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ABSTRACT
In the last decade, a great deal of work has been devoted
to the elaboration of a sampling theory for smooth surfaces.
The goal was to ensure a good reconstruction of a given
surface S from a finite subset E of S. The sampling con-
ditions proposed so far offer guarantees provided that E is
sufficiently dense with respect to the local feature size of S,
which can be true only if S is smooth since the local feature
size vanishes at singular points.

In this paper, we introduce a new measurable quantity,
called the Lipschitz radius, which plays a role similar to that
of the local feature size in the smooth setting, but which is
well-defined and positive on a much larger class of shapes.
Specifically, it characterizes the class of Lipschitz surfaces,
which includes in particular all piecewise smooth surfaces
such that the normal deviation is not too large around sin-
gular points.

Our main result is that, if S is a Lipschitz surface and E
is a sample of S such that any point of S is at distance less
than a fraction of the Lipschitz radius of S, then we obtain
similar guarantees as in the smooth setting. More precisely,
we show that the Delaunay triangulation of E restricted to
S is a 2-manifold isotopic to S lying at bounded Hausdorff
distance from S, provided that its facets are not too skinny.

We further extend this result to the case of loose samples.
As an application, the Delaunay refinement algorithm we
proved correct for smooth surfaces works as well and comes
with similar guarantees when applied to Lipschitz surfaces.

Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Curve, surface, solid, and object representations

General Terms: Algorithms, Theory.

Keywords: Lipschitz surfaces, Lipschitz radius, local fea-
ture size, sampling conditions, surface meshing.

1. INTRODUCTION
In the last decade, a great deal of work has been devoted
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to the elaboration of a sampling theory for surfaces. This
research is motivated by the surface reconstruction prob-
lem which consists in constructing an approximation Ŝ of
a surface S given a finite sample of points E ⊂ S. A pre-
requisite to the design of provably correct algorithms is the
definition of sampling conditions E must satisfy. In their
seminal work, Amenta and Bern [1] introduced the concept
of ε-sample and gave the first provably correct algorithm for
reconstructing surfaces in R

3. A finite point set E ⊂ S is
an ε-sample of S if any point p ∈ S is at distance at most
ε lfs(p) from E, where lfs(p) denotes the local feature size
of S at p, i.e. the distance from p to the medial axis of
S. Since their paper, other algorithms have been proposed
which are valid for ε-samples with sufficiently small ε. More
recently, algorithms have been proposed to actually produce
such ε-samples and, at the same time, good approximations
of the underlying surface [5].

The main drawback of ε-samples is that they are only de-
fined for smooth surfaces since lfs vanishes at singular points.
It has been a major issue to sample, mesh and reconstruct
non-smooth surfaces. A step forward in this direction is the
work by Chazal and Lieutier [9] and the related work by
Cohen-Steiner, Edelsbrunner and Harer [12]. Given a sam-
ple E at Hausdorff distance ε from a non-necessarily smooth
surface S, they are able to extract from E some topological
invariants of S provided that ε is smaller than a quantity
called the weak feature size (wfs) of S. This nice result
however does not lead to a good PL approximation of S.

In this paper, we introduce a new measurable quantity,
called the Lipschitz radius, which plays a role similar to
that of lfs in the smooth setting, but turns out to be well-
defined and positive on a much larger class of shapes. Given
a surface S, the k-Lipschitz radius at a point p, or lrk(p), is
the radius of the largest ball B centered at p such that S∩B
is the graph of a k-Lipschitz bivariate function. The class
of surfaces with positive k-Lipschitz radius coincides with
the class of k-Lipschitz surfaces which has been extensively
studied in various contexts and includes, in particular, all
piecewise smooth surfaces with bounded normal deviation
around singular points (the bound depending on k).

Our main result is that, if S has a positive k-Lipschitz ra-
dius (for some small enough k) and E is a sample of S such
that any point p ∈ S is at distance less than a fraction of
lrk(p), then we obtain the same guarantees as in the smooth
setting. More precisely, we show that the Delaunay triangu-
lation of E restricted to S is a 2-manifold isotopic to S lying
at Hausdorff distance O(ε) from S, as soon as its facets are



not too skinny. We are also able to give tight bounds on the
size of such ε-samples.

We further extend our results to loose ε-samples. Loose
ε-samples have been introduced to analyze smooth surface
meshing algorithms [5]. While this notion is weaker than
the notion of ε-sample, we show that the previous results
still hold for loose ε-samples. As a straightforward appli-
cation, the Delaunay refinement algorithm we proved cor-
rect for smooth surfaces [5] works fine and offers the same
topological and geometric guarantees for Lipschitz surfaces.
Specifically, the output of the algorithm is a PL surface with
an optimal number of vertices that is isotopic to S, and lies
at Hausdorff distance O(ε) from S.

To the best of our knowledge, this is the first provably
correct algorithm for meshing non-smooth surfaces. We are
only aware of two related results. Dey, Li and Ray [13] have
considered the problem of remeshing a polygonal surface S
that approximates a smooth surface S̃. Although S̃ plays
no role in their algorithm, it is heavily used in the analy-
sis. Our Lipschitz condition on S turns out to have some
similarity with their (δ, µ)-flatness condition, and it is likely
that their algorithm can be analyzed using our framework,
without requiring the use of a smooth surface S̃. Another
result related to ours is due to Chazal, Cohen-Steiner and
Lieutier [6]. They consider the problem of constructing an
approximation of a shape S from a given sample E lying at
Hausdorff distance at most ε from S, for some sufficiently
small ε. Specifically, they exhibit an offset of E that is iso-
topic to S. Differently from this paper, they do not consider
the problem of actually constructing E and assume that E
satisfies a uniform sampling condition.

After the recall of several well-known concepts in Sec-
tion 2, we introduce the Lipschitz radius in Section 3. In
Section 4, we review the local properties of Lipschitz sur-
faces. Our main approximation results are presented in Sec-
tion 5, where we show that the restricted Delaunay trian-
gulation of an ε-sample of a Lipschitz surface S is a good
topological and geometric approximation of S, under some
mild assumptions. We address the case of loose ε-samples
in Section 6. Finally, we introduce our surface mesher and
its variants in Section 7.

2. BACKGROUND

2.1 Surfaces and differentiability

We call S a surface if it is a compact C0-continuous 2-
dimensional submanifold (without boundary) of R

3. This
means that, for any point p ∈ S, there exists an open neigh-
borhood N of p in R

3 that can be mapped to the unit open
ball B by some homeomorphism h, such that h(p) is the
origin o and h(N ∩ S) = B ∩ R

2 – see [3, §2.1.1]. The fact
that S is a surface implies that R

3 \ S is composed of two
disjoint open sets whose boundaries coincide with S: one of
these open sets, called O−, is bounded. The other, O+, is
unbounded. Note that O+ and O− may be non-connected.
Let O = O− ∪ O+ = R

3 \ S.
We say that S is smooth if it is C1,1, i.e. if it is C1-

continuous and its normal satisfies a Lipschitz condition.

2.2 Restricted Delaunay triangulation

Given a finite point set E, we call Vor(E) and Del(E)

respectively the Voronoi diagram and the Delaunay trian-
gulation of E. For any face f of Del(E), V(f) denotes the
Voronoi face dual to f .

Definition 2.1. The Delaunay triangulation of E restri-
cted to S, or Del|S(E) for short, is the subcomplex of Del(E)
made of the facets of Del(E) whose dual Voronoi edges in-
tersect S.

This definition follows [5] and departs from the usual no-
tion of restricted Delaunay triangulation, which includes all
the Delaunay faces whose dual Voronoi faces intersect the
surface.

A facet (resp. edge, vertex) of Del|S(E) is called a re-
stricted Delaunay facet (resp. restricted Delaunay edge, re-
stricted Delaunay vertex). For a restricted Delaunay facet
f , we call surface Delaunay ball of f any ball circumscribing
f centered at some point of S ∩V(f). Note that the centers
of the surface Delaunay balls are precisely the intersection
points of S with the 1-skeleton graph VG(E) of Vor(E).

Given a vertex v of Del|S(E), we call star of v and write
star(v) the union of all the facets of Del|S(E) incident to v.
Given a facet f of Del|S(E), we call star of f , or star(f) for
short, the union of the stars of the vertices of f , i.e. the
union of all the facets of Del|S(E) that share a vertex or an
edge with f (including f itself).

In the rest of the paper, when a facet f is oriented, we
call n(f) the direction of its normal.

3. SURFACES OF POSITIVE LIPSCHITZ
RADIUS

We will now define the class of surfaces that are dealt with
in the rest of the paper. In Section 3.1, we introduce a new
quantity, called Lipschitz radius, which serves as a local fea-
ture size for non-smooth surfaces. The class of surfaces with
positive Lipschitz radius coincides with the one of Lipschitz
surfaces, defined in Section 3.2. This class is a subset of
the objects with positive weak feature size (see Section 3.3),
which will allow us to use some of the properties of these
objects in our proofs.

3.1 Lipschitz radius

Definition 3.1. Given a surface S and a point p ∈ S,
the k-Lipschitz radius of S at p, or lrk(p) for short, is the
maximum radius r such that O−∩B(p, r) is the intersection
of B(p, r) with the hypograph of some k-Lipschitz bivariate
function f .

An illustration of this definition is given in Figure 1. Re-
call that the hypograph of a real-valued bivariate function
f is the set of points (x, y, z) ∈ R

3 such that z < f(x, y).

The function f is k-Lipschitz if ∀p, q ∈ R
2, |f(p)−f(q)|

‖p−q‖ ≤ k.

Observe that, since S is compact without boundary, S is
not the graph of any bivariate function. Therefore, lrk(p) is
finite, for any p ∈ S.

Lemma 3.2. lrk is 1-Lipschitz.

Proof. Let p, q be two points of S. By definition of
lrk(p), for any η > 0, O− ∩ B(p, lrk(p) + η) is not the
intersection of B(p, lrk(p) + η) with the hypograph of any
k-Lipschitz bivariate function. Now, B(p, lrk(p) + η) is con-
tained in the ball B(q, d(p, q) + lrk(p) + η). Thus, lrk(q) ≤
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Figure 1: The k-Lipschitz bivariate function f and

its associated oriented frame.

d(p, q) + lrk(p) + η. Since this is true for any η > 0, lrk(q)
is at most d(p, q) + lrk(p).

It follows from Lemma 3.2 that lrk is continuous over S.
Since S is compact, lrk reaches its minimum at some point
p ∈ S. We call this minimum the k-Lipschitz radius of S,
or simply lrk(S). Note that lrk(S) ≥ 0. The set of surfaces
with positive k-Lipschitz radius will be discussed in the next
section. Let us first give some examples (the proofs are
deferred to the full version of the paper). We write (n,n′)
for the modulus of the angle (measured in [−π, π]) between
two vectors n and n′.

Theorem 3.3.

(i) If S is a C1-continuous surface, then S has a pos-
itive k-Lipschitz radius, for any k > 0. If further-
more S is C1,1, then we have: ∀k > 0, lrk(S) ≥

arctan k
1+arctan k

rch(S), where rch(S) > 0 is the so-called
reach of S, defined as the infimum of lfs over S.

(ii) Let θ < π
2
. If S is an oriented polyhedron without

boundary, such that the normals n(f),n(f ′) of any
two non-disjoint facets f, f ′ of S satisfy (n(f),n(f ′)) ≤
θ, then S has a positive k-Lipschitz radius, for any k ≥

2 sin θ/2√
3−4 sin2 θ/2

. Moreover, given r > 0, if for all p ∈ S

there is some direction np such that any facet f of
S intersecting B(p, r) satisfies (n(f),np) ≤ arctan k,
then lrk(S) ≥ r.

Observe that the bound in (i) vanishes as k tends to zero.
This is coherent since S cannot be both 0-Lipschitz and
compact without boundary. Once k > 0 is fixed, (i) states
that lrk(S) cannot be too small compared to rch(S). In
contrast, lrk(S) can be arbitrarily large compared to rch(S),
even when S is C1,1. Take for instance a planar curve made
of two copies of the graph of x 7→ k sin x, joined by two
semi-circles, as illustrated in Figure 2 for k = 1.

The proof of (ii) extends easily to the case where S is
a piecewise smooth surface with bounded normal deviation
around singular points.

3.2 Lipschitz surfaces
The set of surfaces with positive k-Lipschitz radius turns

out to coincide with the set of k-Lipschitz surfaces, which
has been extensively studied in other contexts such as non-
smooth analysis [11, §7.3], elliptic PDE theory [17], or ge-
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Figure 2: Comparing lr1(S) with rch(S).

ometric measure theory [14, Ch. III]. Therefore, in Sec-
tions 3.3 and after, both terms will be used indifferently.

Definition 3.4. [11, §7.3]
Let S be a surface, and let O− be defined as in Section 2.1.
S is a k-Lipschitz surface if O− is locally the hypograph of
some k-Lipschitz bivariate function, i.e. for all p ∈ O−,
there exists an open neighborhood N (p) of p in R

3, an or-
thonormal frame (x, y, z) and a k-Lipschitz bivariate func-
tion f : (x, y) → R, such that O− ∩N (p) is the intersection
of the hypograph of f with N (p).

Theorem 3.5. A surface S is k-Lipschitz if and only if
its k-Lipschitz radius is positive.

Proof. It is clear that, if a surface S has a positive k-
Lipschitz radius, then for any p ∈ S we have lrk(p) > 0.
It follows that S satisfies the conditions of Definition 3.4 at
any p ∈ S, by definition of lrk(p). Hence, S is k-Lipschitz.

Conversely, if S is a k-Lipschitz surface, then by Defini-
tion 3.4, lrk(p) > 0 for any p ∈ S. Since lrk is continuous
(Lemma 3.2) and S is compact, there exists a point p ∈ S
such that lrk(S) = lrk(p), which is positive. Hence, S has a
positive k-Lipschitz radius.

A noticeable property of k-Lipschitz surfaces is that they
are differentiable everywhere except on a set of measure zero.
This fact follows easily from Rademacher’s theorem [14,
§3.1.6], and it implies in particular the following corollary,

where S̃ denotes the set of points where the surface S is
differentiable:

Corollary 3.6. If S is a k-Lipschitz surface, then S̃ is
dense in S, that is: ∀p ∈ S, ∀η > 0, S̃ ∩ B(p, η) 6= ∅.

Given p ∈ S̃, we call T (p) the tangent plane of S at p, and
n(p) the unit vector orthogonal to T (p) that points towards
O+ (defined as in Section 2.1). This vector is called the
normal of S at p.

Even though the normal of S is defined almost every-
where, making use of it in the proofs increases significantly
the technicality of the arguments. Indeed, given p ∈ S, one
cannot consider the normal of S at p, but at some point
q ∈ S̃ arbitrarily close to p, by virtue of Corollary 3.6.

Instead, at each point p of S we define a pseudo normal,
called k-Lipschitz normal or simply nk(p). It depends on
the constant k, and in the sequel it will play a role similar
to that of the normal in the smooth setting.



Definition 3.7. Given p ∈ S, the k-Lipschitz normal of
S at p, noted nk(p), is the z vector of an oriented orthonor-
mal frame (x, y, z) in which O− ∩ B(p, lrk(p)) is the inter-
section of B(p, lrk(p)) with the hypograph of a k-Lipschitz
function f(x, y). The k-Lipschitz support plane at p, noted
Tk(p), is the plane orthogonal to nk(p) that passes through
p.

Observe that (x,y, z) may not be the only frame in which
O−∩B(p, lrk(p)) is the hypograph of some k-Lipschitz func-
tion, thus nk(p) is not uniquely defined. However, the same
local and global properties hold whatever choice of frame
(x,y, z) we make. Therefore, at each point p ∈ S we choose
a valid nk(p) and we will stick to this choice for the rest of

the paper. Note that, if p ∈ S̃, then nk(p) may not coincide
with n(p), and n(p) may not even be a valid choice for nk(p):
in Figure 2 for instance, for all p ∈ S sufficiently close to the
vertical axis of symmetry, n1(p) is vertical whereas n(p) is
not in general.

Note also that, in frame (x,y, z), any vertical line l in-
tersects S ∩ B(p, lrk(p)) at most once, and every point of
l∩B(p, lrk(p)) lying above S∩B(p, lrk(p)) is located in O+,
while every point of l∩B(p, lrk(p)) lying below is located in
O−. Since the normals of S are oriented towards O+, this
means that, at every point of S̃ ∩B(p, lrk(p)), the normal of
S has a non-negative inner product with nk(p).

3.3 Weak feature size
Chazal and Lieutier [8] have introduced the notion of weak

feature size. It turns out that, when the surface S is k-
Lipschitz, its k-Lipschitz radius is related to the weak feature
size of O = R

3 \ S.
Let dS denote the distance function to S. In [16, §3.1], the

author derives from dS a vector field ∇ : O → R
3 defined

as follows:

∀p ∈ O, ∇(p) =
1

dS(p)
(p − c(p)), (1)

where c(p) is the center of the smallest ball B(c(p), r(p))
that contains all the points of S that are closest to p. The
following result, proved in [16, §5.1], will be useful:

∀p ∈ O, ‖∇(p)‖2 = 1 − r(p)2

dS(p)2
(2)

A point p ∈ O is a critical point of ∇ if ‖∇(p)‖ =
0. As emphasized in [8], p is critical if and only if it be-
longs to the convex hull of its nearest neighbors on S. We
call weak feature size of O, or simply wfs(O), the infimum
over S of the distance to the set Φ of critical points of ∇:
wfs(O) = min{d(p, q) | p ∈ S, q ∈ Φ}.

Theorem 3.8. If S is a k-Lipschitz surface, then O =
R

3 \ S has a positive weak feature size. More precisely,

∀p ∈ S, lrk(p) ≤ 2 d(p, Φ), (3)

which implies that lrk(S) ≤ 2 wfs(O).

The theorem is an easy corollary of the following technical
result, which controls the vector field ∇ in the vicinity of S:

Lemma 3.9. If S is a k-Lipschitz surface, then for any
p ∈ S and any q ∈ O ∩ B(p, 1

2
lrk(p)), we have ‖∇(q)‖ ≥

cos θ > 0, where θ = arctan k ∈ [0, π/2[. Furthermore,
if q ∈ O+, then (∇(q),nk(p)) ≤ θ
if q ∈ O−, then (∇(q),−nk(p)) ≤ θ

The proof uses the so-called Cocone Lemma 4.1, whose
statement and proof are deferred to Section 4.

Proof of Lemma 3.9. We assume without loss of general-
ity that q ∈ O+, the case q ∈ O− being symmetric. We call
q1, · · · , qk the nearest neighbors of q on S.

For all i, we have d(p, qi) ≤ d(p, q) + d(q, qi) ≤ 2d(p, q)
since p lies on S. Hence, qi belongs to B(p, lrk(p)). It follows
that S ∩ B(p, lrk(p)) lies outside the double cone K(qi) of
apex qi, of axis aligned with nk(p) and of half-angle π

2
− θ,

by the Cocone Lemma 4.1. Let K−(qi) be the cone of K(qi)
such that K−(qi) ∩ B(p, lrk(p)) \ {q} lies in O−. Let q′ be
a point of K−(qi) ∩ B(p, lrk(p)) closest to q. We claim that
q′ = qi. Indeed, if not, then q lies in O+ whereas q′ is
in O−, thus the open segment ]q, q′[ intersects S. For any
q′′ ∈ S∩]q, q′[, we then have d(q, q′′) < d(q, q′) ≤ d(q, qi),
which contradicts the fact that qi is a nearest neighbor of q
on S. Hence, q′ = qi, which means that qi is the point of
K−(qi) ∩ B(p, lrk(p)) closest to q. It follows that q belongs
to the cone of apex qi, of axis nk(p) and of half-angle θ.
Equivalently (recall that q 6= qi since q /∈ S),

(q − qi, nk(p)) ≤ θ (4)

Now, since c(q) is the center of the smallest ball containing
the qi, c(q) lies in the convex hull of the qi. Hence, (q−c(q))·
nk(p) is a convex combination of the (q− qi) ·nk(p), which
are all at least dS(q) cos θ, by (4). Using (1), we get

‖∇(q)‖ =
‖q − c(q)‖

dS(q)
≥ (q − c(q)) · nk(p)

dS(q)
≥ cos θ

Moreover, Eq. (4) also implies that the qi lie in the cone
of apex q, of axis aligned with −nk(p) and of half-angle θ.
Since this cone is convex, it contains c(q), which is a convex
combination of the qi. Hence, (∇(q),nk(p)) ≤ θ, which ends
the proof of the lemma.

4. LOCAL PROPERTIES OF LIPSCHITZ
SURFACES

Like lfs in the smooth case, lrk allows to predict the local
behaviour of a k-Lipschitz surface. From one fundamental
lemma (namely, the Cocone Lemma 4.1), it is possible to
work out several local properties of Lipschitz surfaces that
are similar to those already known in the smooth setting.
The arguments in the proofs of Sections 5 and 6 are built
on top of these properties.

Let S be a k-Lipschitz surface, for some fixed k. For
convenience, we define θ = arctan k ∈ [0, π/2[. The following
local properties hold in a neighborhood Dp = S∩B(p, lrk(p))
of a point p of S.

Lemma 4.1 (Cocone).
With the above notations, for any q ∈ Dp, Dp lies outside
the double cone of apex q, of axis aligned with nk(p) and

of half-angle π
2
− θ. Moreover, if q ∈ S̃, then the angle

(n(q),nk(p)) is at most θ.

Proof. Given q, q′ ∈ Dp, we call q̄ and q̄′ their orthog-
onal projections onto Tk(p). Since Dp is the graph of a k-
Lipschitz bivariate function f defined over Tk(p), the angle
α between line (q, q′) and plane Tk(p) is given by:

tan α =
|f(q̄) − f(q̄′)|

d(q̄, q̄′)
≤ k = tan θ (5)



Hence, we have α ≤ θ, which means that q′ lies outside the
double cone of apex q, of axis aligned with nk(p) and of
half-angle π

2
− θ.

Let us now assume that q ∈ S̃. Eq. (5) holds for any
q′ ∈ Dp \ {q}. In particular, as q′ approaches q, the angle
between line (q, q′) and Tk(p) remains bounded by θ. As
a consequence, the angle between the tangent plane T (q)
and Tk(p) is at most θ. Since nk(p) is oriented such that
nk(p) ·n(q) ≥ 0 (see Section 3.2), we get: (n(q),nk(p)) ≤ θ,
which concludes the proof of the lemma.

The next result is an equivalent of Lemma 7 of [1] in the
Lipschitz setting.

Lemma 4.2 (Triangle Normal).
With the above notations, for any triangle f = (u, v, w) such
that u, v, w ∈ Dp, the angle α between nk(p) and the line
orthogonal to the plane aff(u, v, w) satisfies sin α ≤ 2% sin θ,
where % is the radius-edge ratio1 of f . If % ≤ 1

2 sin θ
, then

α ≤ arcsin (2% sin θ).

Proof. Since the radius-edge ratio of f is %, then it is
well-known that the smaller inner angle of f is β = arcsin 1

2%
.

Consider any vertex of f , say u. By the Cocone Lemma 4.1,
v and w lie outside the double cone K(u) of apex u, of axis
aligned with nk(p) and of half-angle π

2
−θ. Since aff(u, v, w)

passes through the apex of K(u), it intersects K(u) either
along a single point, or along a single line, or along a double
wedge. If K(u)∩aff(u, v, w) is a single point or a single line,
then α ≤ θ, which implies that sin α < 2% sin θ, since the
radius-edge ratio of a triangle is always at least 1/

√
3, this

lower bound being achieved when the triangle is equilateral.
If K(u) ∩ aff(u, v, w) is a double wedge K ′(u), then the

half-angle θ′ of this double wedge depends on α and θ. We
endow R

3 with an oriented orthonormal frame (u,x,y, z),
such that z = nk(p) and the line of intersection between
aff(u, v, w) and the xy-plane is aligned with the y-axis. In
this frame, the equation of the boundary of K(u) is z2 =
tan2 θ (x2 + y2), and the equation of aff(u, v, w) is z =
x tan α. Thus, inside aff(u, v, w) (which we endow with an
oriented orthonormal frame (u,x’,y)), the equation of the

boundary of K ′(u) is y = ± 1
sin θ

p

sin2 α − sin2 θ x′. Hence,
the half-angle of K ′(u) is

θ′ = arctan

„

1

sin θ

p

sin2 α − sin2 θ

«

. (6)

Since v and w lie outside K(u), inside aff(u, v, w) they do
not belong to K ′(u). Moreover, since we took u as being any
vertex of f , we can now assume without loss of generality
that the x′-coordinates of v and w have different signs, which
implies that v and w do not belong to the same wedge of
aff(u, v, w) \ K ′(u). Then, the inner angle û of f is at least
2θ′. Since all the angles of the triangle are at least β, we
have û ≤ π − 2β, which implies that θ′ ≤ π

2
− β. This

yields sin α ≤ sin θ
sin β

, by (6). The lemma follows, since β =

arcsin 1
2%

.

Observe that it is necessary to bound % in order to control
the normal of f . Figure 3 shows a counter-example, where
% is too big for the normal of f to be controlled.

The last result of the section is an equivalent of Lemma 3
of [1] in the Lipschitz setting.
1which is the ratio between the circumradius of f and the
length of its shortest edge.
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Figure 3: Controlling the normal of a triangle.

Lemma 4.3 (Normal Variation).
∀p, q ∈ S s.t. d(p, q) < lrk(p), (nk(p),nk(q)) ≤ 2θ.

Proof. Let r = lrk(p) − d(p, q) > 0. By Corollary 3.6,

there exists some point q′ ∈ S̃ lying in B(q, r). By the
triangle inequality, q′ is located in B(p, lrk(p)). Moreover,
we have r ≤ lrk(q) since lrk is 1-Lipschitz (Lemma 3.2),
hence q′ also lies in B(q, lrk(q)). It follows by the Cocone
Lemma 4.1 that (nk(p),n(q′)) and (n(q′),nk(q)) are both
at most θ, which implies that (nk(p),nk(q)) ≤ 2θ.

The bound of 2θ in the above lemma is tight. For an
example with k = 1, take a square in the plane. Let m be the
midpoint of an edge e of the square. Then, for any two points
p, q ∈ e \ {m} arbitrarily close to m but on different sides of
m, n1(p) and n1(q) make angles of π/4 with n(m), but they
are oriented such that (n1(p),n1(q)) = π/2. Extending this
example to any positive value of k is straightforward.

5. ε-SAMPLES

Definition 5.1. Let S be a surface and ε be a positive
function defined over S. A finite point set E ⊂ S is an
ε-sample of S if: ∀p ∈ S, E ∩ B(p, ε(p)) 6= ∅.

This definition is the same as the one introduced in [1]
and used in all subsequent papers on certified surface mesh-
ing or reconstruction. The only difference is that theoretical
guarantees can be provided for ε less than a fraction of lrk in-
stead of a fraction of lfs. This makes our results meaningful
for all k-Lipschitz surfaces, and not only for C1,1 surfaces.

In this abstract, we take a uniform ε less than a fraction of
lrk(S), for simplicity. This is no real loss of generality since
ε is only an upper bound on the local density of the point
sample. Using the fact that lrk is 1-Lipschitz (Lemma 3.2), it
is possible to extend our proofs to the case of a non-uniform
upper bound2, at the cost of additional technical detail we
defer to the full version of the paper.

Throughout Section 5, S is a k-Lipschitz surface and E is
an ε-sample of S. Since S is fixed, k and θ = arctan k are
fixed constants. We assume the following:

H1 E is an ε-sample of S, with ε < 1
7

lrk(S);
H2 The facets of Del|S(E) have radius-edge ratios of at

most %, where % < cos(2θ)
2 sin θ

.

H1 imposes that E be dense with respect to lrk(S). H2 im-
poses that the restricted Delaunay facets of E be not too
skinny. Once the surface S (and hence the angle θ) is fixed,
H2 gives an upper bound on %. This assumption is manda-
tory to control the normals of the facets of Del|S(E), as

2The upper bound must then be at most a fraction of
min{wfs(S), lrk}, for our proof of isotopy (Thm. 5.5) to hold.



illustrated in Figure 3. It could be replaced by the following
sparseness condition: the points of E are pairwise farther
than hε, where h is a constant that does not depend on ε.
This condition is more restrictive than H2 since it forces the
points of E to be uniformly sampled along S.

If the surface S has a positive reach, then it is k-Lipschitz
for any k > 0 by Theorem 3.3 (i). Given a fixed k > 0, H1
gives a looser condition on the sampling density than the
one usually imposed through the local feature size (recall
that lrk(S) can be arbitrarily large compared to rch(S)).
Meanwhile, H2 gives an additional structural condition for
our guarantees to hold.

For any facet f of Del|S(E), we call Bf the surface De-
launay ball of smallest radius that circumscribes f . Let cf

and rf denote respectively the center and radius of Bf . We
set Df = S ∩ Bf .

Orientation convention 5.2. Each facet f of Del|S(E)
is oriented such that n(f) · nk(p) ≥ 0 for all points p of
S ∩ B(cf , lrk(S)).

The existence of such an orientation follows from H1, H2,
and Lemmas 4.2 and 4.3. Note that it is not necessary to
orient all the facets of Del(E), because only the facets of
Del|S(E) will play a role in the sequel.

We will now prove our main result, namely that, under
H1–H2, Del|S(E) is a compact surface without boundary
(Section 5.1), at Hausdorff distance ε from S (Section 5.2)
and isotopic to S (Section 5.3). Our proofs hold only for
small enough θ (and hence small enough k). Indeed, for H2

to be satisfiable by some %, cos(2θ)
2 sin θ

must be greater than 1/
√

3

(smallest possible radius-edge ratio of a triangle), which im-

plies that θ < arcsin
√

7−1

2
√

3
≈ 28.4 deg. In the case where S is

a piecewise smooth surface, Theorem 3.3 (ii) states that the
normal deviation around the singluar points of S must be
less than 48.6 deg for θ to be sufficiently small. This bound
on the normal deviation is somewhat pessimistic, since our
experimental results [18, §6.4] show that ε-samples of piece-
wise smooth surfaces yield good topological and geometric
approximations for normal deviations up to π

2
.

5.1 Manifold

Theorem 5.3. Let S be a k-Lipschitz surface and E ⊂ S
be a finite point set. If E satisfies H1–H2, then Del|S(E)
is a compact surface without boundary, consistently oriented
by the Orientation Convention 5.2.

Our proof of the above result is the same as in the smooth
setting. It uses the fact that two adjacent facets of Del|S(E)
cannot overlap when we project them onto the k-Lipschitz
support plane of any of their common vertices. We first
show that every edge of Del|S(E) is incident to exactly two
facets of Del|S(E). Then, we show that the star of any ver-
tex of Del|S(E) is a simple polygon. These two properties
imply that Del|S(E) is a 2-manifold without boundary, be-
cause the relative interiors of the faces of Del|S(E) are pair-
wise disjoint due to the fact that Del|S(E) is an embedded
simplicial complex. Finally, we prove that the Orientation
Convention 5.2 induces a valid orientation of Del|S(E).

The technical details of the proof can be found in [18,
§1.2.1]. They differ slightly from the smooth setting, due
essentially to the fact that the normal is replaced by the
k-Lipschitz normal.

5.2 Hausdorff distance

Theorem 5.4. Let S be a k-Lipschitz surface and E ⊂ S
be a finite point set. If E is an ε-sample of S, then the
Hausdorff distance between Del|S(E) and S is at most ε.

Proof. First, no point of S is farther than ε from E,
since the latter is an ε-sample of S. Second, every facet of
Del|S(E) is circumscribed by some surface Delaunay ball,
whose radius is at most ε because E is an ε-sample. Hence,
no point of Del|S(E) is farther than ε from S.

Differently from the smooth setting [5], the upper bound
on the Hausdorff distance is of the order of ε and not ε2.
The reason is that, when S is smooth, it is locally squeezed
between two tangent medial balls, yielding an order of ε2

approximation. In the Lipschitz setting, these balls are re-
placed by tangent cones, which yield only an order of ε ap-
proximation.

5.3 Isotopy

Theorem 5.5. Let S be a k-Lipschitz surface and E ⊂ S
be a finite point set. If E satisfies H1–H2, then Del|S(E) is
isotopic to S.

To prove Theorem 5.5, we use the following result3, stated
as Theorem 6.2 in [7]:

Theorem 5.6. [7, Thm. 6.2]

Let O and Ô be two open subsets of R
3 of positive weak

feature size, whose boundaries ∂O and ∂Ô are compact em-
bedded surfaces. If the Hausdorff distance between R

3 \ O
and R

3 \ Ô is less than 1
2

min{wfs(O), wfs(Ô)}, then ∂O
and ∂Ô are isotopic.

In our context, we set O = R
3 \S and Ô = R

3 \Del|S(E).
All we have to do is to show that the Hausdorff distance
between Del|S(E) and S is less than 1

2
wfs(O) and less than

1
2

wfs(Ô), and then to apply Theorem 5.6. Since, by Theo-
rem 5.4, the Hausdorff distance between S and Del|S(E) is
at most ε, we simply need to prove the two following lem-
mas:

Lemma 5.7. ε is less than half the weak feature size of O.

Proof. By H1, we have ε < 1
7

lrk(S), which is at most
2
7

wfs(O) < 1
2

wfs(O) by Theorem 3.8.

Lemma 5.8. ε is less than half the weak feature size of Ô.

Proof. Let p be a point of Del|S(E) and let f be a facet
of Del|S(E) that contains p. By H1, the surface Delaunay
ball B(cf , rf ) of f has a radius rf ≤ ε. Let f ′ be a facet
of Del|S(E) that intersects B(p, lrk(S) − 3ε). By H1, f ′ is
circumscribed by a surface Delaunay ball of radius at most
ε, included in B(p, lrk(S) − ε) and hence in B(cf , lrk(S)).
Moreover, the radius-edge ratio of f ′ is bounded by %, by

3Note that the original theorem [7, Thm. 6.2] requires that

the open sets O and Ô be bounded. However, since ∂O and

∂Ô are compact, it is possible to bound O and Ô with a

sufficiently large sphere Σ while keeping wfs(O) and wfs(Ô)

unchanged. Then, by [7, Thm. 6.2], Σ∪ ∂O and Σ∪ ∂Ô are

isotopic, which means that ∂O and ∂Ô are also isotopic.



H2. Therefore, by the Triangle Normal Lemma 4.2 and
the Orientation Convention 5.2, we have (n(f ′),nk(cf )) <
arcsin(2% sin θ).

Since this is true for all p ∈ Del|S(E) and all facet f ′ of
Del|S(E) intersecting B(p, lrk(S) − 3ε), and since Del|S(E)
is a polyhedron without boundary (Theorem 5.3), Theo-
rem 3.3 (ii) states that lrk′(Del|S(E)) ≥ lrk(S) − 3ε, where

k′ = tan (arcsin(2% sin θ)). By Theorem 3.8, wfs(Ô) is at
least 1

2
lrk′(Del|S(E)) ≥ 1

2
(lrk(S) − 3ε), which is greater

than 2ε since ε < 1
7

lrk(S), by H1.

6. LOOSE ε-SAMPLES
The notion of loose ε-sample was first introduced in [5].

Let VG(E) denote the 1-skeleton graph of Vor(E).

Definition 6.1. Given a surface S and a positive func-
tion ε defined over S, a finite point set E ⊂ S is a loose
ε-sample of S if:

1. ∀p ∈ S ∩ VG(E), E ∩ B(p, ε(p)) 6= ∅,
2. Del|S(E) has vertices on all the connected components

of S.

Here again, we consider the specific case of a uniform ε,
which is no real loss of generality since ε is only an upper
bound on the local density of the point sample – see the
discussion at the beginning of Section 5. Since the centers
of the surface Delaunay balls are precisely the intersection
points of S with VG(E), Condition 1 of Definition 6.1 is sat-
isfied if and only if every surface Delaunay ball B(c, r) has
a radius r ≤ ε. Observe that Condition 1 alone is not suf-
ficient to control the density of E since, without Condition
2, VG(E) may be empty – see [5, Fig. 1] for an example.

The proofs of Section 5 (except for the Hausdorff distance)
do not make use of the full power of ε-samples and hold the
same for loose ε-samples. To bound the Hausdorff distance,
we need an additional condition on E:

H2bis The constants % and θ in H2 also satisfy % <
sin( π

3
−θ)

2 sin θ
.

Observe that
sin( π

3
−θ)

2 sin θ
must be greater than 1/

√
3 (small-

est possible radius-edge ratio of a triangle) for H2bis to be
satisfiable by some %. This means that θ < arctan 3

4+
√

3
≈

27.6 deg. For such values of θ, H2bis implies H2. As a con-
sequence, only H2bis will be needed in the sequel.

Theorem 6.2. If E is a loose ε-sample of a k-Lipschitz
surface S, such that ε < 1

7
lrk(S) and H2bis is satisfied, then

the Hausdorff distance between Del|S(E) and S is at most
ε

cos2 θ
, where θ = arctan k.

Before proving the theorem, we state a useful corollary
which relates the notions of ε-sample and loose ε-sample,
like in the smooth setting [5]:

Corollary 6.3. If E is a loose ε-sample of a k-Lipschitz
surface S, such that ε < 1

7
lrk(S) and H2bis is satisfied, then

E is an ε
q

1 + 1
cos4 θ

-sample of S, where θ = arctan k.

As a consequence, if E is a loose ε-sample of S satisfying
H2bis, for some sufficiently small ε, then Del|S(E) has all
the nice properties stated in Section 5.

Proof of the corollary. Let p be a point of S and p′ a
point of Del|S(E) closest to p. By Theorem 6.2, d(p, p′) is

at most ε
cos2 θ

. If p′ is a vertex of Del|S(E), then p′ ∈ E and
the result is proved. Else, let f be a facet of Del|S(E) that
contains p′, and let v 6= p′ be a vertex of f closest to p′. The
distance d(p′, v) is at most the circumradius of f , which is
bounded by ε since E is a loose ε-sample. If p′ belongs to an
edge of f , then the lines (p, p′) and (p′, v) are perpendicular.
Otherwise, p′ belongs to the relative interior of f , and the
line (p, p′) is perpendicular to the plane aff(f) and hence
also to the line (p′, v). In both cases, we have: d(p, E) ≤
d(p, v) =

p

d(p, p′)2 + d(p′, v)2 ≤
q

ε2

cos4 θ
+ ε2.

The rest of Section 6 is devoted to the proof of Theo-
rem 6.2, which holds in a more general setting:

Proposition 6.4. Let S be a k-Lipschitz surface and Ŝ
be a closed and oriented triangulated surface with finitely
many triangles, such that:

(a) the vertices of Ŝ belong to S,

(b) Ŝ has vertices on all the connected components of S,

(c) the circumradii of the facets of Ŝ are at most ε, where
ε < 1

7
lrk(S),

(d) for all facet f of Ŝ and all vertex v of star(f), the angle
(n(f),nk(v)) is less than π

3
− θ, where θ = arctan k.

Then, the Hausdorff distance between S and Ŝ is at most
ε

cos2 θ
, where θ = arctan k.

This result can be viewed as an equivalent of [2, Thm 19]
in the Lipschitz setting. Like its predecessor, it is well-suited
for surface reconstruction since Ŝ is not assumed to be a
subset of the Delaunay triangulation of its vertices.

It easily follows from Definition 6.1 and Lemma 4.2 that,
if S and E satisfy the hypotheses of Theorem 6.2, then S
and Del|S(E) satisfy those of Proposition 6.4. This reduces
the proof of the theorem to that of the proposition.

Let Tε =
˘

q ∈ R
3 | d(q, S) < ε

¯

be the tubular neighbor-
hood of width ε around S. From hypotheses (a) and (c) we

deduce that Ŝ ⊆ T̄ε. In fact, if a point c ∈ Ŝ is such that
dS(c) = ε, then c must be the circumcenter of any facet

f ∈ Ŝ it belongs to, by hypothesis (c). The vertices of f
are then nearest neighbors of c on S, and since c ∈ f , c
lies in the convex hull of its nearest neighbors, which means
that c ∈ Φ, hereby contradicting Theorem 3.8. Therefore,
Ŝ ⊆ Tε, and the semi-Hausdorff distance from Ŝ to S is less
than ε.

Our strategy for bounding the semi-Hausdorff distance
from S to Ŝ consists in pushing the points of S along some
continuous flow towards Ŝ, and showing that every point of
Ŝ is eventually reached by some point of S. The drawback of
the flow along the normals of S, as defined in [15] and used
in the smooth setting, is that it is not defined on the medial
axis of S, which, in the present case, may intersect Tε for
any positive value of ε, since S is not assumed to be smooth.
Therefore, this flow is not well defined over Tε and cannot
be used in our context. This is why in Section 6.1 we define
a new flow φ that was first introduced by Lieutier [16]. This
flow has the advantage of being well-defined and continuous
over Tε \ S. However, φ is not defined over S. Therefore,
our proof of Proposition 6.4 proceeds in three steps:

– in Section 6.2, we consider the set I of points of O =
R

3 \ S whose flow lines intersect Ŝ. We prove that I
is a union of connected components of R

3 \ (S∪ Ŝ), as
illustrated in Figure 4.
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– in Section 6.3, we consider the sets S ∩ ∂I and S ∩ Ŝ,
and we prove that their union covers S. As a con-
sequence, every point p ∈ S belongs either to Ŝ or
to ∂I. In the latter case, one can find a point of O
arbitrarily close to p whose flow line intersects Ŝ.

– using this last observation, we can conclude the proof
of the proposition in Section 6.4, by bounding the
distance travelled along a flow line before reaching Ŝ.

6.1 The flow
For any d > 0, we call Od the subset of O made of the

points that are farther than d from S. We have: Od = O\T̄d,
where Td is the tubular neighborhood of S of width d.

It is proved in [16] that Euler schemes, using the vector
field ∇ defined in Section 3.3, converge uniformly towards
a continuous flow φ : R

+ ×O → O that satisfies:

∀t ∈ R
+, ∀p ∈ O, φ(t, p) = p +

Z t

t′=0

∇(φ(t′, p)) dt′ (7)

Intuitively, the real variable t stands for the time, while the
other variable is the position in space. It follows from Eq. (7)
that the stationary points of φ (i.e. the points p ∈ O such
that φ(t, p) = p ∀t ∈ R

+) are the critical points of ∇, i.e.
the points of Φ.

For any p ∈ O, we call flow line of p and note Λ(p), the
trajectory of p along φ:

Λ(p) = φ(R+, p) = {φ(t, p) | t ≥ 0}
The flow φ enjoys several properties, including:

F1. [16, Lemma 4.12]
For any p ∈ O \Φ, the distance to S increases strictly along
Λ(p), that is, the map t 7→ dS(φ(t, p)) is strictly increasing.
Moreover, ∀p ∈ O, ∀t ∈ R

+,

dS(φ(t, p)) = dS(p) +

Z t

t′=0

‖∇(φ(t′, p))‖2 dt′ (8)

F2. [16, Lemma 4.13]
For any p ∈ O, the map t 7→ φ(t, p) is 1-Lipschitz. More-
over, ∀d > 0, ∀t ≥ 0, ∀p, q ∈ Od,

d(φ(t, p), φ(t, q)) ≤ et/d d(p, q) (9)

The fact that φ is continuous implies that Λ(p) is a con-
nected arc, for any p ∈ O. If p ∈ Φ, then Λ(p) is reduced to a
point. Otherwise, by F1, the distance to S increases strictly
along Λ(p), thus Λ(p) does not self-intersect. It follows also
from F1 that, if p ∈ Tε \S, then Λ(p) cannot leave and then
re-enter Tε. Therefore, Λ(p) ∩ Tε is a simple arc. If p /∈ Tε,
then Λ(p) ∩ Tε is empty. The next result bounds the time
spent before a point moving along a flow line leaves Tε:

Lemma 6.5.

(i) ∀p ∈ Tε \ S, ∀t ≥ ε−dS(p)

cos2 θ
, φ(t, p) /∈ Tε

(ii) ∀p ∈ O \ Tε, ∀t ≥ 0, φ(t, p) /∈ Tε

Proof. Given p ∈ Tε \ S and t ∈ R
+ such that φ(t, p) ∈

Tε, we know by F1 that φ(t′, p) belongs to Tε for any t′ ∈
[0, t]. Since by hypothesis (c) we have ε < 1

7
lrk(S) <

1
2

lrk(S), Lemma 3.9 and Eq. (8) imply that dS(φ(t, p)) ≥
dS(p)+t cos2 θ. Hence, the time tε at which dS(φ(tε, p)) = ε

is at most ε−dS(p)

cos2 θ
. This means that φ(t, p) /∈ Tε for all

t ≥ ε−dS(p)

cos2 θ
, hereby proving the lemma for p ∈ Tε \ S.

Given p ∈ O \ Tε, F1 states that ∀t ∈ R
+, dS(φ(t, p)) ≥

dS(p) ≥ ε. Hence, φ(t, p) /∈ Tε, which proves the lemma for
p ∈ O \ Tε.

6.2 Flow lines intersecting Ŝ

We define I as the set of points of O whose flow lines
intersect Ŝ. For convenience, we exclude the points of Ŝ
from I:

I = {p ∈ O \ Ŝ | Λ(p) ∩ Ŝ 6= ∅}
Our aim is to prove that I is a union of connected compo-
nents of O\Ŝ, as illustrated in Figure 4. Since I ⊆ O\Ŝ, this
comes down to proving that the boundary of I is included
in S ∪ Ŝ.

Recall that Ŝ is included in Tε. It follows that I is also
included in Tε, by Lemma 6.5 (ii). We first show that the

boundary of I lies in S ∪ Ŝ ∪ ∂Tε:

Lemma 6.6. For any p ∈ I, there exists a positive value
r(p), vanishing only as p approaches S or Ŝ or ∂Tε, such

that B(p, r(p)) ⊆ I. As a consequence, ∂I ⊆ S ∪ Ŝ ∪ ∂Tε.

Proof. Three major steps of the proof are stated as
Claims 6.6.1, 6.6.2 and 6.6.3. Their proofs use hypothesis
(d) and are skipped in this abstract.

Let p ∈ I. Since p /∈ S, dS(p) is positive. By F2, the

restriction of φ to
h

0, ε−dS(p)/2

cos2 θ

i

×OdS(p)/2 is 1-Lipschitz as

a function of time, and κ-Lipschitz as a function of space,

where κ = exp
“

2ε−dS(p)

dS(p) cos2 θ

”

. Since I ⊂ Tε, we have dS(p) <

ε, which implies that κ > 1/cos2 θ ≥ 1.

The function q 7→ d(q, ∂Tε) is continuous over Ŝ, thus it

reaches its minimum δ since Ŝ is compact. This minimum
is positive because Ŝ ⊂ Tε. In addition, for any facet f of Ŝ,
the function q 7→ d(q, Ŝ \ star(f)) is positive and continuous
over f , hence its minimum m(f) over f is positive. Let

m = min{m(f), f ∈ Ŝ}. This quantity is positive since the

(finitely many) m(f) are. For any point q ∈ Ŝ and any facet

f containing q, the distance of q to Ŝ \ star(f) is at least m.
We set r(p) as follows:

r(p) = min



dS(p)

2κ
, ε − dS(p),

1

3κ
d(p, Ŝ),

δ

2κ
,

m

2κ

ff

(10)



Observe that r(p) vanishes only if dS(p) → 0 (p approaches

S), or if (ε−dS(p)) → 0 (p approaches ∂Tε), or if d(p, Ŝ) → 0

(p approaches Ŝ). We will prove that the open ball B(p, r(p))
is included in I.

Let q ∈ B(p, r(p)). Since r(p) ≤ ε−dS(p), q belongs to Tε.

Moreover, we have r(p) < min{dS(p), d(p, Ŝ)} since κ > 1.

Thus, q /∈ S ∪ Ŝ. Let us prove that Λ(q) intersects Ŝ.

Since p ∈ I, Λ(p) intersects Ŝ. Let p′ ∈ Λ(p) ∩ Ŝ. We

have p′ 6= p since p /∈ Ŝ. Let d′ be defined by

d′ = min

(

dS(p)

2
,

d(p, Ŝ)

3
,

δ

2
,

m

2

)

We call B1
p′ and B2

p′ the open balls centered at p′, of radii

d′ and 2d′ respectively. Remark that 2d′ ≤ 2
3

d(p, Ŝ) ≤
2
3

d(p, p′). Moreover, since κ > 1, r(p) is less than 1
3

d(p, Ŝ) ≤
1
3

d(p, p′). Hence,

B(p, r(p)) ∩ B2
p′ = ∅ (11)

Claim 6.6.1. Λ(q) pierces B1
p′ , i.e. it enters and then

leaves B1
p′ . Similarly, Λ(q) pierces B2

p′ .

Let f be a facet of Ŝ that contains p′ and v be a vertex
of f closest to p′. The distance from p′ to v is at most the
circumradius of f , which is bounded by ε, by hypothesis
(c). Moreover, 2d′ is at most dS(p) < ε. Therefore, B2

p′ is
included in B(v, 2ε).

By Claim 6.6.1, Λ(q) ∩ B1
p′ is not empty. Let q′ ∈ Λ(q) ∩

B1
p′ . We call K(q′) the double cone of apex q′, of axis aligned

with nk(v) and of half-angle θ. Since q′ ∈ B1
p′ ⊂ B2

p′ ,

K(q′) intersects ∂B2
p′ along two spherical patches C1(q

′) and

C2(q
′), such that every connected curve included in K(q′)

and joining C1(q
′) to C2(q

′) passes through q′. One arc of
Λ(q)∩B2

p′ has this property, as stated in the next claim and
illustrated in Figure 5:

Claim 6.6.2. Let Λ′(q) be the arc of Λ(q)∩B2
p′ that con-

tains q′. Λ′(q) lies in K(q′) and joins C1(q
′) to C2(q

′), with
one endpoint in C1(q

′) and the other endpoint in C2(q
′).

The next step is to show that such an arc intersects star(f):

Claim 6.6.3. Inside B2
p′ , C1(q

′) and C2(q
′) are separated

by star(f), i.e. every connected curve included in B2
p′ and

joining C1(q
′) to C2(q

′) intersects star(f).

It follows from Claims 6.6.2 and 6.6.3 that Λ(q) intersects

star(f). Hence, Λ(q)∩ Ŝ 6= ∅, which means that q ∈ I. This
ends the proof of Lemma 6.6.

By Lemma 6.6, the boundary of I is included in S∪Ŝ∪∂Tε.
We now prove that, in fact, ∂I does not touch ∂Tε:

Lemma 6.7. ∂I ∩ ∂Tε = ∅.
Proof. Since Ŝ is compact and dS is continuous, the

restriction of dS to Ŝ reaches its maximum. Let p ∈ Ŝ be
such that ∀p′ ∈ Ŝ, dS(p′) ≤ dS(p). Since Ŝ is included in Tε,

dS(p) is less than ε. It follows that Ŝ is in fact included in
Tδ′ , for any δ′ such that dS(p) < δ′ < ε. By Lemma 6.5 (ii),
for any q /∈ Tδ′ , Λ(q) ∩ Tδ′ = ∅, hence I is included in Tδ′ .
As a consequence, ∂I is included in the topological closure
of Tδ′ , which does not intersect ∂Tε since δ′ < ε.
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Figure 5: For the proof of Lemma 6.6.

Lemmas 6.6 and 6.7 imply that the boundary of I is in-
cluded in S∪Ŝ, which concludes the proof of the main result
of Section 6.2:

Lemma 6.8. I is a union of connected components of R
3\

(S ∪ Ŝ).

6.3 Ŝ ∪ ∂I covers S

Let SD = S ∩ Ŝ and SI = S ∩ ∂I. Our aim is to prove
the following lemma:

Lemma 6.9. S = SD ∪ SI.

The sets SD and SI can be viewed in Figure 4: the arc
p1p2 of S belongs to SD, while the arc p2p3 of S belongs to
SI . We will show that SD ∪ SI has no boundary, for the
topology of S induced by R

3. This implies that SD ∪SI is a
union of connected components of S, and since Ŝ intersects
every connected component of S (hypothesis (b)), we get
SD ∪ SI = S, which proves Lemma 6.9.

The boundary of SD ∪ SI is included in ∂SD ∪ ∂SI . Ac-
cording to Lemma 6.8, I is a union of connected components
of R

3 \ (S ∪ Ŝ). Thus, ∂SI is included in SD. Therefore, to
prove that the boundary of SD ∪ SI is empty, we need only
to show that SD is included in the interior of SD ∪ SI :

Lemma 6.10. For any point p ∈ SD, there exists an open
neighborhood N of p on S such that N ⊆ SD ∪ SI.

The proof of this result is very similar in spirit to the proof
of Lemma 6.6, and is omitted in this abstract.

6.4 End of the proof of Proposition 6.4
According to Lemma 6.9, for any point p ∈ S:

• either p belongs to Ŝ, which means that d(p, Ŝ) = 0,
• or p belongs to ∂I, which means that for any η > 0

there exists some point pη ∈ B(p, η) \ S such that

Λ(pη) ∩ Ŝ 6= ∅. Let p′
η ∈ Λ(pη) ∩ Ŝ and let tη ≥ 0

be the time at which Λ(pη) reaches p′
η. Since Ŝ ⊂ Tε,

we have tη ≤ ε−dS(pη)

cos2 θ
< ε

cos2 θ
, by Lemma 6.5 (i).

Since, by F2, φ is 1-Lipschitz as a function of time,
we deduce that d(pη, p′

η) < ε
cos2 θ

, which implies that

d(p, Ŝ) < η + ε
cos2 θ

. Since this is true for any η > 0,

d(p, Ŝ) is at most ε
cos2 θ

.

Therefore, no point of S is farther than ε
cos2 θ

from Ŝ, which
concludes the proof of Proposition 6.4.



7. MESHING LIPSCHITZ SURFACES
In [5] it is proved that, for any input compact surface S

and any input positive parameter ε, Chew’s algorithm [10]
outputs a loose ε-sample E of S, such that the inner angles
of the facets of Del|S(E) are at least π/6 (or, equivalently,
that the radius-edge ratios are at most 1). From the proper-
ties of loose ε-samples of smooth surfaces, one deduces that,
if S is C1,1 and ε is sufficiently small with respect to rch(S),
then Del|S(E) is a good topological and geometric PL ap-
proximation of S. By combining the structural theorems of
Sections 5 and 6, one gets theoretical guarantees with the
same flavor for Lipschitz surfaces:

Theorem 7.1. If S is a tan θ-Lipschitz surface, for some

θ < arctan
√

3
5

≈ 19.1 deg, and if ε < cos2 θ

7
√

1+cos4 θ
lrk(S)

(where k = tan θ), then the point sample E built by Chew’s

algorithm is an ε
q

1 + 1
cos4 θ

-sample of S (Corollary 6.3),

with ε
q

1 + 1
cos4 θ

< 1
7

lrk(S). Therefore, by Theorems 5.3,

5.4 and 5.5, Del|S(E) is a manifold isotopic to S and at

Hausdorff distance at most ε
q

1 + 1
cos4 θ

from S.

If S is a piecewise smooth surface, then Theorems 3.3 (ii)
and 7.1 state that Chew’s algorithm can generate good PL
approximations of S provided that the normal deviation
around the singular points of S is not more than 33 deg.
Experimental results show however that the algorithm can
handle normal deviations up to π

2
in practice [18, §6.4].

Observe that we use exactly the same algorithm as in the
smooth setting, except that the estimation of rch(S) is re-
placed by that of k and lrk(S). In particular, no adaptation
is needed in the vicinity of singularities, and the latter are
not required to be detected.

Estimating k and lrk(S) deserves a detailed analysis to be
provided in the full version of the paper. Note that Theo-
rem 3.3 (ii) gives a simple way to do it when S is an oriented
polyhedron without boundary.

As for the output point sample E, it has been proved to be
sparse in the smooth setting [5], which implies that |E| =

Θ
“

Area(S)

ε2

”

, where the constant in the Θ is independent

from S and ε. The same bound holds in the Lipschitz case,
by very similar arguments.

Finally, let us emphasize that Chew’s algorithm has been
adapted to solve several related problems, such as probing
unknown smooth objects in the plane or in 3-space [4], or
meshing volumes bounded by smooth surfaces [19]. It is
clear that these variants of the algorithm enjoy the same
theoretical guarantees in the Lipschitz setting, without any
change in the code.

8. CONCLUSION AND FUTURE WORK
We have introduced the notion of Lipschitz radius, which

is a natural extension of the concept of local feature size.
The Lipschitz radius is a 1-Lipschitz function, bounded away
from zero on Lipschitz surfaces. We have shown that (loose)
ε-samples enjoy the same theoretical guarantees in the Lips-
chitz setting as they do in the smooth setting, provided that
ε is small enough with respect to the Lipschitz radius and
that the inner angles of the facets of the restricted Delau-
nay triangulation are not too small. As a straightforward
application, we have shown that Chew’s algorithm and its

variants can produce good PL approximations of Lipschitz
surfaces. In addition to providing new results and, in partic-
ular, the first provably correct algorithm for meshing non-
smooth surfaces, we believe that our analysis sheds new light
onto the structural properties of the restricted Delaunay tri-
angulation and the Delaunay refinement paradigm.
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Thèse de doctorat en sciences, École Polytechnique, Palaiseau,
France, 2005. Preprint available at
ftp://ftp-sop.inria.fr/geometrica/soudot/preprints/thesis.pdf.

[19] S. Oudot, L. Rineau, and M. Yvinec. Meshing volumes
bounded by smooth surfaces. In Proc. 14th Internat. Meshing
Roundtable, pages 203–219, 2005.


