all the vertices of π(v) are kept in memory and de-

tect access does not change the status of active vertices. It
follows that v is reachable by the probing device from R

3 \Ω
after the insertion of p, since it was so before by (IH).
P1.2 If v did not exist or was not active before the in-
sertion of p, then v is visited by detect access during the
update of Delv|S(E). Since we run detect access only on

new vertices lying in R
3 \Ω and on former active vertices, v

is given a free path either to a new vertex lying in R
3 \ Ω,

or to a former active vertex which, as explained in P1.1, re-
mains reachable by the probing device after the insertion of
p. In both cases, v is reachable by the probing device from
R

3 \ Ω.

(P2) Let us prove that the vertices v and w of any free
edge e of VG(E∪{p}) have the same status after the update
of Delv|S(E). It will then follow, by transitivity, that (P2)
still holds after the insertion of p.
P2.1 If a vertex of e (say v) is visited by detect access

during the update of Delv|S(E), then it becomes active if not
so before, and detect access visits also w if the latter is not
active. Thus, v and w are both active afterwards.
P2.2 If neither v nor w is visited by detect access, then
they keep their status during the update of Delv|S(E). Hence,
it suffices to prove that they have the same status right be-
fore the update of Delv|S(E). If neither v nor w is a vertex
of V(p), then they are both old Voronoi vertices, and e is an
old edge, which implies that v and w have the same status,
by (IH). If one of them belongs to V(p), then none can be ac-
tive, since otherwise the algorithm would run detect access

on the one(s) that is(are) active, hereby contradicting the
hypothesis of P2.2.

4.3 Geometric properties of the output
As explained in Section 2, in order to guarantee that the

algorithm constructs a good approximation of S, it suffices
to prove that Delv|S(E) verifies assertions (H1), (H2) and
(H3) upon termination of the algorithm. Now let E denote
the output point sample.

Proof of H2. Since we assumed that S is connected,
it suffices to check that Delv|S(E) is not empty when the algo-
rithm halts. Recall that the algorithm constructs an initial

202

point sample with a persistent facet (a, b, c) cicumscribed
by a Delaunay ball B centered on S of radius at most ε/3.
As shown in [5] (Lemma 7.1), (a, b, c) remains a facet of
Del|S(E) throughout the course of the algorithm. It follows
that VG(E) ∩ S is not empty upon termination of the al-
gorithm. Since VG(E) is connected, at least one point p
of VG(E) ∩ S belongs to the same connected component of
VG(E) \ O as some infinite Voronoi vertex. By (P2), p can
be “seen” from an active Voronoi vertex. Hence, Delv|S(E)
is not empty, which proves (H2).

Proof of H3. By definition, every facet of Delv|S(E)
is circumscribed by a ball of Delv|S(E). Since the algorithm
eliminates the balls of Delv|S(E) that have radii greater than
ε, all the balls of Delv|S(E) have radii at most ε < 0.091 εS
upon termination. By A3, ε is less than 0.091 rch(S).

As established in Section 3 of [5], assertion (H3) alone
induces a few local properties, such as:

L1 [Lemma 3.4 of [5]] Two facets of Delv|S(E) that share
an edge form a dihedral angle greater than π

2
.

L2 [Lemma 3.6 of [5]] An edge of Vor(E) cannot inter-
sect S in more than one point x such that dist(x,E) <
0.091 rch(S). Hence, every edge of Vor(E) contains at most
one center of ball of Delv|S(E).

L3 [Proposition 3.10 of [5]] The balls of Delv|S(E) inter-
sect S along pseudo-disks, i.e. topological disks that pairwise
intersect along topological disks and whose boundaries pair-
wise intersect in at most two points.

To prove (H1), we need yet another result, which is a
direct consequence of assertion (P2):

L4 Let ζ be a connected component of VG(E)\O. Either
all the points of ∂ζ ∩ S are centers of balls of Delv|S(E), or
none of them is.

Proof. Let p and q be two points of ∂ζ∩S. By definition,
p and q are centers of balls of Del|S(E). If ζ contains no
(finite or infinite) Voronoi vertex, then it is made of one
piece of a Voronoi edge only. Therefore, p and q cannot be
detected by the probing device, and none of them can be
the center of a ball of Delv|S(E). If ζ contains some Voronoi
vertices, then, by (P2), all the Voronoi vertices in ζ have the
same status, active or inactive. In the first case, p and q are
both centers of balls of Delv|S(E). In the second case, none
of them is, which ends the proof of (L4).

Using L1-L4, we can now prove Assertion (H1).

Proof of H1. We first show that every edge of Delv|S(E)
is incident to exactly two facets of Delv|S(E). We then prove
that every vertex of Delv|S(E) has only one umbrella. An
umbrella of a vertex v is a set of facets of Delv|S(E) incident
to v whose adjacency graph is a cycle.
Let e be an edge of Delv|S(E). We denote by V(e) the

Voronoi facet dual to e. Notice that ∂V(e) ∩ S 6= ∅, since e
belongs to Del|S(E). It follows that any connected compo-
nent ξ of ∂V(e) \ O is a simple polygonal arc, whose end-
points lie on S and are centers of balls of Del|S(E). More-
over, ξ is included in a connected component of VG(E) \O.
Thus, by (L4), either both endpoints of ξ are centers of

balls of Delv|S(E), or none of them is. It follows that the to-
tal number of centers of balls of Delv|S(E) that lie on ∂V(e)
is even. Then, by (L2), the number of edges of ∂V(e) that
contain centers of balls of Delv|S(E) is even. Equivalently,
the number of facets of Delv|S(E) that are incident to e is
even.
In addition, two facets of Delv|S(E) incident to e form a

dihedral angle greater than π
2
, by (L1). It follows that e

cannot be incident to more than three facets of Delv|S(E).
In conclusion, the number of facets of Delv|S(E) incident

to e is even, at least 1 (because e is an edge of Delv|S(E)),
and at most 3. Hence it is 2.

Since this is true for any edge of Delv|S(E), the facets of
Delv|S(E) incident to a given vertex v of Delv|S(E) form a
set of umbrellas. Using (L3), one can prove that they form
only one umbrella – see Proposition 4.2 of [5]. Basically,
if U is an umbrella, then v lies in the interior of the pro-
jection of U onto T (v), since otherwise there would be two
consecutive facets of U overlapping each other, which would
imply by (L3) that one of their vertices lies inside a surface
patch5 (which is impossible since surface patches are empty
of points of E). It follows that v belongs to the interior of
the union R of the surface patches of the facets of U , since
these patches are pseudo-disks (by L3). Then, using (L3)
again, it is not difficult to prove that any facet of Delv|S(E)
incident to v that does not belong to U has one of its vertices
in the interior of R, which contradicts the fact that surface
patches are empty of points of E.
Therefore, a vertex of Delv|S(E) can only have one um-

brella. It follows that Delv|S(E) is a 2-manifold without
boundary.

Since Delv|S(E) verifies H1-H3, it is a good approximation
of S, according to Theorem 2.1. In particular, E is a 2ε-
sample of S, and it is sparse, as mentioned in Section 2. This

implies that |E| = O
(

Area(S)

ε2

)

, by Theorem 2.2. Moreover,

if ε < 0.05 εS , then E is a 0.1-sample of S, and hence
Del|S(E) is homeomorphic to S, by Theorem 2 of [3]. As
a consequence, Delv|S(E) and Del|S(E) are equal, since they
are homeomorphic and since Delv|S(E) is a subcomplex of
Del|S(E).

5. COMPLEXITY OF THE ALGORITHM
As mentioned in the introduction, the complexity of the

algorithm has three components: the combinatorial cost that
measures the memory space and time needed to store, con-
struct and update the data structures; the probing cost that
counts the number of probes performed by the probing de-
vice; the displacement cost that measures the effort spent in
moving the probing device. Depending on the context, one
can give emphasis to one type of cost or the other.

Notice that it is not possible in general to optimize all
costs simultaneously. Take for instance a parabola C em-
bedded in R

2, as shown in Figure 3. Any Delaunay-based
algorithm that optimizes the displacements of the probing
device will somehow follow the curve C, inserting the points
of E more or less in their order along C (see Figure 3, first

5The surface patch of a facet f of Delv|S(E) is the intersection

of S with the ball of Delv|S(E) circumscribing f .

203

row). This makes the overall complexity of the incremen-
tal Delaunay triangulation quadratic. Differently, our algo-
rithm will insert the points in an order defined by the largest
empty ball criterion (see Figure 3, second row), which does
not optimize the displacement cost but makes the combina-
torial cost linear (in 2D).

2

3

4
5 6 7

8

9

10

111
1 2

4

5
6

7
8

9 11

3 10

(C)

Figure 3: Two orders of insertion on a parabola

In the sequel, we analyze the combinatorial cost, probing
cost and displacement cost separately. Since our algorithm
enforces the probing device to move along the Voronoi edges,
the size of the Voronoi diagram has a direct impact on all
three costs.

5.1 Combinatorial cost

Space complexity
The data structure stores the current Delaunay triangula-
tion as well as some of the former Voronoi vertices. Since
every vertex is stored at most once, the size of the data struc-
ture is at most the total number of Voronoi vertices created
during the course of the algorithm. We will bound this num-
ber w.r.t. the Hausdorff distance δ between Ŝ and S.
Let Einit be the initial point sample constructed by the

algorithm. We have |Einit| = 3. For every iteration i of
the algorithm, we call E(i) the point set E at the end of
iteration i. E(i) \ E(i− 1) contains precisely the point p(i)
inserted in E at iteration i, and E(i− 1) \Einit is the set of
all points inserted before iteration i. We call r(i) the radius
of the largest ball of Delv|S(E(i)). Since the algorithm always
inserts the center of the ball of Delv|S(E) of largest radius,
p(i) is at a distance r(i− 1) from E(i− 1).
Let Z be the set of all points of S with an osculating

sphere bounding an open ball that does not intersect S. To
bound the number of Voronoi vertices created, we will use
the following result, stated as Lemma 17 in [?]:

Lemma 5.1. There exist four constants ε0, C0, K1 and
K2, depending only on S, such that, for any sparse ε-sample
E of S, with ε ≤ ε0, the number of Delaunay edges incident
to a vertex p of Del(E) is at most K1 ε−1/2 if dist(p, Z) ≤
C0
√
ε and at most K2 / dist(p, Z) otherwise.

In the sequel, we take as ε0 the minimum of the above
(unknown) constant ε0 and of 0.091 rch(S). Let i0 be the
first iteration of the algorithm at the end of which all the
balls of Delv|S(E) have radii at most ε0

4
. In other words,

i0 is the first iteration such that r(i0) ≤ ε0
4
. Since ε0

4
<

0.091 rch(S), E(i0) is an
ε0
2
-sample of S, by Theorem 2.1.

Lemma 5.2. For any two iterations i and j such that j ≥
i ≥ i0, we have r(j) ≤ 2r(i).

Proof. Let B(j) be a ball of Delv|S(E(j)) of largest ra-
dius. Its center c(j) lies on S. Since i ≥ i0, we have

E(i0) ⊆ E(i). Hence, E(i) is an ε0-sample of S, and the balls
of Delv|S(E(i)) cover S, by Theorem 2.1. Thus, c(j) lies in a
ball B(c, r) of Delv|S(E(i)). We have dist(c(j), E(i)) ≤ 2r ≤
2r(i). Moreover, since i ≤ j, E(i) is included in E(j). It fol-
lows that r(j) = dist(c(j), E(j)) ≤ dist(c(j), E(i)) ≤ 2r(i),
which concludes the proof of the lemma.

Lemma 5.3. For any iteration i > i0, E(i) is a 2r(i)-
sample of S, with 2r(i) ≤ ε0, and the points of E(i) \ Einit

are farther than r(i−1)
2

from one another and from Einit.

Proof. Let i be any iteration of the algorithm such that
i > i0. According to Lemma 5.2, we have r(i) ≤ 2r(i0) ≤ ε0

2
,

thus E(i) is a 2r(i)-sample of S, with 2r(i) ≤ ε0, according
to Theorem 2.1. In addition, by definition of i0, every point
of E(i0)\Einit, when inserted in E, is the center of a Delau-
nay ball of radius greater than ε0

4
≥ r(i0), which is at least

1
2
r(i−1), by Lemma 5.2. Moreover, at any iteration k such

that i0 < k ≤ i, the point inserted in E is the center of a
Delaunay ball of radius r(k−1), which is at least 1

2
r(i−1),

by Lemma 5.2. Therefore, the points of E(i) \ Einit are at
least 1

2
r(i− 1) away from one another and from Einit.

Let i be an iteration of the algorithm, such that i ≥ i0.

Let j > i be the first iteration such that r(j) ≤ r(i)
8
. By

Lemma 5.3, E(j) is a 2r(j)-sample of S, with 2r(j) ≤ r(i)
4
.

We call E(i, j) the set of the points inserted by the algorithm
between iterations i (excluded) and j (included). We have
E(i, j)= E(j) \ E(i).

Lemma 5.4. For any k such that i < k ≤ j, E(k) is a
sparse 6r(i)-sample of S.

Proof. By Lemma 5.3, E(k) is a 2r(k)-sample of S.
Since 2r(k) ≤ 4r(i) ≤ 6r(i) (Lemma 5.2), E(k) is a 6r(i)-
sample. To prove that E(k) is sparse, we count the points
of E(k) that lie in B(x, 6r(i)), for any x ∈ S.
- Since |Einit| = 3, the number of points of Einit that lie in
B(x, 6r(i)) is at most 3.
- By Lemma 5.3, the points of E(k) \Einit are farther than
r(k−1)

2
from one another. Now, r(k−1)

2
is at least r(i)

16
, since

i < k ≤ j. It follows that the points of E(k) \ Einit are
centers of pairwise-disjoint balls of radius 1

32
r(i). For every

such ball B whose center lies in B(x, 6r(i)), B is included in
B(x, (6 + 1

32
) r(i)). It follows that the number of points of

E(k)\Einit that lie in B(x, 6r(i)) is bounded by a constant,
which shows that E(k) is sparse and hereby concludes the
proof of Lemma 5.4.

Lemma 5.5. E(i, j) is a sparse 6r(i)-sample of S.

Proof. Let u be a point of E(i + 1). By Corollary 4.13
of [5], u is a vertex of Del|S(E(i + 1)). Del|S(E(i + 1)) is
a 2-manifold without boundary, thus u has at least three
neighbors v1, v2, v3 in Del|S(E(i + 1)). Since |Einit| = 3,
at least one point among {u, v1, v2, v3} belongs to E(i +
1) \ Einit. Let us call it w. By Lemma 5.3, w is farther

than r(i)
2

from the other points of {u, v1, v2, v3}. Thus, u

is farther than r(i)
2

from one of its neighbors, say v1. Any
point x ∈ S belonging to the Voronoi face V(u) ∩ V(v1) is

farther than r(i)
4

from u. Hence, x is closer to some point u′

of E(i+1, j) than to u, since otherwise E(j) could not be a
r(i)
4
-sample of S. As a consequence, the distance from any

point y ∈ S ∩V(u) to E(i+ 1, j) is at most:

dist(y, u′) ≤ dist(y, u) + dist(u, x) + dist(x, u′)
≤ dist(y, u) + 2 dist(u, x)

204

Since E(i + 1) contains E(i), E(i + 1) is a 2r(i)-sample
of S. Thus, dist(y, u) ≤ 2r(i) and dist(u, x) ≤ 2r(i), which
implies that dist(y,E(i + 1, j)) ≤ 6r(i). Since this is true
for any u ∈ E(i + 1), E(i + 1, j) is a 6r(i)-sample of S. So
is E(i, j), for E(i, j) ⊃ E(i+ 1, j).
In addition, by definition of j, any point of E(i, j), right

before its insertion, is the center of a Delaunay ball of radius

greater than r(i)
8
. It follows that the points of E(i, j) are

farther than r(i)
8

from one another. Hence, by the same
argument as in the proof of Lemma 5.4, E(i, j) is sparse.

Lemma 5.6. During the insertion of the points of E(i, j),
the algorithm creates O (|E(i, j)| log |E(i, j)|) Delaunay edges.

Proof. Let εi = 6r(i). The reasoning is similar in spirit
to that of Lemma 18 of [?], although with an additional
subtelty. We assume that Z is a set of curves of finite
length, and we decompose S into strips parallel to Z, of
width C0

√
εi, where C0 is a constant defined in [?] that

depends on S but not on εi. Let Zk denote the kth strip
(k ≥ 0). The points of Zk lie at a distance of Z ranging
from kC0

√
εi to (k + 1)C0

√
εi.

Since E(i, j) is a sparse εi-sample of S (Lemma 5.5), its
size is Cε−2

i , for some constant C depending on S, and the
number of points of E(i, j) that lie in a given strip Zk is

Cε
−3/2
i . Moreover, for any i′ such that i < i′ ≤ j, E(i′)

is a sparse εi-sample of S (Lemma 5.4), thus Lemma 5.1
applies to the point inserted at iteration i′. Summing the
contributions of all the points of E(i, j), we find that the
number n of Delaunay edges created by the insertion of the
points of E(i, j) is at most:

Cε
−3/2
i

K1√
εi
+
∑

k≥1

Cε
−3/2
i

K2

kC0
√
εi

= K1Cε
−2
i +

K2Cε
−2
i

C0

∑

k≥1

1

k

Recall that the size of E(i, j) is Cε−2
i . Moreover, the

number of strips Zk is C′ / C0
√
εi, where C

′ depends only
on S. It follows that n is at most:

K1 |E(i, j)|+ K2

C0
|E(i, j)|

1 +
∑

2≤k≤ C′

C0C1/4
|E(i,j)|1/4

1

k

i.e. O (|E(i, j)|) +O (|E(i, j)|) (1 +O (log |E(i, j)|)).

Theorem 5.7. The total number of Voronoi vertices cre-
ated during the course of the algorithm is O (N logN), where
N = O

(

ε−2
)

= O
(

δ−1
)

is the size of the output point set.
This bound holds for the space complexity of the algorithm.

Proof. We divide the output point set E into clusters.
More precisely, i0 is defined as above, and for any k ≥ 1, we

define ik as the first iteration such that r(ik) ≤ r(ik−1)

8
. Let

l be the last iteration of the algorithm. We assume without
loss of generality that l = iK , for some K. We have E =
E(i0) ∪

⋃

0≤k<K E(ik, ik+1). By Lemma 5.6, every cluster

E(ik, ik+1) generates |E(ik, ik+1)| log |E(ik, ik+1)| Delaunay
edges. It follows that the overall number of Delaunay edges
created is at most:

|E(i0)|2 +
∑

0≤k<K |E(ik, ik+1)| log |E(ik, ik+1)|
≤ |E(i0)|2 +

∑

0≤k<K |E(ik, ik+1)| log |E|
≤ |E(i0)|2 + |E| log |E|

where |E(i0)| = O
(

Area(S) / ε20
)

, which depends only on S.
The theorem follows, since the number of Voronoi vertices
is linear w.r.t. the number of Voronoi edges.

Time complexity
Lemma 5.8. The time complexity of the algorithm is

O
(

N log2 N
)

= O

(

ε−2 log2 1

ε

)

= O

(

1

δ
log2 1

δ

)

Proof. Let T be the overall number of Delaunay tetra-
hedra created by the algorithm. According to Theorem 5.7,
we have T = O (N logN). We will show that the time com-
plexity is O(T log T).
- The cost of maintaining Del(E) is O(T) since no point

location is performed in our case.
- The cost of updating Delv|S(E) is also O(T) since de-

tect access stops each time it reaches an active vertex and
any vertex that becomes active remains so. Hence, the num-
ber of times a vertex is visited is at most the total number
of incident Voronoi edges created by the algorithm.
- Since a Voronoi edge is probed from its vertices, it con-

tains at most two centers of balls of Delv|S(E). Hence, the
cost of maintaining the priority queue Q of bad balls of
Delv|S(E) is O(T log T) since the total number of centers of
balls of Delv|S(E) inserted in Q (and then retrieved from it)
is at most twice the total number of Voronoi edges created
during the process.

5.2 Probing cost
The algorithm probes only along the Voronoi edges and

from their vertices. Since every Voronoi edge has two ver-
tices, it is probed at most twice. Hence, the total num-
ber of probes is at most twice the total number of Voronoi
edges created during the process, which is O (N logN)=
O
(

ε−2 log 1
ε

)

= O
(

1
δ
log 1

δ

)

, by Theorem 5.7.

5.3 Displacement cost
We bound the total number of Voronoi edges travelled

by the probing device. During the update of Delv|S(E), two
types of displacements are performed (see Section 3.1): de-
tection displacements are performed inside the routine de-

tect access to locate the intersection points with the sur-
face S; positioning displacements are performed during the
update of Delv|S(E), when the probing device is moved from
one place of VG(E) to another, before issuing a new se-
quence of probes.

Lemma 5.9. The displacement cost of the algorithm is
O
(

N2 logN
)

= O
(

ε−4 log 1
ε

)

= O
(

δ−2 log 1
δ

)

.

Proof. The overall cost of the detection displacements
has been analyzed in the proof of Lemma 5.8 and shown to
be O (N logN).
In addition, according to Lemma 5.3, for every iteration

i > i0, E(i) is a 2r(i)-sample of S, with 2r(i) ≤ ε0. It is
proved in [3] that, since 2r(i) < 0.1 rch(S), every Voronoi
cell of Vor(E(i)) intersects S along a topological disk that
divides the cell into two components: one lies in O, the other
lies in R

3 \O. Therefore, if p(i) is the point inserted in E at
iteration i, then, right after its insertion, all the vertices of
its Voronoi cell V(p(i)) that can be reached by the probing
device will be marked active when calling detect access on a
neighbor of the vertex of V(p(i)) that is considered first. As
a consequence, the algorithm has to call detect access only

205

once before Delv|S(E(i)) is fully updated. Hence, at iteration
i, two paths only are followed by the probing device during
the positioning displacements.
The lengths of these two paths are bounded by the overall

number of Voronoi vertices created before iteration i. This
number is O (N logN), by Theorem 5.7. Hence, the overall
cost of the positioning displacements after iteration i0 is
O (N.N logN).

The bound of Lemma 5.9 is almost tight, since on some
input surfaces the displacement cost of the algorithm has
been proved to be Ω

(

N2
)

.

6. IMPLEMENTATION AND RESULTS
We have implemented the algorithm using the cgal li-

brary which provided us with implementations of the De-
launay triangulation in 2D and in 3D. Results on a planar
curve and on a surface are reported in Figures 4 and 5. The
active part of the Voronoi graph is printed in blue, the in-
active part in black. The faces of Delv|S(E) are shown in red
or in green, depending on whether they are circumscribed
by a good or a bad ball of Delv|S(E). In the 2D example, the
inactive part of the Voronoi graph is shown only in the first
image, for clarity.

7. CONCLUSION
Many important questions are left open by this work, in-

cluding:
– Can the number of probes be reduced to O(N), where N
is the size of the output point sample? In the case where
O is a set of pairwise disjoint convex sets, the number of
Voronoi vertices created outside O is linear w.r.t. N , hence
the number of probes is O(N).
– What are the exact trade-offs between optimizing combi-
natorial cost and displacement cost?
– We have assumed a perfect probing device. How can we
model uncertainty in the probes? (See [10, 11] for some
related results).
– Can the approach be extended to piecewise smooth sur-
faces?
– In practice a physical scaffold has to be present around the
object being sampled to support the probing device. Can
we show similar results for a probing device whose motions
obey realistic constraints?
– Can we extend the approach to more general manifolds
in higher dimensions? In particular, can we avoid comput-
ing full Delaunay triangulations whose cost becomes pro-
hibitive?

8. ACKNOWLEDGEMENTS
We thank the anonymous referees for their insightful com-

ments. The first and third authors were partially supported
by the European Union through the Network of Excellence
AIM@SHAPE Contract IST 506766. The second author was
supported in part by NSF CARGO grant 0138456, NSF ITR
grant 0205671 and NSF FRG grant 0354543.

9. REFERENCES
[1] Panagiotis D. Alevizos, Jean-Daniel Boissonnat, and

Mariette Yvinec. Non-convex contour reconstruction.
J. Symbolic Comput., 10:225–252, 1990.

[2] N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A sim-
ple algorithm for homeomorphic surface reconstruction.
In Proc. 16th Annu. ACM Sympos. Comput. Geom.,
pages 213–222, 2000.

[3] Nina Amenta and Marshall Bern. Surface reconstruc-
tion by Voronoi filtering. Discrete Comput. Geom.,
22(4):481–504, 1999.

[4] Dominique Attali, Jean-Daniel Boissonnat, and André
Lieutier. Complexity of the Delaunay triangulation of
points on surfaces: the smooth case. In Proc. 19th
Annu. ACM Sympos. Comput. Geom., pages 201–210,
2003.

[5] Jean-Daniel Boissonnat and Steve Oudot. Provably
good sampling and meshing of surfaces. Graphical Mod-
els (special issue on Solid Modeling), 2005. To appear.

[6] Jean-Daniel Boissonnat and Mariette Yvinec. Probing
a scene of non-convex polyhedra. Algorithmica, 8:321–
342, 1992.

[7] M. Do Carmo. Riemannian Geometry. Birkhäuser,
Boston, Basel, Berlin, 1992.

[8] L. P. Chew. Guaranteed-quality mesh generation for
curved surfaces. In Proc. 9th Annu. ACM Sympos.
Comput. Geom., pages 274–280, 1993.

[9] R. Cole and C. K. Yap. Shape from probing. J. Algo-
rithms, 8(1):19–38, March 1987.

[10] T. K. Dey and S. Goswami. Provable surface recon-
struction from noisy samples. In Proc. 20th Annu. ACM
Sympos. Comput. Geom., pages 330–339, 2004.

[11] D. P. Dobkin, H. Edelsbrunner, and C. K. Yap. Probing
convex polytopes. In Proc. 18th Annu. ACM Sympos.
Theory Comput., pages 424–432, 1986.

[12] H. Federer. Geometric Measure Theory. Springer-
Verlag, 1970.

[13] P. M. Gruber. Approximation of convex bodies. In Pe-
ter M. Gruber and J. M. Wills, editors, Convexity
and its Applications, pages 131–162. Birkhäuser, Basel,
Switzerland, 1983.

[14] M. Lindenbaum and A. M. Bruckstein. Blind approxi-
mation of planar convex sets. IEEE Trans. Robot. Au-
tom., 10(4):517–529, August 1994.

[15] W. Lorensen and H. Cline. Marching cubes: a high
resolution 3d surface construction algorithm. Comput.
Graph., 21(4):163–170, 1987.

[16] T. J. Richardson. Approximation of planar convex sets
from hyperplanes probes. Discrete and Computational
Geometry, 18:151–177, 1997.

[17] Günter Rote. The convergence rate of the Sandwich al-
gorithm for approximating convex functions. Comput-
ing, 48:337–361, 1992.

[18] Steven S. Skiena. Geometric reconstruction problems.
In Jacob E. Goodman and Joseph O’Rourke, editors,
Handbook of Discrete and Computational Geometry,
chapter 26, pages 481–490. CRC Press LLC, Boca Ra-
ton, FL, 1997.

[19] J. F. Traub, G. W. Wasilkowski, and H. Wozniakowski.
Information-based Complexity. Academic Press, 1988.

[20] J. F. Traub and A. G. Werschulz. Complexity and In-
formation. Cambridge University Press, 1998.

206

Figure 4: Course of the algorithm on a curve in R
2

Figure 5: Course of the algorithm on a surface in R
3

207

