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Abstract
We present an algorithm for meshing surfaces that is a simple adaptation of agreedy “farthest point” technique
proposed by Chew. Given a surface S, it progressively adds points on Sand updates the3-dimensional Delaunay
triangulation of the points. The method is very simple and works in3d-space without requiring to parameterize the
surface. Taking advantage of recent results on the restricted Delaunaytriangulation, we prove that the algorithm
can generate good samples on S as well as triangulated surfaces that approximate S. More precisely, we show
that the restricted Delaunay triangulation Del|S of the points has the same topology type as S, that the Hausdorff
distance between Del|S and S can be made arbitrarily small, and that we can bound the aspect ratioof the facets
of Del|S. The algorithm has been implemented and we report on experimental results that provide evidence that it
is very effective in practice. We present results on implicit surfaces, on CSG models and on polyhedra. Although
most of our theoretical results are given for smooth closed surfaces, themethod is quite robust in handling smooth
surfaces with boundaries, and even non-smooth surfaces.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling — Boundary representations.

1. Introduction

A lot of applications dealing with surfaces require the use of
discretized geometric models for fast and efficient compu-
tation. For instance, in computer graphics, most of the ren-
dering techniques work on polyhedral approximations of the
objects rather than on the objects themselves. In the same
way, numerical simulations based on finite elements rely on
discrete descriptions. Therefore it is an important issue to
produce meshes to approximate geometric models. Here we
deal exclusively with simplicial meshes and consider the fol-
lowing problem:

Given a2-manifold S embedded inR3, a metric L and
a constantε > 0, build a triangulated 2-manifold P with a
minimum number of vertices, such that S and P are homeo-
morphic and L(S,P) ≤ ε.

A discrete version of this problem has been shown to be
NP-hard1. To our knowledge, it is still an open question to
approximate the solution to this problem for general surfaces
in a both efficient and provably correct manner. The choice
of the metric is an issue by itself. Hausdorff distance is a
first candidate, but we would like to control also differential

quantities like normals or curvatures, as well as the aspect
ratio of the facets.

Previous work Previous work on surface approximation in
the Computer Graphics community resorts to two types of
techniques: grids and particle systems.
The former type relies on a tessellation of 3d-space20, 8. A
polygonal approximation of the surface is computed inside
each cell. Its vertices are located where the function has
opposite signs. A global approximation is obtained by glu-
ing all the polygonal patches together. This approach yields
volume-based approximations. However, the topology of the
surface is not systematically preserved, although methods
have been proposed to guarantee the topological consistency
of the result8. In addition, the point distribution is hardly
controllable.
The latter type makes a set of particles migrate along the
surface25, 27, 10, according to an equation of diffusion. The
connectivity between the points is then built by various
means which usually do not guarantee the topology of the
output mesh. A step forward has been done by Hart and
Stander16, who proposed to use Morse theory to capture
the correct topology. Unfortunately, the method is mostly
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heuristic and the authors do not provide a proof of correct-
ness of their algorithm.

A lot of work has been recently devoted to the related
matter of remeshing polyhedral surfaces. Although this is-
sue is quite different from the previous one, our method
can be used for both problems. We briefly survey promi-
nent remeshing techniques. Particles methods have been
proposed26, but the time required to compute the solu-
tion of the equation of diffusion makes them less efficient
than methods based on heuristics. The latter combine mesh
simplification17 and vertex optimization, and allow to con-
trol the point density15, 19. Another class of algorithms is
based on global parameterization18, 2, which allows quick
mesh generation. But the use of a global parameterization
requires to cut the surface into patches, which is a non-trivial
issue, and which produces artificial 1-manifolds – from the
cut-graph – that are visible in the final mesh.

The surface approximation problem has been well-studied
in the Computational Geometry community, in the recent
years. Edelsbrunner and Shah13 gave a sufficient condition,
called Closed Ball Property, for the restricted Delaunay tri-
angulation (see definition 1) to be homeomorphic to the sur-
face. Amenta and Bern3 introduced the concept ofε-sample
(see definition 3) for smooth surfaces, and worked out a suf-
ficient condition on the density of point sets for the Closed
Ball Property to be verified. Cheng et al.7 considered the
special case of skin surfaces. They redefined the notion of
ε-sample in this context and proposed an algorithm that can
mesh such surfaces with certified topology and curvature-
adapted vertex density.

Contributions In this paper we revisit a greedy “farthest
point” technique based on the restricted Delaunay triangula-
tion, which was originally proposed by Chew9 for mesh re-
finement. Given a 2-manifoldSembedded inR3 and a mesh
M whose vertices are onS, the mesh refinement problem
consists in inserting new points ofSas vertices ofM and re-
building the connectivity accordingly so that all facets ofM
meet some criterion. This problem has been well-studied in
the planar case and provably good methods based on the De-
launay triangulation have been proposed23, 24. These meth-
ods allow to control the size and the shape of the triangles.
Our main contributions are:

• to give a variant of Chew’s algorithm and show (the-
orem 3) that the algorithm terminates on a wide variety of
input surfaces and allows to control both the size and the as-
pect ratio of the facets.

• taking advantage of recent theoretical results on the re-
stricted Delaunay triangulation13, 3, 6, to show how the algo-
rithm can produce surface samplings and approximations.
Specifically, we show (theorem 4) that it can generate good
point samples on smooth closed surfaces, in the sense given
in definition 3. From this result we deduce that the restricted
Delaunay triangulation has the right topology type and ap-
proximates the original surface in terms of Hausdorff dis-

tance, normals and area. Under some additional assump-
tions, we show (theorem 5) that the point samples generated
are sparse, that is, their size is optimal up to a multiplicative
constant factor. We also give some precisions in the case of
uniform samples (theorem 6). Finally, we show (theorem 7)
that Chew’s algorithm can also be used to generate meshes
whose facets have a bounded aspect ratio.

• to provide experimental evidence that the algorithm
works well in practice and is able to deal with boundaries.
The algorithm also shows a good behaviour on piecewise
smooth surfaces, except near singularities. Results on poly-
hedral surfaces indicate that it is also suitable for polyhedral
surface remeshing, as far as there are no sharp edges.

2. Restricted Delaunay triangulation and point samples

In this section,S is a 2-manifold embedded inR3, andY is a
point sample ofS, ie a finite set of points ofS. By Del(Y) we
denote the 3-dimensional Delaunay triangulation ofY. The
algorithm and analysis both rely on a special data structure,
called restricted Delaunay triangulation, which is a subcom-
plex of the 3-dimensional Delaunay triangulation, defined as
follows:

Definition 1 The Delaunay triangulation of Y restricted to
S, denoted by Del|S(Y), is the sub-complex of Del(Y) that
consists of the facets of Del(Y) whose dual Voronoi edges
intersectS. For any facetf of Del|S(Y), we callsurface De-
launay ballof f any empty ball circumscribed tof whose
center lies onS.

It can be useful to relate the local density of a given point
set lying on a surface to the local curvature of that surface.
More precisely, we shall relate it to the distance to the skele-
ton of the surface, which is smaller.

Definition 2
- we callmaximal ballany ball that is maximal (with respect
to the inclusion) among the set of open balls included inR

3\
S.
- theskeleton of S, denoted byσ, is the topological closure
of the union of the centers of all maximal balls.
- for a pointx∈ R

3, we calldistance to the skeletonatx, and
write dσ(x), the Euclidean distance fromx to the skeleton of
S.

According to lemma 1 of [Amenta, Bern]3, dσ is 1-
Lipschitz. Another useful property of the skeleton is the fol-
lowing:

Lemma 1 (from proposition 13 of [Boissonnat, Cazals]5)
Let B be a ball that intersectsS(resp. the boundary∂Sof S).
If the intersection is not a topological disc (resp. a topolog-
ical arc), thenB contains a point of the skeleton ofS (resp.
∂S).

Now, we introduce the notion of “good sample”, in re-
lation to a given 1-Lipschitz function, which can be for in-
stance the distance to the skeleton.
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Definition 3 (from [Amenta, Bern]3 and [Attali et al.]4)
Given a 1-Lipschitz functionφ : S→ R, Y is anε-sample of
S with respect toφ if ∀x∈ S, |Y∩B(x,ε φ(x))| ≥ 1. Most of
the timeφ = dσ, which will be assumed by default.
- If φ is constant (sayφ = 1), thenY is called auniform ε-
sample.
- If ∀x ∈ S, 1 ≤ |Y∩B(x,ε φ(x))| ≤ κ, then the sample is
called an(ε,κ)-sample.

Erickson14 has shown thatΩ
(

µ(S)
ε2

)
, with µ(S) =

R

S
dx

d2
σ(x) ,

is a lower bound on the number of points of anyε-sample of

S, with ε < 1
5 . If an ε-sample ofScontainsO

(
µ(S)
ε2

)
points,

then it is said to besparse.

Now we introduce two results on the restricted Delaunay
triangulation that are proved in [Boissonnat, Oudot]6. They
will be used in sections 5 and 6.

The first result gives a relationship between the size of
the surface Delaunay balls and the density of the vertices of
the restricted Delaunay triangulation. The idea is that, if one
forces the surface Delaunay balls to be small enough, then
one can show that their union covers the whole surface. It
follows that any point of the surface is close to the center of
a surface Delaunay ball, and hence close to the vertices of a
facet of the restricted Delaunay triangulation.

Theorem 1 Assume thatS is smooth, compact, without
boundaries, and that the distance to its skeletonσ has a lower
bounddmin

σ > 0. Assume also that Del|S(Y) has at least one
facet on each connected component ofS.
- if ∀ f ∈ Del|S(Y) each surface Delaunay ball off has a ra-

dius at mostε4 , whereε ≤ 0.36 dmin
σ , then the set of vertices

of Del|S(Y) is a uniformε-sample ofS
- if ∀ f ∈ Del|S(Y) each surface Delaunay ballB(cf , r f )

of f has a radiusr f not greater than ε
6+5ε dσ(cf ), where

ε ≤ 0.327, then the set of vertices of Del|S(Y) is anε-sample
of S.

The second result gives an upper bound on the size of
any point set lying on a surface, with respect to a given 1-
Lipschitz function. In particular, this result can be applied
with the distance to the skeleton, or any point density func-
tion that is 1-Lipschitz, as for instance a constant density.

Theorem 2Assume thatS is smooth and compact, and that
Y is anε-sample ofS, with ε ≤ 1

2 . If Shas some boundaries,
assume in addition thatY contains aµ-sample of∂S, with
µ < 1

1+2
√

2
. Let K be a positive number andψ : S→ R a

1-Lipschitz function such that

∀v∈Y, dist(v,Y \{v}) ≥ K ψ(v) (1)

Then

|Y| ≤C

(
1+K(

√
2−1)

)2

π(
√

2−1)2K2

Z

S

dx
ψ2(x)

whereC= 10 if Shas some boundaries andC= 4
3 otherwise.

In particular, ifψ = dσ andK = ε, then the above theorem
states thatY is a sparseε-sample ofS.

3. Chew’s algorithm

The algorithm takes as input a pair(S,X), whereS is a com-
pact surface andX is a set of points lying onS. If X has some
points on the boundary∂Sof S, we call boundary edges the
segments that join consecutive points ofX on ∂S.

The algorithm iteratively constructs a set of points̄X,
and maintains its restricted Delaunay triangulation Del|S(X̄)

throughout the process.̄X is initialized to X. Procedure
insert(p)adds pointp to X̄ and updates Del|S(X̄). If e is a
boundary edge that is “encroached” (ie there exists a point
of X̄ inside its diametral ball),midpoint(e) returns an inter-
section point of the bisector ofe and ∂S. When this point
is inserted, the edges it forms with the vertices ofe become
boundary edges, wherease is no longer a boundary edge. For
a facetf of Del|S(X̄), circumcenter( f ) returns the center of
a surface Delaunay ball off . The algorithm is templated by
a criterionρ on the facets of Del|S(X̄).

ALGORITHM

INITIALISATION

X̄ = X; compute Del|S(X̄)

REPEAT
WHILE there remains any encroached
boundary edgee

insert(midpoint(e))
LET f be any facet of Del|S(X̄) that does not
meetρ

LET p = circumcenter( f )
IF p encroaches boundary edgess1, · · · ,sk,
THEN

FOR i = 1 TO k
insert(midpoint(si))

ELSE

insert(p)
UNTIL no boundary edge is encroached and
all facets of Del|S(X̄) meetρ

At the end of the process, the algorithm returnsX̄ and
Del|S(X̄). Originally, Chew’s algorithm did not compute the
3-dimensional Delaunay triangulation of the points. How-
ever, there are several advantages in using a 3-dimensional
triangulation: it allows to handle topology changes, which is
important especially during the first steps of the algorithm,
and it provides a location data structure that allows to insert
new points fast11.

As for ρ, we shall use two measures: the aspect ratio and
the size of facets.

Definition 4 (some refinement criteria)
Let f be a facet of Del|S(X̄). We callθ its smallest angle and
Bf = B(cf , r f ) its biggest surface Delaunay ball:

(ρaspect ratio) f meets the criterion if 1
2sinθ ≤ β,

whereβ is a positive constant
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(ρsize) f meets the criterion ifr f ≤ g(cf ),
whereg : S→ R has a lower
boundh > 0

An easy computation shows that for any trianglet with
smallest angleθ, 1

2sinθ is equal to the ratio between the ra-
dius of the circumcircle oft and the length of its smallest
edge.

The algorithm can use one of the above criteria or it can
combine both. For instance, one can first remove facets that
are too big and then remove facets with a bad aspect ratio.

4. Termination of the algorithm

We prove that Chew’s algorithm terminates after a finite
number of steps. This result holds for surfaces without
boundaries or with smooth or piecewise linear boundaries.

Definition 5 Let v be a point inserted by the algorithm. We
call insertion radiusof v (denoted byrv) the distance fromv
to the “current” set of points̄X at the time whenv is inserted.
By convention, the insertion radius of any vertexw of the
input point sampleX is dist(w,X \{w}).

The proof of termination relies on the fact that the inser-
tion radius remains greater than a constant during the whole
process. It follows that the points inserted by the algorithm
cannot get too close to one another, and thus cannot be in-
finitely many.

Theorem 3Let Sbe a compact surface andX a point sample
of S. The algorithm is applied to(S,X):
- If Shas no boundary, then the algorithm will terminate pro-
vided thatβ ≥ 1.
- If S has piecewise linear boundaries such that all angles
between consecutive boundary edges are greater thanπ/4,
then the algorithm will terminate provided thatβ ≥

√
2.

- If Shas smooth boundaries and if the initial set of pointsX
contains aµ-sample of∂S, with µ < 1/3, then the boundary
edges make no angle less than 2π/3 and the algorithm will
terminate provided thatβ ≥ 2µ√

1−2µ−3µ2−(1−3µ)

√
2.

Proof The proof of the first two statements is similar to
Shewchuk’s proof for the planar case24 and is omitted here.
As for the third statement, the proof differs slightly but keeps
the same flavour. Consider a pointv that is inserted by the al-
gorithm. We distinguish three different cases:
• v is the “circumcenter” of a facetf . By definition, the De-
launay ballσ f of f that is centered atv is empty. Hence, the
insertion radiusrv is equal to the radius ofσ f . If v is inserted
becausef does not meetρsize, then the radius ofσ f is greater
thanh. If v is inserted becausef does not meetρaspect ratio,
then the radius ofσ f is not less than the radius of the cir-
cumcircle of f . Let p be the vertex of the smallest edge off
that has been inserted last. By definition, its insertion radius
rp is not greater than the length of the smallest edge off .
Since f does not meet the criterion (ρaspect ratio), we have
rv
rp

≥ radius of circumcircle
length of smallest edge> β.

• v is the “midpoint” of a boundary edge[a,b] that is en-
croached by a circumcenterp. We know that[a,b] is en-
croached only byp and thatp will not be inserted. The in-

sertion radiusrp of p is less than‖a− b‖
√

2
2 since p lies

in the diametral ball of[a,b]. So, according to lemma 5, the
insertion radiusrv of v is such that

rv ≥ δv ≥
√

1−2µ−3µ2−(1−3µ)
2µ

‖a−b‖
2

≥
√

1−2µ−3µ2−(1−3µ)
2µ

1√
2

rp

• v is the “midpoint” of a boundary edge that is encroached
by the vertex of an adjacent boundary edge. In fact, this situ-
ation cannot occur: indeed, according to lemma 4, all angles
between boundary edges are greater than 2π/3, sinceµ< 1

3 .

The different cases are summarized in the flow graph of fig-
ure 1:
- If Shas no boundary, then only loop(1) may occur. Hence,
with β ≥ 1, the insertion radius does not decrease when a
badly shaped facet is split, whereas it remains greater thanh
when a badly sized facet is split. Thus, during the whole pro-
cess the insertion radius remains greater thand = min(e,h),
wheree is the minimal distance between any two vertices of
the input set of points.
- If S has smooth boundaries, then takingβ ≥

2µ√
1−2µ−3µ2−(1−3µ)

√
2 makes the coefficients of loops

(1) and (1) + (2) greater than 1, which implies that the
insertion radius, throughout the process, remains greater

thand = min

(
e,
√

1−2µ−3µ2−(1−3µ)
2µ

h√
2

)
.

In both cases, every pointv of X̄ remains at distance at least
d from any other point of̄X. It follows that the open ballsBv

of radiusd
2 centered at the points of̄X are pairwise disjoint.

Now consider the volumeV =
{

x∈ R
3|dist(x,S) ≤ d

2

}
.

This volume is clearly bounded since the surface is compact,
and it contains∪v∈X̄Bv, which implies that there can be only
a finite number of pairwise disjoint balls.

1

2
(2)

(1)

µ1 − 2    −3 µ 2 µ1 − 3 )− (

2µ

midpoint

circumcenter

> hβ V

S

Figure 1: Flow graph and volume V

Theorem 3 asserts that, on surfaces without boundaries,
the algorithm can generate meshes with no angle less than
30 degrees, provided that one setsβ = 1. On surfaces with
polygonal boundaries, no angle less than 20.7 degrees is cre-
ated if one setsβ =

√
2.
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5. Approximating the surface

In this section,Sdenotesa smooth compact surface without
boundariessuch that, for anyx ∈ S, dσ(x) ≥ dmin

σ > 0. Let
X be a finite set of points onS. The algorithm is applied to
(S,X) with the criterion (ρsize), parameterized by a function
g which is 1-Lipschitz. We call̄X the point sample generated
by the algorithm.

We shall show that the algorithm can produce sparseε-
samples. We first consider the general case, and afterwards
the case of unifom samples, for which better bounds can be
provided. Approximation results come out as corollaries.

5.1. Generatingε-samples

To establish our results, we use theorem 1 which requires
Del|S(X̄) to be non-empty. The following lemma helps en-
suring this condition.

Lemma 2 Assume that there exists a facetf0 of Del|S(X)
that has a surface Delaunay ballBf0 = B(cf0, r f0) such that
r f0 ≤ 1

3 g(cf0). Then f0 ∈ Del|S(X̄).

Proof Assume that, at the end of the algorithm,f0 /∈
Del|S(X̄). This implies that there exists a step at which the
algorithm inserted a pointv insideBf0. According to the size
criterion,v is the center of a Delaunay ballBf of a certain
facet f , such that the radiusr f of Bf is greater thang(v).
Sincev lies insideBf0, we have‖v− cf0‖ < 1

3 g(cf0). And,
sinceg is 1-Lipschitz,

g(v) ≥ g(cf0)−‖v−cf0‖ >

(
1− 1

3

)
g(cf0)

Let a be one of the vertices off0. Sincea is in Bf0, we have

‖a−v‖ ≤ 2 r f0 ≤
2
3

g(cf0) < g(v) < r f

which contradicts the fact thatBf is a Delaunay ball.

Definition 6 f0, defined as in the above lemma, is called a
seed-facet– see figure 2. Lemma 2 claims that any seed-facet
will remain a facet of Del|S(X̄) throughout the course of the
algorithm. Notice however that seed-facets may have also
big surface Delaunay balls that will eventually be deleted.

From lemma 2 and theorem 1, we deduce that the algo-
rithm can buildε-samples:

Theorem 4Let ε be a positive constant such thatε ≤ 0.327.
We setg≤ ε

6+5ε dσ. Assume that Del|S(X) has a seed-facet
on each connected component ofS. Then the vertices of
Del|S(X̄) form anε-sample ofS.

Proof Lemma 2 ensures that Del|S(X̄) has at least one facet
on each connected component ofS. In addition, the size
criterion ensures that every surface Delaunay ballB(cf , r f )
of any facet f of Del|S(X̄) is such thatr f ≤ g(cf ) ≤

ε
6+5ε dσ(cf ). So, the assumptions of theorem 1 are verified,
which gives the result.

Remark The vertices of Del|S(X̄) belong toX̄ (hence theo-
rem 4 implies that̄X is anε-sample ofS), but the converse is
not necessarily true.

5.2. A word about seed-facets

Figure 2 shows that seed-facets are preserved throughout the
meshing process. The drawback of seed-facets is that, since
they are smaller than the size criterion (at least three times
as small), they force the algorithm to refine the mesh more
than necessary in their vicinity. This problem can be avoided
by using no seed-facet and choosing a few random points to
start the process. In that case there is no guarantee that the
final restricted Delaunay triangulation will be non-empty.
However, this assumption is often verified in practice. For
instance, experiments have shown that, with the torus of fig-
ure 2 and exactly three initial random points, one has a 20%
chance that the meshing process succeeds. If one chooses
an initial point set with a small enough diameter, then the
chance of success grows up dramatically (92% with a di-
ameter of 0.5 which is still far above the size criterion). In
addition, if one chooses a bigger initial point set, then the
chance of success also grows up dramatically (40% with 4
points, 78% with 5 points, and more than 94% with 6 points).
In conclusion, it is usually unnecessary to use seed-facets in
practice. For instance, the results shown in figures 3, 5, 6
and 7 were obtained without using any seed-facet. The ini-
tial point sets had various sizes, ranging from three points to
a dozen of points.

Another possibility is to use seed-facets to mesh the sur-
face, and then to decimate the mesh in their vicinity. The re-
finement process can then be restarted in order to guarantee
that the set of vertices of the restricted Delaunay triangula-
tion remains anε-sample of the surface.

5.3. Approximation results

In this section, we give approximation results that are conse-
quences of the fact that the algorithm can buildε-samples.

Topological guarantees Theorem 2 of [Amenta, Bern]3

states that the restricted Delaunay triangulation of anε-
sample ofS, with ε < 0.1, is homeomorphic toS. From this
result and theorem 4 we deduce the following corollary:

Corollary 1 Under the assumptions of theorem 4, withε <
0.1, Sand Del|S(X̄) are homeomorphic.

Hausdorff distance The fact thatX̄ belongs toSis useful for
bounding the Hausdorff distance betweenS and Del|S(X̄).
The following result says that this distance isO(ε):

Corollary 2 Under the assumptions of theorem 4, with
ε ≤ 0.327, the Hausdorff distance betweenS and Del|S(X̄)
is bounded byε dmax

σ , wheredmax
σ = max{dσ(x), x∈ S}.

Proof On the one hand, we use the criterion (ρsize) with g≤
ε

6+5ε dσ ≤ ε dσ, which implies that every facet of Del|S(X̄)
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Figure 2: Meshing process on the torus of equation(1.5−
√

x2 +y2 )2 +z2−0.25= 0, with a uniform size criterion of10−1

and three starting points: the seed-facet remains in the restricted Delaunaytriangulation throughout the process.

has a radius less thanε dmax
σ . It follows that every point of

Del|S(X̄) is at distance less thanε dmax
σ from X̄ ⊆ S.

On the other hand, theorem 4 says that the vertices of
Del|S(X̄) form an ε-sample ofS. Thus every point ofS is
at distance less thanε dmax

σ from those vertices, and hence
from the restricted Delaunay triangulation.

Normals approximation Lemma 7(b) of [Amenta, Bern]3

bounds the angle between the normal to any facetf of
Del|S(X̄) and the normal to the surface at each of the ver-
tices of f , whenX̄ is anε-sample ofS. From this result and
theorem 4 we deduce the following:

Corollary 3 Under the assumptions of theorem 4, withε <
1
7 , the angle between the normal to any facetf of Del|S(X̄)
and the normal toS at any of the vertices off is less than

2ε
1−7ε +arcsin

√
3 ε

1−ε .

Area approximation If X̄ is anε-sample ofS, then the area
of Del|S(X̄) approximates the area ofS – see [Morvan,
Thibert]22. From this result and theorem 4 we deduce the
following:

Corollary 4 Under the assumptions of theorem 4, withε ≤
0.327, there exist two constantsC1 andC2 depending onε,
such thatC1 Area(S) ≤ Area(Del|S(X̄)) ≤ C2 Area(S), and
lim
ε→0

C1(ε) = lim
ε→0

C2(ε) = 1.

5.4. Sparseε-samples

Provided thatX contains few points, the algorithm actually
produces sparseε-samples. For simplicity, we assume that
X contains exactly three points per connected component of
S. This is no real loss of generality and the following result
holds for any setX of constant size.

Theorem 5 Let ε be a positive constant such thatε ≤√
57−7
4 ≈ 0.14. We setg = ε

6+5ε dσ. Assume thatX has

exactly 3 points per connected component ofS, and that
Del|S(X) has a seed-facet on each connected component of
S. ThenX̄ is a sparseε-sample ofS.

Proof Sinceε ≤
√

57−7
4 ≤ 0.327 and Del|S(X) has a seed-

facet on each connected component ofS, theorem 4 implies
thatX̄ is anε-sample ofS.
To bound the cardinality of̄X, we shall use theorem 2 with
Y = X̄ \ X. We first show thatX̄ \ X is a 1

2-sample ofS.
Let Si be a connected component ofS. We haveε < 1,
thus at any pointx ∈ Si , B(x,ε dσ(x)) ∩ S is a topologi-
cal disc. Therefore,B(x,ε dσ(x)) intersectsSi only. This
means that, sincēX is an ε-sample ofS, we have∀x ∈
Si , |B(x,ε dσ(x))∩Si ∩ X̄| ≥ 1, ie X̄∩Si is anε-sample ofSi
with respect todσ. Let fi be the seed-facet associated with
Si . Sinceg= ε

6+5ε dσ < 0.17dσ, lemma 6 ensures that every
edge offi is incident to another facet of Del|S(X̄). Moreover,
sinceg < dσ, every facet of Del|S(X̄) has its three vertices
in the same connected component ofS. In particular, all the
facets of Del|S(X̄) that are incident tofi have their vertices in
Si . So, the assumptions of lemma 7 are verified, withΣ = Si
andφ = dσ, henceX̄∩Si minus the set of vertices offi is a
(3+ε)ε
1−ε -sample ofSi with respect todσ. By assumption, the

set of vertices offi is exactlyX∩Si , thus(X̄∩Si)\(X∩Si) is

a (3+ε)ε
1−ε -sample ofSi with respect todσ. Since this is true for

every connected component ofS, we conclude that̄X\X is a
(3+ε)ε
1−ε -sample ofS. Sinceε ≤

√
57−7
4 , we have(3+ε)ε

1−ε ≤ 1
2 .

Now, letvbe a point ofX̄\X, iea point that has been inserted
by the algorithm. Letw 6= v be the point ofX̄ that is closest
to v. We distinguish two cases: 1.w∈ X or has been inserted
beforev, 2. w has been inserted afterv. In the former case,
we have, according to the size criterion,

‖v−w‖ >
ε

6+5ε
dσ(v)
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In the latter case, we have, for the same reason,

‖v−w‖ >
ε

6+5ε
dσ(w) ≥ ε

6+5ε
(dσ(v)−‖v−w‖)

which gives

‖v−w‖ >
ε

6(1+ ε)
dσ(v)

In both cases, we have dist(v,(X̄ \X) \ {v}) ≥ dist(v, X̄ \
{v}) = ‖v− w‖ > ε

6(1+ε) dσ(v). SinceX̄ \ X is a (3+ε)ε
1−ε -

sample ofS with (3+ε)ε
1−ε ≤ 1

2 , theorem 2 (withY = X̄ \X,
ψ = dσ andK = ε

6(1+ε) ) says that

|X̄ \X| ≤
4
(

6+(
√

2+5)ε
)2

3π(
√

2−1)2

µ(S)

ε2

whereµ(S) =
R

S
dx

d2
σ(x) . Now, by assumption,|X|= 3k, where

k is the number of connected components ofS. Thus|X̄| =
3k+ |X̄ \X|. Note that for any connected componentSi of
S, the distance to the skeletonσi of Si (considered indepen-
dently from the other connected components ofS) is no less
than 1

2 dσ. Thus,
R

Si

dx
d2

σ(x) ≥ 1
4

R

Si

dx
d2

σi
(x) , which is greater

thanπ according to lemma 8. Henceµ(S) ≥ πk, which gives

|X̄| ≤


3ε2

π
+

4
(

6+(
√

2+5)ε
)2

3π(
√

2−1)2


 µ(S)

ε2

and, sinceε ≤
√

57−7
4 ,

|X̄| ≤ C × µ(S)

ε2

with

C =
3(
√

57−7)
2

16π +
(24+(

√
2+5)(

√
57−7))

2

12π(
√

2−1)2
< 117.17

Remarks
Since the vertices of Del|S(X̄) belong toX̄, the above

result and theorem 4 imply that they also form a sparseε-
sample ofS.

When ε tends to zero, our upper bound is equivalent to
48

π(
√

2−1)2

µ(S)
ε2 , which is about 1500 times the lower bound

given by Erickson14. This suggests that our bound is still far
from being tight.

5.5. Generating uniform samples

If one takes the functiong of the size criterion to be
constant (note that it is still 1-Lipschitz), then the algo-
rithm will generate uniform samples. In fact, if̄X is an
ε-sample, then it is a uniform(ε dmax

σ )-sample, where
dmax

σ = max{dσ(x), x∈ S}). However, better bounds can be
achieved wheng is constant, as shown below.

Theorem 6We setg = h, whereh is a positive constant less
than 0.09 dmin

σ . Assume thatX has exactly three points per
connected component ofS, and that Del|S(X̄) has a seed-
facet on each connected component ofS. ThenX̄ is a uni-
form (4h,515)-sample ofS.

Proof Lemma 2 ensures that Del|S(X̄) has at least one
facet on each connected component ofS. Thus, since 4h ≤
0.36dmin

σ , we can use theorem 1 which says that the vertices
of Del|S(X̄) form a uniform 4h-sample ofS. It follows that
X̄ is also a uniform 4h-sample ofS.
Now, let v be a point ofX̄ \ X, i.e. a point that has been
inserted by the algorithm. Letwbe any point of(X̄\X)\{v}.
If w has been inserted beforev, then according to the size
criterion we have‖v−w‖ > h. If w has been inserted after
v, then the size criterion also says that‖v−w‖ > h. Thus,
the points ofX̄ \X are centers of pairwise disjoint balls of
radiush

2 . Hence, for every pointx∈ S, the number of points
of X̄ \X that lie insideB(x,4h) is less than

4
3 π (4h)3

4
3 π

(
h
2

)3 = 512

Since 4h < dmin
σ , at each pointx ∈ S the ballB(x,4h) inter-

sects only the connected component ofSwherex lies. Thus,
sinceX has exactly three points per connected component,
we have|B(x,4h)∩X| ≤ 3. Hence the number of points of
X̄ that lie insideB(x,4h) is less than 512+3 = 515.

Remark The fact thatX̄ is a uniform(ε,κ)-sample implies

that, for a given surface, the size of̄X is O
(

1
ε2

)
, which is

optimal for uniformε-samples.

6. Bounding the aspect ratio

Once an approximation of the surface has been obtained
(or is given), the algorithm can be used to remove the
skinny facets: this can be done with the help of the crite-
rion (ρaspect ratio). Theorem 3 gives bounds on the angles of
the facets of the resulting triangulated surface. The following
result provides a worst-case optimal upper bound on the size
of the output with respect to the size of the input. It roughly
shows that we can bound the aspect ratio of the triangles
without significantly increasing the number of vertices. The
upper bound we give in the next theorem is computed ac-
cording to a special measure, called local feature size, de-
fined as follows:

Definition 7 Let S be a surface andX a set of points sam-
pled fromS. Consider the graphG made of the vertices of
X and of the boundary edges ofS. The local feature sizeat
x, denoted by lfsX(x), is defined as the radius of the smallest
ball centered atx that intersects two nonincident vertices or
edges ofG. According to [Ruppert]23, lfsX is 1-Lipschitz.

Theorem 7 Let S be a smooth compact surface andX an
ε-sample ofS, with ε ≤ 1

2 . If S has some boundaries, as-
sume thatX contains aµ-sample of∂S, with µ< 1

2(1+
√

2)
. If
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one runs the algorithm with the criterion (ρaspect ratio) only,

whereβ > 2µ√
1−2µ−3µ2−(1−3µ)

√
2, then the final number of

points ofX̄ is at most

C .
Z

S

dx

lfs2
X(x)

whereC is a constant that depends only onβ andµ.

Proof This result is a simple application of theorem 2. How-
ever, we have to make sure that equation (1) is verified. As
in the planar case23, 24, one can start from the relations that
we established in the proof of theorem 3 and show that there
exists a constantDS ≥ 1 such that for every pointv ∈ X̄,

lfsX(v)
dist(v,X̄\{v})

≤ DS+1.

Hence, (1) holds withY = X̄, ψ = lfsX andK = 1
DS+1 . We

can then apply theorem 2 which gives the result.

Remark The above upper bound is worst-case optimal. In-
deed, ifS is a planar surface then the problem becomes 2-
dimensional, and according to [Mitchell]21, any solution re-

quiresΩ
(

R

S
dx

lfs2
X(x)

)
points.

7. Experimental results – discussion

Implementation The algorithm has been implemented using
theC++ library CGAL, which allowed us to derive the re-
stricted Delaunay triangulation from the 3-dimensional De-
launay triangulation. Given a surfaceSand a point samplēX,
Del|S(X̄) is templated by the type ofS – polyhedron, para-
metric or implicit surface etc. It is represented by marking
the facets of Del(X̄) whose dual Voronoi edges intersectS.

An advantage of the algorithm is that, except for
the in_sphere() predicate of the 3-dimensional Delau-
nay triangulation, the only predicate to implement is
does_segment_intersect_surface(), which tells whether a
segment intersects the surface or not. The related construc-
tor, intersect_segment_with_surface(), is implemented in the
same way. Both of them must be adapted to the type of the
input surface. For instance, on an implicit surface given by
the equationP(x,y,z) = 0, whereP is a polynomial, one can
use either an algebraic technique or a numerical technique.
The former reduces to solving a univariate equation of de-
gree deg(P), whereas the latter can be implemented as a sim-
ple binary search that uses the fact that if the signs ofP at
both endpoints are different then the segment intersects the
surface. Although not exact and with a time complexity that
depends highly on the precision of the search, the numerical
approach is useful in practice since it can be extended to sur-
faces that are not algebraic nor semi-algebraic. However, the
algebraic method is much more efficient in practice. Our im-
plementation of the algebraic version uses theC++ library
SYNAPS, which was designed to solve algebraic systems12.

Our theoretical results require to know some estimate of
dσ. If the algorithm is used with a uniform size criterion, we

only need a lower bounddmin
σ , which is easily available in

many applications. If the algorithm is used with a local size
criterion, we need an estimate ofdσ at all inserted points.
One can approximatedσ(x) by the distance fromx to the
set of poles3 of the Voronoi diagram of̄X. Although we do
not have theoretical guarantees then, good results have been
observed in practice – see figure 3 (center).

Meshing surfaces Figure 5 shows some implicit surfaces
that have been meshed by the algorithm, using as size cri-
terion a linear function ofdσ. Up left is the “chair” of equa-
tion (x2+y2+z2−23.75)2−0.8((z−5)2−2x2)((z+5)2−
2y2) = 0: degree 4 and genus 3. Down left is the “tangle-
cube” of equationx4−5x2 + y4−5y2 + z4−5z2 + 10= 0:
degree 4 and genus 5. Since both surfaces are closed and
smooth, corollary 1 ensures that with a small enough size
criterion the algorithm produces triangulated surfaces with
the right topology type. This is observed here, even with a
size criterion (g = 10−1dσ) that is far above the theoretical
bound.

We also experimented with surfaces with boundaries or
singularities. Figure 5 shows Barth’s decic surface (up cen-
ter) and Sheffer’s surface (down center). The former has de-
gree 10 and at least 40 singular points ! One can notice that
these points have not been identified – see the zoom up right,
so that the topology could not be captured. The result is satis-
factory on the whole, except near the singularities, wheredσ
tends to zero. Sheffer’s surface is periodic, because its func-
tion is a trigonometric polynomial. Since it is not compact,
we have only considered the portion of the surface that lies
inside a ball.dσ does not vanish on this surface and, as can
be expected, the topology is preserved. However, the bound-
aries are jagged because they were not explicitely computed.
Figure 6 shows some results on complex surfaces obtained
from simple implicit primitives by applying boolean oper-
ations and offsets. Complex surfaces are meshed directly,
without meshing first the primitives and then computing the
boolean operations or the offsets on the triangulated prim-
itives. The example in the middle is the solvent excluded
surface of a molecule of alanin, with a probe of radius 20 pi-
cometers: this surface is a combination of spherical and toric
patches – see the zoom on the left. The example on the right
consists of two letters that were built as unions of cylinders.

Dealing with boundaries and singularities In the litterature,
the usual method that is used to handle boundaries and sin-
gularities, samples them before the rest of the surface2. An
advantage of Chew’s algorithm is that it allows to handle
boundaries and singularities at the same time as the rest of
the surface. In section 3, we saw how to handle boundaries.
The same treatment can be applied to singular curves. This
results in meshes that include polygonal approximations of
the singular curves. Figure 7 (up left), which presents the
end of a tubular surface remeshed by the algorithm – the
blue curve is the original boundary, shows that boundaries
are correctly approximated. Figure 7 (down left) shows the
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Figure 3: Various size criteria: uniform (left), curvature-adapted (center), customized (right).

result of the algorithm on Steiner’s Roman surface, which is
one of the three possible surfaces obtained by sewing a Moe-
bius strip to the edge of a disk. This surface has one triple
point, three singular lines and six pinch points. The singular
lines were correctly approximated by the algorithm, except
near the pinch points (circled in red).

Boundaries and singularities play different roles. Indeed,
by definition,dσ tends to zero near a singularity, whereas it
does not near a boundary. Thus it should be possible to ex-
tend our theoretical results to smooth surfaces with bound-
aries, whereas the sampling theory we currently use clearly
fails in the vicinity of singularities. Practicle experiments
corroborate this observation, since the result of the algorithm
is always a manifold near boundaries, whereas it is not al-
ways so near singularities.

The case of polyhedra. Theoretically, every edge of a poly-
hedron is problematic since it is a singularity. But in prac-
tice, it turns out that the results are manifold everywhere ex-
cept near the sharp edges. A simple post-process that detects
the edges with more than two incident facets and deletes the
guilty facets often suffices to get a manifold surface. Note
that taking the sharp edges as boundary edges greatly helps
the algorithm to avoid non-manifold results. An example is
shown in figure 7 (center and right): the octopus was de-
signed at first by an artist, using a quad-dominant mesh. We
show the output of the algorithm, with a very thin size cri-
terion adapted todσ, and a dozen of random points to start
with. One can notice that the final point density is bigger
near the edges of the initial mesh – see figure 7 (up right),
and that all the details have been remarkably captured: see
for instance the eyes – figure 7 (down right) – which are sep-
arate discs floating in the air.

Timing and output complexity Figure 4 shows the evolution
of the output size and computation time (with a processor at
900 Mhz) with respect to the boundh of the size criterion,
on the sphere of equationx2 + y2 + z2 − 1 = 0. The output
size is given by the number of vertices of the restricted De-
launay triangulation, whereas the computation time is given

in centiseconds. It turns out that the output size isO
(

1
h2

)
,

as predicted by theorems 5 and 6.

Concerning the time complexity: at each step, the algo-
rithm inserts a point in the 3-dimensional Delaunay trian-
gulation. To this end, it deletes the facets that are in con-
flict with the point that is being inserted, and then stars the
hole. For every new facet, it checks whether the dual Voronoi
edge intersects the surface. Thus the behaviour of the algo-
rithm is that of the incremental Delaunay triangulation, ex-
cept that no point location is needed since only “circumcen-
ters” of known facets or “midpoints” of known edges are
inserted. It has been shown recently4 that the size of the 3-
dimensional Delaunay triangulation of an(ε,κ)-sample of
n points lying on a generic smooth surface isO(nlogn).
The worst-case time complexity of one step of the algo-
rithm is thusO(φ nlogn), wheren is the size of the cur-
rent point sample, andφ is the time complexity of the pred-
icatedoes_segment_intersect_surface(), which can be con-
sidered as a constant once the surface is given. This yields
an overall worst-case time complexity ofO(N2 logN), where
N is the size of the output. Assuming that the points are in-
serted in random order, the expected running time reduces to
O(N logN) since no point location is needed. This bound is

Figure 4: Output size (solid line) and time complexity
(dashed line) versus1h2 .

usually observed in practice, as illustrated in figure 4. This
example also shows that the algorithm is able to generate
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Surface (degree) ellipsoid (2) torus (4) ”chair” (4) ”tanglecube” (4) Steiner (4) Barth’sDecic (10)

Criterion value 2.10−2 10−2 10−2 10−2 10−3 10−5

Output size (points) 166 1,297 6,323 4,162 8,461 142,605
Comput. time (sec.) 0.9 38 181 96 141 13,440

Rate (points per sec.) 184 34 35 43 60 11

Table 1: Statistics on some implicit models presented in the paper.

10,000 points on the sphere within less than 65 seconds.
However,φ depends highly on the number of monomials of
the polynomial that describes the surface, and the algorithm
gets significantly slower when the degree of the polynomial
increases – see table 1.

8. Conclusion – future work

We have revisited a greedy meshing algorithm. This algo-
rithm can be applied to various types of surfaces and is quite
simple. It is based on the 3-dimensional Delaunay triangu-
lation and requires only few additional predicates. We have
given some theoretical guarantees. The algorithm can pro-
duce various kinds of samples and construct good approxi-
mations with respect to several criteria: topology, Hausdorff
distance, normals, area.

We have implemented the algorithm and presented exper-
imental results that corroborate (and sometimes are better
than) the theory.

Currently, the theoretical results are limited to closed
smooth surfaces, but it should be possible to extend them to
smooth surfaces with boundaries as the experimental results
suggest.

Handling the singularities is a more difficult issue that
should require the use of a more general theory of surface
sampling. However, the algorithm appears to be extremely
robust even in the presence of singularities.

Acknowledgments

The authors would like to thank David Cohen-Steiner and
Marc Pouget for fruitful discussions, as well as Pierre Alliez
for helpful remarks on the structure of the paper.

References

1. P. Agarwal and S. Suri. Surface approximation and geometric partitions.Proc. 5th
Annu. ACM Sympos. Discrete Algorithms, 1994. pp 24-33.

2. P. Alliez, E. Colin de Verdière, O. Devillers and M. Isenburg. Isotropic Surface
Remeshing.Solid Modelling and Applications, 2003.

3. N. Amenta and M. Bern. Surface Reconstruction by Voronoi Filtering.Proc. 14th
Annu. ACM Sympos. Comput. Geom., 1998, pp 39-48.

4. D. Attali, J-D Boissonnat and A. Lieutier. Complexity of theDelaunay Triangu-
lation of Points on Surfaces: the Smooth Case.Proc. 19th Annu. ACM Sympos.
Comput. Geom., 2003.

5. J-D Boissonnat and F. Cazals. Natural Neighbour Coordinatesof Points on a Sur-
face.Comp. Geom. Theory and Appl., 155-174, 2001.

6. J-D Boissonnat and S. Oudot. Restricted Delaunay Triangulation and Point Sam-
ples. In preparation.

7. H-L Cheng, T. K. Dey, H. Edelsbrunner and J. M. Sullivan. Dynamic Skin triangu-
lations.Proc. 12th Annu. ACM Sympos. Discrete Algorithms, 2001, pp 47-56.

8. E. V. Chernyaev. Marching Cubes 33: Construction of Topologically Correct Iso-
surfaces. Technical report CERN CN 95-17, 1995.

9. L. P. Chew. Guaranteed-Quality Mesh Generation for Curved Surfaces.Proc. 9th
Annu. ACM Sympos. Comput. Geom., 1993, pp 274-280.

10. M. Desbrun, N. Tsingos and M-P Gascuel. Adaptive Sampling of Implicit Surfaces
for Interactive Modeling and Animation.Proc. Implicit Surfaces, pp 171-185, 1995.

11. O. Devillers. The Delaunay hierarchy.Internat. Journal Found. Comput. Sci., 2002,
vol 283/1, pp 203-221.

12. G. Dos Reis, B. Mourrain, R. Rouillier and Ph. Trébuchet. An environment for
Symbolic and Numeric Computation.Proc. Internat. Conf. on Mathematical Soft-
ware, 2002, pp. 239–249.

13. H. Edelsbrunner, N.R. Shah. Triangulating topological spaces.International Jour-
nal of Computational Geometry and Applications, Vol. 7, No. 4 (1997), pp 365-378.

14. J. Erickson. Nice point sets can have nasty Delaunay Triangulations.Proc. 17th
Annu. Sympos. Comput. Geom., pp 96-105, 2001.

15. I. Guskov, W. Sweldens and P. Schröder. MultiresolutionSignal Processing for
Meshes.Proc. SIGGRAPH, pp 325-334, 1999.

16. J. Hart and B. T. Stander. Guaranteeing the Topology of an Implicit Surface Poly-
gonization for Interactive Modeling.Proc. SIGGRAPH, 1997.

17. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle. Mesh Optimiza-
tion. Proc. SIGGRAPH, pp 19-26, 1993.

18. K. Hormann, U. Labsik and G. Greiner. Remeshing Triangulated Surfaces with
Optimal Parameterizations.Computer-Aided Design 33, pp 779-788, 2001.

19. K. Hormann, U. Labsik, M. Meister and G. Greiner. Hierarchical Extraction of
Iso-Surfaces with Semi-Regular Meshes.Solid Modelling and Applications, 2002.

20. W. E. Lorensen and H. E. Cline. Marching Cubes: a High-Resolution 3D Surface
Construction Algorithm.Proc. SIGGRAPH, 1987.

21. S. A. Mitchell. Cardinality bounds for triangulations with bounded minimum angle.
Proc. 6th Annu. Canadian Conference Comput. Geom., pp 326-331, 1994.

22. J-M Morvan and B. Thibert. On the Approximation of the Areaof a Surface. INRIA
RR-4375, 2002.

23. J. Ruppert. A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh
Generation.Journal of Algorithms, May 1995.

24. J. R. Shewchuk. Delaunay Refinement Algorithms for Triangular Mesh Generation.
Comput. Geom. Theory & Applications, 22(1-3):21-74, may 2002.

25. G. Turk. Generating Textures for Arbitrary Surfaces using Reaction-diffusion.
Proc. SIGGRAPH, pp 289-298, 1991.

26. G. Turk. Re-tiling Polygonal Surfaces.Proc. SIGGRAPH, pp 55-64, 1992.

27. A. Witkin and P. Heckbert. Using Particles to Sample and Control Implicit Surfaces.
Computer Graphics, pp 269-278, 1994.

c© The Eurographics Association 2003.



J-D Boissonnat and S. Oudot / Provably Good Surface Samplingand Approximation

Appendix: Technical lemmata

Results used to prove the termination of the algorithm

Lemma 3 (proved in [Boissonnat, Oudot]6) Let C be a curve in
R

3. We calldζ the distance to its skeletonζ. LetY be aµ-sample of
C, with µ< 1/2. Leta andb be two points ofY that are consecutive
onC. Then

‖a−b‖ ≤ 2µ

1−µ
dζ(a)

Lemma 4 (proved in [Boissonnat, Oudot]6) Let C be a curve in
R

3, and letY be aµ-sample ofC, with µ < 1/2. Let b, a andc be
three points ofY that are consecutive onC. Then

b̂ac≥ 2arccos
µ

1−µ

Lemma 5 Let Sbe a 2-manifold that has a smooth boundary. LetX̄
be a finite set of points onS that contains aµ-sampleX̃ of ∂S, with
µ < 1/3. Leta andb be two points of̃X that are consecutive on∂S.
If the boundary edge[a,b] is split by inserting pointv∈ ∂S, then

δv ≥
√

1−2µ−3µ2− (1−3µ)

2µ

‖a−b‖
2

whereδv is the distance fromv to the diametral sphere of[a,b].

Proof The pointv which is inserted is at the intersection between∂S
and the bisector of[a,b].

a b

z

γ

v’

v

Let ζ be the skeleton of∂Sand letzbe any point of the bisector line
of [a,b] in planeΠ = (a,b,v). If γ = b̂az, we have

‖z−a‖ = ‖z−b‖ =
‖a−b‖
2cosγ

And, according to lemma 3,

‖a−b‖ ≤ 2µ

1−µ
dζ(a)

sincea andb are consecutive points of̃X on ∂S. Thus

‖z−a‖ = ‖z−b‖ ≤ µ

(1−µ)cosγ
dζ(a)

which gives, sincedζ is 1-Lipschitz,

dζ(z) ≥ dζ(a)−‖z−a‖ ≥
(

(1−µ)cosγ
µ −1

)
‖z−a‖

Now take pointz so that cosγ = 2µ
1−µ andz is on the side of(a,b)

that does not containv. γ is well-defined as far asµ≤ 1/3. For this
particular value ofγ we havedζ(z) ≥ ‖z−a‖. Thus pointz is at the
center of an open ball of radius‖z−a‖ which does not intersectζ.
According to lemma 1, the intersection between this ball and∂S is
a topological arc. And since pointsa andb are inside the ball, all
points of∂Sbetweena andb, and in particularv, are also inside the
ball. Hence the distance fromv to the diametral sphere of[a,b] is

δv = ‖a−b‖
2 −‖v−v′‖ ≥ ‖a−b‖

2 − (‖z−a‖−‖z−v′‖)

Then, forµ < 1/3 andγ = arccos 2µ
1−µ ,

‖z−a‖−‖z−v′‖ = ‖a−b‖
2 cosγ − ‖a−b‖

2 tanγ

= ‖a−b‖
2

(1−µ)−
√

1−2µ−3µ2

2µ

and

δv ≥
(

1− (1−µ)−
√

1−2µ−3µ2

2µ

)
‖a−b‖

2

≥
√

1−2µ−3µ2−(1−3µ)
2µ

‖a−b‖
2

Results used to generate sparse ε-samples

Lemma 6 (proved in [Boissonnat, Oudot]6) Let Σ be a smooth
compact surface without boundaries. We calldτ the distance to
its skeletonτ. Let X̄ be a set of points onΣ. Assume that∀ f ∈
Del|Σ(X̄) every surface Delaunay ballB(cf , r f ) of f is such that
r f ≤ 0.17 dτ(cf ). Then every edge that is incident to a facet of
Del|Σ(X̄) is actually incident to at least two facets of Del|Σ(X̄).

Lemma 7 Let Σ be a smooth compact connected surface. LetX̄ be
an ε-sample ofΣ, with respect to a given 1-Lipschitz functionφ.
Let f0 be a facet of Del|Σ(X̄) such that every edge off0 is incident
to another facet of Del|Σ(X̄). Call X the set of vertices off0. Then

X̄ \X is a (3+ε)ε
1−ε -sample ofΣ, with respect toφ.

Proof Let x ∈ Σ. Let v be the point ofX̄ that is closest tox. Then
‖x−v‖ ≤ ε φ(x), sinceX̄ is anε-sample ofΣ with respect toφ. Now
there are two cases: eitherv∈ X̄ \X, eitherv∈ X.
- If v∈ X̄ \X, then

dist(x, X̄ \X) = ‖x−v‖ ≤ ε φ(x) ≤ (3+ ε)ε
1− ε

φ(x)

- If v∈ X, then , since every edge off0 is incident to another facet of
Del|Σ(X̄), there exists a facetf 6= f0 that is incident tov. At least one
vertex of f is not a vertex off0, ie is in X̄\X. Letw be such a vertex.
By definition,(v,w) is an edge off , ie an edge of Del|Σ(X̄), thus its
dual Voronoi face intersectsΣ. Lety be a point at the intersection. By
definition of the Voronoi diagram,‖y− v‖ = ‖y−w‖ = dist(y, X̄),
which is less thanε φ(y) sinceX̄ is anε-sample ofΣ with respect
to φ. Thus we have‖y− v‖ ≤ ε φ(y) ≤ ε (φ(v)+‖y−v‖), that is,
‖y−v‖ ≤ ε

1−ε φ(v). Finally, we get

dist(x, X̄ \X) ≤ ‖x−w‖ ≤ ‖x−v‖+‖v−w‖
≤ ‖x−v‖+2 ‖v−y‖
≤ ε φ(x)+ 2ε

1−ε (φ(x)+‖x−v‖)
≤ ε φ(x)+ 2ε

1−ε (1+ ε) φ(x)

≤ (3+ε)ε
1−ε φ(x)

Lemma 8 Let Σ be a smooth compact connected surface without
boundaries. We calldτ the distance to its skeletonτ. We have

Z

Σ

dx

d2
τ (x)

≥ 4π

Proof Let dmax
τ = max{dτ(y), y∈ Σ}. We have

R

Σ
dx

d2
τ (x)

≥ Area(Σ)

(dmax
τ )2 .

SinceΣ is connected and has no boundary, it bounds an open set
Ω of R

3. Let x be a point ofΣ such thatdτ(x) = dmax
τ . Call Bx the

maximal inner (ie that is included inΩ) ball that is tangent toΣ atx.
Its center is onτ, thus its radius is greater thandτ(x) = dmax

τ . Since
Bx is a ball included inΩ, we have Area(∂Bx) ≤ Area(Σ), which
gives 4π (dmax

τ )2 ≤ Area(Σ). Thus,
R

Σ
dx

d2
τ (x)

≥ 4π.
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Figure 5: Several implicit surfaces meshed by the algorithm.

Figure 6: Examples from biogeometry (left and center) and CAD (right).

Figure 7: Dealing with boundaries and singularities.
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