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Abstract

We consider the problem of discovering a smooth unknown surface S bounding an object
O in R

3. The discovery process consists of moving a point probing device in the free space
around O so that it repeatedly comes in contact with S. We propose a probing strategy for
generating a sequence of surface samples on S from which a triangulated surface can be generated
that approximates S within any desired accuracy. We bound the number of probes and the
number of elementary moves of the probing device. Our solution is an extension of previous
work on Delaunay refinement techniques for surface meshing. The approximating surface we
generate enjoys the many nice properties of the meshes obtained by those techniques, e.g. exact
topological type, normal approximation, etc.

Keywords: Manifold learning, blind surface approximation, interactive surface reconstruction,
surface meshing, Delaunay refinement

1 Introduction

A great deal of work in computational geometry and related communities has focussed on the
problem of reconstructing a surface from scattered data points. The computational geometry
community was the first to describe sampling conditions under which the geometry of the underlying
surface can provably be approximated well and its topology fully recovered [2]. Testing if these
sampling conditions are met, however, may require prior information about the surface that is not
readily available or may be verified only after the fact (that is, after all the samples have been
taken), if at all. As a result undesirable oversampling or undersampling may occur – in the former
case sampling effort is wasted; in the latter provable reconstruction is impossible. In practice, the
difficulty of testing the sampling conditions induces that the reconstruction algorithm is applied
blindly, without any real mean to check the validity of the result.

A different and much less explored approach is to use the sampling conditions to guide the
sampling process as the samples are being generated. Certain physical acquisition processes allow
this type of fine control over the sampling process. One can think for instance of an autonomous
robot moving in an unknown environment and coming repeatedly in contact with obstacles, where
the aim is to learn enough about the environment so as to then be able to construct safe paths
for the robot – see [15, 16] and the references therein. In this paper we consider the problem
of discovering the shape of an unknown object O of R

3 through an adaptive process of probing
its surface from the exterior. A probe is issued along a ray whose origin lies outside O and
returns the first point of O hit by the ray. Successive probes may require the probing device to be
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moved through the free space outside O. The goal is to find a strategy for the sequence of probes
that guarantees a precise approximation of O after a minimal number of probes. Note that this
problem involves an interesting bootstrapping issue, as the underlying surface is only known to the
probing algorithm through the samples already taken. Thus, differently from most existing work
in surface reconstruction, the data are not given all at once prior to the reconstruction phase but
must instead be computed iteratively, each new probe depending on the outcomes of the previous
probes. Furthermore, collision avoidance between the probing device and O must be observed at
all times.

Given a surface of known positive reach (with a positive lower bound on its local feature size),
the probing strategy proposed in this paper is inspired from Chew’s algorithm [14] for Delaunay-
based mesh refinement. Delaunay balls bounding surface facets are refined if they are too big.
This refinement process is accomplished by moving our point probing device among current or
prior edges of the dual Voronoi diagram known to lie in free space, before issuing a probe along the
Voronoi edge dual to the facet to be refined. Our main contribution in this paper is the new probing
algorithm proposed, the data structures used to find collision-free paths for the probing device, and
the analysis of the total cost of this sampling procedure, including the number of probes made,
the displacement cost for moving the device, and the combinatorial complexity of the construction.
Our approach suggests numerous open problems that deserve further investigation.

1.1 Previous work

The above problem belongs to the class of geometric probing problems, pioneered by Cole and
Yap [18]. Geometric probing, also known as blind approximation or interactive reconstruction, is
motivated by applications in robotics. In this context, our probe model described above is called a
tactile or finger probe. Geometric probing finds applications in other areas and gave rise to several
variants. In particular, other probe models have been studied in the literature, e.g. line probes
(a line moving perpendicular to a direction), X-ray probes (measuring the length of intersection
between a line and the object), as well as their counterparts in higher dimensions.

We classify the probing algorithms into two main categories, exact or approximate, depending
on whether they return the exact shape of the probed object or an approximation. An exact probing
algorithm can only be applied to shapes that can be described by a finite number of parameters like
polygons and polyhedra. In fact, most of the work on exact geometric probing is for convex polygons
and polyhedra. See [34] for a survey of the computational literature on the subject. Although it
has been shown that, using enhanced finger probes, a large class of non convex polyhedra can be
exactly determined [1, 8], exact probing is too restrictive for most practical applications.

Approximate probing algorithms overcome this deficiency by considering the accuracy of the
desired reconstruction as a parameter. The goal is to find a strategy that can discover a guaranteed
approximation of the object using a minimal number of probes. The general problem is ill-posed,
since we cannot conclude anything about the shape of the object if we have only local information
about the shape. Some global information or prior knowledge is required to restrict the class of
shapes being approximated. An important class is the class of convex shapes. Probing strategies
have been proposed for planar convex objects using line probes [27, 31] and some other probe
models are analyzed by Rote [32]. Observe that approximating a convex object using hyperplane
probes is nothing else than approximating its supporting function.

As far as we know, probing non convex (non polyhedral) objects has not been studied. The
problem has some similarity with surface approximation, where the goal is to construct a good
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piecewise-linear (PL) approximation of a known smooth surface. Several provably good methods
have been proposed to solve this problem. Some of them handle only restricted types of shapes,
such as piecewise parametric CAD models [33, 37], solvent-excluded molecular surfaces [26], or
skin surfaces [10, 11, 25]. Others hold in a more general setting but involve non-trivial geometric
operations:

• The implicit surface mesher of Plantinga and Vegter [30] generates an adaptive grid and
then applies a variant of the Marching Cubes algorithm [28]. Using interval arithmetics,
Plantinga and Vegter can certify the topology of the output mesh Ŝ. Moreover, by refining
the grid sufficiently, they can achieve any given bound on the Hausdorff distance between Ŝ
and S. This is a significant step since the Marching Cubes algorithm and its variants [13]
usually come without any topological or geometric guarantees. However, the use of interval
arithmetics requires to be able to compute the gradient of the function f whose zero-set is S.

• Algorithms based on the Closed Ball Property of Edelsbrunner and Shah [21], like the implicit
surface mesher of Cheng et al. [12], require to be able to compute the critical points of height
functions on the restrictions of S to some hyperplanes. The topology of the output mesh is
ensured thanks to the Closed Ball Property.

• Methods based on critical points theory [5, 23] require to compute the critical points of f ,
and in some cases their indices, which is an even more evolved computation.

These geometric operations can be elegantly implemented in the implicit setting, where the surface
is defined as a level set of some real-valued function, but not in the general case.

Differently, Chew’s surface mesher [14] requires very little prior knowledge of S. Specifically, as
emphasized in [7], it only needs to know S through:

1. a positive constant less than the reach of S,

2. an oracle that can tell whether a given line segment intersects S or not, and in the affirmative,
return a point of intersection.

This oracle is strongly related to our probing model, yet surface probing differs from surface ap-
proximation in an essential way: we cannot place the probing device at will anywhere but need to
plan the motion of the probing device to its next probing location. Differently from the convex
case, we cannot simply probe from infinity and need to determine finite positions outside the object
where to place the probing device. Moreover, in order to reach such positions, we need to determine
paths along which the probing device can be safely moved without colliding with the object.

1.2 Statement of the problem

Let O be a bounded open set of R
3 and S its boundary. The goal is to approximate S by a probing

tool that can locate points on S. The following assumption allows us to localize O within R
3,

preventing indefinite searches.

A1 For every connected component Oi of O, we know a point oi that belongs to Oi.

Assumption A2 bounds the area of interest and allows us to obtain initial locations and paths
for the probing device without bumping into O.
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A2 We know a convex and compact subset Ω of R
3 that contains S (and hence also O). We

denote by ∂Ω the boundary of Ω.

We have at our disposal a probing device, which is an oracle that, once placed at some point
p of R

3 \ O, can be oriented towards any direction d and then tasked to return the first point of
transverse intersection between S and the ray defined by (p, d). The probing device can move freely
in R

3 \O but cannot penetrate O. Such a device can be constructed in practice, using for instance
a laser with three DOFs of displacement and two DOFs of rotation, that can cast a ray in any
direction and measure its distance to the point where the ray hits the object.

We assume that the probing device provides exact information. The outcome of a probe is a
point on the boundary of the object.

We need also to define the accuracy measure for our reconstruction. The accuracy will be
measured by the Hausdorff distance. Since the measured points are on the boundary S of the
object, the accuracy of the reconstruction will be ε iff any point of S is at distance at most ε from
a measured point. In such a case, the set E of measured points is said to be an ε-sample of S.

As mentioned above, to be able to make any reconstruction claims, we need to restrict the class
of shapes we probe. We consider here those with positive reach. The reach of a surface S, denoted
by rch(S), is the infimum over S of the distance of a point of S to the medial axis of S. The reach
has been previously used in many contexts and has received various names: reach [22], normal
injectivity radius [9], minimum local feature size [2], etc. Having a positive reach is ensured if S is
C1,1, i.e. S is C1 and its normal vector field is Lipschitz [22].

A3 We know a positive constant εS ≤ rch(S).

Finally, we need a model of computation to analyze the complexity of our algorithm. Following
the perception-action-cognition paradigm, we distinguish between the information or probing cost,
the displacement cost, and the combinatorial cost. This distinction is also reminiscent of the
difference made between combinatorial and informational complexity in the work on information-
based computation [35, 36]. The probing cost measures the number of probes and indicates the
amount of information that becomes available to our algorithm. The displacement cost accounts
for the motion of the probing device. The combinatorial cost measures the arithmetic operations
and comparisons required, as well as the maintenance cost of the data structures. As discussed
later, it is not possible in general to optimize all costs simultaneously.

1.3 Overview of the paper

Under assumptions A1-A3, we show in this paper that S can be approximated by a triangulated
surface Ŝ within any desired accuracy. Moreover, Ŝ recovers the exact topology of S and the error
on the normal deviation of the facets of Ŝ is also bounded.

The paper is organized as follows. Since our solution is an extension of previous work on
Delaunay refinement for surface meshing [7, 14], we recall Chew’s algorithm and its main properties
in Section 2. In Section 3 we describe the probing algorithm, present its main properties in Section 4,
and analyze its complexity in Section 5. In these sections, the surface S is assumed to be connected,
for simplicity. The case of a surface with more than one connected component is analyzed in
Section 6.
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2 Chew’s algorithm

Chew’s surface mesh generator is a greedy incremental algorithm that inserts sample points on S
and maintains the Delaunay triangulation of the sample E restricted to S, defined below.

Input Chew’s algorithm takes as input the surface S, a positive value ε, as well as an optional
initial point sample. The surface is only known through an oracle ω that, given a line segment s,
can compute a (possibly empty) subset of the intersection points of s with S.

Data structure Given a point set E ⊂ S, the Delaunay triangulation of E restricted to S,
Del|S(E), is the subset of the 3-dimensional Delaunay triangulation Del(E) of E made of the facets
whose dual Voronoi edges intersect S. Every point of intersection of a Voronoi edge with S is
the center of a ball of Del|S(E), i.e. a Delaunay ball centered on S. By querying the oracle ω
on every Voronoi edge, the algorithm can compute a subset of Del|S(E), called Delω|S(E). Notice
that Delω|S(E) may be different from Del|S(E), since ω is not assumed to be able to detect all the
intersection points of S with the edges of the Voronoi diagram. Delω|S(E) is stored as a subcomplex
of Del(E). Each time a point is added to E, only the part of the Voronoi diagram that has changed
after the insertion of the point has to be queried by the oracle ω.

Algorithm If no initial point sample E is given, the algorithm constructs one in the same way
as our probing algorithm – see Section 3.1. Delω|S(E) is then computed by querying every edge of
the Voronoi diagram of E using oracle ω.

At each iteration, the algorithm inserts a new point in E and updates Delω|S(E). Each point
inserted in E is the center of a bad ball of Delω|S(E), that is, a ball of Del|S(E) whose center c has
been detected by ω and whose radius is greater than ε. The algorithm stops when there are no
more bad balls of Delω|S(E), which will eventually happen if ε is positive since S is compact. Upon

termination, the algorithm returns E as well as Ŝ = Delω|S(E).

Guarantees on the output In [7], we proved that Chew’s algorithm returns a triangulated
complex Ŝ that is a good approximation of S, provided that the input parameter ε is smaller
than a fraction of rch(S) and that the oracle can compute the intersection of any segment with S
(such an oracle is said to be exhaustive). In fact, we proved a more general result, stated below as
Theorem 2.1. This result holds under the following assumptions:

H1 Ŝ is a manifold without boundary,

H2 Ŝ has vertices on all the connected components of S,

H3 Every facet f of Ŝ is circumscribed by a ball of Del|S(E), of center c ∈ S and of radius at
most ε for ε < 0.091 rch(S),

Theorem 2.1 Under H1-H3,

– Ŝ is ambient isotopic to S;
– the Hausdorff distance between Ŝ and S is at most 4.5diam(S)

rch(S)2
ε2;

– Ŝ approximates S, in terms of normals and area, within an error of O(ε);
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– S is covered by the balls of Del|S(E) that circumscribe facets of Ŝ,
which implies that E is a 2ε-sample of S: ∀x ∈ S, |E ∩B(x, 2ε)| ≥ 1.

Moreover, it is proved in [7] that E is sparse: an r-sample E ′ is sparse if there is a constant κ
that does not depend on S nor on r, such that ∀x ∈ S, |E ′ ∩B(x, r)| ≤ κ. Thus,

Theorem 2.2 [Theorems 5.1 and 5.4 of [7]]

|E| = Θ
(∫∫

S
dx
ε2

)

= Θ
(

Area(S)
ε2

)

, where the constants in the Θ do not depend on S nor on ε.

In order to construct a PL approximation of S within a Hausdorff error of δ > 0, it is sufficient
to take:

ε = εS

√

δ

4.5 diam(Ω)
≤ rch(S)

√

δ

4.5 diam(S)

The size of the output point set is then O
(

ε−2
)

= O
(

δ−1
)

, which is optimal up to a constant
depending only on S [17]. Note that the constraint on ε given by H3 yields a constraint on δ: δ
< 0.04 diam(S).

3 The probing algorithm

For the sake of clarity, we assume in Sections 3, 4 and 5 that S is connected. We defer the treatment
of surfaces with several connected components to Section 6. According to A1, we know a point
o ∈ O.

If we except the moves of the probing device, our algorithm is very similar to Chew’s algorithm.
The main difference concerns the oracle that is used to discover the surface S. In our case, to check
whether a Voronoi edge e intersects S or not, we must first move our probing device to one of its
endpoints. This requires two things: first, that at least one endpoint v of e be located in R

3 \ O;
second, that we know a free path from R

3 \Ω (where the probing device can move freely) to v, i.e.
a continuous curve included in R

3 \ O that goes from R
3 \ Ω to v.

Definition 3.1 Given a point set E, the Voronoi graph of E, VG(E), is the graph made of the
vertices and edges of the Voronoi diagram of E.

Our basic intuition is to constrain the probing device to move along the edges of VG(E)\O, which
are called the free edges1. A difficulty arises from the fact that, when a new point p is inserted
in E, some of the current Voronoi vertices and edges may disappear. It follows that portions of
VG(E) \ O that could be reached by the probing device from R

3 \Ω before the insertion of p may
no longer be reachable afterwards — see Figure 1 for an illustration.

To overcome this difficulty, once a free path π(v) from R
3 \Ω to some Voronoi vertex v has been

found, we store π(v) in memory so that v will remain reachable by the probing device permanently.
Hence our paths are made of two types of edges: edges that belong to the current Voronoi graph,
and edges that do not but were edges in some former Voronoi diagram.

By moving the probing device along our free paths, and by probing from each visited Voronoi
vertex towards its neighbor vertices in Vor(E), we can detect a subset I of the points of VG(E)∩S
and construct a subcomplex of Del|S(E) called the visible restricted Delaunay triangulation of E,
or simply Delv|S(E). Every point of I is the center of a Delaunay ball, called ball of Delv|S(E), that
circumscribes a facet of Delv|S(E).

1More generally, any object (point, segment, curve etc.) that lies outside O is said to be free.
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Figure 1: The insertion of a point splits VG(E) \ O into two connected components, one of which
is then no longer reachable from R

3 \ Ω.

3.1 Data structure

We proceed as in Chew’s algorithm, by storing Delv|S(E) as a subcomplex of Del(E). Inside every
Delaunay tetrahedron, we mark each of the four facets as being or not being part of Delv|S(E). This
way, every Delaunay facet is marked twice since it belongs to two Delaunay tetrahedra.

In order to store the paths for the probing device, every Voronoi vertex2 v is given a pointer
prev to the previous vertex on a path from R

3 \Ω to v. By convention, v.prev = NULL means that
we know no free path from R

3 \ Ω to v. In such a case, v is said to be inactive. Otherwise, v is
called active.

If a newly created Voronoi vertex v belongs to R
3 \ Ω, then we set v.prev ← v since v can

be reached by the probing device. In particular, an infinite Voronoi vertex (i.e. the endpoint at
infinity of an unbounded Voronoi edge) always lies outside Ω, which is compact. Thus, the prev
field of an infinite vertex is never NULL. If v belongs to Ω, then we initialize v.prev← NULL.

To construct and then update Delv|S(E), we use a routine named detect access, introduced
in Figure 2. Starting from an active vertex vstart, detect access performs a depth-first traversal
of VG(E) \ O to see which previously inactive vertices can be reached by the probing device from
vstart through free edges of the Voronoi graph.

Initial construction Given an initial point set E of S, we compute Delv|S(E) by moving the
probing device successively to all the vertices of VG(E) that lie outside Ω (including the infinite
vertices3). For every such vertex v, we set v.prev← v and then we call detect access on v.

2In practice, it is its dual Delaunay tetrahedron that we consider. However, for simplicity, we will identify Delaunay
tetrahedra with Voronoi vertices in the sequel.

3Processing the infinite vertices in the same manner as the other ones simplifies the presentation but is not quite
satisfactory since it involves moving the probing device to infinity. However, this can be avoided easily by clipping
VG(E) by ∂Ω and calling detect access on all the intersection points of ∂Ω ∩ VG(E).
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detect access (vstart):
// Precondition: vstart is active

for each neighbor v of vstart, do
probe edge [vstart, v];
if ([vstart, v] ∩ S 6= ∅) then

add the dual of [vstart, v] to Delv|S(E);

else if (v.prev = NULL) then
// v becomes active
if (v ∈ Ω) then

v.prev← vstart;
end if
move the probing device from vstart to v;
detect access (v);
move the probing device from v to vstart;

end if
end foreach

Figure 2: Routine detect access

After the initialization phase, every Voronoi vertex that can be reached from R
3 \Ω by walking

along edges of VG(E) \ O is active. Moreover, every active vertex is given a free path to R
3 \ Ω.

Update Each time a new point p is to be inserted in E, we update Delv|S(E) as follows:
• before the insertion, we look at the active vertices of Vor(E) that no longer exist in Vor(E∪{p}).
By definition, they lie in V(p), the cell of p in Vor(E ∪ {p}). We keep these vertices in memory
and we leave their prev pointers unchanged. This way, every active vertex will remain active in the
sequel and will keep its path to R

3 \ Ω.
• after the insertion, we look at the new vertices of the Voronoi diagram (including the infinite
ones), which by definition are the vertices of V(p). For any such vertex v, we need to determine
whether v can be reached from R

3 \ Ω through edges of VG(E) \ O:
– if v ∈ R

3 \ Ω, we set v.prev← v and move the probing device to v. Such a move is called a
positioning displacement. Then, we call detect access on v.

– otherwise, we look at the only neighbor v′ of v that is not a vertex of V(p). If v′ is active and
if edge [v, v′] is free (which we can easily determine since [v, v′] is included in a former Voronoi
edge that has been probed from v′), we perform a positioning displacement by moving the
probing device to v′. Then, we call detect access on v′.

3.2 The algorithm

The algorithm takes as input a user-defined value ε such that 0 < ε < 0.091 εS , which by A3 is less
than 0.091 rch(S). As explained in Section 2, controlling ε allows to bound the Hausdorff distance
between S and the PL approximation built by the algorithm.

The algorithm starts by computing an initial point set E made of three points of S that form
a triangle of circumradius at most ε/3. There are many ways to do this. One possible approach
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is described in detail in [29, §4.4] in the context of surface meshing, and it extends easily to the
context of surface probing. Here is a high-level overview:

1. We place the probing device at a point p of ∂Ω and we probe from p towards point o. Since
o ∈ O and p ∈ R

3 \ O, the probing device finds a point a ∈ S, such that the segment [p, a] is
free.

2. Suppose we knew the normal n(a) of S at a, or at least a good estimate n. Then, we could
move the probing device from p to a, and then along the free section of the ray issued at
a in the direction of n. Let a′ be some point on the free section of the ray, and T ′ be the
plane containing a′ and parallel to the tangent plane of S at a. Inside T ′, we can move the
probing device from a′ to two arbitrarily close points b′, c′ that form an equilateral triangle
with a′. Probing from b′ and c′ towards −n gives two points b, c ∈ S, such that triangle
(a, b, c) is almost equilateral, as shown in [29, §4.4]. If b′, c′ are chosen sufficiently close to a′,
then (a, b, c) has a circumradius less than ε/3.

3. In the context of surface probing, if the probing device provides points and normals, then
we can apply step 2. directly. Otherwise, we do not know the normal of S at a but we can
approximate it. Standing at p, we probe in a direction arbitrarily close to [p, a), which gives
a point a′′ ∈ S such that the distance between a and a′′ is at most ε – this condition can be
easily checked since ε is a known parameter. Then, the bisector plane P of [a, a′′] contains
a direction that approximates n(a) within an angle of O(ε). We do not know this direction,
but we can approximate it by moving the probing device from p to a and then performing a
sequence of probes inside the plane Pa parallel to P that contains a. Specifically, we probe
along a set of directions that forms an O(ε)-net of the unit circle centered at a inside Pa,
and we select the directions whose rays intersect S at a (or at some point very close to a,
in practice). Then, we define n as the direction (on the unit circle) farthest from the set of
selected directions.

Intuitively, since Pa is almost aligned with n(a), the curve Pa ∩ S has a small curvature at
a, compared to 1/ε. Therefore, the set of selected directions spans approximately half of the
unit circle, and the direction n farthest from the selected directions approximates nPa within
an angle of O(ε). Since nPa is aligned with the orthogonal projection of n(a) onto Pa, the
angle (nPa ,n(a)) is O(ε). It follows that (n,n(a)) = O(ε). We can then apply step 2. above
to compute b and c, using n.

Once the initial point sample {a, b, c} is computed, the algorithm sets E = {a, b, c} and builds
Delv|S(E) as described in Section 3.1. Since (a, b, c) is the only facet of Del(E), it belongs to
Delv|S(E). Moreover, as shown in [7] (Lemma 7.1), (a, b, c) will remain in Del|S(E) throughout the

process4. For this reason, we call it a persistent facet. The bad balls of Delv|S(E), i.e. the balls of
Delv|S(E) whose radii are greater than ε, are stored in a priority queue Q where they are sorted by
decreasing radius.

After the initialization phase, the algorithm acts as Chew’s surface mesher, using the probing
device to answer the oracle. Specifically, the data structure is Delv|S(E), and the bad balls of
Delv|S(E) are stored in Q. While Q is not empty, the algorithm retrieves from Q the bad ball
B(c, r) of largest radius and inserts its center c in E. The algorithm then updates Delv|S(E) as
described in Section 3.1, and updates Q as follows:

4Notice however that (a, b, c) is not guaranteed to remain in Delv|S(E).
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– the former bad balls that disappear because of the insertion of c are removed from Q;
– the new bad balls that are created by the insertion of c are inserted in Q.

The algorithm stops when Q is empty, that is, when no ball of Delv|S(E) is bad. The algorithm
then returns E and Delv|S(E).

4 Correctness of the algorithm and quality of the approximation

In this section, we analyze the probing algorithm. We prove that it terminates in Section 4.1. In
Section 4.2, we exhibit two invariants that are instrumental in proving the geometric properties of
the output surface in Section 4.3. The analysis of the complexity of the algorithm is deferred to
Section 5.

4.1 Termination

After the initialization phase, every point that is inserted in E belongs to S and is the center of
a Delaunay ball of radius greater than ε. It follows that the points inserted in E are at distance
at least ε from one another. Since ε is positive and S is compact, only finitely many points are
inserted in E.

4.2 Invariants of the algorithm

Proposition 4.1 The following assertions hold throughout the course of the algorithm:
P1 All active Voronoi vertices can be reached from R

3 \ Ω by moving the probing device along
current or former Voronoi edges.
P2 Any two Voronoi vertices that lie in the same connected component of VG(E) \ O have the
same status, active or inactive.

Proof We proceed by induction. Clearly, (P1) and (P2) hold after the initialization phase. Let
us now consider a step of the algorithm during which a new point (say p) is inserted in E and
Delv|S(E) is updated. Our induction hypothesis is the following:

IH Assertions (P1) and (P2) hold in set E before the insertion of p.

We will prove successively that (P1) and (P2) still hold after the insertion of p. In the sequel, E
denotes the point sample before the insertion of p.

(P1) Let v be a vertex that is active after the insertion of p.
P1.1 If v existed and was already active before the insertion of p, then its path π(v) to R

3 \ Ω
remains unchanged since all the vertices of π(v) are kept in memory and detect access does not
change the status of active vertices. It follows that v is reachable by the probing device from R

3 \Ω
after the insertion of p, since it was so before by (IH).
P1.2 If v did not exist or was not active before the insertion of p, then v is visited by de-

tect access during the update of Delv|S(E). Since we run detect access only on new vertices

lying in R
3 \ Ω and on former active vertices, v is given a free path either to a new vertex lying in

R
3 \Ω, or to a former active vertex which, as explained in P1.1, remains reachable by the probing

device after the insertion of p. In both cases, v is reachable by the probing device from R
3 \ Ω.
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(P2) Let us prove that the vertices v and w of any free edge e of VG(E ∪ {p}) have the same
status after the update of Delv|S(E). It will then follow, by transitivity, that (P2) still holds after
the insertion of p.
P2.1 If a vertex of e (say v) is visited by detect access during the update of Delv|S(E), then it
becomes active if not so before, and detect access visits also w if the latter is not active. Thus,
v and w are both active afterwards.
P2.2 If neither v nor w is visited by detect access, then they keep their status during the update
of Delv|S(E). Hence, it suffices to prove that they have the same status right before. If neither v
nor w is a vertex of V(p), then they are both old Voronoi vertices, and e is an old edge, which
implies that v and w have the same status, by (IH). If one of them belongs to V(p), then none can
be active, since otherwise, during the update of Delv|S(E), the algorithm would run detect access

on the one(s) that is (are) active, hereby contradicting the hypothesis of P2.2. ¤

4.3 Geometric properties of the output

As explained in Section 2, in order to guarantee that the algorithm constructs a good approximation
of S, it suffices to prove that Delv|S(E) satisfies assertions (H1), (H2) and (H3) upon termination
of the algorithm. From now on, let E denote the output point sample.

Proof of H2 Since we assumed that S is connected, it suffices to check that Delv|S(E) is not
empty when the algorithm halts. Recall that the algorithm constructs an initial point sample with
a persistent facet (a, b, c) cicumscribed by a Delaunay ball B centered on S of radius at most ε/3.
As shown in [7] (Lemma 7.1), (a, b, c) remains a facet of Del|S(E) throughout the course of the
algorithm. It follows that VG(E) ∩ S is not empty upon termination of the algorithm. Since
VG(E) is connected, at least one point p of VG(E) ∩ S belongs to the same connected component
of VG(E) \ O as some infinite Voronoi vertex. By (P2), p can be “seen” from an active Voronoi
vertex. Hence, Delv|S(E) is not empty, which proves (H2). ¤

Proof of H3 By definition, every facet of Delv|S(E) is circumscribed by a ball of Delv|S(E).
Since the algorithm eliminates the balls of Delv|S(E) that have radii greater than ε, all the balls of
Delv|S(E) have radii at most ε < 0.091 εS upon termination. By A3, ε is less than 0.091 rch(S). ¤

As established in Section 3 of [7], assertion (H3) alone induces a few local properties5, such as:

L1 [Lemma 3.4 of [7]] Two facets of Delv|S(E) that share an edge form a dihedral angle greater
than π

2 .

L2 [Lemma 3.6 of [7]] An edge of Vor(E) cannot intersect S in more than one point x such that
dist(x, E) < 0.091 rch(S). Hence, every edge of Vor(E) contains at most one center of ball of
Delv|S(E).

L3 [Proposition 3.10 of [7]] The balls of Delv|S(E) intersect S along pseudo-disks, i.e. topological
disks that pairwise intersect along topological disks and whose boundaries pairwise intersect in at
most two points.

5Propositions L1 and L2 can also be inferred from the results of [3, 10].
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To prove (H1), we need yet another result, which is a direct consequence of assertion (P2):

L4 Let ζ be a connected component of VG(E) \ O. Either all the points of ∂ζ ∩ S are centers of
balls of Delv|S(E), or none of them is.

Proof Let p and q be two points of ∂ζ ∩S. By definition, p and q are centers of balls of Del|S(E).
If ζ contains no (finite or infinite) Voronoi vertex, then it is made of one piece of a Voronoi edge
only. Therefore, p and q cannot be detected by the probing device, and none of them can be the
center of a ball of Delv|S(E). If ζ contains some Voronoi vertices, then, by (P2), all the Voronoi
vertices in ζ have the same status, active or inactive. In the first case, p and q are both centers of
balls of Delv|S(E). In the second case, none of them is, which ends the proof of (L4). ¤

Using L1-L4, we can now prove Assertion (H1).

Proof of H1 We first show that every edge of Delv|S(E) is incident to exactly two facets of
Delv|S(E). We then prove that every vertex of Delv|S(E) has only one umbrella. An umbrella of a
vertex v is a set of facets of Delv|S(E) incident to v whose adjacency graph is a cycle.

Let e be an edge of Delv|S(E). We denote by V(e) the Voronoi facet dual to e. Notice that
∂V(e)∩S 6= ∅, since e belongs to Del|S(E). It follows that any connected component ξ of ∂V(e)\O
is a simple polygonal arc, whose endpoints lie on S and are centers of balls of Del|S(E). Moreover,
ξ is included in a connected component of VG(E) \ O. Thus, by (L4), either both endpoints of
ξ are centers of balls of Delv|S(E), or none of them is. It follows that the total number of centers
of balls of Delv|S(E) that lie on ∂V(e) is even. Then, by (L2), the number of edges of ∂V(e) that
contain centers of balls of Delv|S(E) is even. Equivalently, the number of facets of Delv|S(E) that are
incident to e is even.

In addition, two facets of Delv|S(E) incident to e form a dihedral angle greater than π
2 , by (L1).

It follows that e cannot be incident to more than three facets of Delv|S(E).
In conclusion, the number of facets of Delv|S(E) incident to e is even, at least 1 (because e is an

edge of Delv|S(E)), and at most 3. Hence it is 2.

Since this is true for any edge of Delv|S(E), the facets of Delv|S(E) incident to a given vertex v
of Delv|S(E) form a set of umbrellas. Using (L3), one can prove that they form only one umbrella
– see Proposition 4.2 of [7]. We recall briefly the argument: if U is an umbrella, then v lies in the
interior of the projection of U onto T (v), since otherwise the projections of at least two adjacent
facets of U would have non-disjoint interiors, which would imply by (L3) that one of their vertices
lies inside one of their pseudo-disks, which is impossible since the pseudo-disks are empty of points
of E. It follows that v belongs to the interior of the union R of the pseudo-disks of the facets of
U , by (L3). Then, any facet f of Delv|S(E) incident to v that does not belong to U has one vertex
(namely, v) that belongs to the intorior of R, whereas its two other vertices lie outside R. Hence,
the boundary of the pseudo-disk of f intersects the boundary of R. Using (L3) again, it is not
difficult to prove that the pseudo-disk of f contains at least one vertex of U , which contradicts the
fact that the pseudo-disks are empty of points of E.

Therefore, a vertex of Delv|S(E) can have only one umbrella. It follows that Delv|S(E) is a
2-manifold without boundary, which concludes the proof of H1. ¤

Since Delv|S(E) satisfies H1-H3, it is a good approximation of S, according to Theorem 2.1.
In particular, E is a 2ε-sample of S, and it is sparse, as mentioned in Section 2. This implies
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that |E| = O
(

Area(S)
ε2

)

, by Theorem 2.2. Moreover, if ε < 0.05 εS , then E is a 0.1-sample of S,

and hence Del|S(E) is homeomorphic to S, by Theorem 2 of [2]. As a consequence, Delv|S(E) and
Del|S(E) are equal, since they are homeomorphic and since Delv|S(E) is a subcomplex of Del|S(E).

5 Complexity of the algorithm

As mentioned in the introduction, the complexity of the algorithm has three components: the com-
binatorial cost that measures the memory space and time needed to store, construct and update the
data structures; the probing cost that counts the number of probes performed by the probing device;
the displacement cost that measures the effort spent in moving the probing device. Depending on
the context, one can give emphasis to one type of cost or the other.

Notice that it is not possible in general to optimize all costs simultaneously. Take for instance a
parabola C embedded in R

2, as shown in Figure 3. Any Delaunay-based algorithm that optimizes
the displacements of the probing device will somehow follow the curve C, inserting the points of E
more or less in their order along C (see Figure 3, left). This makes the overall complexity of the
incremental Delaunay triangulation quadratic. Differently, our algorithm will insert the points in
an order defined by the largest empty ball criterion (see Figure 3, right), which does not optimize
the displacement cost but makes the combinatorial cost linear.
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Figure 3: Two orders of insertion on a parabola.

In the sequel, we analyze the combinatorial cost, probing cost and displacement cost separately.
Since our algorithm enforces the probing device to move along the Voronoi edges, the size of the
Voronoi diagram has a direct impact on all three costs.

5.1 Combinatorial cost

Space complexity

The data structure stores the current Delaunay triangulation as well as some of the former Voronoi
vertices. Since every vertex is stored at most once, the size of the data structure is at most the
total number of Voronoi vertices created during the course of the algorithm. We will bound this
number with respect to the Hausdorff distance δ between Ŝ and S.

Let Einit be the initial point sample constructed by the algorithm. We have |Einit| = 3. For
every iteration i of the algorithm, we call E(i) the point set E at the end of iteration i. E(i)\E(i−1)
contains precisely the point p(i) inserted in E at iteration i, and E(i − 1) \ Einit is the set of all
points inserted before iteration i. We call r(i) the radius of the largest ball of Delv|S(E(i)). Since
the algorithm always inserts the center of the ball of Delv|S(E) of largest radius, p(i) is at a distance
r(i− 1) from E(i− 1).
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Let Z be the subset of the ridge of S made of all the points of S that admit an osculating ball
whose interior does not intersect S. We assume in the sequel that Z is a set of curves of finite
length. As mentioned in [4], this property of Z is satisfied generically. In particular, S cannot
contain patches of spheres or cylinders with empty osculating spheres. To bound the number of
Voronoi vertices created, we will use the following result, stated as Lemma 17 in [4]:

Lemma 5.1 There exist four constants ε0, c0, k1 and k2, depending only on S, such that, for any
sparse ε-sample E of S, with ε ≤ ε0, the number of Delaunay edges incident to a vertex p of Del(E)
is at most k1 ε−1/2 if dist(p, Z) ≤ c0

√
ε and at most k2 / dist(p, Z) otherwise.

In the sequel, we take as ε0 the minimum of the above (unknown) constant ε0 and of 0.091 rch(S).
Let i0 be the first iteration of the algorithm at the end of which all the balls of Delv|S(E) have radii
at most ε0

4 . In other words, i0 is the first iteration such that r(i0) ≤ ε0
4 . Since ε0

4 < 0.091 rch(S),
E(i0) is an ε0

2 -sample of S, by Theorem 2.1.

Lemma 5.2 For any two iterations i and j such that j ≥ i ≥ i0, we have r(j) ≤ 2r(i).

Proof Let B(j) be a ball of Delv|S(E(j)) of largest radius. Its center c(j) lies on S. Since i ≥ i0,
we have E(i0) ⊆ E(i). Hence, E(i) is an ε0-sample of S, and the balls of Delv|S(E(i)) cover S,
by Theorem 2.1. Thus, c(j) lies in a ball B(c, r) of Delv|S(E(i)). We have dist(c(j), E(i)) ≤ 2r ≤
2r(i). Moreover, since i ≤ j, E(i) is included in E(j). It follows that r(j) = dist(c(j), E(j)) ≤
dist(c(j), E(i)) ≤ 2r(i), which concludes the proof of the lemma. ¤

Lemma 5.3 For any iteration i > i0, E(i) is a 2r(i)-sample of S, with 2r(i) ≤ ε0, and the points

of E(i) \ Einit are farther than r(i−1)
2 from one another and from Einit.

Proof Let i be any iteration of the algorithm such that i > i0. According to Lemma 5.2, we
have r(i) ≤ 2r(i0) ≤ ε0

2 , thus E(i) is a 2r(i)-sample of S, with 2r(i) ≤ ε0, according to Theorem
2.1. In addition, by definition of i0, every point of E(i0) \ Einit, when inserted in E, is the center
of a Delaunay ball of radius greater than ε0

4 ≥ r(i0), which is at least 1
2 r(i − 1), by Lemma 5.2.

Moreover, at any iteration k such that i0 < k ≤ i, the point inserted in E is the center of a
Delaunay ball of radius r(k − 1), which is at least 1

2 r(i− 1), by Lemma 5.2. Therefore, the points
of E(i) \ Einit are at least 1

2 r(i− 1) away from one another and from Einit. ¤

From the fact that |Einit| = 3 and from Lemmas 5.2 and 5.3, we deduce that for any i > i0, E(i)
is a sparse 2r(i)-sample of S. Thus, by Lemma 5.1, the algorithm creates O

(

r(i)−1/2
)

= O
(

ε−1/2
)

new Delaunay edges at iteration i. As a consequence, the overall number of Delaunay edges created
after iteration i0 (which depends only on S) is O

(

N ε−1/2
)

= O
(

N5/4
)

, where N is the size of the
output point sample and where the constant in the O depends only on S.

However, by summing more carefully the contributions of the points inserted after iteration i0,
we can work out a O (N log N) bound. Let i be an iteration of the algorithm, such that i ≥ i0. Let

j > i be the first iteration such that r(j) ≤ r(i)
8 . Our goal is to bound the number of Delaunay edges

created between iterations i and j. By Lemma 5.3, E(j) is a 2r(j)-sample of S, with 2r(j) ≤ r(i)
4 .

We call E(i, j) the set of the points inserted by the algorithm between iterations i (excluded) and
j (included). We have E(i, j)= E(j) \ E(i).
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Lemma 5.4 For any k such that i < k ≤ j, E(k) is a sparse 6r(i)-sample of S.

Proof By Lemma 5.3, E(k) is a 2r(k)-sample of S. Since 2r(k) ≤ 4r(i) ≤ 6r(i) (Lemma 5.2), E(k)
is a 6r(i)-sample. To prove that E(k) is sparse, we count the points of E(k) that lie in B(x, 6r(i)),
for any x ∈ S.
- Since |Einit| = 3, the number of points of Einit that lie in B(x, 6r(i)) is at most 3.

- By Lemma 5.3, the points of E(k) \ Einit are farther than r(k−1)
2 from one another. Now, r(k−1)

2

is at least r(i)
16 , since i < k ≤ j. It follows that the points of E(k) \ Einit are centers of pairwise-

disjoint balls of radius 1
32 r(i). For every such ball B whose center lies in B(x, 6r(i)), B is included

in B(x, (6 + 1
32) r(i)). It follows that the number of points of E(k) \ Einit that lie in B(x, 6r(i))

is bounded by a constant, which shows that E(k) is sparse and hereby concludes the proof of
Lemma 5.4. ¤

Lemma 5.5 E(i, j) is a sparse 6r(i)-sample of S.

Proof Let u be a point of E(i + 1). By Corollary 4.13 of [7], u is a vertex of Del|S(E(i + 1)).
Del|S(E(i + 1)) is a 2-manifold without boundary, thus u has at least three neighbors v1, v2, v3 in
Del|S(E(i+1)). Since |Einit| = 3, at least one point among {u, v1, v2, v3} belongs to E(i+1)\Einit.

Let us call it w. By Lemma 5.3, w is farther than r(i)
2 from the other points of {u, v1, v2, v3}. Thus,

u is farther than r(i)
2 from one of its neighbors, say v1. Any point x ∈ S belonging to the Voronoi

face V(u)∩V(v1) is farther than r(i)
4 from u. Hence, x is closer to some point u′ of E(i + 1, j) than

to u, since otherwise E(j) could not be a r(i)
4 -sample of S. As a consequence, the distance from

any point y ∈ S ∩V(u) to E(i + 1, j) is at most:

dist(y, u′) ≤ dist(y, u) + dist(u, x) + dist(x, u′)
≤ dist(y, u) + 2 dist(u, x)

Since E(i + 1) contains E(i), E(i + 1) is a 2r(i)-sample of S. Thus, dist(y, u) ≤ 2r(i) and
dist(u, x) ≤ 2r(i), which implies that dist(y, E(i + 1, j)) ≤ 6r(i). Since this is true for any u ∈
E(i + 1), E(i + 1, j) is a 6r(i)-sample of S. So is E(i, j), for E(i, j) ⊃ E(i + 1, j).

In addition, by definition of j, any point of E(i, j), right before its insertion, is the center of a

Delaunay ball of radius greater than r(i)
8 . It follows that the points of E(i, j) are farther than r(i)

8
from one another. Hence, by the same argument as in the proof of Lemma 5.4, E(i, j) is sparse.
¤

We can now combine Lemma 5.1 with Lemmas 5.4 and 5.5, to bound the number of Delaunay
edges created between iterations i and j.

Lemma 5.6 During the insertion of the points of E(i, j), the number of Delaunay edges created is
O (|E(i, j)| log |E(i, j)|).

Proof Let εi = 6r(i). The reasoning is similar in spirit to that of Lemma 18 of [4], although
with an additional subtelty. We decompose S into strips parallel to Z, of width c0

√
εi, where c0 is

defined as in Lemma 5.1. Recall that c0 depends on S but not on εi. Let Zk denote the kth strip
(k ≥ 0). The points of Zk lie at a distance of Z ranging from k c0

√
εi to (k + 1) c0

√
εi.
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As stated in Lemma 18 of [4], since E(i, j) is a sparse εi-sample of S (Lemma 5.5), there exists
some constant c(S) depending only on S, such that the number of points of E(i, j) that lie in a

given strip Zk is at most c(S) ε
−3/2
i . Moreover, for any i′ such that i < i′ ≤ j, E(i′) is a sparse

εi-sample of S (Lemma 5.4), thus Lemma 5.1 applies to the point inserted at iteration i′. Summing
the contributions of all the points of E(i, j), we find that the number n of Delaunay edges created
by the insertion of the points of E(i, j) is at most:

c(S) ε
−3/2
i

k1√
εi

+
∑

k≥1

c(S) ε
−3/2
i

k2

k c0
√

εi
= k1 c(S) ε−2

i +
k2 c(S) ε−2

i

c0

∑

k≥1

1

k

The number of strips Zk is c′(S) / c0
√

εi, where c′(S) depends only on S. Moreover, by Theorem
2.2, the size of E(i, j) is at least c′′(S) ε−2

i , for some constant c′′(S) depending only on S. It follows
that n is bounded by:

k1
c(S)

c′′(S)
|E(i, j)|+ k2

c0

c(S)

c′′(S)
|E(i, j)|

∑

1≤k≤
c′(S)

c0 c′′(S)1/4
|E(i,j)|1/4

1

k

i.e. O (|E(i, j)|) + O (|E(i, j)|) O (log |E(i, j)|). ¤

Finally, by subdividing the output point sample into subsets of type E(i, j), with carefully
chosen i, we can bound the overall number of Delaunay edges created after iteration i0.

Theorem 5.7 The total number of Voronoi vertices created during the course of the algorithm is
O (N log N), where N = O

(

ε−2
)

= O
(

δ−1
)

is the size of the output point set. This bound holds
for the space complexity of the algorithm.

Proof We divide the output point set E into clusters. More precisely, i0 is defined as above,

and for any k ≥ 1, we define ik as the first iteration such that r(ik) ≤ r(ik−1)
8 . Let l be the

last iteration of the algorithm. We assume without loss of generality that l = iK , for some K.
We have E = E(i0) ∪

⋃

0≤k<K E(ik, ik+1). By Lemma 5.6, every cluster E(ik, ik+1) generates
|E(ik, ik+1)| log |E(ik, ik+1)| Delaunay edges. It follows that the overall number of Delaunay edges
created is at most:

|E(i0)|2 +
∑

0≤k<K |E(ik, ik+1)| log |E(ik, ik+1)|
≤ |E(i0)|2 +

∑

0≤k<K |E(ik, ik+1)| log |E|
≤ |E(i0)|2 + |E| log |E|

where |E(i0)| = O
(

Area(S) / ε2
0

)

, which depends only on S. The theorem follows, since the number
of Voronoi vertices is linear with respect to the number of Delaunay edges. ¤

Please note that the bound given in Theorem 5.7 holds only when the surface S is fixed and
the parameter ε goes to zero. As the analysis in the proof shows, the upper bound contains in fact
another additive term, N 2

0 = O
(

ε−4
0

)

, which corresponds to the size of the point sample at iteration
i0. This term, which is constant when the surface S is fixed, can be viewed as the minimum number
of points needed to guarantee the topology of the output of the algorithm. As for the O (N log N)
term, it dominates the other one only when N is large compared to N2

0/log N0, or equivalently, when
ε is small compared to ε2

0/
√

log 1/ε0. This remark holds for the other results of Section 5 as well.
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Time complexity

Lemma 5.8 The time complexity of the algorithm is

O
(

N log2 N
)

= O

(

ε−2 log2 1

ε

)

= O

(

1

δ
log2 1

δ

)

Proof Let T be the overall number of Delaunay tetrahedra created by the algorithm. According
to Theorem 5.7, we have T = O (N log N). We will show that the time complexity is O(T log T ).

- The cost of maintaining Del(E) is O(T ) since no point location is performed in our case.
- The cost of updating Delv|S(E) is also O(T ) since detect access stops each time it reaches an

active vertex and any vertex that becomes active remains so. Hence, the number of times a vertex
is visited is at most the total number of incident Voronoi edges created by the algorithm.

- Since a Voronoi edge is probed from its vertices, it contains at most two centers of balls of
Delv|S(E). Hence, the cost of maintaining the priority queue Q of bad balls of Delv|S(E) is O(T log T )
since the total number of centers of balls of Delv|S(E) inserted in Q (and then retrieved from it) is
at most twice the total number of Voronoi edges created during the process. ¤

5.2 Probing cost

The algorithm probes only along the Voronoi edges and from their vertices. Since every Voronoi
edge has two vertices, it is probed at most twice. Hence, the total number of probes is at most twice
the total number of Voronoi edges created during the process, which is O (N log N)= O

(

ε−2 log 1
ε

)

=
O
(

1
δ log 1

δ

)

, by Theorem 5.7.

5.3 Displacement cost

We bound the total number of Voronoi edges travelled by the probing device. During the update of
Delv|S(E), two types of displacements are performed (see Section 3.1): detection displacements are
performed inside the routine detect access to locate the intersection points with the surface S;
positioning displacements are performed during the update of Delv|S(E), when the probing device
is moved from one place of VG(E) to another, before issuing a new sequence of probes.

Lemma 5.9 The displacement cost of the algorithm is O
(

N2 log N
)

= O
(

ε−4 log 1
ε

)

= O
(

δ−2 log 1
δ

)

.

Proof The overall cost of the detection displacements has been analyzed in the proof of Lemma
5.8 and shown to be O (N log N).

In addition, according to Lemma 5.3, for every iteration i > i0, E(i) is a 2r(i)-sample of S,
with 2r(i) ≤ ε0. It is proved in [2] that, since 2r(i) < 0.1 rch(S), every Voronoi cell of Vor(E(i))
intersects S along a topological disk that divides the cell into two components: one lies in O, the
other lies in R

3 \ O. Therefore, if p(i) is the point inserted in E at iteration i, then, right after its
insertion, all the vertices of its Voronoi cell V(p(i)) that can be reached by the probing device will
be marked active during the first call to detect access. As a consequence, the algorithm has to
call detect access on only one vertex of V(p(i)) (or on its neighbor). Hence, at iteration i, two
paths only are followed by the probing device during the positioning displacements.

The lengths of these two paths are bounded by the overall number of Voronoi vertices created
before iteration i. This number is O (N log N), by Theorem 5.7. Hence, the overall cost of the
positioning displacements after iteration i0 is O (N.N log N). ¤
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The bound in Lemma 5.9 is almost tight, since on some input objects the displacement cost
of the algorithm is Ω

(

N2
)

. Figure 4 presents an example in the plane. The top image shows the
object O and the initial point sample Einit, both symmetric with respect to the origin (marked by
a point at the center of the object). The bottom image shows the point sample E and the balls
of Delv|S(E) at some stage of the course of the algorithm. Since at each iteration the algorithm
inserts the center of the largest ball of Del|S(E), it is easily seen that E remains symmetric (or
almost symmetric) with respect to the origin throughout the process. Hence, each time a point p
lying inside a cavity is inserted in E, the iteration before or after the algorithm inserts in E the
symmetric of p, which lies in the other cavity. Since the density of the output point sample is
uniform, the number of points inserted inside the cavities (and hence also the number of Voronoi
edges lying in the cavities) is linear with respect to N . Therefore, the overall number of Voronoi
edges travelled by the probing device is Ω

(

N2
)

.

Figure 4: A quadratic example.

6 Dealing with more than one connected component

Let S1, · · · , Sn be the connected components of S. We assume that these components are not
nested, which is no real loss of generality since, otherwise, the probing device would not be able to
probe all the components. Under this assumption, R

3\O is path-connected, and O has n connected
components exactly, O1, · · · ,On, such that Oi is bounded by Si, for all i. According to A1, for
every component Oi we are given a point oi ∈ Oi. We assume that ε < 0.05 εS .

To mesh the surface, we build a persistent facet on some component of S and we run the
algorithm. Upon termination, we are able to check which components of S have been meshed.
Therefore, we iterate the process, building a persistent facet on an unmeshed component and
running the algorithm again, until all the connected components of S are meshed. We will now
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review this procedure in details. The validity of the approach relies on several lemmas, whose
proofs have been added for completeness but can be skipped in a first reading.

6.1 Meshing one component of S

For the initialization, we choose some radom position p on ∂Ω and we probe towards o1. The
construction of a persistent facet (a, b, c) is done by the same means as in Section 3.2. Note
however that (a, b, c) may not lie on S1, since the latter may be hidden from p by another connected
component of S.

After this initialization step, we run the algorithm of Section 3. Upon termination, Theorem
2.1 holds with S replaced by the union U of the connected components of S that contain vertices
of Delv|S(E). We claim that U is not empty. Indeed, as a persistent facet, (a, b, c) remains in
Del|S(E) throughout the process, which implies that VG(E) ∩ S is not empty upon termination.
Since VG(E) is a connected graph, at least one point of VG(E)∩S can be reached from an infinite
Voronoi vertex by travelling along free Voronoi edges. Hence, Delv|S(E) has at least one facet6 and
U 6= ∅. Moreover,

Lemma 6.1 Delv|S(E) is equal to Del|S(E).

Proof By L3, any ball B of Delv|S(E) has a connected intersection with S, hence its center lies on
the same connected component of S as the vertices of the facet of Delv|S(E) circumscribed by B. It
follows that U is the only part of S that contains centers of balls of Delv|S(E). As a consequence,
Delv|S(E) is equal to Delv|U (E), the visible Delaunay triangulation of E restricted to U .

Since ε < 0.05 εS , E is a 0.1-sample of U , by Theorem 2.1. It follows that the Delaunay
triangulation of E restricted to U , Del|U (E), is homeomorphic to U , by Theorem 2 of [2]. Hence,
Delv|U (E) and Del|U (E) are equal, since they are homeomorphic and the former is a subcomplex of

the latter7.
To conclude the proof of the lemma, it suffices to prove that Del|U (E) = Del|S(E). Let us

assume the contrary. Then, VG(E) intersects S \ U . Let c be a point of VG(E) ∩ (S \ U). Since
VG(E) is a connected graph, there exists a connected path π inside VG(E) that goes from c to an
infinite Voronoi vertex v. Let w be the first Voronoi vertex of π.
- If π \ {c} does not intersect S, then w belongs to the same connected component of VG(E) \ S
as v. Hence, by P2, v and w have the same status, which is active since v is infinite. It follows
that c is the center of a ball of Delv|S(E), which means that Si belongs to U , which contradicts our
assumption.
- If π\{c} intersects S, then we can assume without loss of generality that π\{c} does not intersect
S \ U . Otherwise, it suffices to take for c the last point of S \ U on π. Let c′ be the first point of
S on π \ {c}. As assumed above, c′ belongs to U and is therefore the center of a ball of Del|U (E).
Moreover, since c ∈ S \U and since the connected components of S are not nested, the arc ]c, c′[ of
π lies outside the object O. Let e′ be the Voronoi edge that contains c′. Since E is a 0.1-sample of
U , e′ intersects S only at c′, by L2. Hence, one of its vertices belongs to O (and is thus inactive),
while its other vertex (say z) lies outside O (and hence belongs to the arc ]c, c′[ of π). Now, since
Delv|U (E) = Del|U (E), one of the vertices of e′ is active. This vertex must be z because the other

6See the proof of H2 (Section 4.3) for a similar argument.
7The same argument is invoked at the very end of Section 4.3.

19



vertex is in O. Therefore, one vertex of the arc ]c, c′[ of π is active, which by P2 implies that all
the vertices of the arc are active, and among them w. It follows that c is the center of a ball of
Delv|S(E), which means that c ∈ U , hereby contradicting our assumption. ¤

6.2 Meshing the other components of S

To mesh the other connected components of S, we must first determine which components have
been meshed so far. Let OU be the union of the components of O whose boundaries belong to U ,
and let Ov be the bounded open set of R

3 whose boundary is Delv|S(E). Since U has no nested

connected components, R
3 \ OU is path-connected. Moreover, since U and Delv|S(E) are ambient

isotopic, R
3 \ Ov is also path-connected.

Lemma 6.2 The Hausdorff distance betwen OU and Ov is at most ε.

Proof Let distH(A, B) stand for the Hausdorff distance between two sets A and B. We know
from Theorem 2.1 that distH(U, Delv|S(E)) ≤ ε. However, this fact alone does not imply that

distH(OU ,Ov) ≤ ε. Let Tε be the so-called tubular neighborhood of U of width ε, i.e. the set of the
points of R

3 whose distance to U is at most ε. We call U− the part of the boundary of Tε that lies
in OU , and U+ the other part of the boundary of Tε (which lies in R

3 \ OU ). It is a well-known
result of differential topology [24, Ch. 5] that U− and U+ are ambient isotopic to U . Let OU

− and
OU

+ be the bounded open sets of R
3 whose boundaries are respectively U− and U+. It is easily seen

that OU
− = OU \ Tε and OU

+ = OU ∪ Tε, which implies that distH(OU ,OU
−) and distH(OU ,OU

+) are
bounded by ε. We will show that the following relation holds, which will prove the lemma:

OU
− ⊆ Ov ⊆ OU

+ (1)

Let p ∈ R
3 \ OU

+. Since R
3 \ OU is path-connected and U+ is ambient isotopic to U , R

3 \ OU
+ is

path-connected, which implies that there is a path π from p to infinity that does not intersect OU
+.

Now, Delv|S(E) is included in the union of the balls of Delv|S(E), which is contained in Tε ⊆ OU
+.

Therefore, π does not intersect Delv|S(E) either, which means that p ∈ R
3 \ Ov because Ov is

bounded. Hence, R
3 \ OU

+ ⊆ R
3 \ Ov, or equivalently, Ov ⊆ OU

+, which proves the right-hand side
of (1).

Let now p be a point of OU
−. We build a path π(p) from p to infinity as follows:

• Let r be any ray issued from p. We call p− the first point of U− crossed by r.

• Let p̃ be the point of U closest to p−. Since p− stands on U− ⊂ Tε, p̃ is unique, and the
line (p−, p̃) is aligned with the normal of S at p̃. We call fiber of p̃, or simply Fib(p̃), the
segment of (p−, p̃) ∩ Tε that contains p̃. One endpoint of Fib(p̃) is p− and lies on U−, the
other endpoint (say p+) lies on U+.

• Since p+ ∈ U+, there is a path π+ ⊂ R
3 \ OU

+ that connects p+ to infinity.

• Finally, we define π(p) as follows:

π(p) = [p, p−[∪[p−, p+] ∪ π+
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Note first that [p, p−[ and π+ do not intersect Delv|S(E), since the latter is included in Tε while

[p, p−[ and π+ are not. As a result, p+ lies in R
3 \ Ov, while p and p− lie on the same side of

Delv|S(E) (either Ov or R
3 \Ov). Moreover, the proof of isotopy between U and Delv|S(E) provided

in [7] (which in fact refers to the proof given in [3]), states that every fiber of U intersects Delv|S(E)
exactly once, and then uses this fact to work out the isotopy. Therefore, [p−, p+] = Fib(p̃) intersects
Delv|S(E) in exactly one point p̂. We can assume without loss of generality that p̂ belongs to the
relative interior of a facet f of Delv|S(E), since it is always possible to move p− slightly so as to
ensure this property. The intersection of Fib(p̃) with f is then transversal, which means that p−

and p+ do not lie on the same side of Delv|S(E). Since p+ ∈ R
3 \ Ov, p− (and hence p) lies in Ov.

Since this is true for any point p ∈ OU
−, the left-hand side of (1) is proved. ¤

To see which components of S belong to U , we determine, for every Oi, whether oi satisfies any
of the following conditions:

C1 dist(oi, E) < εS

C2 oi ∈ Ov

Lemma 6.3 Si ⊆ U if, and only if, oi satisfies (C1) or (C2).

Proof Assume first that Si ⊆ U . Then, oi ∈ Oi ⊆ OU . If oi ∈ Ov, then (C2) is satisfied.
Otherwise, by Lemma 6.2, the distance from oi to ∂Ov = Delv|S(E) is at most ε. Let p ∈ Delv|S(E)
be a nearest neighbor of oi, and q ∈ E a nearest neighbor of p. Since the facets of Delv|S(E) have
circumradii of at most ε, dist(p, q) is bounded by ε, hence

dist(oi, E) ≤ dist(oi, q) ≤ dist(oi, p) + dist(p, q) ≤ 2ε < εS ,

which means that (C1) is satisfied.
Assume now conversely that Si does not belong to U . Then dist(oi,OU ) ≥ 2 εS , because

the components of O are farther than 2 rch(S) > 2 εS from one another. This implies that
dist(oi, E) ≥ 2 εS since E ⊂ U . Hence, (C1) is not satisfied. Moreover, by Lemma 6.2, we have

dist(oi,Ov) ≥ dist(oi,OU )− distH(OU ,Ov) ≥ 2 εS − ε > 0,

which means that oi does not belong to Ov, and thus that (C2) is not satisfied either. ¤

Thanks to Lemma 6.3, we know precisely which connected components of S have been meshed,
by checking which of the oi satisfy (C1) or (C2).

- Checking (C1) with oi reduces to finding the point of E that is closest to oi, which can be
performed by locating oi in Vor(E).

- Regarding (C2), we notice that every Delaunay tetrahedron lies either completely inside Ov

or completely outside Ov, since the facets of Delv|S(E) belong to the Delaunay triangulation.
Hence, it suffices to mark each tetrahedron as interior or exterior, and then to locate each oi

in Del(E).

As a consequence, (C1) and (C2) can be checked for all the oi in O(n log |E|+ T ) time, where n is
the number of connected components of S and T is the number of tetrahedra of Del(E).

Once we have determined which connected components of S remain to mesh, we want to create
a persistent facet (a′, b′, c′) on S \ U . This requires to be able to probe points of S \ U .
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Lemma 6.4 We can work out a point of R
3 \ O, reachable by the probing device, from which it is

possible to probe points of S \ U .

Proof As explained above, we know precisely which connected components of S belong to U .
Hence, we know an i such that Si ∩ U = ∅. Let p ∈ E be the point of E that is closest to oi. By
definition, the cell V(p) of p in Vor(E) contains oi. It follows that the cells V +(p) and V +(oi) in
Vor(E ∪ {oi}) have a non-empty intersection. Note that the edges of ∂V (p) do not intersect Si,
since otherwise Lemma 6.1 would imply that Si contains the center of a ball of Delv|S(E) and hence

belongs to U , which contradicts our assumption. Moreover, V +(oi) does not intersect U . Indeed,
for any point q of V +(oi), we have dist(q, E) ≥ 1

2 dist(oi, E), which is greater than εS because
E ⊂ U and oi ∈ S \ U . Now, E is a 2ε-sample of U , thus no point of U is farther than 2ε ≤ εS

from E, which means that q /∈ U .
We compute the edges and vertices of the boundary of V +(oi), and then we move the probing

device along the free edges of the boundary of V(p), starting from an active vertex (which exists
because p is incident to a facet of Delv|S(E)), until we reach a vertex of V +(oi).

It is proved in [2] that, since E is a 2ε-sample of U , with 2ε < 0.1 εS ≤ 0.1 rch(S), V(p)
intersects U along a topological disk that divides V(p) into two components: one lies in OU , the
other lies in R

3 \ OU . Since the edges of ∂V(p) do not intersect S \ U , we will eventually find a
vertex v of V +(oi) by following the free edges of ∂V(p).

Once the probing device is at v, we probe from v towards oi and find some point s ∈ S. Since
oi and v both lie in V +(oi), which is convex, the segment [v, oi] is included in V +(oi). Hence,
s ∈ V +(oi). Since V +(oi) does not intersect U , s ∈ S \U , which ends the proof of the lemma. ¤

Once we have built a persistent facet (a′, b′, c′) on S \U using the method of Section 3.2, we run
the algorithm with E ∪{a′, b′, c′} as input point sample. Upon termination, (a′, b′, c′) is still a facet
of Del|S(E), by Lemma 7.1 of [7]. Hence, the connected component of S that contains (a′, b′, c′)
belongs to U , by Lemma 6.1.

As explained at the beginning of Section 6, we iterate this process of creating persistent facets
on unmeshed components of S and running the algorithm again, until all the connected components
of S are meshed, which will eventually happen. At this stage, all the oi satisfy (C1) or (C2), thus
we know that we can stop. Observe that the algorithm is run at most n times, where n is the
number of connected components of S.

7 Implementation and results

We have implemented the algorithm using the cgal library [38] which provided us with robust and
flexible implementations of the Delaunay triangulation in 2D and in 3D. A video [6] is available
online, which describes the algorithm and demonstrates its practicality. Results on a planar curve
and on a surface are reported in Figures 5 and 6. In the electronic version of the paper, the active
part of the Voronoi graph is printed in blue, the inactive part in black, and the faces of Delv|S(E)
are shown in red or in green, depending on whether they are circumscribed by a good or a bad ball
of Delv|S(E). In the 2D example, the inactive part of the Voronoi graph is shown only in the first
image, for clarity.

Please note that the examples shown in the paper result from simulations on implicit surfaces,
and that the method has not yet been tested on a real physical system. As experimental results
show, our probing algorithm can be used as a surface mesher, provided that the oracle can be
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implemented – which is the case for implicit surfaces. Nevertheless, the algorithm is inherently less
efficient than its predecessor, due mainly to the displacement cost which does not exist in Chew’s
algorithm.

8 Conclusion

Many important questions are left open by this work, including:

• Can the number of probes be reduced to O(N), where N is the size of the output point
sample? As emphasized in [4], in the case where O is a set of pairwise disjoint convex sets,
the number of Voronoi vertices created outside O is linear with respect to N , hence the
number of probes is O(N).

• A trivial upper bound on the total Euclidean distance travelled by the probing device is
O(∆ N2 log N), where ∆ is the diameter of the compact convex set Ω containing S. However,
this bound is too coarse since most Voronoi edges are short (and close to the medial axis).
Can a tighter bound be worked out?

• What are the exact trade-offs between optimizing the combinatorial cost and the displacement
cost?

• Our algorithm is certified provided that the user-defined parameter ε is sufficiently small
compared to rch(S). One way to ensure this condition is to know a positive lower bound εS

on rch(S), and to choose ε less than a fraction of εS , as assumed in the paper. However,
such a lower bound is not readily available in all practical situations. Therefore, it would be
interesting to see if, using a stronger probe model, one can devise an algorithm that does not
rely on this assumption. The methods of [12, 30] might be good candidates.

• We have assumed a perfect probing device. How can we model uncertainty in the probes?
Some related results can be found in [19, 20].

• Can the approach be extended to piecewise smooth surfaces?

• In practice a physical scaffold has to be present around the object being sampled to support
the probing device. Can we show similar results for a probing device whose motions obey
realistic constraints?

• Can we extend the approach to more general manifolds in higher dimensions? In particular,
can we adapt our probe model so that it holds for higher codimensions? Can we avoid
computing the full dimensional Delaunay triangulation, whose cost becomes prohibitive?
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Figure 5: Course of the algorithm on a curve in R
2

Figure 6: Course of the algorithm on a surface in R
3
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