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Abstract

We present an algorithm for meshing surfaces that is a simple adaptatiogrekdy “farthest point” technique
proposed by Chew. Given a surface S, it progressively adds pointand Spdates th8-dimensional Delaunay
triangulation of the points. The method is very simple and worBslispace without requiring to parameterize the
surface. Taking advantage of recent results on the restricted Delauiaagulation, we prove that the algorithm
can generate good samples on S as well as triangulated surfaces thatxapate S. More precisely, we show
that the restricted Delaunay triangulation Dglof the points has the same topology type as S, that the Hausdorff
distance between Dgland S can be made arbitrarily small, and that we can bound the aspectafti facets
of Dels. The algorithm has been implemented and we report on experimentiésrésat provide evidence that it
is very effective in practice. We present results on implicit surfaces, @ r@&lels and on polyhedra. Although
most of our theoretical results are given for smooth closed surfacemetigod is quite robust in handling smooth
surfaces with boundaries, and even non-smooth surfaces.

Categories and Subject Descript@scording to ACM CCS) |.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling — Boundary representations.

1. Introduction guantities like normals or curvatures, as well as the aspect
ratio of the facets.

A lot of applications dealing with surfaces require the use of

discretized geometric models for fast and efficient compu-

tation. For instance, in Computer graphics’ most of the ren- Previous work Previous work on surface approximation in

dering techniques work on polyhedral approximations of the the Computer Graphics community resorts to two types of

objects rather than on the objects themselves. In the sametechniques: grids and particle systems.

way, numerical simulations based on finite elements rely on The former type relies on a tessellation af-S8pacé®s. A

discrete descriptions. Therefore it is an important issue to Polygonal approximation of the surface is computed inside

produce meshes to approximate geometric models. Here Weeach cell. Its vertices are located where the function has

deal exclusively with simplicial meshes and consider the fol- OPpposite signs. A global approximation is obtained by glu-

lowing problem: ing all the polygonal patches together. This approach yields
volume-based approximations. However, the topology of the
Given a2-manifold S embedded iR3, a metric L and surface is not systematically preserved, although methods

a constant > 0, build a triangulated 2-manifold P with a have been proposed to guarantee the topological consistency
minimum number of vertices, such that S and P are homeo- of the resu. In addition, the point distribution is hardly
morphic and I(S P) < e. controllable.
The latter type makes a set of particles migrate along the

A discrete version of this problem has been shown to be surfacé®27.10, according to an equation of diffusion. The
NP-hard. To our knowledge, it is still an open question to  connectivity between the points is then built by various
approximate the solution to this problem for general surfaces means which usually do not guarantee the topology of the
in a both efficient and provably correct manner. The choice output mesh. A step forward has been done by Hart and
of the metric is an issue by itself. Hausdorff distance is a Stande¥, who proposed to use Morse theory to capture
first candidate, but we would like to control also differential the correct topology. Unfortunately, the method is mostly
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heuristic and the authors do not provide a proof of correct-
ness of their algorithm.

A lot of work has been recently devoted to the related
matter of remeshing polyhedral surfaces. Although this is-
sue is quite different from the previous one, our method
can be used for both problems. We briefly survey promi-

nent remeshing techniques. Particles methods have been

proposeé®, but the time required to compute the solu-

tance, normals and area. Under some additional assump-
tions, we show (theorem 5) that the point samples generated
are sparse, that is, their size is optimal up to a multiplicative
constant factor. We also give some precisions in the case of
uniform samples (theorem 6). Finally, we show (theorem 7)
that Chew’s algorithm can also be used to generate meshes
whose facets have a bounded aspect ratio.

e to provide experimental evidence that the algorithm
works well in practice and is able to deal with boundaries.

tion of the equation of diffusion makes them less efficient |4 algorithm also shows a good behaviour on piecewise

than methods based on heuristics. The latter combine mesh

simplificatior!” and vertex optimization, and allow to con-
trol the point densiti# 19, Another class of algorithms is
based on global parameterizattéd, which allows quick

mesh generation. But the use of a global parameterization
requires to cut the surface into patches, which is a non-trivial

issue, and which produces atrtificial 1-manifolds — from the
cut-graph — that are visible in the final mesh.

smooth surfaces, except near singularities. Results on poly-
hedral surfaces indicate that it is also suitable for polyhedral
surface remeshing, as far as there are no sharp edges.

2. Restricted Delaunay triangulation and point samples

In this sectionSis a 2-manifold embedded m3, andY is a
point sample of, ie a finite set of points 08. By Del(Y) we

The surface approximation problem has been well-studied genote the 3-dimensional Delaunay triangulatiory othe

in the Computational Geometry community, in the recent
years. Edelsbrunner and Shagave a sufficient condition,
called Closed Ball Property, for the restricted Delaunay tri-

algorithm and analysis both rely on a special data structure,
called restricted Delaunay triangulation, which is a subcom-
plex of the 3-dimensional Delaunay triangulation, defined as

angulation (see definition 1) to be homeomorphic to the sur- fgjjows:

face. Amenta and Befrintroduced the concept @fsample

(see definition 3) for smooth surfaces, and worked out a suf-

ficient condition on the density of point sets for the Closed
Ball Property to be verified. Cheng et ‘atonsidered the

Definition 1 The Delaunay triangulation of Y restricted to
S, denoted by De§(Y), is the sub-complex of DgY) that
consists of the facets of D@&l) whose dual Voronoi edges

special case of skin surfaces. They redefined the notion of INt€rsectS. For any facetf of Deli5(Y), we callsurface De-

e-sample in this context and proposed an algorithm that can
mesh such surfaces with certified topology and curvature-

adapted vertex density.

Contributions  In this paper we revisit a greedy “farthest

point” technique based on the restricted Delaunay triangula-

tion, which was originally proposed by Ch&for mesh re-
finement. Given a 2-manifol8 embedded ifk3 and a mesh
M whose vertices are 08, the mesh refinement problem
consists in inserting new points 8fas vertices oM and re-
building the connectivity accordingly so that all facetdwbf

launay ballof f any empty ball circumscribed tb whose
center lies orS.

It can be useful to relate the local density of a given point
set lying on a surface to the local curvature of that surface.
More precisely, we shall relate it to the distance to the skele-
ton of the surface, which is smaller.

Definition 2

- we callmaximal ballany ball that is maximal (with respect
to the inclusion) among the set of open balls includdﬁql’\

S

meet some criterion. This problem has been well-studied in - the skeleton of Sdenoted byo, is the topological closure
the planar case and provably good methods based on the De-f the union of the centers of all maximal balls.

launay triangulation have been propo¥ed. These meth-

ods allow to control the size and the shape of the triangles.

Our main contributions are:
e to give a variant of Chew’s algorithm and show (the-
orem 3) that the algorithm terminates on a wide variety of

- for a pointx € R%, we calldistance to the skeletatx, and
write dg(X), the Euclidean distance frorto the skeleton of
S

According to lemma 1 of [Amenta, Bed]ds is 1-
Lipschitz. Another useful property of the skeleton is the fol-

input surfaces and allows to control both the size and the as- |owing:

pect ratio of the facets.

e taking advantage of recent theoretical results on the re-

stricted Delaunay triangulatiéh3 6, to show how the algo-

rithm can produce surface samplings and approximations.
Specifically, we show (theorem 4) that it can generate good

Lemma 1 (from proposition 13 of [Boissonnat, Cazals]

Let B be a ball that intersec8&(resp. the boundagSof S).

If the intersection is not a topological disc (resp. a topolog-
ical arc), therB contains a point of the skeleton 8f(resp.

point samples on smooth closed surfaces, in the sense given 9.

in definition 3. From this result we deduce that the restricted
Delaunay triangulation has the right topology type and ap-
proximates the original surface in terms of Hausdorff dis-

Now, we introduce the notion of “good sample”, in re-
lation to a given 1-Lipschitz function, which can be for in-
stance the distance to the skeleton.

(© The Eurographics Association 2003.
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Definition 3 (from [Amenta, Bern] and [Attali et al.})
Given a 1-Lipschitz functiop: S— R,Y is ane-sample of
S with respect tepif Yx € S |Y NB(x,€ ¢(x))| > 1. Most of
the time@ = dg, which will be assumed by default.

- If @is constant (sayp = 1), thenY is called auniforme-
sample

-If vxe s 1< [YNB(xe @x))| <k, then the sample is
called an(g,k)-sample

Ericksori* has shown tha® <@> , with () = fs%:
is a lower bound on the number of points of aagample of
S with € < % If an e-sample oIScontainsO( <S)) points,

=
then it is said to beparse

Now we introduce two results on the restricted Delaunay
triangulation that are proved in [Boissonnat, Ouéloilhey
will be used in sections 5 and 6.

The first result gives a relationship between the size of
the surface Delaunay balls and the density of the vertices of
the restricted Delaunay triangulation. The idea is that, if one
forces the surface Delaunay balls to be small enough, then
one can show that their union covers the whole surface. It
follows that any point of the surface is close to the center of
a surface Delaunay ball, and hence close to the vertices of a
facet of the restricted Delaunay triangulation.

Theorem 1 Assume thatS is smooth, compact, without
boundaries, and that the distance to its skeletbas a lower
bounddg™" > 0. Assume also that DglY) has at least one
facet on each connected componengof

- if vf € Deli5(Y) each surface Delaunay ball éfhas a ra-

dius at mos#;, wheree < 0.36dg"", then the set of vertices
of Del|g(Y) is a uniforme-sample ofS

- if Vf € Del5(Y) each surface Delaunay ball(cy,ry)
of f has a radiug not greater thar%fﬁ do(ct), where
£ < 0.327, then the set of vertices of Qg(IY) is ane-sample
of S

The second result gives an upper bound on the size of
any point set lying on a surface, with respect to a given 1-
Lipschitz function. In particular, this result can be applied
with the distance to the skeleton, or any point density func-
tion that is 1-Lipschitz, as for instance a constant density.

Theorem 2 Assume thaBis smooth and compact, and that
Y is ane-sample ofS, with € < % If Shas some boundaries,
assume in addition thaf contains au-sample ofdS, with
M < 1+;ﬁ' Let K be a positive number anfl : S— R a

1-Lipschitz function such that

we, dist(v,Y \ {v}) > K g(v)

1)
Then
2
(1+K(v2-1)" ;4
(V2 - 1)2K2 /s W2(x)

whereC = 10 if Shas some boundaries a@d- ‘g‘ otherwise.

lY|<C

(© The Eurographics Association 2003.

In particular, ify = dg andK = ¢, then the above theorem
states thaY is a sparse-sample ofS.

3. Chew'’s algorithm

The algorithm takes as input a p&8 X), whereSis a com-
pact surface an¥ is a set of points lying of. If X has some
points on the bounda@S of S, we call boundary edges the
segments that join consecutive pointsXobn 0S.

The algorithm iteratively constructs a set of poinfs
and maintains its restricted Delaunay triangulation &)
throughout the proces is initialized to X. Procedure
insert(p)adds pointp to X and updates Dgj(X). If eis a
boundary edge that is “encroached there exists a point
of X inside its diametral ballynid pointe) returns an inter-
section point of the bisector &f anddS. When this point
is inserted, the edges it forms with the verticee blecome
boundary edges, whereais no longer a boundary edge. For
a facetf of Del|g(X), circumcente(f) returns the center of
a surface Delaunay ball df. The algorithm is templated by
a criterionp on the facets of De(X).

ALGORITHM

INITIALISATION _
X = X; compute Dgk(X)

REPEAT )
WHILE there remains any encroached

boundary edge
insert(midpoint(e)) _
LET f be any facet of De4(X) that does not
meetp
LET p = circumcente(f)
IF p encroaches boundary edggs: - - , S,

THEN |
FORIi=1TOKk
insert(midpoint(g)
ELSE
insert(p)
UNTIL no boundary edge is encroached and

all facets of Dels(X) meetp

At the end of the process, the algorithm retudisand
Delis(X). Originally, Chew’s algorithm did not compute the
3-dimensional Delaunay triangulation of the points. How-
ever, there are several advantages in using a 3-dimensional
triangulation: it allows to handle topology changes, which is
important especially during the first steps of the algorithm,
and it provides a location data structure that allows to insert

new points fast.

As for p, we shall use two measures: the aspect ratio and
the size of facets.

Definition 4 (some refinement criteria)
Let f be a facet of Dg(X). We call its smallest angle and
B = B(ct,r¢) its biggest surface Delaunay ball:
(Paspect rati) meets the criterion ifay < B,
wheref is a positive constant
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(Psize)

f meets the criterion iff < g(cs),
whereg: S— R has a lower
boundh >0

An easy computation shows that for any triangheith
smallest angl®, Tline is equal to the ratio between the ra-
dius of the circumcircle of and the length of its smallest
edge.

The algorithm can use one of the above criteria or it can

combine both. For instance, one can first remove facets that

are too big and then remove facets with a bad aspect ratio.

4. Termination of the algorithm

We prove that Chew’s algorithm terminates after a finite
number of steps. This result holds for surfaces without
boundaries or with smooth or piecewise linear boundaries.

Definition 5 Let v be a point inserted by the algorithm. We
call insertion radiusof v (denoted byy) the distance frorm

to the “current” set of pointX at the time whew is inserted.
By convention, the insertion radius of any vertaof the
input point sampleé is dist(w, X \ {w}).

The proof of termination relies on the fact that the inser-
tion radius remains greater than a constant during the whole

process. It follows that the points inserted by the algorithm _
cannot get too close to one another, and thus cannot be in-

finitely many.

Theorem 3Let Sbe a compact surface aXda point sample

of S. The algorithm is applied t¢S, X):

- If Shas no boundary, then the algorithm will terminate pro-
vided thaf3 > 1.

- If Shas piecewise linear boundaries such that all angles
between consecutive boundary edges are greaterrtf¥n
then the algorithm will terminate provided that> /2.

- If Shas smooth boundaries and if the initial set of pokits
contains gi-sample oS, with p < 1/3, then the boundary
edges make no angle less tham/2 and the algorithm will

. . 2u
terminate provided thdt > B T T V2.

Proof The proof of the first two statements is similar to
Shewchuk’s proof for the planar c&$&nd is omitted here.
As for the third statement, the proof differs slightly but keeps
the same flavour. Consider a pouthat is inserted by the al-
gorithm. We distinguish three different cases:

e vis the “circumcenter” of a facett. By definition, the De-
launay ballos of f that is centered atis empty. Hence, the
insertion radiusy is equal to the radius af;. If vis inserted
becausd does not medqisize then the radius af s is greater
thanh. If vis inserted becauskdoes not megbaspect ratio
then the radius ob is not less than the radius of the cir-
cumcircle off. Let p be the vertex of the smallest edgefof
that has been inserted last. By definition, its insertion radius
rp is not greater than the length of the smallest edgé.of
Since f does not meet the criteriomdspect ratid, We have

v ~ radius of circumcircle B
", = length of smallest edg@ :

e v is the “midpoint” of a boundary edgg, b| that is en-
croached by a circumcentgr. We know that[a,b] is en-
croached only byp and thatp will not be inserted. The in-
sertion radiugp of p is less thar|ja— b\|§ since p lies
in the diametral ball ofa, b]. So, according to lemma 5, the
insertion radiusy of v is such that

V/1-2u—3P—(1-3Y) [a—b]|
> o > 2 >

8V
VI1-20-3P—(1-3w 1
2 2 '

e vis the “midpoint” of a boundary edge that is encroached

by the vertex of an adjacent boundary edge. In fact, this situ-
ation cannot occur: indeed, according to lemma 4, all angles
between boundary edges are greater thaf82sincep < %

The different cases are summarized in the flow graph of fig-
ure 1:
- If Shas no boundary, then only logfh) may occur. Hence,
with B > 1, the insertion radius does not decrease when a
badly shaped facet is split, whereas it remains greatertthan
when a badly sized facet is split. Thus, during the whole pro-
cess the insertion radius remains greater thanmin (e, h),
wheree is the minimal distance between any two vertices of
the input set of points.
If S has smooth boundaries, then taking >

2 o V2 makes the coefficients of loops

V1-2u—3p2—(1—
(1) and (1) + (2) greater than 1, which implies that the

insertion radius, throughout the process, remains greater

e TR T
thand = min (e, TR

In both cases, every pointof X remains at distance at least
d from any other point oK. It follows that the open ballBy
of radius% centered at the points of are pairwise disjoint.

Now consider the voluma&/ = {xe R3|dist(x,S) < %}
This volume is clearly bounded since the surface is compact,

and it containsJ, - x By, which implies that there can be only
a finite number of pairwise disjoint balls.[]

w [B|>h

- circumcenter

Ji-2u3p?-(1-3n)
) —_—Yx

21
midpoint

Figure 1: Flow graph and volume V

1
P

Theorem 3 asserts that, on surfaces without boundaries,
the algorithm can generate meshes with no angle less than
30 degrees, provided that one spts- 1. On surfaces with
polygonal boundaries, no angle less tharvafegrees is cre-
ated if one setf = /2.

(© The Eurographics Association 2003.
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5. Approximating the surface

In this sectionSdenotesa smooth compact surface without
boundariessuch that, for anyk € S, dg(x) > dg"" > 0. Let

X be a finite set of points 08. The algorithm is applied to

(S X) with the criterion psiz¢), parameterized by a function
gwhich is 1-Lipschitz. We calK the point sample generated

by the algorithm.

We shall show that the algorithm can produce sparse

Remark The vertices of Dek(X) belong toX (hence theo-
rem 4 implies thaX is ange-sample ofS), but the converse is
not necessarily true.

5.2. A word about seed-facets

Figure 2 shows that seed-facets are preserved throughout the
meshing process. The drawback of seed-facets is that, since
they are smaller than the size criterion (at least three times

samples. We first consider the general case, and afterwardsas small), they force the algorithm to refine the mesh more
the case of unifom samples, for which better bounds can be than necessary in their vicinity. This problem can be avoided

provided. Approximation results come out as corollaries.

5.1. Generatinge-samples

To establish our results, we use theorem 1 which requires

Delis(X) to be non-empty. The following lemma helps en-
suring this condition.

Lemma 2 Assume that there exists a facktof Delg(X)
that has a surface Delaunay bBY, = B(cy,,r,) such that

rf, < 3 9(C,)- Thenfo € Delig(X).

Proof Assume that, at the end of the algorithrfy ¢
Delis(X). This implies that there exists a step at which the
algorithm inserted a poirtinsideBy,. According to the size
criterion, v is the center of a Delaunay bak of a certain
facetf, such that the radiug of By is greater thaig(v).
Sincev lies insideBs,, we have|lv —ct, || < % g(ct,). And,
sinceg is 1-Lipschitz,

1
a0 ale) - Iv—cg > (1- 3 ) o)
Letabe one of the vertices d. Sinceais in By,, we have

2
lla=vlf<2rg, < 5 9(ch,) <Qv) <ry
which contradicts the fact th&; is a Delaunay ball. []

Definition 6 fp, defined as in the above lemma, is called a
seed-facet see figure 2. Lemma 2 claims that any seed-facet
will remain a facet of Dek(X) throughout the course of the
algorithm. Notice however that seed-facets may have also

big surface Delaunay balls that will eventually be deleted.

From lemma 2 and theorem 1, we deduce that the algo-
rithm can builde-samples:

Theorem 4Let € be a positive constant such thea 0.327.
We setg < gz do. Assume that Ded(X) has a seed-facet
on each connected component ®f Then the vertices of

Del|s(X) form ane-sample ofS

Proof Lemma 2 ensures that Dg(X) has at least one facet
on each connected component &fIn addition, the size
criterion ensures that every surface Delaunay Bédk,r+)

of any facetf of Delg(X) is such thatr¢ < g(cf) <
&t do(cr). So, the assumptions of theorem 1 are verified,

which gives the result. []

(© The Eurographics Association 2003.

by using no seed-facet and choosing a few random points to
start the process. In that case there is no guarantee that the
final restricted Delaunay triangulation will be non-empty.
However, this assumption is often verified in practice. For
instance, experiments have shown that, with the torus of fig-
ure 2 and exactly three initial random points, one has a 20%
chance that the meshing process succeeds. If one chooses
an initial point set with a small enough diameter, then the
chance of success grows up dramatically (92% with a di-
ameter of 06 which is still far above the size criterion). In
addition, if one chooses a bigger initial point set, then the
chance of success also grows up dramatically (40% with 4
points, 78% with 5 points, and more than 94% with 6 points).

In conclusion, it is usually unnecessary to use seed-facets in
practice. For instance, the results shown in figures 3, 5, 6
and 7 were obtained without using any seed-facet. The ini-
tial point sets had various sizes, ranging from three points to
a dozen of points.

Another possibility is to use seed-facets to mesh the sur-
face, and then to decimate the mesh in their vicinity. The re-
finement process can then be restarted in order to guarantee
that the set of vertices of the restricted Delaunay triangula-
tion remains arg-sample of the surface.

5.3. Approximation results

In this section, we give approximation results that are conse-
guences of the fact that the algorithm can baisimples.

Topological guarantees Theorem 2 of [Amenta, Berf]
states that the restricted Delaunay triangulation ofean
sample ofS, with € < 0.1, is homeomorphic t& From this
result and theorem 4 we deduce the following corollary:

Corollary 1 Under the assumptions of theorem 4, watk:

0.1, Sand Delg(X) are homeomorphic.

Hausdorff distance  The fact thaX belongs tdSis useful for

bounding the Hausdorff distance betwe®and Dels(X).
The following result says that this distancedée):

Corollary 2 Under the assumptions of theorem 4, with
€ < 0.327, the Hausdorff distance betweSmand De|s(X)

is bounded by dg'® wheredd'® = max{ds(x), X € S}.

Proof On the one hand, we use the criteriggife) with g <

&+t5e do < € dg, which implies that every facet of Dg[X)
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"A» g

T I
D & P

Figure 2: Meshing process on the torus of equatidrb — /X2 +y? )? + Z2 — 0.25 = 0, with a uniform size criterion of0~*
and three starting points: the seed-facet remains in the restricted Delavdaagulation throughout the process.

has a radius less thandg'®* It follows that every point of
Delig(X) is at distance less thandg'® from X C S

exactly 3 points per connected componentSpfand that
Del|s(X) has a seed-facet on each connected component of

On the other hand, theorem 4 says that the vertices of S ThenX is a sparse-sample ofS.

Deljs(X X) form ane-sample ofS. Thus every point ofS is
at distance less thandj'® from those vertices, and hence
from the restricted Delaunay triangulation[_]

Normals approximation Lemma 7y, of [Amenta, Bern}
bounds the angle between the normal to any fafcedf
Deljs(X X) and the normal to the surface at each of the ver-
tices of f, whenX is ane- sample ofS. From this result and
theorem 4 we deduce the following:

Corollary 3 Under the assumptions of theorem 4, watk:
7, the angle between the normal to any fatetf Del g(X X)
and the normal t&® at any of the vertices of is less than

Area approximation If X is ane-sample ofS, then the area
of Delg(X) approximates the area & — see [Morvan,
ThibertP2. From this result and theorem 4 we deduce the
following:

Corollary 4 Under the assumptions of theorem 4, wétk.
0.327, there exist two constan@3 andC, depending ore,
such thaC; Area(S) < Area(Delig(X)) < C; Area(S), and
s“Lnocl(E) - s”LnoCZ(E) =L

5.4. Sparses-samples

Provided thafX contains few points, the algorithm actually
produces sparse-samples. For simplicity, we assume that

Proof Sincee < @ < 0.327 and Dek(X) has a seed-
facet on each connected componen§atheorem 4 implies
thatX is ane-sample ofS.

To bound the cardinality ok, we shall use theorem 2 with
Y = X\ X. We first show thaiX \ X is a 3-sample ofS
Let § be a connected component 8f We havee < 1,
thus at any poinx € S, B(x,€ dg(x)) NS is a topologi-
cal disc. ThereforeB(x,& do(x)) intersectsS only. This
means that, sinc is_an e-sample ofS, we havevx ¢
S, |B(x,eds(X))NSNX|>1,ieXNS is ang-sample of§
with respect todc Let fj be the seed-facet associated with
S. Sinceg = 6+5E ds < 0.17dg, lemma 6 ensures that every
edge off is incident to another facet of Dg[X). Moreover,
sinceg < do, every facet of Dek(X X) has its three vertices
in the same connected componentofn particular, all the
facets of Dels(X) that are incident tdi have their vertices in
S. So, the assumptions of lemma 7 are verified, \Eith §

and@ = dg, henceX NS minus the set of vertices df is a
(?f_sgs-sample of§ with respect tadg. By assumption, the
set of vertices ofj is exactlyXN§, thus(XNS)\ (XNS) is
<3+E) -sample of§ with respect tals. Since this is true for
every connected component®fwe conclude thax \ X is a
B1eE_sample ofs. Sincee < ﬁ 7, we have 32 < 1.
Now letvbe a point o \ X, iea pomt that has been inserted

by the algorithm. Letv = v be the point oiX that is closest

X contains exactly three points per connected component of to v. We distinguish two cases: W.€ X or has been inserted

S This is no real loss of generality and the following result
holds for any seX of constant size.

Theorem 5 Let € be a positive constant such that<
V5T=7 » 0.14. We setg = 55 do. Assume thaiX has

beforev, 2. w has been inserted after In the former case,
we have, according to the size criterion,

€
[[v—w > 61 5¢ do(v)

(© The Eurographics Association 2003.
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In the latter case, we have, for the same reason,

3
v=wl > ggs dolw) = 6+5€ (do (V) — [[v—wl|)
which gives
3
llv—w|| > 6(1te) do(V)
In both cases, we have dist(X \ X) \ {v}) > dist(v,X \

{V}) = V=Wl > & do(v). SinceX \ X is a FH-

sample ofS with (3+s)‘°‘ < 3, theorem 2 (withy = X \ X,
Y =ds andK = 1+e ) says that
2
_ 4<6+ (ﬁ+5)s> s
X\X|<—~—— /7 B
| \ |— 3T[(ﬁ—1)2 82
wherep(S) = fsf Now, by assumptiorfX| = 3k, where

k is the number of connected componentsSoThus|X| =
3k+|X \ X|. Note that for any connected componé&niof
S, the distance to the skeletan of § (considered indepen-
dently from the other connected component§)d‘s no less
than% do. Thus, g dg?(x > 4 fS d2 , Which is greater

thanttaccording to lemma 8. Henq:féS) > T, which gives

362 4(6+(\/é+5)s)2

vi H(S)
X<|&=4+—~— 72 | B2
‘ ‘— T 3_,_[(\/2_1)2 82
and, since < @,
IX| < Cx @
with
_3(VET-7)? | (24+(V2+5)(VET-T))?
c o PV < 11717
]
Remarks

Since the vertices of Dg{(X) belong toX, the above
result and theorem 4 imply that they also form a sparse
sample ofS.

Whene¢ tends to zero, our upper bound is equivalent to

T[(\/‘EB v >, which is about 1500 times the lower bound

given by Ericksoft. This suggests that our bound is still far
from being tight.

5.5. Generating uniform samples

If one takes the functiorg of the size criterion to be
constant (note that it is still 1-Lipschitz), then the algo-
rithm will generate uniform samples. In fact, X is an
e-sample, then it is a uniforn(e dg'®)-sample, where
dg"™ = max{ds(x), x € S}). However, better bounds can be
achieved whe is constant, as shown below.

(© The Eurographics Association 2003.

Theorem 6We setg = h, whereh is a positive constant less
than 009 dg"". Assume thaK has exactly three points per
connected component & and that Dek(X) has a seed-
facet on each connected componenSoThenX is a uni-
form (4h,515)-sample ofS.

Proof Lemma 2 ensures that [@@)?) has at least one
facet on each connected componensoThus, since B <
0.36dT"", we can use theorem 1 which says that the vertices
of Deljg(X X) form a uniform 4-sample ofS. It follows that

X is also a uniform #-sample ofS.

Now, letv be a point ofX \ X, i.e. a point that has been
inserted by the algorithm. Let be any point of X\ X) \ {v}.

If w has been inserted befowethen according to the size
criterion we havd|v—w|| > h. If w has been inserted after
v, then the size criterion also says tHjat— w|| > h. Thus,
the p0|nts ofX \ X are centers of pairwise disjoint balls of
radlus2 Hence, for every point € S, the number of points
of X\ X that lie insideB(x, 4h) is less than

3 Tr(4h)

3
4 h
in(3)
Since 4 < dJ'", at each poink € Sthe ballB(x, 4h) inter-
sects only the connected componenSa¥herex lies. Thus,
sinceX has exactly three points per connected component,
we have|B(x,4h) N X| < 3. Hence the number of points of
X that lie insideB(x, 4h) is less than 512 3=515. []
Remark The fact thatX is a uniform(e, k)-sample implies
that, for a given surface, the size Xfis O(E%) which is
optimal for uniforme-samples.

= 512

6. Bounding the aspect ratio

Once an approximation of the surface has been obtained
(or is given), the algorithm can be used to remove the
skinny facets: this can be done with the help of the crite-
rion (Paspect ratid- Theorem 3 gives bounds on the angles of
the facets of the resulting triangulated surface. The following
result provides a worst-case optimal upper bound on the size
of the output with respect to the size of the input. It roughly
shows that we can bound the aspect ratio of the triangles
without significantly increasing the number of vertices. The
upper bound we give in the next theorem is computed ac-
cording to a special measure, called local feature size, de-
fined as follows:

Definition 7 Let Sbhe a surface an¥ a set of points sam-
pled fromS. Consider the grap® made of the vertices of
X and of the boundary edges 8f Thelocal feature sizet

X, denoted by Ifg(x), is defined as the radius of the smallest
ball centered ax that intersects two nonincident vertices or
edges ofG. According to [Ruppert, Ifsx is 1-Lipschitz.

Theorem 7 Let S be a smooth compact surface aXdan
e-sample ofS, with € < % If S has some boundaries, as-

sume thak contains gi-sample 00S, with p < 211V If
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one runs the algorithm with the criteriopggpect ratid only, only need a lower bound{,“i”, which is easily available in
I S i many applications. If the algorithm is used with a local size
wheref3 >_\/m7(173u) V/2, then the final number of y app g

criterion, we need an estimate d§ at all inserted points.
One can approximatég(x) by the distance fronx to the

/ dx set of pole$ of the Voronoi diagram oK. Although we do
" Js |fs)2( (x) not have theoretical guarantees then, good results have been
observed in practice — see figure 3 (center).

points ofX is at most

whereC is a constant that depends only @andL.
Meshing surfaces Figure 5 shows some implicit surfaces
that have been meshed by the algorithm, using as size cri-
terion a linear function ofls. Up left is the “chair” of equa-
tion (X2 +y? + 22 — 23.75)2 — 0.8((z— 5)% — 2)((z+5)* —

) = 0: degree 4 and genus 3. Down left is the “tangle-

Proof This result is a simple application of theorem 2. How-
ever, we have to make sure that equation (1) is verified. As
in the planar cagé 24, one can start from the relations that
we established in the proof of theorem 3 and show that there
exists a constanbs > 1 such that for every point € X,

S0~ posq cube” of equationc — 5x° +y* — 5y + 74 — 572 + 10 = 0:
distvx\{v}) = s+ 1 _ degree 4 and genus 5. Since both surfaces are closed and
Hence, (1) holds witty = X, Y = Ifsx andK = ﬁ. We smooth, corollary 1 ensures that with a small enough size
can then apply theorem 2 which gives the resuft.] criterion the algorithm produces triangulated surfaces with

the right topology type. This is observed here, even with a
_ size criterion ¢ = 10~ 1dg) that is far above the theoretical
bound.

Remark The above upper bound is worst-case optimal. In-
deed, ifSis a planar surface then the problem becomes 2
dimensional, and according to [Mitchéll] any solution re-

) points. We also experimented with surfaces with boundaries or

singularities. Figure 5 shows Barth’s decic surface (up cen-

ter) and Sheffer’s surface (down center). The former has de-

7. Experimental results — discussion gree 10 and at least 40 singular points ! One can notice that

these points have not been identified — see the zoom up right,

so that the topology could not be captured. The result is satis-
factory on the whole, except near the singularities, wilgre

tends to zero. Sheffer’s surface is periodic, because its func-

¢ tion is a trigonometric polynomial. Since it is not compact,
Delis(X) is templated by the type & — polyhedron, para- e have only considered the portion of the surface that lies
metric or implicit surface etc. It is represented by marking

¢ ' - inside a ballds does not vanish on this surface and, as can

the facets of DelX) whose dual Voronoi edges inters&xt be expected, the topology is preserved. However, the bound-

An advantage of the algorithm is that, except for aries are jagged because they were not explicitely computed.
the in_sphere() predicate of the 3-dimensional Delau- Figure 6 shows some results on complex surfaces obtained
nay triangulation, the only predicate to implement is from simple implicit primitives by applying boolean oper-
does_segment_intersect_surfaceghich tells whether a ations and offsets. Complex surfaces are meshed directly,
segment intersects the surface or not. The related construc-Without meshing first the primitives and then computing the
tor, intersect_segment_with_surfagég)implemented in the boolean operations or the offsets on the triangulated prim-
same way. Both of them must be adapted to the type of the itives. The example in the middle is the solvent excluded
input surface. For instance, on an implicit surface given by surface of a molecule of alanin, with a probe of radius 20 pi-
the equatiorP(x,y, ) = 0, whereP is a polynomial, one can cometers: this surface is a combination of spherical and toric
use either an algebraic technique or a numerical technique. patches — see the zoom on the left. The example on the right
The former reduces to So|Ving a univariate equation of de- consists of two letters that were built as unions of Cylinders.
gree de@P), whereas the latter can be implemented as a sim-
ple binary search that uses the fact that if the signB af
both endpoints are different then the segment intersects the
surface. Although not exact and with a time complexity that
depends highly on the precision of the search, the numerical
approach is useful in practice since it can be extended to sur-
faces that are not algebraic nor semi-algebraic. However, the
algebraic method is much more efficient in practice. Our im-
plementation of the algebraic version uses@ie" library
SYNAPS, which was designed to solve algebraic systems

quiresQ (fs Ifsdix(x)

Implementation The algorithm has been implemented using
theC™ library CGAL, which allowed us to derive the re-
stricted Delaunay triangulation from the 3-dimensional De-
launay triangulation. Given a surfaBand a point sampl,

Dealing with boundaries and singularities In the litterature,
the usual method that is used to handle boundaries and sin-
gularities, samples them before the rest of the sutfake
advantage of Chew’s algorithm is that it allows to handle
boundaries and singularities at the same time as the rest of
the surface. In section 3, we saw how to handle boundaries.
The same treatment can be applied to singular curves. This
results in meshes that include polygonal approximations of
the singular curves. Figure 7 (up left), which presents the
end of a tubular surface remeshed by the algorithm — the
Our theoretical results require to know some estimate of blue curve is the original boundary, shows that boundaries
do. If the algorithm is used with a uniform size criterion, we  are correctly approximated. Figure 7 (down left) shows the

(© The Eurographics Association 2003.
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Figure 3: Various size criteria: uniform (left), curvature-adapted (center), cosred (right).

result of the algorithm on Steiner's Roman surface, whichis ~ Concerning the time complexity: at each step, the algo-
one of the three possible surfaces obtained by sewing a Moe- rithm inserts a point in the 3-dimensional Delaunay trian-
bius strip to the edge of a disk. This surface has one triple gulation. To this end, it deletes the facets that are in con-
point, three singular lines and six pinch points. The singular flict with the point that is being inserted, and then stars the
lines were correctly approximated by the algorithm, except hole. For every new facet, it checks whether the dual Voronoi
near the pinch points (circled in red). edge intersects the surface. Thus the behaviour of the algo-
rithm is that of the incremental Delaunay triangulation, ex-
cept that no point location is needed since only “circumcen-
ters” of known facets or “midpoints” of known edges are
inserted. It has been shown receftllgat the size of the 3-
dimensional Delaunay triangulation of &8 k)-sample of

n points lying on a generic smooth surfaceQgnlogn).

The worst-case time complexity of one step of the algo-
rithm is thusO(@ nlogn), wheren is the size of the cur-
rent point sample, ang is the time complexity of the pred-
icate does_segment_intersect_surfacehich can be con-

The case of polyhedra. Theoretically, every edge of a poly-  sidered as a constant once the surface is given. This yields
hedron is problematic since it is a singularity. But in prac- an overall worst-case time complexity@tNZIogN), where

tice, it turns out that the results are manifold everywhere ex- N is the size of the output. Assuming that the points are in-
cept near the sharp edges. A simple post-process that detectserted in random order, the expected running time reduces to
the edges with more than two incident facets and deletes the O(NlogN) since no point location is needed. This bound is
guilty facets often suffices to get a manifold surface. Note

that taking the sharp edges as boundary edges greatly helps 12000
the algorithm to avoid non-manifold results. An example is

shown in figure 7 (center and right): the octopus was de- 1o
signed at first by an artist, using a quad-dominant mesh. We
show the output of the algorithm, with a very thin size cri-
terion adapted taly, and a dozen of random points to start
with. One can notice that the final point density is bigger
near the edges of the initial mesh — see figure 7 (up right),
and that all the details have been remarkably captured: see
for instance the eyes — figure 7 (down right) — which are sep- -

. . . . 2000 - -
arate discs floating in the air. s

Boundaries and singularities play different roles. Indeed,
by definition,ds tends to zero near a singularity, whereas it
does not near a boundary. Thus it should be possible to ex-
tend our theoretical results to smooth surfaces with bound-
aries, whereas the sampling theory we currently use clearly
fails in the vicinity of singularities. Practicle experiments
corroborate this observation, since the result of the algorithm
is always a manifold near boundaries, whereas it is not al-
ways so near singularities.

8000

6000 =

4000 - -~

size (# vertices) & time {1 o2 sec)

Timing and output complexity Figure 4 shows the evolution o o= = = = =
of the output size and computation time (with a processor at 17

900 Mhz) with respect to the bourdof the size criterion, ) ) o ] )
on the sphere of equatioﬁ er2 +72-1=0. The output Figure 4:. Output size (solid line) and time complexity
size is given by the number of vertices of the restricted De- (dashed line) Versug.

launay triangulation, whereas the computation time is given

in centiseconds. It turns out that the output SiZ@iéﬁlz)n usually observed in practice, as illustrated in figure 4. This
as predicted by theorems 5 and 6. example also shows that the algorithm is able to generate

(© The Eurographics Association 2003.
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Surface (degree)| ellipsoid (2) torus (4) “chair” (4)

"tanglecube” (4) Steiner (4) BartBecic (10)

Criterion value 21072 1072 1072
Output size (points) 166 1297 6323
Comput. time (sec.) 0.9 38 181

Rate (points per sec.) 184 34 35

102 103 10°°

4162 8461 142605
96 141 13140
43 60 11

Table 1: Statistics on some implicit models presented in the paper.

10,000 points on the sphere within less than 65 seconds. s.
However,¢@ depends highly on the number of monomials of
the polynomial that describes the surface, and the algorithm s.
gets significantly slower when the degree of the polynomial
increases — see table 1. 7.

8. Conclusion — future work

We have revisited a greedy meshing algorithm. This algo- o

rithm can be applied to various types of surfaces and is quite
simple. It is based on the 3-dimensional Delaunay triangu- 10
lation and requires only few additional predicates. We have
given some theoretical guarantees. The algorithm can pro- "
duce various kinds of samples and construct good approxi-
mations with respect to several criteria: topology, Hausdorff
distance, normals, area.

We have implemented the algorithm and presented exper- 13
imental results that corroborate (and sometimes are better
than) the theory. “

Currently, the theoretical results are limited to closed 1s.
smooth surfaces, but it should be possible to extend them to
smooth surfaces with boundaries as the experimental resultsis.
suggest.

Handling the singularities is a more difficult issue that
should require the use of a more general theory of surface |,
sampling. However, the algorithm appears to be extremely

robust even in the presence of singularities. 1o,
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Appendix: Technical lemmata
Results used to prove the termination of the algorithm

Lemma 3 (proved in [Boissonnat, Oudél] Let C be a curve in
R3. We calld; the distance to its skeletdp LetY be ap-sample of
C, with p< 1/2. Letaandb be two points o that are consecutive
onC. Then

2u
la-bl < < dr(a)

Lemma 4 (proved in [Boissonnat, Oudél] Let C be a curve in
R3, and letY be ap-sample ofC, with u < 1/2. Letb, a andc be

three points off that are consecutive @ Then
bac> 2 arccosL
1-p

Lemma 5Let She a 2-manifold that has a smooth boundary.Xet
be a finite set of points o8 that contains g-sampleX of S, with

p < 1/3. Letaandb be two points ofX that are consecutive a8,

If the boundary edgég, b is split by inserting point € dS, then

—ou—312— (1— _
5 > V1-2p—3w¥—(1-3y [a—b|
2u 2
wheredy is the distance from to the diametral sphere ¢, b].

Proof The pointv which is inserted is at the intersection betwé@én
and the bisector df, b).

.

Let( be the skeleton a?Sand letz be any point of the bisector line
of [a,b] in planel = (a,b,v). If y= baz we have

lla—b]]

2cosy

llz—al = [lz—bll =

And, according to lemma 3,

2]
la=bll < T ¢(a)

sincea andb are consecutive points &f ondS. Thus

U
(1 weosy 4@

which gives, sincel; is 1-Lipschitz,

llz—all = [lz=bl| <

6 (2 > dy(@) — Ilz—al| > (LY —1) |z—a]

Now take pointz so that cog = 127“;1 andzis on the side ofa,b)
that does not contaim y is well-defined as far gg < 1/3. For this
particular value ofy we haved; (z) > ||z—al|. Thus poinizis at the
center of an open ball of radiylz — a|| which does not intersedét
According to lemma 1, the intersection between this ball @&
a topological arc. And since pointsandb are inside the ball, all
points ofdSbetweera andb, and in particular, are also inside the
ball. Hence the distance fromto the diametral sphere ¢, b] is

& = 12580 — v—v/|| > 1220l — (jlz—af| - ||z v/|)

(© The Eurographics Association 2003.

Then, forp < 1/3 andy = arccoslzjuu,

a—b a—b
lz—al ~llz—vil = gl - 1228 any
_  lla=bll A=w—v/1-2u-32
2 2u
and
(A-w—/1-21-32 \ [la—b]
& > (1— o 5
s V1-2-32-(1-3 Ja—b
- 2u 2
O

Results used to generate sparse €-samples

Lemma 6 (proved in [Boissonnat, Oud8}] Let > be a smooth
compact surface without boundaries. We allthe distance to
its skeletont. Let X be a set of points o&. Assume that'f €
Del|z()?) every surface Delaunay bali(ct,r¢) of f is such that
ri < 0.17 de(cr). Then every edge that is incident to a facet of

Deljz(X) is actually incident to at least two facets of Qeéb?).

Lemma 7 Let = be a smooth compact connected surface X ee
an e-sample ofZ, with respect to a given 1-Lipschitz functiap
Let fp be a facet of Dqk(_)?) such that every edge dp is incident
to another facet of Dg(X). Call X the set of vertices ofo. Then

va B (3+e)e :
X\ Xis a*7—;--sample oz, with respect tap.

Proof Let x € 2. Letv be the point ofX that is closest t. Then
[Ix—V|| <€ @(x), sinceX is ane-sample o with respect tap. Now
there are two cases: eithee X\ X, eitherv € X.

-If ve X\ X, then

(3+¢)e

dist(x, X'\ X) = [[x—v]| <€ @(x) < T 0%

-If ve X, then, since every edge &f is incident to another facet of
Del|z()?), there exists a facdt# fo that is incident tov. At least one
vertex of f is not a vertex offp, ieis in X'\ X. Letw be such a vertex.
By definition, (v,w) is an edge of, ie an edge of Dq&()?), thus its
dual Voronoi face intersecks Lety be a point at the intersection. By
definition of the Voronoi diagranily — v|| = [y — w|| = dist(y, X),
which is less thar @(y) sinceX is ane-sample of> with respect
to @. Thus we havely — v|| <€ @(y) < &(@(v)+ |ly—V]||), that is,

ly— V]l < 15 ®v). Finally, we get

dist(x, X\ X) < [|jx—w|| < [x—V|[+[v—w|
<x—vl +22 vyl
< € Q(X) + 75 (9(X) + [|Ix— V)
<ep(x) + 1% (L+8) ox)
3
< ¥ o)
|
Lemma 8 Let = be a smooth compact connected surface without
boundaries. We catl; the distance to its skeletan We have
dx
>
s d2(x) —

Proof Letd{"® = max{d:(y), y € Z}. We havefs

> Areas)

= (dgr?

dx
aZ(x)

SinceZ is connected and has no boundary, it bounds an open set

Q of R, Let x be a point ofZ such thaidy (x) = d™@ Call By the
maximal inner {g that is included i) ball that is tangent t& atx.
Its center is ort, thus its radius is greater thala(x) = d"®. Since
By is a ball included inQ, we have Are@By) < Area(%), which
gives 41 (d")? < Area(s). Thus, 5 % > 4m
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Figure 7: Dealing with boundaries and singularities.
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