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Abstract

We introduce a new feature size for bounded domains in the plane endowed with an intrinsic metric.
Given a pointx in a domainX, thesystolic feature sizeofX atxmeasures half the length of the shortest
loop throughx that is not null-homotopic inX. The resort to an intrinsic metric makes the systolic
feature size rather insensitive to the local geometry of thedomain, in contrast with its predecessors
(local feature size, weak feature size, homology feature size). This reduces the number of samples
required to capture the topology ofX, provided that a reliable approximation to the intrinsic metric of
X is available.

Under sufficient sampling conditions involving the systolic feature size, we show that the geodesic
Delaunay triangulationDX(L) of a finite samplingL of a bounded planar domainX is homotopy equiv-
alent toX. Moreover, under similar conditions,DX(L) is sandwiched between the geodesic witness
complexCW

X (L) and a relaxed versionCW
X,ν(L). In the conference version of the paper, we took advan-

tage of this fact and proved that the homology ofDX(L) (and hence the one ofX) can be retrieved by
computing the persistent homology betweenCW

X (L) andCW
X,ν(L). Here, we investigate further and show

that the homology ofX can also be recovered from the persistent homology associated with inclusions
of typeCW

X,ν(L) →֒ CW
X,ν′(L), under some conditions on the parametersν ≤ ν′. Similar results are ob-

tained for Vietoris-Rips complexes in the intrinsic metric. The proofs draw some connections with recent
advances on the front of homology inference from point clouddata, but also with several well-known
concepts of Riemannian (and even metric) geometry.

On the algorithmic front, we propose algorithms for estimating the systolic feature size, selecting
a landmark set of sufficient density, building its geodesic Delaunay triangulation, and computing the
homology ofX using geodesic witness complexes or Rips complexes. We alsopresent some practical
simulations in the context of sensor networks that corroborate our theoretical results.

1 Introduction

There are many situations where a topological domain or spaceX is known to us only through a finite set of
samples. Understanding global topological and geometric properties ofX through its samples is important

∗This work was done while this author was a post-doctoral fellow at Stanford University. His email there is no longer valid.
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in a variety of applications, including surface parametrization in geometry processing, non-linear dimen-
sionality reduction for manifold learning, routing and information discovery insensor networks, etc. Recent
advances in geometric data analysis and in sensor networks have made an extensive use of alandmarking
strategy. Given a point cloudW sampled from a hidden domain or spaceX, the idea is to select a subset
L ⊂ W of landmarks, on top of which some data structure is built to encode the geometry and topology
of X at a particular scale. Examples in data analysis include the topology estimation algorithm of [20]
and the multi-scale reconstruction algorithm of [6, 30]. Both algorithms rely onthe structural properties of
the witness complex, a data structure specifically designed by de Silva [19] for use with the landmarking
strategy. Examples in sensor networks include the GLIDER routing scheme and its variants [23, 24]. The
idea underlying these techniques is that the use of sparse landmarks at different density levels enables us to
reduce the size of the data structures, and to perform calculations on the input data set at different scales.
Two questions arise naturally: (1) how many landmarks are necessary to capture the invariants of a given
objectX at a given scale? (2) what data structures should be built on top of them?

Manifold sampling issues have been intensively studied in the past, independently of the context of
landmarking. The first results in this vein were obtained by Amenta, Bern, and Eppstein, for the case where
X is a smoothly-embedded closed curve in the plane or surface in 3-space [1, 2]. Their bound on the
landmarks density depends on the local distance to the medial axis ofR2 \ X (the local feature size), and
the data structure built on top ofL is the so-calledrestricted Delaunay triangulation. Several extensions of
their result have been proposed, to deal with noisy data sets [21], sampled from closed manifolds of arbitrary
dimensions [6, 17], smoothly or non-smoothly embedded in Euclidean spaces[7]. In parallel, others have
focused on unions of congruent Euclidean balls and their topological invariants. In a seminal paper [37],
Niyogi et al. proved that, ifX is a smoothly-embedded closed manifold andL a dense enough sampling of
X, then, for a wide range of values ofr, the union of the open Euclidean balls of radiusr about the points
of L deformation retracts ontoX.

The above results only hold for manifolds without boundary. The presence of boundaries brings in
some new issues and challenges. An interesting class of manifolds with boundaries is the one of bounded
domains inRn. These naturally arise in the configuration spaces of motion planning problems in robotics,
in monitoring complex domains with sensor networks, and in many other contexts where natural obstacles
to sampling certain areas exist. By studying the stability of distance functions to compact sets inRn, Chazal
and Lieutier [15] have extended the sampling theory to a much larger class ofobjects, including some non-
smooth non-manifold compact sets. Their bound on the landmarks density depends on the so-calledweak
feature sizeof X, defined as the smallest positive critical value of the Euclidean distance to∂X. This mild
sampling condition is shown to be sufficient for the recovery of the homologyand homotopy groups of
X. Although the results of [15] are valid in a very general setting, in many cases the weak feature size is
small compared to the size of the topological features ofX, because it is bound to extrinsic quantities —
see Figure 1 (center). As a result, many landmarks are wasted satisfying the sampling condition of [15],
whereas very few would suffice1 to capture the topology ofX. In practice, this results in a considerable
waste of memory and computation power.

The case of bounded domains suggests the use of an intrinsic metric on the domain, instead of the
extrinsic metric provided by the embedding. This is essential for certain classes of applications, such as
sensor networks, where node location information may not be available andonly the geodesic distance can
be approximated via wireless connectivity graph distances. Intrinsic metricshave been studied in the context
of Riemannian manifolds without boundary [35] and, from a more computational point of view, in the
context of the so-calledintrinsic Delaunay triangulations (iDT) of triangulated surfaces without boundary

1Here we are only discussing the number of landmarks, and not the number of sample points. Indeed, for our approach to
work in practice, an accurate approximation to the geodesic distance inX must be provided, which may be given for free in some
situations (e.g. in robotics), but which may as well require many sample points in other cases (e.g. in sensor networks, see Section
7). In all situations, the main advantage of our approach is to build data structures on top of a very small set of landmarks.
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Figure 1: Left and center: two Lipschitz domains with very different weakfeature sizes (wfs), but similar
systolic feature sizes. Right: a geodesic Voronoi edge with non-zero Lebesgue measure.

[5]. 2-D triangle meshes in 3-D that happen to coincide with the iDT of their vertices are known to have many
attractive properties for PDE discretization [26], and generating such iDT meshes is a topic of considerable
interest in geometry processing [22].

Our contributions. In the paper we focus on the special case of bounded domains in the plane– a setting
which already raises numerous questions and finds important applications insensor networks. We make
the novel claim that resorting to an intrinsic metric instead of the Euclidean metric can result in significant
reductions in terms of the number of landmarks required to recover the homotopy type of a bounded domain
– an appealing fact in the context of resource-constrained nodes used in sensor networks. To this end, we
introduce a new quantity, called thesystolic feature size, or sfs for short, which measures the size of the
smallest topological feature (hole in this case) of the considered planar domainX. Specifically, given a
point x ∈ X, sfs(x) is defined as half the length of the shortest loop throughx that is not null-homotopic
in X – see Figure 1 (left and center) for an illustration. In particular,sfs(x) is infinite whenx lies in a
simply connected component ofX. The termsystolic feature sizeis coined after the concept ofsystole, first
introduced by Loewner around 1949 and later developed by Berger, Gromov and others [29]. The systole
at x is the length of the shortest non-contractible loop inX that passes throughx, therefore it is precisely
equal to2sfs(x).

In contrast with previous quantities,sfs depends essentially on the global topology ofX, and it is only
marginally influenced by the local geometry of the domain boundary. Under the assumption thatX has
Lipschitz boundaries (the actual Lipschitz constant being unimportant in our context), we show thatsfs is
well-defined, positive, and1-Lipschitz in the intrinsic metric. Moreover, ifL is a geodesicεsfs-sample of
X, for someε ≤ 1

3 , then the cover ofX formed by the geodesic Voronoi cells of the points ofL satisfies
the conditions of the Nerve theorem [8, 39], and therefore its dual Delaunay complexDX(L) is homotopy
equivalent toX. By geodesicεsfs-sample ofX, we mean that every pointx ∈ X is at a finite geodesic
distance less thanε · sfs(x) toL. In the particular case whenX is simply connected, our sampling condition
only requires thatL has at least one point on each connected component ofX, regardless of the local
geometry ofX. In the general case, our sampling condition can be satisfied by placing a constant number of
landmarks around each hole ofX, and a number of landmarks in the remaining parts ofX that is logarithmic
in the ratio of the geodesic diameter ofX to the geodesic perimeter of its holes. This is rather independent
of the local geometry of the boundary∂X and can result in selecting far fewer landmarks than required by
any of the earlier sampling conditions that guarantee topology recovery.

The systolic feature size is closely related to the concept of injectivity radiusin Riemannian geometry.
We stress this relationship in the paper, by showing that, for all pointx ∈ X, sfs(x) is equal to the geodesic
distance fromx to its cut-locus inX. This result also suggests a simple procedure for estimatingsfs(x)
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at any pointx ∈ X. Using this procedure, we devise a greedy algorithm for generatingεsfs-samples of
any given Lipschitz planar domainX, based on a packing strategy. The size of the output lies within a
constant factor of the optimal, the constant depending on the doubling dimension of X. Our algorithm
relies on two oracles whose actual implementations depend on the application considered. We provide some
implementations in the context of sensor networks, based on pre-existing distributed schemes [23, 38].

We also focus on the structural properties of the so-calledgeodesic witness complex, an analog of the
usual witness complex in the intrinsic metric. In many applications, computingDX(L) can be hard, due to
the difficulty of checking whether three or more geodesic Voronoi cells have a common intersection. This
is especially true in sensor networks, where the intersections between the Voronoi cells of the landmarks
can only be sought for among the set of nodesW , due to the lack of further information on the underlying
domainX. Therefore, it is convenient to replaceDX(L) by the geodesic witness complexCWX (L), whose
computation only requires us to perform geodesic distance comparisons, instead of locating points equidis-
tant to multiple landmarks. Assuming that the geodesic distance can be computed exactly, we prove an
analog of de Silva’s theorem [19], which states thatCWX (L) is included inDX(L) under some mild sam-
pling conditions. We also prove an analog of Lemma 3.1 of [30], which states that a relaxed version of
CWX (L) containsDX(L) under similar conditions. The relaxation consists in allowing a simplex to beν-
witnessed byw if its vertices belong to theν+1 nearest landmarks ofw, and the relaxed complex is denoted
by CWX,ν(L). Unfortunately, as pointed out in [30], it is often the case that neitherCWX (L) norCWX,ν(L) coin-
cides withDX(L). In the conference version of this paper [28], we took advantage of the fact thatDX(L)
is sandwiched betweenCWX (L) andCWX,ν(L), and we proved that the homology ofDX(L) (and hence the
one ofX) can be retrieved by computing the persistent homology betweenCWX (L) andCWX,ν(L). Thus, the
homology ofX can be recovered without the need for constructingDX(L) in practice. The drawback of
the approach is that the proof of correctness requires the sampling density to be driven by the distance to
the medial axis ofR2 \X, which can be arbitrarily small compared to the systolic feature size and requires
some more stringent conditions on the regularity of the domain boundary [28].

In the present paper we consider a different approach, based on recent advances on the front of homology
inference from point cloud data [16]. Focusing on the one-parameter family of relaxed geodesic witness
complexesCWX,ν(L), where parameterν ranges overN, we show that this family is interleaved with the one-

parameter family ofČech complexesCα(L), where parameterα ranges overR+. The interleaving of the
two families of spaces implies that the persistent homological information they carry is similar [13]. Now,
Cα(L) is the nerve of the union of the open geodesic balls of same radiusα about the points ofL, and that its
homology is related to the one of its dual union of balls via the Nerve theorem. This union of geodesic balls
covers the whole domainX and therefore shares the same topological invariants as long asα is large enough.
Thus, via unions of open geodesic balls and their dualČech complexes, a connection is drawn between the
homology ofX and the persistent homology of the one-parameter family of relaxed witness complexes. The
weak point of this connection resides in the application of the Nerve theorem,which requires the geodesic
balls to satisfy certain local conditions detailed in Definition 4.4 below. These conditions are automatically
satisfied by small enough geodesic balls on Riemannian manifolds. Nevertheless, Lipschitz planar domains
are not Riemannian manifolds, and the main point of our analysis is to show thatgeodesic balls of radii at
most a fraction of the systolic feature size do satisfy the conditions of the Nerve theorem (Lemma 5.5). Our
proof draws connections between the systolic feature size and the distance to the cut locus on the one hand
(Lemma 5.6), as well as between Lipschitz planar domains and a class of lengthspaces calledAlexandrov
spaceson the other hand (Theorem 5.10).

The paper is organized as follows: after recalling the necessary background in Section 2, we introduce
the systolic feature size and give some of its basic properties in Section 3. Then, in Section 4, we study the
topological structure of the geodesic Delaunay triangulation. We also relatethe geodesic Delaunay triangu-
lation to the geodesic witness complex. In Section 5 we turn the focus to the studyof small geodesic balls
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in Lipschitz planar domains, from which theoretical guarantees on the homological structure of geodesic
witness complexes are derived. In Section 6, we detail our algorithms for sampling Lipschitz domains in the
plane, estimating their systolic feature size, and computing their homology. These algorithms are adapted
to the sensor networks setting in Section 7.

2 Background and definitions

The ambient space isR2, endowed with the Euclidean metric, noteddE . Given a subsetX of R2, X̊,X, and
∂X, stand respectively for the interior, the closure, and the boundary ofX. For allx ∈ R2 and allr ∈ R+,
BE(x, r) denotes the open Euclidean ball of centerx and of radiusr. We also setI = [0, 1]. Finally, S1,
R × {0}, andR2

+, denote respectively the unit circle, the abcissa line, and the closed upper half-plane.

2.1 Algebraic tools

Paths and loops. Given a subsetX of R2, a path in X is a continuous mapI → X. For all a, b ∈ I
(a ≤ b), γ|[a,b] denotes the paths 7→ γ(a+s(b−a)), which can be seen as the restriction ofγ to the segment
[a, b]. In addition,γ̄ denotes the paths 7→ γ(1 − s), which can be seen as the inverse ofγ. Given two paths
γ, γ′ : I → X such thatγ(1) = γ′(0), γ · γ′ denotes their concatenation, defined byγ · γ′(s) = γ(2s) for
0 ≤ s ≤ 1

2 andγ · γ′(s) = γ′(2s− 1) for 1
2 ≤ s ≤ 1. A spaceX where all pairs of points are connected by

at least one path is said to bepath-connected.
Given a pointx ∈ X, a loop throughx in X is a pathγ in X that starts and ends atx, i.e. such that

γ(0) = γ(1) = x. For simplicity, we writeγ : (I, ∂I) → (X,x). An equivalent representation2 for γ is
as a continuous map from the unit circle toX, and in this case we writeγ : (S1, 1) → (X,x) to specify
that γ(1) = x. The concatenation operation gives a monoid structure to the set of loops through a same
basepointx ∈ X, the identity element being the constant loopI → {x} (or, equivalently,S1 → {x}).

Homotopy of maps and spaces. Given two topological spacesX andY , two continuous mapsf, g :
X → Y are said to behomotopicif there exists a continuous mapF : X × I → Y such that, for allx ∈ X,
we haveF (x, 0) = f(x) andF (x, 1) = g(x). The mapF is called ahomotopybetweenf andg. It can
be viewed as a path betweenf andg in the space of continuous maps fromX to Y . Two spacesX andY
are said to behomotopy equivalentif there exist two mapsf : X → Y andg : Y → X, such thatg ◦ f
is homotopic to the identity inX andf ◦ g is homotopic to the identity inY . Homotopy equivalent spaces
have similar topological invariants, such as Betti numbers, homology groups, or homotopy groups.

Suppose that a homotopyF : X × I → Y between two mapsf, g : X → Y keeps a certain subspace
X ′ ⊆ X fixed, that is:∀x′ ∈ X ′, ∀t ∈ I, F (x′, t) = f(x′) = g(x′). Then,F is called a homotopy between
f andg relative toX ′, andf, g are said to be homotopic relative toX ′. A special case of interest is when
X = S1 andX ′ = {1}. Then, the mapsf andg are two loops through a same basepointy ∈ Y that remains
fixed throughout the homotopyF . If g is the constant loopS1 → {y}, thenf is said to benull-homotopicin
Y . The relation of homotopy relative to∂I between loops through a same basepointy ∈ Y is an equivalence
relation. The quotient monoid, endowed with the binary operation induced byconcatenation, has in fact a
group structure, and it is called thefundamental groupof Y at basepointy. If Y is path-connected, then
its fundamental group is independent (up to isomorphism) of the chosen basepoint. And if moreover the
fundamental group is trivial (i.e. all loops through any fixed basepoint are homotopic to the constant loop),
thenY is said to besimply connected. We refer the reader to Chapter 1 of [31] for further reading on
homotopy theory with fixed basepoint.

2The choice of a particular representation for loops depends on the context, and it is always made explicit in the sequel.
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Degrees of loops. To any loopγ : S1 → S1 in the unit circle corresponds a unique integerdeg γ ∈ Z,
called thedegreeof γ, such thatdeg(γ · γ′) = deg γ + deg γ′ for all loopsγ, γ′ : S1 → S1, and that
deg γ = 0 for any constant mapγ : S1 → {x}. It is easily seen thatdeg γ̄ = −deg γ. Moreover, it can
be proved that the degree is invariant over each homotopy class of loopsin S1, so thatdeg γ encodes the
homotopy class of the loopγ – seee.g.[31, Thm. 1.7]. We can define a similar concept for loops in the plane.
Given a loopγ : S1 → R2 and a pointx ∈ R2 \ γ(S1), consider the mapγx = πx ◦ γ : S1 → S1, where
πx : R2 \ {x} → S1 is the radial projection onto the unit circle centered atx, define byπx(y) = y−x

dE(y,x) .

Sinceπx is continuous overR2 \ {x}, the mapγx is a continuous loop inS1. We then define the degree ofγ
with respect tox as:degx γ = deg γx. It is also known as the winding number ofγ aboutx. Given a point
x ∈ R2, if Γ is a homotopy between two loopsγ, γ′ in R2 \ {x}, thenπx ◦ Γ is a homotopy betweenπx ◦ γ
andπx ◦ γ′ in S1, hence we havedegx γ = deg(πx ◦ γ) = deg(πx ◦ γ′) = degx γ

′.

Corollary 2.1 For any pointx ∈ R2 and any loopsγ, γ′ : S1 → R2 \ {x} that are homotopic inR2 \ {x},
we havedegx γ = degx γ

′. In particular, if γ or γ′ is constant, thendegx γ = degx γ
′ = 0.

Other useful results. We now recall two standard results of algebraic topology that relate the unions and
intersections of planar sets that areabsolute neighborhood retracts(ANR). A subsetX of a topological
spaceY is a neighborhood retract if there exist an open setX ⊆ Ω ⊆ Y and a retractionΩ → X, i.e. a
continuous mapΩ → X whose restriction toX is the identity. A topological spaceX is and ANR if every
embedding ofX as a closed subset of a normal space is a neighborhood retract [9]. The proofs of the two
results are given in Appendix A for completeness.

Proposition 2.2
(i) Let X1, · · · , Xk be compact planar sets such that the intersection of any arbitrary collection of the

Xi’s is a non-empty ANR. IfX1, · · · , Xk are simply connected, then so are the path-connected com-
ponents ofX1 ∩ · · · ∩Xk.

(ii) Let X,Y be compact planar sets such thatX, Y andX ∩ Y are non-empty ANR’s. IfX,Y are
path-connected andX ∪ Y is simply connected, thenX ∩ Y is path-connected.

2.2 Length structures

Most of the material of this section comes from Chapter 2 of [10]. The Euclidean spaceR2 is naturally
endowed with alength structure, where admissible paths are all continuous pathsI → R2, and where the
length of a pathγ is defined by:

|γ| = sup

{
n−1∑

i=0

dE(γ(ti), γ(ti+1)), n ∈ N, 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1

}
, (1)

where the supremum is taken over all decompositions ofI into an arbitrary (finite) number of intervals. We
clearly have|γ̄| = |γ|. However,|γ| is not always finite. Take for instance Koch’s snowflake, a fractal
curve defined as the limit of a sequence of polygonal curves in the plane.It can be easily shown that, at
each iteration of the construction, the length of the curve is multiplied by4

3 , so that the length of the limit
curve is infinite. Therefore, we have| · | : C0(I,R2) → R+ ∪ {+∞}. When the length ofγ is finite,
we say thatγ is a rectifiablepath. Note also that| · | may not be continuous with respect to the uniform
topology overC0(I,R2). Take for instance the sequence of piecewise-linear curvesγi : I → R2 defined
by γi(t) =

(
t, t mod 1

i

)
if ⌊ ti⌋ is even, andγi(t) =

(
t, 1

i − (t mod 1
i )
)

if ⌊ ti⌋ is odd. This sequence
converges uniformly to the unit segmentt 7→ (t, 0), yet everyγi has length

√
2 therefore the limit length is√

2. Nevertheless,| · | is lower semi-continuous [10, Prop. 2.3.4], which means that the limit length (here,√
2), if it exists, must be at least the length of the limit path (here,1).
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Any subsetX of R2 inherits a length structure fromR2, where the class of admissible paths isC0(I,X),
and where the length function is the same as above. We define anintrinsic (or geodesic) metricdX overX
as follows:

∀x, y ∈ X, dX(x, y) = inf {|γ|, γ : I → X, γ(0) = x, γ(1) = y} , (2)

where the infimum is taken over all paths inX connectingx andy. It is clear that we havedX(x, y) = +∞
wheneverx, y belong to different path-connected components ofX. However, the converse is not always
true. Take for instance a setX made of two disjoint disks connected by Koch’s snowflake: ifx, y belong to
different disks, then all curves connectingx andy go through Koch’s snowflake and therefore have infinite
length. This raises a critical issue, which is that the topology induced bydX onX – also called intrinsic
topology – may not always coincide3 with the topology induced bydE – also called Euclidean topology.
This is a problem since the geodesic Voronoi diagram is closely related to theintrinsic metricdX , whereas
the goal is to capture the topology ofX for the extrinsic metricdE . In order to bridge the gap between the
two topologies, we will make further assumptions on the subspaceX in the next section.

Another issue is that some pairs of pointsx, y ∈ X may not have a shortest path connecting them,i.e. a
pathγ : I → X such thatγ(0) = x, γ(1) = y, and|γ| = dX(x, y). This means that the infimum in Eq. (2)
is not always a minimum. As an example, take forX the closed unit diskBE(0, 1), and remove the closed
diskBE(0, 1

2) from it: points(−1, 0) and(1, 0) have no shortest path connecting them inX. Nevertheless,
whenX is compact, the following variant of the Arzela-Ascoli theorem applies:

Theorem 2.3 (Thm. 2.5.14 and Prop. 2.5.19 of [10])If X is compact, then every sequence of paths with
uniformly bounded length contains a uniformly converging subsequence.As a consequence, every pair of
points connected by a rectifiable path inX has a shortest path inX.

2.3 Lipschitz domains in the plane

To deal with the issues of the previous section, we make further assumptionson our domainX.

Definition 2.4 A Lipschitz domainin the plane is a compact embedded topological 2-submanifold ofR2

with Lipschitz boundary. Formally, it is a compact subsetX of R2 such that, for all pointx ∈ ∂X, there
exists a neighborhoodVx in R2 and a Lipschitz homeomorphismφx : R2 → R2, such thatφx(0) = x,
φx(R × {0}) ∩ Vx = ∂X ∩ Vx, andφx(R2

+) ∩ Vx = X ∩ Vx.

Observe that, for any neighborhoodV ′
x of x included inVx, we also haveφx(0) = x, φx(R × {0}) ∩ V ′

x =
∂X ∩ V ′

x, andφx(R2
+) ∩ V ′

x = X ∩ V ′
x. Therefore,Vx can be assumed to be arbitrarily small. Moreover,

sinceφx(0) = x andφx is continuous,φ−1
x (Vx) is a neighborhood of the origin inR2, hence it contains an

open Euclidean diskB about the origin. By takingφ(B) as the new neighborhoodVx aroundx, we ensure
thatφ−1

x (X ∩ Vx) is the intersection ofR2
+ with the open diskB. This makes the pre-image ofX ∩ Vx

throughφx convex.
The concept of Lipschitz domain is related to the classical notion of smooth submanifold with boundary

– seee.g.Chapter 8 of [34], the only difference being that the local chartsφ are only required to be Lipschitz,
and notC1-continuous. As a result, the boundary ofX may not be smooth. This makes the class of Lipschitz
domains quite large: in particular, it contains all smooth or polygonal domains.

Since a Lipschitz domainX is a compact subset ofR2, Theorem 2.3 applies, and therefore any pair
of points ofX connected by a rectifiable path inX has a shortest path inX. Moreover, according to
Rademacher’s theorem [25,§3.1.6], the boundary∂X is differentiable almost everywhere. But the property

3In particular, a mapγ : I → X that is continuous for the Euclidean topology may not always be continuous for the intrinsic
topology. For instance, for any pointx ∈ γ(I) that lies on Koch’s snowflake, the geodesic distance betweenx and any other point
of X is infinite, which implies that, for anyr > 0, the open geodesic ballBX(x, r) is reduced to{x}, and hence its pre-image
throughγ is a closed subset ofI, and not an open subset ofI.
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of Lipschitz domains that is most interesting to us is that their boundaries are rectifiable, since they are
locally images of Lipschitz maps [25,§2.10.11]. This enables to show that the pathological cases mentioned
in Section 2.2 cannot occur with a Lipschitz domain4, as stated in Theorem 2.5 below.

Bibliographical note. Lipschitz domains are sometimes calledweakly Lipschitz manifolds[4] in the liter-
ature, as opposed tostrongly Lipschitz manifolds[7], for which it is further assumed that the boundary of the
domain coincides locally with the graph of some univariate Lipschitz function. Notice also that, in contrast
with [7], we do not make any assumption on the Lipschitz constants of the localcharts. All we need to know
is that the latter are Lipschitz, so that their images are rectifiable [25,§2.10.11].

Theorem 2.5 If X is a Lipschitz domain in the plane, then the intrinsic topology coincides with the Eu-
clidean topology onX.

Proof. First, Eq. (2) implies thatdE(x, y) ≤ dX(x, y) for all x, y ∈ X. It follows that every open
Euclidean ball centered inX contains the open geodesic ball of same center and same radius. As a conse-
quence, every open set in(X, dE) is also open in(X, dX). This means that the intrinsic topology is finer
than the Euclidean topology. To show that, conversely, the Euclidean topology is also finer than the intrinsic
topology, we will use the following technical result:

Claim 2.5.1 If X is a Lipschitz domain in the plane, then, for all pointx ∈ X, the mapy 7→ dX(x, y) is
continuous for the Euclidean topology onX.

Proof. Let x, y ∈ X. We will prove that, for allε > 0, there exists aδ > 0 such that∀y′ ∈ BE(y, δ) ∩X,
|dX(x, y′) − dX(x, y)| < ε.

- Assume first thaty ∈ X̊. Then there existsε′ > 0 such thatBE(y, ε′) ⊆ X̊. Let δ = min{ε, ε′}. For
all y′ ∈ BE(y, δ), the line segment[y, y′] lies in X̊, hencedX(y, y′) = dE(y, y′) < ε. It follows then from
the triangle inequality that|dX(x, y′) − dX(x, y)| ≤ dX(y, y′) < ε.

- Assume now thaty ∈ ∂X. There exists a neighborhoodVy of y in R2 such thatX ∩ Vy = φy(R2
+) ∩

Vy, for some Lipschitz homeomorphismφy. Let cy be the Lipschitz constant ofφy. As mentioned after
Definition 2.4, we can assume without loss of generality thatφ−1

y (X ∩ Vy) is the intersection ofR2
+ with

an open disk centered at the origin of radius at mostε
cy

. Then, for all pointy′ ∈ X ∩ Vy, consider the

pathγ : s 7→ φy
(
s φ−1

y (y′)
)
. Sinceφ−1

y (X ∩ Vy) is convex,γ(I) is included inX ∩ Vy, and hence inX.
Moreover, the length of the line segment[0, φ−1

y (y′)] is less thanεcy , hence the length ofγ is less thanε, since

φy is cy-Lipschitz [25,§2.10.11]. It follows thatdX(y, y′) < ε, which implies that|dX(x, y′)−dX(x, y)| ≤
dX(y, y′) < ε, by the triangle inequality. This concludes the proof of the claim.�

We can now show that the Euclidean topology is finer than the intrinsic topologyonX, which will end
the proof of Theorem 2.5. Consider any open geodesic ballBX(x, ε), wherex ∈ X andε > 0. Observe
thatBX(x, ε) = dX(x, .)−1([0, ε[), wheredX(x, .) denotes the mapy 7→ dX(x, y). Since[0, ε[ is open in
R+ anddX(x, .) is continuous for the Euclidean topology,BX(x, ε) is open in(X, dE). And since the open
geodesic balls form a basis for the intrinsic topology, every open set in(X, dX) is also open in(X, dE).
This means that the Euclidean topology is finer than the geodesic topology onX. �

From now on,X will be endowed with the Euclidean topology by default. Thanks to Theorem 2.5, this
topology will coincide with the intrinsic topology wheneverX is a Lipschitz domain.

4In particular, the boundary of a Lipschitz domain cannot coincide locally with a fractal curve such as Koch’s snowflake, whose
length is infinite.
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The next result states that every path inX can be approximated within any accuracy by a homotopic
rectifiable path. This implies that the homotopy classes of paths inX coincide with the homotopy classes
of rectifiable paths. In particular, every pair of points lying in the same path-connected component ofX is
connected by a rectifiable path, and hence it has a shortest path inX, by Theorem 2.3.

Lemma 2.6 For any continuous pathγ : I → X and any real numberε > 0, there exists a rectifiable path
γε : I → X, homotopic toγ relative5 to ∂I in X, such thatmaxs∈I mint∈I dX(γε(s), γ(t)) < ε.

The quantitymaxs∈I mint∈I dX(γε(s), γ(t)) is nothing but the semi-Hausdorff distance fromγε(I) to γ(I)
in the intrinsic metric. The basic idea of the proof is to defineγε as a piecewise-linear curve whose vertices
lie on γ(I). This is possible far away from the boundary ofX, but not in its vicinity, where the shape of
∂X might preventγε(I) from being included inX. However, in the vicinity of∂X, we can mapγ(I) to
parameter space through one of the local chartsφ introduced in Definition 2.4. Since the pre-image ofX
is convex, we can define a piecewise-linear curve approximatingφ−1(γ(I)) in parameter space, which we
then map back to a rectifiable curve inX throughφ. The rest of the section is devoted to the details of the
proof and can therefore be skipped in a first reading.

Proof. Let η be an arbitrary positive real number. According to Definition 2.4, for allx ∈ ∂X, there exists
some neighborhoodVx ⊆ R2 such that, insideVx,X coincides with the image ofR2

+ through some Lipschitz
homeomorphismφx. As mentioned after Definition 2.4, we can assume without loss of generality thatVx
is included inBE(x, η2 ), and that the pre-image ofX ∩ Vx throughφx is convex. Consider the collection
of open sets{Vx}x∈∂X . This is an open cover of∂X, which is compact, hence there existx1, · · · , xk such
thatVx1 ∪ · · · ∪ Vxk

covers∂X. For simplicity of notations, for alli = 1, · · · , k we renameVxi
asVi and

φxi
asφi. The open setsVi will be used toshieldthe boundary∂X.

For alls ∈ I, we consider an open Euclidean diskBs aboutγ(s), of radiusrs defined as follows:
• if BE(γ(s), η2 ) ∩ ∂X = ∅, thenrs = η

2 ;
• else, if γ(s) /∈ ∂X, then rs = dE(γ(s), ∂X), wheredE(γ(s), ∂X) > 0 denotes the Euclidean

distance ofγ(s) to the closed set∂X;
• else, we haveγ(s) ∈ ∂X, thereforeγ(s) belongs to some neighborhoodVi, and we choosers > 0

such thatBs ⊆ Vi.
By construction, we haveBs ⊆ X̊ if γ(s) /∈ ∂X, andBs ⊆ Vi for somei otherwise. Sinceγ is continuous,
the pre-image ofγ(I)∩Bs throughγ is an open subset ofI. Therefore, it is a disjoint union of open intervals
in I. Consider the collection of all these open intervals, fors spanningI. This collection of intervals forms
an open cover ofI, which is compact, hence there arel intervals in the collection,I1, · · · , Il, such that
I = I1 ∪ · · · ∪ Il. Observe that, by construction, for alli = 1, · · · , l we have thatγ(Ii) is included inBsi

for somesi ∈ I.
We can assume without loss of generality that the family{Ii}1≤i≤l is minimal, in the sense that the

removal of any element would destroy the cover:∀i = 1, · · · , l, ⋃j 6=i Ij + I. If it is not so, then we can
always remove elements from the family until the property is satisfied. Let us now re-order the elements
of the family such that the left endpoint ofIi is smaller than the left endpoint ofIi+1, for all i. Since the
family is minimal, the ordering on the left endpoints of theIi is the same as the ordering on their right
endpoints. As a consequence, eachIi intersects onlyIi−1 andIi+1. Let t1 = 0, tl+1 = 1, andti ∈ Ii−1 ∩ Ii
∀i = 2, · · · , l. We will approximateγ by a piecewise Lipschitz curve connecting theγ(ti). For simplicity,
we renameγ|[ti,ti+1] asγi.

By construction, for alli = 1, · · · , l we have[ti, ti+1] ⊆ Ii, henceγi(I) = γ([ti, ti+1]) ⊆ γ(Ii), which
is included inBsi

.
- Assume first thatsi /∈ ∂X, which implies thatBsi

⊆ X̊ and rsi
≤ η

2 . Defineγiη as the linear
interpolation betweenγ(ti) andγ(ti+1), namely:γiη : s 7→ (1 − s)γ(ti) + sγ(ti+1). SinceBsi

is convex,

5As mentioned in Section 2.1, this means that the homotopy betweenγε andγ is constant over∂I = {0, 1}.
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γiη(I) is included inBsi
and hence inX. Moreover, we haveγiη(0) = γ(ti) = γi(0), γiη(1) = γ(ti+1) =

γi(1), and the Hausdorff distancedH(γiη(I), γ([ti, ti+1])) in the Euclidean metric is less than the diameter of
Bsi

, which is bounded byη. Furthermore, the mapΓ : I×I → R2 defined byΓ(s, t) = (1−t)γiη(s)+tγi(s)
is a homotopy relative to∂I betweenγiη andγi in R2. Since it is a linear interpolation between two maps

whose images lie inBsi
, which is convex, the image ofΓ is also included inBsi

, and hence in̊X. It follows
thatΓ is a homotopy relative to∂I betweenγiη andγi in X.

- Assume now thatsi ∈ ∂X, which implies thatBsi
is included in someVj . Because of the pres-

ence of∂X in the vicinity of γ([ti, ti+1]), we can no longer guarantee that the linear interpolation be-
tweenγ(ti) and γ(ti+1) remains inX. This is why we use the chartφj to map the arcγ([ti, ti+1])
to parameter spaceφ−1

j (X ∩ Vj), which is convex. Specifically, we defineγiη as the image throughφj
of the linear interpolation between the pre-images ofγ(ti) andγ(ti+1) in φ−1

j (X ∩ Vj), namely: γiη :

s 7→ φj

(
(1 − s)(φ−1

j ◦ γ)(ti) + s(φ−1
j ◦ γ)(ti+1)

)
. As in the previous case, we haveγiη(0) = γi(0) and

γiη(1) = γi(1). Moreover, sinceφ−1
j (X ∩Vj) is convex, we have(1− s)(φ−1

j ◦γ)(ti)+ s(φ−1
j ◦γ)(ti+1) ∈

φ−1
j (X∩Vj) for all s ∈ I, henceγiη(I) is included inX∩Vj . It follows thatγiη : I → X, and that the Haus-

dorff distancedH(γiη(I), γi(I)) in the Euclidean metric is less than the diameter ofVj , which is bounded by
η sinceVj ⊆ BE(xj ,

η
2 ). Notice also thatγiη is a Lipschitz map, hence it is rectifiable, by [25,§2.10.11].

Finally, the mapΓ : I × I → R2 defined byΓ(s, t) = φj

(
(1 − t)(φ−1

j ◦ γiη)(s) + t(φ−1
j ◦ γi)(s)

)
is a

homotopy relative to∂I betweenγiη andγi in R2. Sinceφ−1
j ◦ Γ is a linear interpolation between maps

φ−1
j ◦ γiη andφ−1

j ◦ γi in φ−1
j (X ∩ Vj), which is convex, the image ofΓ is included inX ∩ Vj . It follows

thatΓ is a homotopy relative to∂I betweenγiη andγi in X.
We now defineγη as the concatenation of theγiη, namely:γη = γ1

η · γ2
η · · · γlη. By concatenating the

homotopies relative to∂I between theγiη and theγi, we obtain a homotopy relative to∂I betweenγη and
γ in X. Moreover, since theγiη are rectifiable, so isγη. We also haveγη(0) = γ1

η(0) = γ1(0) = γ(0), and
γη(1) = γlη(1) = γl(1) = γ(1). Finally, the Hausdorff distancedH(γη(I), γ(I)) in the Euclidean metric is
bounded by the maximum of thedH(γiη(I), γi(I)), which is less thanη.

To conclude the proof of the lemma, we need to show that bounding the Hausdorff distance betweenγ
and its approximation in the Euclidean metric is sufficient for bounding the semi-Hausdorff distance from
the approximation toγ in the intrinsic metric. Letε be an arbitrary positive real number. Since by Theorem
2.5 the Euclidean and geodesic topologies are equal onX, for all s ∈ I there exists anηs > 0 such that
BE(γ(s), ηs) is included inBX(γ(s), ε). The ballsBE(γ(s), ηs) form an open cover ofγ(I). Hence, for
all s ∈ I, the Euclidean distance fromγ(s) to the complement of the cover inR2 is positive. Sinceγ and the
distance to the complement are continuous, whileI is compact, the infimumη of the distances of theγ(s) to
the complement is in fact a minimum, and therefore it is positive. Now, accordingto the previous paragraphs,
there exists a curveγη : I → X, homotopic toγ relative to∂I in X, such thatdH(γ(I), γη(I)) < η. It
follows thatγη(I) ⊂ ⋃

s∈I BE(γ(s), η), which is included in
⋃
s∈I BE(γ(s), ηs) ⊆ ⋃

s∈I BX(γ(s), ε).
This concludes the proof of Lemma 2.6, withγε = γη. �

Observe that, in the proof of Lemma 2.6, the family of balls{Bs}s∈I forms an open cover ofγ(I).
Letting ζ be the quantityinf

{
dE(x, γ(I)) | x ∈ X \⋃s∈I Bs

}
> 0, the second part of the proof shows in

fact that every pathγ′ : I → X such thatγ′(0) = γ(0), γ′(1) = γ(1), anddE(γ′(s), γ(s)) < ζ for all
s ∈ (0, 1), is homotopic toγ relative to∂I. Thus, we obtain the following guarantee:

Lemma 2.7 For any pathγ : I → X, there exists a quantityζ > 0 such that every pathγ′ : I → X with
same endpoints asγ that satisfiesdE(γ′(s), γ(s)) < ζ for all s ∈ (0, 1) is homotopic toγ relative to∂I.
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3 The systolic feature size

Definition 3.1 LetX be a Lipschitz domain in the plane. Thesystolic feature sizeof X at a given point
x ∈ X is the quantity:sfs(x) = 1

2 inf{|γ|, γ : (S1, 1) → (X,x) non null-homotopic inX}.

As illustrated in Figure 1 (left and center), the resort to an intrinsic metric makes the systolic feature size
rather insensitive to the local geometry of the domainX. Indeed,sfs depends on the geodesic perimeters of
the holes ofX, which depend on the geometry ofX at a more global scale.

The rest of this section is devoted to the proof of some useful basic properties of the systolic feature size.

Lemma 3.2 LetX be a Lipschitz domain in the plane, and letx be a point inX. If the path-connected
component ofX that containsx is simply connected, thensfs(x) = +∞. Else,sfs(x) < +∞, and there
exists a non null-homotopic rectifiable loopγ : (S1, 1) → (X,x) such thatsfs(x) = 1

2 |γ| > 0.

Proof. Letx ∈ X. CallXx the path-connected component ofX that containsx. Every loop throughx inX
is a loop inXx. If Xx is simply connected, then the set{γ : (S1, 1) → (Xx, x) non null-homotopic inXx}
is empty, and therefore its lower boundsfs(x) is infinite. Assume now thatXx is not simply connected.
Then, there exists at least one non null-homotopic loopγ0 : (S1, 1) → (Xx, x). By Lemma 2.6, we can
assume without loss of generality thatγ0 is rectifiable. We then havesfs(x) ≤ 1

2 |γ0| < +∞.
Consider now a sequence(γi)i of non null-homotopic loops throughx inXx, such that(|γi|)i converges

to 2sfs(x). Such a sequence exists, since2sfs(x) < +∞ is the infimum of the set of lengths of non null-
homotopic loops throughx. By convergence, we know that there exists a rankn such that, for alli ≥ n,
γi is a rectifiable curve of length|γi| ≤ 2sfs(x) + 1. Thus, the sequence(γn+i)i is uniformly bounded
by 2sfs(x) + 1, which implies by Theorem 2.3 that it contains a subsequence converging uniformly to
some loopγ : (I, ∂I) → (Xx, x). It follows from Lemma 2.7 that, after a certain rank, every element in the
subsequence is homotopic toγ relative to∂I. As a consequence,γ is not null-homotopic inX, and therefore
|γ| is positive and at least2sfs(x). In addition, since(|γi|)i converges to2sfs(x), the lower semi-continuity
of | · | implies that|γ| ≤ 2sfs(x). As a conclusion, we have|γ| = 2sfs(x) > 0. �

Lemma 3.3 LetX be a Lipschitz domain in the plane. The mapx 7→ sfs(x) is 1-Lipschitz in the intrinsic
metric. Hence, it is continuous for the Euclidean topology, andsfs(X) = inf{sfs(x), x ∈ X} is positive.

Proof. Letx, y ∈ X. If x, y belong to different path-connected components ofX, then we havedX(x, y) =
+∞. It follows that|sfs(x)− sfs(y)| ≤ dX(x, y). Assume now thatx, y belong to the same path-connected
componentXi ofX. Letγ be a shortest path betweenx andy inX. We are guaranteed by Theorem 2.3 and
Lemma 2.6 that such a path exists. IfXi is simply connected, thensfs is constant and equal to+∞ overXi.
Else, consider a loopγx : (S1, 1) → (X,x) such that|γx| = 2sfs(x) < +∞. Such a loop exists, by Lemma
3.2. Then, the pathγy = γ̄ · γx · γ is a loop throughy in X. Its length is|γx|+ 2|γ| = 2sfs(x) + 2dX(x, y).
Moreover, the mapγx 7→ γ̄ · γx · γ is known to induce an isomorphism between the fundamental groups
of Xi at basepointsx andy — seee.g. [31, Prop. 1.5]. Therefore, the loopγy is not null-homotopic inX,
which implies thatsfs(y) ≤ 1

2 |γy| = sfs(x)+dX(x, y). This proves that the mapx 7→ sfs(x) is 1-Lipschitz
in the intrinsic metric, and hence continuous for the intrinsic topology, but alsofor the Euclidean topology,
by Theorem 2.5. SinceX is compact, there exists some pointx ∈ X such thatsfs(X) = sfs(x), which is
positive, by Lemma 3.2.�

Lemma 3.4 LetX be a Lipschitz domain in the plane. For all pointx ∈ X, every loop inside the open
geodesic ballBX(x, sfs(x)) is null-homotopic inX.
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Proof. Assume for a contradiction that there exists some pointx ∈ X and some loopγx : S1 →
BX(x, sfs(x)) that is not null-homotopic inX. Sincemaxs∈I dX(x, γx(s)) < sfs(x), Lemma 2.6 ensures
that there exists a rectifiable loopS1 → X that is homotopic toγx in X, and that is still included in
BX(x, sfs(x)). Hence, we can assume without loss of generality thatγx is rectifiable. Letζ be a shortest
path betweenx andy = γx(0). The pathγ = ζ · γx · ζ̄ is a loop throughx, included inBX(x, sfs(x)), of
length|γ| ≤ |γx| + 2dX(x, y) < +∞. Moreover,γ is non null-homotopic inX, since it is homotopic to
γx. It follows that|γ| ≥ 2sfs(x).

For all s ∈ I, we defineγs and ζs to be respectively the pathγ|[0,s] and a shortest path betweenx
andγ(s). Let s0 = inf{s | γs · ζ̄s non null-homotopic inX}. This means that, for alls < s0, γs · ζ̄s
is null-homotopic inX, whereas for allη > 0 there exists somes ∈ [s0, s0 + η[ such thatγs · ζ̄s is not
null-homotopic inX.

– If s0 = 0, then there are arbitrarily short non null-homotopic loops throughx in X, which contradicts
the fact thatsfs(x) > 0 (Lemma 3.2).

– If s0 = 1, then fors arbitrarily close to1, γ|[s,1]·ζs is non null-homotopic inX, and of length arbitrarily
close to|ζs| < sfs(x), which contradicts the definition ofsfs(x) (Definition 3.1).

It follows thats0 ∈]0, 1[. For all η > 0, there exists−η, s+η ∈ I such thats0 − η < s−η < s0 < s+η <
s0 + η, and thatγs−η · ζ̄s−η is null-homotopic inX whereasγs+η · ζ̄s+η is not. Then,ζs−η is homotopic to
γs−η relative6 to ∂I, which implies thatζs−η · γ|[s−η ,s+η ] is homotopic toγs+η relative to∂I. As a result, the
loopγ′ =

(
ζs−η · γ|[s−η ,s+η ]

)
· ζ̄s+η is homotopic toγs+η · ζ̄s+η , which is not null-homotopic inX. Hence,

we have|γ′| ≥ 2sfs(x), by definition ofsfs(x).
Now, the length ofγ′ is |ζs−η | + |γ|[s−η ,s+η ]| + |ζ̄s+η |, which is at most2 maxs∈I dX(x, γ(s)) +

|γ|[s−η ,s+η ]|. Sinceη is arbitrarily small, so is|γ|[s−η,s+η ]|, therefore|γ′| is arbitrarily close to2 maxs∈I dX(x, γ(s)),
which is less than2sfs(x). This contradicts the fact that|γ′| ≥ 2sfs(x), as proved in the previous paragraph.
�

Note that Lemma 3.4 does not imply that the ballBX(x, sfs(x)) itself is contractible. It turns out that
open geodesic balls of radius at most a fraction of the systolic feature sizeare contractible. The proof of this
fact requires some more work though — see Section 5.

4 Geodesic Delaunay triangulation and witness complex

Given a Lipschitz domainX in the plane, and a set of landmarksL ⊂ X that is dense enough with respect to
the systolic feature size ofX, we show in Section 4.1 that the geodesic Delaunay triangulationDX(L) has
the same homotopy type asX (Theorem 4.3). Furthermore, for any set of witnessesW ⊆ X that is dense
enough compared toL, we prove in Section 4.2 thatDX(L) is sandwiched between the geodesic witness
complexCWX (L) and its relaxed versionCWX,ν(L) (Theorems 4.14 and 4.17). Densities of point clouds are
measured according to the following definition, where the scalar fieldhwill be chosen to be either a constant
function or a fraction of the systolic feature size:

Definition 4.1 Given a Lipschitz planar domainX and a functionh : X → R+ ∪ {+∞}, a setL ⊆ X is a
geodesich-sampleofX if we havedX(x, L) < h(x) for all pointsx ∈ X. In addition,L is h-sparse if we
havedX(p, q) ≥ min{h(p), h(q)} for all pointsp 6= q ∈ L.

It follows from the definition that any geodesich-sampleL of X must have points in every path-connected
component ofX, because geodesic distances toL are required to be finite (dX(x, L) < h(x)). We will see
in Section 6.2 how to generate geodesicεsfs-samples of Lipschitz planar domains.

6As mentioned in Section 2.1, this means that the homotopy betweenζs−η
andγs−η

is constant over∂I = {0, 1}.
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4.1 Geodesic Delaunay triangulations

Geodesic Voronoi diagrams are nothing but Voronoi diagrams in the intrinsic metric:

Definition 4.2 Given a subsetX of R2, and a finite subsetL ofX, thegeodesic Voronoi diagramofL inX,
or VX(L) for short, is a cellular decomposition ofX, where the cell of a pointp ∈ L is defined as the locus
of all the pointsx ∈ X such thatdX(x, p) ≤ dX(x, q) ∀q ∈ L. The nerve ofVX(L) is called thegeodesic
Delaunay triangulationofL in X, notedDX(L).

Given a simplexσ ∈ DX(L), we callVX(σ) its dual Voronoi face. Note that, in contrast with the Eu-
clidean case,VX(σ) does not always have Lebesgue measure zero when the dimension ofσ is non-zero, as
illustrated in Figure 1 (right).

Theorem 4.3 If X is a Lipschitz domain in the plane, andL a geodesicεsfs-sample ofX, for someε ≤ 1
3 ,

thenDX(L) andX are homotopy equivalent.

The rest of Section 4.1 is devoted to the proof of Theorem 4.3. The proofrelies on the so-called Nerve
theorem, stated as Theorem 4.5 below, which relies on the concept ofgood cover:

Definition 4.4 LetU be a finite collection of closed (resp. open) subsets ofX whose union coversX. Then,
U is a good closed (resp. open) coverof X if for any non-empty subsetV ⊆ U the common intersection
between the elements ofV is either empty or contractible.

Theorem 4.5 (from [8, 39], see also Section 4G of [31])The nerve of a good closed (resp. open) cover of
X is homotopy equivalent toX.

Here, we takeU to be the collection of the geodesic Voronoi cells:U = {VX(p), p ∈ L}. The nerve of
this collection is precisely the geodesic Delaunay triangulationDX(L). Thus, proving Theorem 4.3 comes
down to showing that any collection of cells ofVX(L) has an empty or contractible intersection, and then
invoking Theorem 4.5. Our proof proceeds in three steps: first, we show that every single Voronoi cell
is contractible (Section 4.1.1); then, we show that any pair of Voronoi cellshas an empty or contractible
intersection (Section 4.1.2); finally, we show inductively that any arbitrarycollection of Voronoi cells has
an empty or contractible common intersection (Section 4.1.3).

Along the way, our proof uses several results of algebraic topology (including the ones of Proposition
2.2) that require non-empty intersections of geodesic Voronoi cells to be ANR’s. This fact turns out to be true
in any Lipschitz planar domain, and it can be shown using the local continuity of the geodesic flow, proved7

in Sections 5.1 and 5.2, as well as some nesting properties of neighborhood retracts, stated in Theorem
III.3 of [18]. This minor and rather technical aspect of our proof does not bring any particular insights
into the problem. Therefore, it is omitted for the convenience of exposition, and in the sequel non-empty
intersections of geodesic Voronoi cells are admitted to be ANR’s.

4.1.1 Voronoi cells

Lemma 4.6 Under the hypotheses of Theorem 4.3, every cell ofVX(L) is path-connected.

Proof. Let p ∈ L, and letx ∈ VX(p). Let γ : I → X be a shortest path fromp to x in X. Such a
pathγ exists sincex andp lie in the same path-connected component ofX, dX(x, p) being finite due to
the fact thatL is a geodesicεsfs-sample ofX. We will show thatγ(I) ⊆ VX(p). Assume for a contra-
diction thatγ(s) /∈ VX(p) for somes ∈ I. This means that there exists a pointq ∈ L \ {p} such that

7The statements and proofs from Sections 5.1 and 5.2 do not rely on the results of this section, therefore they can be invoked here.
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dX(γ(s), q) < dX(γ(s), p). By the triangle inequality, we havedX(q, x) ≤ dX(q, γ(s)) + dX(γ(s), x),
wheredX(q, γ(s)) < dX(p, γ(s)) ≤ |γ|[0,s]| anddX(γ(s), x) ≤ |γ|[s,1]|. Hence, we havedX(q, x) <
|γ|[0,s]| + |γ|[s,1]| = |γ| = dX(p, x), which contradicts the assumption thatx ∈ VX(p). Therefore,
γ(I) ⊆ VX(p), andx is path-connected top in VX(p). �

Lemma 4.7 Under the hypotheses of Theorem 4.3, every cell ofVX(L) is simply connected.

Proof. Let p ∈ L. By Lemma 4.6,VX(p) is path-connected. Assume for a contradiction thatVX(p) is not
simply connected. Then, sinceVX(p) ⊆ X is a bounded subset ofR2, its complement inR2 has at least
two path-connected components, only one of which is unbounded, by the Alexander duality – seee.g. [31,
Thm. 3.44]. LetH be a bounded path-connected component ofR2 \ VX(p). H can be viewed as a hole in
VX(p).

We claim thatH is included inX. Indeed, consider a loopγ : S1 → VX(p) that winds aroundH –
such a loop exists sinceH is bounded byVX(p). Take any pointx ∈ VX(p). For ally ∈ VX(p), we have
dX(x, y) ≤ dX(x, p)+dX(p, y) ≤ ε sfs(x)+ε sfs(y), which is at most2ε1−εsfs(x) sincesfs is 1-Lipschitz in
the intrinsic metric. Thus,VX(p) is included in the open geodesic ballBX(x, 2ε

1−ε sfs(x)), where 2ε
1−ε ≤ 1

sinceε ≤ 1
3 . Therefore,γ : S1 → VX(p) is null-homotopic inX, by Lemma 3.4. LetΓ : S1 × I → X

be a homotopy betweenγ and a constant map inX. For any pointx ∈ H, we havedegx γ 6= 0 since the
loop γ winds aroundH. If x did not belong toΓ(S1 × I), thenΓ would be a homotopy betweenγ and a
constant map inR2 \ {x}, thus by Corollary 2.1 we would havedegx γ = 0, thereby raising a contradiction.
It follows thatΓ(S1 × I) contains all the points ofH, which is therefore included inX.

As a consequence, the hole is caused by the presence of some sites ofL \ {p}, whose geodesic Voronoi
cells formH. Assume for simplicity that there is only one such siteq, the case of several sites being similar.
We then haveVX(q) = H, and∂H = VX(q)∩VX(p). Consider the Euclidean ray[p, q), and callx its first
point of intersection with∂H beyondq. The line segment[q, x] is included inH ⊆ X, therefore we have
dX(x, q) = dE(x, q), which yields:

dX(x, p) ≥ dE(x, p) = dE(x, q) + dE(q, p) = dX(x, q) + dE(q, p) > dX(x, q).

This contradicts the fact thatx belongs to∂H and hence toVX(p). �

Since planar sets are aspherical [11], their homotopy groups of dimension 2 or more are trivial. As a
consequence, geodesic Voronoi cells have the same homotopy groups as a point, up to isomorphism. Since
in addition they are ANR’s, they are homotopy equivalent to CW-complexes [32, Chap. 26,§2]. Therefore,
by Whitehead’s theorem, they are homotopy equivalent to a point. Hence,

Proposition 4.8 Under the hypotheses of Theorem 4.3, every cell ofVX(L) is contractible.

4.1.2 Intersection of pairs of Voronoi cells

We will now prove that the geodesic Voronoi cells have pairwise empty or contractible intersections. Given
two sitesp, q ∈ L whose cells intersect, we first study the topological type of their unionVX(p) ∪ VX(q),
from which we can deduce the topological type of their intersectionVX(p) ∩ VX(q).

Lemma 4.9 Under the hypotheses of Theorem 4.3, the union of any pair of intersecting cells ofVX(L) is
simply connected.
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Proof. Let p, q ∈ L be such thatVX(p) ∩ VX(q) 6= ∅. The outline of the proof is the same as for Lemma
4.7. First, since by Lemma 4.6VX(p) andVX(q) are path-connected, so is their union. Assume now for a
contradiction thatVX(p)∪VX(q) is not simply connected, and consider a holeH in VX(p)∪VX(q). Letx ∈
VX(p)∩VX(q). For any pointy ∈ VX(p), we havedX(x, y) ≤ dX(x, p)+dX(p, y) < ε sfs(x)+ ε sfs(y),
which is at most 2ε

1−εsfs(x) sincesfs is 1-Lipschitz in the intrinsic metric. Idem for the points ofVX(q). As
a consequence,VX(p) ∪ VX(q) is included in the open geodesic ballBX(x, 2ε

1−ε sfs(p)), where 2ε
1−ε ≤ 1

sinceε ≤ 1
3 . Therefore, by the same argument as in the proof of Lemma 4.7,H is included inX.

It follows that the hole is caused by the presence of some sites ofL \ {p, q}, whose geodesic Voronoi
cells formH. Assume for simplicity that there is only one such siteu, the case of several sites being similar.
We then haveVX(u) = H, and∂H = VX(u) ∩ (VX(p) ∪ VX(q)). Consider the Euclidean linel passing
throughu and perpendicular to(p, q). Let x, y be the first points of intersection ofl with ∂H in each
direction, starting fromu. Since angleŝxup andp̂uy sum up to±π, one of them (saŷxup) is obtuse. This
implies thatx̂uq is also obtuse. Assume without loss of generality thatdX(x, p) ≤ dX(x, q). Since the line
segment[u, x] is included inH ⊆ X, we havedX(x, u) = dE(x, u). Hence, using Pythagoras’ theorem
together with the fact that̂xup is obtuse, we get:

dX(x, p)2 ≥ dE(x, p)2 ≥ dE(x, u)2 + dE(u, p)2 = dX(x, u)2 + dE(u, p)2 > dX(x, u)2.

Now,x belongs to∂H and hence toVX(p) ∪ VX(q). Moreover, we assumed without loss of generality that
dX(x, p) ≤ dX(x, q), thereforex belongs toVX(p), which contradicts the above equation. It follows that
VX(p) ∪ VX(q) is simply connected, which concludes the proof of the lemma.�

Using the above result, we can now show thatVX(p) ∩ VX(q) is contractible:

Proposition 4.10 Under the hypotheses of Theorem 4.3, the intersection of any pair of cellsof VX(L) is
either empty or contractible.

Proof. Let p, q ∈ L be such thatVX(p)∩VX(q) 6= ∅. Proposition 2.2 (i) tells us that every path-connected
component ofVX(p) ∩ VX(q) is simply connected, since by Lemma 4.7VX(p) andVX(q) are. Moreover,
Proposition 2.2 (ii) tells us thatVX(p) ∩ VX(q) is path-connected, since by Lemma 4.6VX(p) andVX(q)
are, and since by Lemma 4.9 their union is simply connected. It follows then from the asphericity of planar
sets and from Whitehead’s theorem thatVX(p) ∩ VX(q) is contractible.�

4.1.3 Intersection of arbitrary numbers of Voronoi cells

The following result, combined with Theorem 4.5, concludes the proof of Theorem 4.3:

Proposition 4.11 Under the hypotheses of Theorem 4.3, for anyk sitesp1, · · · , pk ∈ L, the intersection
VX(p1) ∩ · · · ∩ VX(pk) is either empty or contractible.

Proof. The proof is by induction onk. Casesk = 1 andk = 2 were proved in Sections 4.1.1 and 4.1.2
respectively. Assume now that the result is true up to somek ≥ 2, and considerk+1 sitesp1, · · · , pk+1 ∈ L
such thatVX(p1) ∩ · · · ∩ VX(pk+1) 6= ∅.

Observe first thatVX(p1) ∩ · · · ∩ VX(pk+1) is the intersection of
⋂k
i=1 VX(pi) with VX(pk+1), which

by the induction hypothesis are both simply connected. Hence, each path-connected component of their
intersectionVX(p1) ∩ · · · ∩ VX(pk+1) is also simply connected, by Proposition 2.2 (i).
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Consider now the union
(⋂k

i=1 VX(pi)
)
∪VX(pk+1), which is path-connected since both

⋂k
i=1 VX(pi)

andVX(pk+1) are. Observe that the union can be rewritten as follows:

(
k⋂

i=1

VX(pi)

)
∪ VX(pk+1) =

k⋂

i=1

(VX(pi) ∪ VX(pk+1)) .

By the induction hypothesis (more precisely, according to the casek = 2), everyVX(pi) ∪ VX(pk+1)
is simply connected, hence so is

⋂k
i=1 (VX(pi) ∪ VX(pk+1)), by Proposition 2.2 (i). It follows then from

Proposition 2.2 (ii) that the intersectionVX(p1)∩· · ·∩VX(pk+1) is path-connected, since both
⋂k
i=1 VX(pi)

andVX(pk+1) are, and since their union is simply connected.
Thus,VX(p1)∩· · · VX(pk+1) is simply connected, and it follows from the asphericity of planar sets and

from Whitehead’s theorem thatVX(p1) ∩ · · · VX(pk+1) is contractible. �

4.2 Geodesic witness complexes

Witness complexes in the intrinsic metric are defined in the same way as in the Euclidean metric:

Definition 4.12 Given a subsetX of R2, and two subsetsW,L ofX such thatL is finite,
• given a pointw ∈ W and a simplexσ = [p0, · · · , pl] with vertices inL, w is a witnessof σ if for all
i = 0, · · · , l, dX(w, pi) is finite and bounded from above bydX(w, q) for all q ∈ L \ {p0, · · · , pl};
• thegeodesic witness complexof L relative toW , or CWX (L) for short, is the maximal abstract simplicial
complex with vertices inL, whose faces are witnessed by points ofW .

Observe that a pointw ∈ W may only witness simplices whose vertices lie in the same path-connected
component ofX asw. The fact thatCWX (L) is an abstract simplicial complex means that a simplex belongs
to the complex only if all its faces do. In the sequel,W is called the set of witnesses, whileL is referred to
as the set of landmarks.

As in the Euclidean case, there exists a stronger notion of witness complex, where each witness is
required to be equidistant to the vertices of the simplexσ. In this case,σ is a Delaunay simplex, and
therefore the strong witness complex is included in the Delaunay triangulation.In his seminal work [19], de
Silva shows that the weak witness complex is also included in the Delaunay triangulation, in the Euclidean
metric. Below we give an equivalent of this result in the intrinsic metric – see Theorem 4.14. The proof uses
the same kind of machinery as in [3], and it relies on the following fact:

Lemma 4.13 LetX be a Lipschitz domain in the plane, andL a geodesicεsfs-sample ofX, for someε ≤ 1.
Letx be a point ofX, andp its (k+1)th nearest point ofL in the intrinsic metric. Ifx andp lie in the same

path-connected component ofX, thendX(x, p) <
(

3+ε
1−ε

)k
ε sfs(x). Else,dX(x, p) = +∞.

Proof. The proof is by induction onk. We callXx the path-connected component ofX that containsx.
- Casek = 0: by definition,p is a nearest neighbor ofx in L for the geodesic distance. SinceL is a

geodesicεsfs-sample ofX, we havedX(x, p) < ε sfs(x) =
(

3+ε
1−ε

)k
ε sfs(x).

- General case: assume that the result holds up to somek ≥ 0. Letp0, · · · , pk+1 denote thek+2 points of
L closest tox in the intrinsic metric, ordered according to their geodesic distances tox. If pk+1 /∈ Xx, then
we havedX(x, pk+1) = +∞, which proves the result fork+ 1. Assume now thatpk+1 ∈ Xx. This implies
that all thepi also belong toXx, since their geodesic distances tox are bounded bydX(x, pk+1) < +∞.

By the induction hypothesis, we havedX(x, p0) ≤ · · · ≤ dX(x, pk) <
(

3+ε
1−ε

)k
ε sfs(x). Sincepk+1 lies in

16



Xx, the latter is not covered byVX(p0) ∪ · · · ∪ VX(pk). Therefore, there is a pointp ∈ L \ {p0, · · · , pk}
such thatVX(p) intersects the geodesic Voronoi cell ofpi, for somei ∈ {0, · · · , k}. Note thatp may
or may not bepk+1 itself. Let y ∈ VX(pi) ∩ VX(p). SinceL is a geodesicεsfs-sample ofX, we have
dX(y, pi) = dX(y, p) < ε sfs(y). Thus, by the triangle inequality and the induction hypothesis, we get:

dX(x, y) ≤ dX(x, pi) + dX(pi, y) <

(
3 + ε

1 − ε

)k
ε sfs(x) + ε sfs(y).

Sincesfs is 1-Lipschitz in the intrinsic metric, we havesfs(y) ≤ sfs(x) + dX(x, y), which, by the above

equation, is at most

(
1 + ε

(
3+ε
1−ε

)k)
sfs(x) + ε sfs(y). It follows that sfs(y) ≤ (1−ε)k+ε(3+ε)k

(1−ε)k+1 sfs(x).

Now, sincep /∈ {p0, · · · , pk}, we havedX(x, pk+1) ≤ dX(x, p), which by the triangle inequality is at most

dX(x, pi) + 2dX(y, pi). By the induction hypothesis,dX(x, pi) is bounded by
(

3+ε
1−ε

)k
ε sfs(x), whereas

according to the above computations,2dX(y, pi) is less than2ε (1−ε)k+ε(3−ε)k

(1−ε)k+1 sfs(x). In the end, we obtain:

dX(x, pk+1) <

((
3 + ε

1 − ε

)k
+ 2

(1 − ε)k + ε(3 + ε)k

(1 − ε)k+1

)
ε sfs(x) ≤

(
3 + ε

1 − ε

)k+1

ε sfs(x),

which proves the result fork + 1. �

In the special case where the point cloudL is a geodesicε-sample ofX, with a uniform boundε on its
density, the upper bound on the geodesic distance betweenx and itskth nearest point ofL drops down to
(1 + 2k)ε, by the same proof. It is worth pointing out the influence of the sampling regularity on the upper
bound, which becomes exponential ink when the sampling is non-uniform, whereas it remains linear ink
when the sampling is uniform. While it is clear that the linear bound in the uniform sampling case is tight,
it is still unknown at this time whether the exponential bound in the non-uniformsampling case is tight or
not.

Theorem 4.14 LetX be a Lipschitz domain in the plane, andL a geodesicεsfs-sample ofX. If ε ≤ 1
4k+1 ,

for some integerk ≥ 0, then thek-skeleton ofCWX (L) is included inDX(L) for all W ⊆ X.

Proof. The proof is by induction onk. There will be in fact two inductions, therefore we call this one Ik,
for clarity.

- Casek = 0: every point ofL is a vertex ofDX(L), whether it is witnessed by a point ofW or not.
- General case of Ik: assume that the result holds up to somek ≥ 0. Assume further thatε ≤ 1

4k+2 . Let
σ = [p0, · · · , pk+1] be a simplex ofCWX (L), and letw0 ∈ W be a witness ofσ. Consider without loss of
generality that thepi are ordered such thatdX(w0, p0) ≥ · · · ≥ dX(w0, pk+1). Then, the closed geodesic
ballB0 = BX(w0,dX(w0, p0)) contains thepi and no other point ofL. Moreover,p0 belongs to∂B0. We
will prove by induction thatB0 can be shrunk to some closed geodesic ballBk+1 such that all thepi lie
on ∂Bk+1, while Bk+1 still contains no other point ofL. The center ofBk+1 will then be equidistant to
all the vertices ofσ, and the latter will therefore be proved to be inDX(L). The induction, named Ir for
clarity, states that there is a closed geodesic ballBr that contains thepi and no other point ofL, and such
thatp0, · · · , pr lie on∂Br.

• Caser = 0: initially, we havep0 ∈ ∂B0, andB0 contains thepi and no other point ofL.
• General case of Ir (0 ≤ r < k): assume that we have found a closed geodesic ballBr that satisfies

the requirements. In particular, we havep0, · · · , pr ∈ ∂Br. This means that the centerwr of Br belongs to
V ′
X(p0)∩ · · · ∩ V ′

X(pr), whereV ′
X(pi) denotes the cell ofpi (i ≤ r) in the geodesic Voronoi diagram ofL \
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{pr+1, · · · , pk+1}. Moreover, since[p0, · · · , pk+1] belongs toCWX (L), so does its subsimplex[p0, · · · , pr],
which therefore belongs also toDX(L), by the induction hypothesis of Ik. Hence,VX(p0)∩ · · ·∩VX(pr) is
not empty. Letw̃r ∈ VX(p0)∩· · ·∩VX(pr). Since the cell of anypi in VX(L\{pr+1, · · · , pk+1}) contains
the cell ofpi in VX(L), w̃r also belongs toV ′

X(p0) ∩ · · · ∩ V ′
X(pr).

We claim thatV ′
X(p0)∩ · · · ∩ V ′

X(pr) is path-connected. Indeed, for any pointx ∈ X, the geodesic dis-
tance fromx toL is finite, becauseL is a geodesicεsfs-sample ofX. And sincew0 witnesses[p0, · · · , pk+1],
all thepi lie in the same path-connected component ofX asw0, therefore the geodesic distance betweenx

andL\{pr+1, · · · , pk+1} is still finite, and by Lemma 4.13 it is bounded by
(

3+ε
1−ε

)k+1
ε sfs(x). This quan-

tity is less than4k+1ε sfs(x) ≤ 1
4 sfs(x), since by the induction hypothesis of Ik we haveε ≤ 1

4k+2 <
1
5 .

Hence,L \ {pr+1, · · · , pk+1} is a geodesicε′sfs-sample ofX, for someε′ ≤ 1
3 . As a consequence,

V ′
X(p0) ∩ · · · ∩ V ′

X(pr) is path-connected, by Proposition 4.11.
Sincewr andw̃r both belong toV ′

X(p0) ∩ · · · ∩ V ′
X(pr), which is path-connected, there exists a path

γ : I → V ′
X(p0) ∩ · · · ∩ V ′

X(pr) such thatγ(0) = wr andγ(1) = w̃r. For alls ∈ I, γ(s) is equidistant to
p0, · · · , pr, and closer to these points than to any other point ofL\{pr+1, · · · , pk+1}, in the intrinsic metric.
Moreover, for allj = r + 1, · · · , k + 1, the mapfj : s 7→ dX(γ(s), p0) − dX(γ(s), pj) is continuous, and
we havefj(0) = dX(wr, p0) − dX(wr, pj) ≥ 0 sinceBr containspj and hasp0 on its boundary, whereas
fj(1) = dX(w̃r, p0) − dX(w̃r, pj) ≤ 0 sincew̃r is a witness of[p0, · · · , pr]. Thus,fj(s) = 0 for at least
one values ∈ I. Let sj be the smallest suchs.

Consider now̃j = argminj=r+1,··· ,k+1sj , and assume without loss of generality thatj̃ = r + 1. We
then havefr+1(sr+1) = 0 andfj(sr+1) ≥ 0 for all j = r+2, · · · , k+1. This means that the pointwr+1 =
γ(sr+1) is equidistant top0, · · · , pr+1, and farther from these points than frompr+2, · · · , pk+1. In addition,
wr+1 is closer top0, · · · , pr+1 than to any other point ofL \ {pr+2, · · · , pk+1}, sincewr+1 ∈ γ(I) ⊆
V ′
X(p0). It follows that the closed geodesic ballBr+1 = BX(wr+1,dX(wr+1, p0)) containsp0, · · · , pk+1

and no other point ofL, and thatp0, · · · , pr+1 lie on ∂Br+1. This concludes the induction Ir, and hereby
also the induction Ik.�

Note that, for the conclusion of Theorem 4.14 to hold, it is mandatory to make anassumption on the
density of the landmarks setL, since otherwise some boundary effects could occur. As an example, take for
X an annulus and forL a set of three landmarks evenly distributed around the hole of the annulus:DX(L)
is then reduced to the boundary of the triangle formed by the three landmarks, whereas sinceL has only
three points, the triangle is witnessed and therefore it belongs toCWX (L).

Our next result (Theorem 4.17) is an analog of Theorem 3.2 of [30]. It involves a relaxed version of the
witness complex, defined as follows:

Definition 4.15 Given a subsetX of R2, two subsetsW,L ofX such thatL is finite, and an integerν ≥ 0,
a simplexσ with vertices inL is ν-witnessedbyw ∈ W if the vertices ofσ belong to the path-connected
component ofX that containsw and to theν+1 landmarks closest tow in the intrinsic metric. Thegeodesic
ν-witness complexof L relative toW , or CWX,ν(L) for short, is the maximum abstract simplicial complex
made ofν-witnessed simplices. Its dimension is at mostν.

Theorem 4.17 assumes thatL is a ε
1+εsfs-sparse sample, which means by Definition 4.1 that every pair of

landmarksp 6= q must satisfydX(p, q) ≥ ε
1+ε min{sfs(p), sfs(q)}. The bound onε depends on thedoubling

dimensionof (X, dX), defined as the smallest integerd such that every open (resp. closed) geodesic ball can
be covered by a union of2d open (resp. closed) geodesic balls of half its radius. The doubling dimension
measures the shape complexity ofX, and it can be arbitrarily large. As an example, take forX a comb-
shaped domain made of a rectangle of dimensions1 × 2, to which are gluedk branches of length1 and
width 2

2k−1 as shown in Figure 2 (left). The geodesic distance from any point ofX to the center pointp
is at most2, so thatX is covered by the closed geodesic ballBX(p, 2). Consider now the closed geodesic
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Figure 2: Left: a Lipschitz domain with doubling dimension at leastk. Right: the size of{q1, · · · , qk} is k
2

times that of{p, p′}, although both point sets are geodesicsfs-samples of the domain and{q1, · · · , qk} is a
geodesicsfs2 -packing.

ballsBX(qi, 1), 1 ≤ i ≤ k, where pointsqi are located at the tips of thek branches ofX. Every ball
BX(qi, 1) is included in the branch ofqi, therefore the ballsBX(qi, 1) are pairwise disjoint. Thus, at leastk
closed geodesic balls of radius1 can be packed inside a closed geodesic ball of radius2, which implies that
the doubling dimension of(X, dX) is at leastlog2 k, according to the following result by Kolmogorov and
Tikhomirov:

Lemma 4.16 (from [33]) Given any subsetY ofX, and any real numberr > 0, the maximum number of
pairwise-disjoint open (resp. closed) geodesic balls of radiusr that can be packed insideY is at most the
minimum number of open (resp. closed) geodesic balls of radiusr that are necessary to coverY .

Theorem 4.17 LetX be a Lipschitz domain in the plane, of doubling dimensiond. LetW be a geodesic
δsfs-sample ofX, andL a geodesicεsfs-sample ofX that is also ε

1+εsfs-sparse. Ifε + 2δ < 1, then, for

any integerν ≥ 2ld − 1, wherel =
⌈
log2

3+ε+2δ/ε
1−ε−2δ

⌉
, DX(L) is included inCWX,ν(L).

Proof. Let σ be a simplex ofDX(L), and letc be a point of its dual geodesic Voronoi cellVX(σ). Since
W is a geodesicδsfs-sample ofX, there is a pointw ∈ W at geodesic distance at mostδ sfs(c) from c.
Moreover, sinceL is a geodesicεsfs-sample ofX, every vertexv of σ is at geodesic distance less than
ε sfs(c) from c. It follows that dX(w, v) < (δ + ε) sfs(c). Now, sinceL is ε

1+εsfs-sparse, every two
landmarksv, v′ located in the open geodesic ballBX(w, (ε + δ) sfs(c)) satisfy: dX(v, v′) ≥ ε

1+ε sfs(v),
assuming without loss of generality thatsfs(v) ≤ sfs(v′). Sincesfs is 1-Lipschitz in the intrinsic metric
(Lemma 3.3), we have:sfs(v) ≥ sfs(c)−dX(v, c) ≥ sfs(c)−(ε+2δ) sfs(c) = (1−ε−2δ) sfs(c). Thus, the
landmarks insideBX(w, (ε+ δ) sfs(c)) are at leastε(1−ε−2δ)

1+ε sfs(c) away from one another in the intrinsic

metric. Hence, they are centers of pairwise-disjoint open geodesic balls of same radiusε(1−ε−2δ)
2(1+ε) sfs(c),

packed inside the open geodesic ball of centerc and radius(ε + δ + ε(1−ε−2δ)
2(1+ε) )sfs(c) = 3ε+ε2+2δ

2(1+ε) sfs(c).

According to Lemma 4.16, there are at most2ld such balls, wherel =
⌈
log2

3ε+ε2+2δ
ε(1−ε−2δ)

⌉
=
⌈
log2

3+ε+2δ/ε
1−ε−2δ

⌉
.

It follows thatσ is ν-witnessed byw wheneverν ≥ 2ld−1. Since this is true for every simplexσ of DX(L),
the latter is included inCWX,ν(L) wheneverν ≥ 2ld − 1. �

It follows from Theorems 4.14 and 4.17 that, wheneverL andW are dense enough,DX(L) is sand-
wiched betweenCWX (L) andCWX,ν(L), provided thatν is chosen sufficiently large. The simulation results
presented in Section 7 suggest that even small values ofν are sufficient in practice. Note however that, in
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some cases, neitherCWX (L) norCWX,ν(L) coincides exactly withDX(L). This fact, already observed in [30]
in a Euclidean setting, motivates the use of persistent homology betweenCWX (L) andCWX,ν(L) for computing
the homology ofDX(L) without building the latter complex explicitly.

5 Unions of geodesic balls and their nerves

Given a Lipschitz domainX in the plane, and two finite subsetsW ⊆ L ⊂ X, we saw in the previous
section (Theorems 4.14 and 4.17) that the following sequence of inclusionsholds provided thatW,L are
dense with respect to the systolic feature size ofX and that the relaxation parameterν is large enough:

CWX (L) ⊆ DX(L) ⊆ CWX,ν(L).

In the conference version of this paper [28] we showed how the abovesequence of inclusions can be used
to infer the homology of the domainX. Specifically, considering singular homology with coefficients in
an arbitrary field, we showed that the inclusionCWX (L) →֒ DX(L) induces surjective homomorphisms at
homology level, while the inclusionDX(L) →֒ CWX,ν(L) induces injective homomorphisms. Intuitively, this
means that the homology classes of cycles ofDX(L) already exist inCWX (L) and do not die inCWX,ν(L).
As a result, the inclusionCWX (L) →֒ CWX,ν(L) encodes the same homological information asDX(L),
and therefore asX itself, by Theorem 4.3. More formally, for allk ∈ N, the rank of the linear map
Hk(CWX (L)) → Hk(CWX,ν(L)) induced by the inclusion between the witness complexes is equal to thekth
Betti number ofDX(L), which by Theorem 4.3 coincides with thekth Betti number ofX.

In this section we want to proceed further and study the ranks of the linearmaps induced at homology
level by inclusions of typeCWX,ν(L) →֒ CWX,ν′(L), where0 ≤ ν ≤ ν ′ are arbitrary values of the relaxation
parameter. Moreover, we want to study other families of simplicial complexes that are also easy to build in
practice. In particular, we are interested inRips complexesin the geodesic distance:

Definition 5.1 Given a finite point setL ⊂ X and a real parameterα > 0, the (Vietoris-)Rips complex
Rα(L) is the abstract simplicial complex of vertex setL whose simplices correspond to non-empty subsets
ofL of diameter less thanα in the geodesic distancedX .

Our analysis uses the approach of [16], which we will now describe briefly and adapt to our context. The
main idea of [16] is to relate Rips and witness complexes to the so-calledČech complexes, defined below:

Definition 5.2 Given a finite point setL ⊂ X and a real parameterα > 0, theČech complexCα(L) is the
nerve of the union of open geodesic balls of same radiusα about the points ofL.

SinceČech complexes can be potentially difficult to compute, they are not meant to beconstructed in prac-
tice. However, they can be used as an intermediate algebraic construction for the analysis of the topological
structures of Rips or witness complexes. Indeed, on the one hand, the topology of theČech complex is tied
to the one of its dual union of balls via the Nerve Theorem 4.5, provided thatthe balls form a good cover of
the union, as per Definition 4.4. On the other hand, as provede.g. in [16], the one-parameter family ofČech
complexes is interleaved with the one-parameter family of Rips complexes in the following sense:

∀α > 0, Cα
2
(L) ⊆ Rα(L) ⊆ Cα(L). (3)

The analysis of [16] uses the above interleaving property to derive relations between the ranks of the linear
maps induced at homology level by inclusions between Rips complexes and theranks of linear maps induced
by inclusions betweeňCech complexes. More precisely, from Eq. (3) one deduces the following sequence
of inclusions for allβ ≥ 2α:

Cα/2(L) ⊆ Rα(L) ⊆ Cα(L) ⊆ Rβ(L) ⊆ Cβ(L). (4)
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By simple algebraic arguments, this sequence of inclusions implies the following inequalities between the
ranks of the homomorphisms induced at homology level by inclusions:∀β ≥ 2α, ∀k ∈ N,

rank Hk(Cα/2(L)) → Hk(Cβ(L)) ≤ rank Hk(Rα(L)) → Hk(Rβ(L)) ≤ dimHk(Cα(L)). (5)

These inequalities provide upper and lower bounds on the ranks of the linear maps induced at homology
level by inclusions of typeRα(L) →֒ Rβ(L). The rest of the analysis of [16] consists in working out
sufficient conditions under which the upper and lower bounds coincide with the Betti numbers ofX. To
do so, it relates the one-parameter family ofČech complexes to its dual one-parameter family of unions
of balls. Recall indeed from Definition 5.2 thatCα(L) is the nerve of the union of open geodesic balls of
same radiusα about the points ofL. Let us callLα this union, and{Lα} the associated collection of open
geodesic balls. The analysis of [16] provides the following key result, which can be viewed as a persistent
variant of the Nerve Theorem 4.5:

Lemma 5.3 For any parametersα ≤ β, if {Lα} forms a good open cover ofLα and{Lβ} forms a good
open cover ofLβ , then there exist homotopy equivalencesLα → Cα(L) andLβ → Cβ(L) that commute
with the canonical inclusionsLα →֒ Lβ andCα(L) →֒ Cβ(L) at homology level.

In other words, the inclusionsLα →֒ Lβ andCα(L) →֒ Cβ(L) carry the same homological information, that
is: for all k ∈ N, the linear mapsHk(L

α) → Hk(L
β) andHk(Cα(L)) → Hk(Cβ(L)) induced by inclusions

have the same rank.
Now, if we assume thatL is a geodesicε-sample of some length spaceX, thenLα coincides withX as

soon asα > ε, and for allβ ≥ α > ε, the canonical inclusionLα →֒ Lβ is the identity ofX, which implies
that the rank ofHk(L

α) → Hk(L
β) coincides with thekth Betti number ofX. Combined with Lemma 5.3,

this fact implies that, for allα > 2ε andβ ≥ 2α such that{Lα/2}, {Lα}, {Lβ} form good open covers
of Lα/2, Lα, Lβ respectively, the rank ofHk(Cα/2(L)) → Hk(Cβ(L)) and the dimension ofHk(Cα(L))
coincide with thekth Betti number ofX. Thus, the upper and lower bounds in Eq. (5) coincide with thekth
Betti number ofX, which implies the following:

Theorem 5.4 LetX be a length space that admits a finite geodesicε-sampleL. Then, for allk ∈ N, for all
α > 2ε andβ ≥ 2α such that{Lα/2}, {Lα}, {Lβ} form good open covers ofLα/2,Lα,Lβ respectively, the
rank of the homomorphismHk(Rα(L)) → Hk(Rβ(L)) induced by inclusion coincides with thekth Betti
number ofX.

In [16], the analysis takes place in Euclidean spaceRd, where balls are convex and their intersections
contractible (if not empty). In [14], the analysis is extended to the case of compact Riemannian manifolds,
with or without boundary, where geodesic balls are convex and their intersections contractible (if not empty)
up to the so-called convexity radius of the manifold. Thus, the assumption of having good covers in Theorem
5.4 holds as long asβ is smaller than the convexity radius. In the present context, the domainX is not a
Riemannian manifold since its boundary can be non-smooth. Yet, the above properties of geodesic balls still
hold provided that the radii are not more than a fraction of the systolic feature size ofX:

Lemma 5.5 If X is a Lipschitz planar domain, then any finite collection of open geodesic balls of radii at
most13sfs(X) forms a good open cover of its union inX.

Combined with Theorem 5.4, this result implies that, ifL is a geodesicε-sample of a Lipschitz planar domain
X, for someε < 1

12sfs(X), then, for any choice of parametersα ∈ (2ε, 1
6sfs(X)] andβ ∈ [2α, 1

3sfs(X)],
the Betti numbers ofX can be obtained as the ranks of the homomorphisms induced at homology levelby
the inclusionRα(L) →֒ Rβ(L).

Lemma 5.5 is the main new result of this section. Its proof turns out to be rather elaborate, and in fact it
draws some interesting connections between the systolic feature size and thedistance to the cut locus on the
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one hand (see Lemma 5.6 in Section 5.1), as well as between Lipschitz planar domains and a class of length
spaces calledAlexandrov spaceson the other hand (see Theorem 5.10 in Section 5.2). The proof is detailed
in Sections 5.1 and 5.2, while Section 5.3 adapts the above analysis to the case of witness complexes.

5.1 Systolic feature size and cut locus

A noticeable feature of the systolic feature size is its close relationship with the so-called cut-locus. For
any given pathγ : I → X, we callsupportof γ the setγ(I). If γ is a shortest path betweenx = γ(0)
andy = γ(1), thenγ(I) is called ashortest path supportbetweenx andy. Note that different paths may
have identical supports. In particular, a shortest path support may be shared by shortest paths as well as
non-shortest paths (think of the latter as moving back and forth along the support). Given a pointx ∈ X,
thecut-locusof x in X, or CLX(x) for short, is the locus of the points ofX having at least two different
shortest paths supports tox inX. In other words, a pointy ∈ X belongs toCLX(x) iff there exist two paths
γ, γ′ : I → X such thatγ(0) = γ′(0) = x, γ(1) = γ′(1) = y, |γ| = |γ′| = dX(x, y), andγ(I) 6= γ′(I).
The geodesic distance fromx to its cut-locus is denoted bydX(x,CLX(x)).

Lemma 5.6 If X is a Lipschitz domain in the plane, then∀x ∈ X, sfs(x) = dX(x,CLX(x)).

Proof. We first show thatsfs(x) ≥ dX(x,CLX(x)). This is clearly true if the path-connected component
Xi of X that containsx is simply connected, since in such a case we havesfs(x) = +∞. Assume now
thatXi is not simply connected, and letγ : (S1, 1) → (X, 1) be a non null-homotopic loop throughx
in X, of length2sfs(x) < +∞. Such a loop exists, by Lemma 3.2. Moreover, according to [10, Prop.
2.5.9], we can assume without loss of generality thatγ is parameterized with constant speed, that is:∀s ∈ I,
|γ[0,s]| = s|γ|. We then have|γ[0,1/2]| = |γ[1/2,1]| = 1

2 |γ| = sfs(x). Call respectivelyγ′ andγ′′ the paths
γ[0,1/2] andγ[1/2,1]. These are two paths betweenx andy = γ(1/2) in X, hence their lengths are at least
dX(x, y). We claim that|γ′| = |γ′′| = dX(x, y). Indeed, letζ be a shortest path fromx to y in X.
Sinceγ is not null-homotopic inX, γ′ andγ̄′′ are not homotopic relative to∂I in X, and thereforeγ′ · ζ̄
or γ̄′′ · ζ̄ (sayγ′ · ζ̄) is not null-homotopic inX. It follows that |γ′ · ζ̄| ≥ 2sfs(x). Now, if |ζ| < |γ′′|,
then we have|γ′ · ζ̄| = |γ′| + |ζ| < |γ′| + |γ′′| = |γ| = 2sfs(x), which raises a contradiction with the
previous sentence. Therefore,|γ′| = |γ′′| = |ζ| = dX(x, y). Finally, we claim that the supports ofγ′

andγ′′ are distinct. Assume for a contradiction thatγ′(I) = γ′′(I). Then, for alls′ ∈ [0, 1/2], there exists
s′′ ∈ [1/2, 1] such thatγ(s′) = γ(s′′). This implies thatdX(x, γ(s′)) = dX(x, γ(s′′)). But sinceγ′ and
γ̄′′ are shortest paths fromx to y in X, we havedX(x, γ(s′)) = |γ[0,s′]| anddX(x, γ(s′′)) = |γ[s′′,1]|.
It follows that s′ = 1 − s′′, becauseγ is parameterized with constant speed. This means thatγ′ = γ̄′′,
which implies thatγ = γ′ · γ′′ is null-homotopic inX, which contradicts our assumption. Thus, we have
γ′(I) 6= γ′′(I), as well as|γ′| = |γ′′| = dX(x, y), which means thaty belongs toCLX(x). Therefore,
sfs(x) = |γ′| = |γ′′| = dX(x, y) ≥ dX(x,CLX(x)).

Let us now show thatsfs(x) ≤ dX(x,CLX(x)). Assume for a contradiction that there is a point
y ∈ CLX(x) such thatdX(x, y) < sfs(x). Point y has at least two shortest pathsγ, γ′ from x whose
supports differ. Assume without loss of generality thatγ, γ′ are parameterized with constant speed. Then,
for all 0 ≤ s < s′ ≤ 1, we haveγ(s) 6= γ(s′), since otherwise the pathγ[0,s] · γ[s′,1] would connectx to
y and be strictly shorter thanγ, hereby contradicting the fact that the latter is a shortest path fromx to y.
Thus,γ is an injection fromI to X. Given any pointsu, v ∈ γ(I), with γ−1(u) ≤ γ−1(v), we callγuv
the pathγ[γ−1(u),γ−1(v)]. By the same argument,γ′ is also an injection fromI to X, and we use the same
notation for subpaths.

Since the supports ofγ andγ′ differ, we haveγ(I)\γ′(I) 6= ∅ orγ′(I)\γ(I) 6= ∅ – sayγ(I)\γ′(I) 6= ∅.
Let γuv be a maximal subarc ofγ satisfyingγuv(]0, 1[) ∩ γ′(I) = ∅. Here,u andv are the two endpoints of
γuv, and by maximality we haveu 6= v andu, v ∈ γ(I) ∩ γ′(I). Sinceγuv andγ′uv are injective, and since
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their images inX have common endpoints but disjoint relative interiors, the pathγ′uv · γ̄vu is a simple loop,
and therefore it divides the plane into two connected components, one of which (calledC) is bounded, by
the Jordan curve theorem. Moreover, we have∂C = (γ′uv · γ̄vu)(I), and the degree of the loop with respect
to any point ofC is non-zero. Now, sinceγ, γ′ are shortest paths fromx to y, with dX(x, y) < sfs(x), the
image of the loopγ′uv · γ̄vu lies in the open geodesic ballBX(x, sfs(x)). Hence, by Lemma 3.4, the loop is
null-homotopic inX, and since its degree with respect to the points ofC is non-zero, any homotopy with
a constant map inX passes through the points ofC, which therefore belong toX. Thus, between pointsu
andv, γ andγ′ sandwich a regionC that is included inX. We will show that there exist shortcuts toγ, γ′

in C, hereby contradicting the fact thatγ andγ′ are shortest paths fromx to y in X.
Consider the line segment[u, v], and choose a positively-oriented orthonormal frame such that pointu

is at the origin, line(u, v) is vertical, and pointv lies aboveu. Letλuv denote the paths 7→ (1 − s)u+ sv.
- If [u, v] is included inC, then the pathsγxu · λuv · γvy andγ′xu · λuv · γ′vy connectx to y in X. And

sinceγuv(I) andγ′uv(I) differ, one of them at least (sayγuv(I)) differs from [u, v], which implies that
|γuv| > dE(u, v) = |λuv| and hence that|γ| > |γxu ·λuv ·γvy|, which contradicts the fact thatγ is a shortest
path fromx to y in X.

- If now [u, v] is not included inC, then there is a pointp ∈ [u, v] that does not belong toC. On the
horizontal line passing throughp, C lies on the right or on the left of(u, v), say on the right. Letc be a
rightmost point ofC. We havec /∈ {u, v} becausec lies on the right of line(u, v). Note thatc ∈ ∂C, and
assume without loss of generality thatc ∈ γuv(I), which implies thatc /∈ γ′uv(I) sincec /∈ {u, v}. Let α
be the connected component ofγuv(I) \ (u, v) that containsc. Sinceγuv is a simple arc,α is a subarc of
γuv, starting and ending on(u, v), and passing throughc. Let l be the vertical line passing throughc. Note
thatC does not intersect the right half-plane bounded byl. Nevertheless, other components of∂C \ (u, v)
may touchl, including some subarcs ofγ′uv. However, by paringC infinitesimally in their vicinity, one can
easily ensure thatα is the only arc of∂C that touchesl. Hence, from now on, we assume without loss of
generality thatl ∩ C ⊆ α. This implies thatγ′uv(I) does not touchl, sinceα ⊆ γuv(]0, 1[), which does not
intersectγ′uv(I). Therefore, the rightmost vertical linel′ touchingγ′uv(I) lies on the left ofl. Let δ > 0
denote the Euclidean distance betweenl andl′.

Consider the open Euclidean ballBE(c, δ). Sincec ∈ C, there exists a pointc′′ lying in C ∩ BE(c, δ).
SinceC is open inR2, we havec′′ /∈ ∂C. Let l′′ be the vertical line passing throughc′′. Note thatl′′ is
located on the right ofl′. Letu′′ andv′′ be the first points of intersection ofl′′ with ∂C above and belowc′′.
We have[u′′, v′′] ⊆ C. Moreover,u′′ 6= v′′ becausec′′ /∈ ∂C. In addition,u′′ andv′′ belong toγuv(I), since
they lie onl′′ and hence on the right ofl′. Finally, [u′′, v′′] differs fromγu′′v′′(I) because[u′′, v′′] passes
throughc′′ /∈ ∂C. As a result, the pathλu′′v′′ , defined bys 7→ (1 − s)u′′ + sv′′, is included inC ⊆ X,
it connects pointsu′′, v′′ of γuv(I), and it is shorter thanγu′′v′′ . It follows that the pathγxu′′ · λu′′v′′ · γv′′y
connectsx to y inX, and is strictly shorter thanγ, which contradicts the fact thatγ is a shortest path fromx
to y in X. This shows that every pointy inside the open geodesic ballBX(x, sfs(x)) has only one shortest
path support tox. It follows thatsfs(x) ≤ dX(x,CLX(x)), which concludes the proof of Lemma 5.6.�

The fact that the geodesic distance of a pointx ∈ X to its cut-locus is equal to half the length of
the shortest non null-homotopic loop throughx was already known in the case of planar domains with
polygonal boundaries [36]. Lemma 5.6 above extends this result to the case of planar domains with Lipschitz
boundaries.

5.2 Lipschitz planar domains are Alexandrov spaces

The background material used in this section comes from Chapters 4 and 9 of [10], to which we refer the
reader for further details.
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We callgeodesic triangleany collection of three distinct pointsa, b, c ∈ X connected by three shortest
paths supportsτab, τbc, τca in X. Note that the three vertices alone may not define a geodesic triangle
uniquely since there may be several different shortest paths supportsconnecting a same pair of vertices.

Definition 5.7 Given a geodesic triangle of verticesa, b, c ∈ X, a comparison triangleis a triangle(ā, b̄, c̄)
in the Euclidean plane such thatdE(ā, b̄) = dX(a, b), dE(b̄, c̄) = dX(b, c), anddE(c̄, ā) = dX(c, a).

Although three distinct points inX may not define a unique geodesic triangle, they always define a unique
comparison triangle up to an isometry of the Euclidean plane.

Definitions 5.8 and 5.9 below consider theshapesof small enough geodesic triangles as a criterion for
a length space to have bounded curvature. This criterion is inspired fromresults in Riemannian geometry,
where manifolds of negative curvature tend to haveskinnytriangles, whereas manifolds of positive curvature
have ratherfat triangles. Here, the skinniness of a geodesic triangle is measured with respect to a comparison
triangle in the Euclidean plane.

Definition 5.8 (Angle condition) A geodesic triangle(a, b, c, τab, τbc, τca) satisfies theangle conditionif
the angles formed byτab, τbc, τca at the verticesa, b, c are well-defined and at most the corresponding angles
in a comparison triangle.

In the above definition, by angle between two pathsα, β : I → X emanating from a same pointp = α(0) =
β(0) is meant the limit quantitylims,t→0 ∠̃(α(s), p, β(t)), if it exists, where∠̃(α(s), p, β(t)) denotes the
inner angle8 at the vertex corresponding top in a comparison triangle of(p, α(s), β(t)). This limit may
not always exist in general. Below we prove that, in the special case of Lipschitz planar domains, small
enough geodesic triangles have concave edges (Claim 5.10.3) whose tangents at the vertices of the triangles
are well-defined, which implies that angles between edges are also well-defined.

Definition 5.9 A length spaceX is anAlexandrov space with non-positive curvatureif around each point
ofX there is a neighborhood such that every geodesic triangle within this neighborhood satisfies the angle
condition of Definition 5.8.

Alexandrov spaces of non-positive curvature are sometimes calledCAT(0)-spacesin the literature, where
CAT stands for Cartan-Alexandrov-Toponogov, and where (0) indicates the upper bound on the curvature.
Note also that curvature bounds are usually derived from distance conditions, not angle conditions. As
proved in [10, Thm. 4.3.5], distance and angle conditions are in fact equivalent.

The main result of this section is that Lipschitz planar domains are CAT(0)-spaces:

Theorem 5.10 Every Lipschitz domainX in the plane, endowed with the length structure inherited from
(R2,dE), is an Alexandrov space of non-positive curvature. More precisely, for any open geodesic ball
B ⊂ X of radius at most13sfs(X), and for any distinct pointsa, b, c ∈ B, the geodesic triangle formed by
a, b, c and their (unique) shortest paths supports satisfies the angle condition ofDefinition 5.8.

The proof of the theorem uses four intermediate results, stated as Claims 5.10.1 through 5.10.4 and proved
on the fly.

Proof of Theorem 5.10. Observe first that, since the diameter ofB is less thansfs(X), the shortest paths
supports betweena, b, c are defined uniquely, by Lemma 5.6. For more clarity, we callτab, τbc, andτca these
paths supports — dashed in Figure 3 (left).

Claim 5.10.1 The paths supportsτab, τbc and τca are simple planar curves that pairwise intersect along
connected subarcs incident to their common endpoints.

8This angle is defined uniquely because the comparison triangle is defined uniquely up to an isometry of the Euclidean plane.
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Proof. Sinceτab, τbc andτca are shortest paths supports, they have to be simple, since otherwise they could
be shortened. Consider nowτab andτbc. These paths supports intersect at their common endpointb. Assume
that they have another pointb′ of intersection. Then, the arc ofτab that connectsb to b′ is a shortest path
support between the two points inX. Idem for the arc ofτbc that connectsb to b′. Therefore, these two arcs
coincide, by Lemma 5.6. It follows thatτab andτbc must intersect along a common subarc incident to their
common endpointb. The same is true forτbc andτca on the one hand, and forτca andτab on the other hand.
�
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Figure 3: Left: a geodesic triangle(a, b, c) in a Lipschitz planar domain (light grey). Shortest paths supports
are dashed. The non-singular part of the triangle, of verticesa′, b′, c′ and interiorΩ, is shown in dark grey.
Right: bold segments show the possible locations ofb̄′ andc̄′ on rays[a, b̄) and[a, c̄).

Let τbb′ be the common subarc ofτab and τbc, τcc′ the common subarc ofτbc and τca, andτaa′ the
common subarc ofτca andτab. The shortest paths supportsτa′b′ , τb′c′ andτc′a′ are then uniquely defined as
subarcs ofτab, τbc andτca respectively. Note that ifa′ = b′ or a′ = c′ or b′ = c′, then it must be the case
thata′ = b′ = c′, by Claim 5.10.1.

Claim 5.10.2 If a′ = b′ = c′, then the curveτ = τa′b′ ∪ τb′c′ ∪ τc′a′ is reduced to a point. Else,τ is a
simple closed curve whose complement inR2 has two path-connected components, one of which (calledΩ)
is bounded and contained inX.

Proof. Sinceτa′b′ , τb′c′ , τc′a′ are shortest paths supports, they are reduced to a same point ifa′ = b′ = c′.
Else, we havea′ 6= b′, b′ 6= c′ anda′ 6= c′, and the definition ofa′, b′, c′ derived from Claim 5.10.1 ensures
thatτ is a simple closed curve. Then, the Jordan curve theorem guarantees that τ dividesR2 into two distinct
connected components, one of which (calledΩ) is bounded. Letγa′b′ : I → X be a shortest path between
a′ andb′, γb′c′ : I → X a shortest path betweenb′ andc′, andγc′a′ : I → X a shortest path betweenc′ and
a′. Let nowγ = γa′b′ · γb′c′ · γc′a′ . We haveγ(I) = τ . Furthermore,

|γ| = dX(a′, b′) + dX(b′, c′) + dX(c′, a′) ≤ dX(a, b) + dX(b, c) + dX(c, a) < 2sfs(X),

which implies thatγ is null-homotopic inX, by definition ofsfs(X). Let Γ : S1 × I → X be a homotopy
betweenγ and a constant map inX. For any pointx ∈ Ω, we havedegx γ = ±1 since the loopγ winds
once aroundΩ. If x did not belong toΓ(S1×I), thenΓ would be a homotopy betweenγ and a constant map
in R2 \ {x}, thus by Corollary 2.1 we would havedegx γ = 0, thereby raising a contradiction. It follows
thatΓ(S1 × I) contains all the points ofΩ, which is therefore included inX. �

It follows from Claim 5.10.2 that the geodesic triangle formed byτa′b′ , τb′c andτc′a′ is either reduced to
a point, or an embedded triangle in the plane, whose interiorΩ is included inX. From now on, we denote
the triangle by(a′, b′, c′) for simplicity.
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Claim 5.10.3 The triangle(a′, b′, c′) has concave edges.

Proof. Consider an edge of the triangle, say for instanceτa′,b′ . For any pair of pointsx, y on this edge,
consider the Euclidean segment[x, y]. We will show that[x, y] ∩ Ω = ∅. Assume for a contradiction that
this is not the case, and let(x′, y′) be a connected component of[x, y] ∩ Ω. This component is an open
subsegment of[x, y], and its endpoints lie onτa′b′ . Call τa′x′ the subarc ofτa′b′ that connectsa′ to x′ and
τy′b′ the subarc ofτa′b′ that connectsy′ to b′. Replacingτa′b′ by τa′x′ ∪ (x′, y′) ∪ τy′b yields a path support
betweena′ andb′ that is strictly shorter thanτa′b′ , yet still included inX (sinceΩ ⊂ X). This contradicts
the fact thatτa′b′ is a shortest path support betweena′ andb′ in X. �

The fact that the edges of(a′, b′, c′) are concave implies that their tangents at the three vertices are
well-defined whena′, b′, c′ are distinct, as shown in Figure 3 (right).

We can now prove that the inner angles of the geodesic triangle(a, b, c) are well-defined, taking for
instance the case of vertexa: if a 6= a′, thenτab andτca coincide in the vicinity ofa (as in Figure 3 (left) for
instance), and therefore the inner angleâ is zero; ifa = a′ = b′ = c′, thena lies on the shortest path support
τbc, and thereforêa = π, sincea, b, c are assumed to be distinct; else,a = a′ anda′, b′, c′ are distinct, and̂a
coincides with the angle formed by the two rays emanating froma and tangent toτab andτca respectively9.
In every case, the inner angleâ is well-defined. The same is true forb̂ andĉ.

Claim 5.10.4 The angleŝa, b̂, ĉ are not larger than the corresponding angles in a comparison triangle.

Proof. Take for instance vertexa. If a 6= a′, then we havêa = 0, which cannot be more than the value
of the corresponding angle in a comparison triangle. Ifa = a′ = b′ = c′, then we havêa = π. But since
a belongs to the shortest path supportτbc, we havedX(b, c) = dX(b, a) + dX(a, c), which implies that
a comparison triangle must be flat, with an inner angle ata equal toπ. Consider finally the case where
a = a′ anda′, b′, c′ are distinct. Let[a, b̄) and[a, c̄) be the rays emanating froma and tangent toτab and
τca respectively. On[a, b̄), the pointb̄ is placed such that its Euclidean distance toa is equal todX(a, b).
Similarly, we place point̄c on [a, c̄) such thatdE(a, c̄) = dX(a, c). Assume that the following inequality
holds:

dE(b̄, c̄) ≤ dX(b, c). (6)

Then, any comparison triangle of(a, b, c) must have an inner angle ata that is at least the anglêa between
[a, b̄) and[a, c̄), which proves the claim.

Let us now prove Eq. (6). Since the triangle(a, b′, c′) is embedded in the plane with concave edges,
b′ and c′ must lie outside the wedge formed by rays[a, b̄) and [a, c̄), and the edgeτb′c′ (as well as the
Euclidean segment[b′, c′]) must intersect the wedge. Letb′′ be the unique intersection point between[b′, c′]
and[a, b̄), andc′′ the unique intersection point between[b′, c′] and[a, c̄). We place a point̄b′ on [a, b̄) such
thatdE(a, b̄′) = dX(a, b′). We also let̄b′1, b̄

′
2 ∈ [a, b̄) be such thatdE(b̄′1, a) = dE(b′, a) anddE(b̄′2, b

′′) =
dE(b′, b′′). Since the edgeτa,b′ is concave, it coincides with the graph of some convex real-valued function
in an appropriate orthogonal frame of abcissa line(a, b′). Observe that the Euclidean line segments[a, b′′]
and[b′′, b′], once concatenated, also form a concave triangle edge, therefore[a, b′′] ∪ [b′′, b′] coincides with
the graph of some convex function in the same frame as above. And since[a, b′′]∪ [b′′, b′] lies belowτa,b′ in
that frame, its length must be greater. As a result, we have:

dE(a, b′) ≤ dX(a, b′) ≤ dE(a, b′′) + dE(b′′, b′).

9This is an easy consequence of the concavity of the edges of(a, b′, c′). Indeed, when two pointsp ∈ τab′ andq ∈ τc′a

converge toa, the ratiosdX (p,a)
dE(p,a)

and dX (q,a)
dE(q,a)

converge to1. Furthermore, forp, q close enough toa, the Euclidean line segment

[p, q] is included in(a′, b′, c′) and therefore inX, which implies thatdX (p,q)
dE(p,q)

= 1. Thus, asp, q converge toa, the angle of a
comparison triangle tends todpaq, which converges to the angle between the tangents toτab andτca.
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This implies that point̄b′ lies in-between̄b′1 andb̄′2 along the ray[a, b̄). Similarly, placingc̄′ on [a, c̄) such
thatdE(a, c̄′) = dX(a, c′), and lettingc̄′1, c̄

′
2 ∈ [a, c̄) be such thatdE(c̄′1, a) = dE(c′, a) anddE(c̄′2, c

′′) =
dE(c′, c′′), we have that̄c′ lies in-between̄c′1 andc̄′2 along[a, c̄). Assuming without loss of generality that
dX(a, b′) ≥ dX(a, c′), we then have

dE(b̄′, c̄′) ≤ dE(b̄′2, c̄
′
1). (7)

In addition, since[b′, c′] crosses the wedge bounded by[a, b̄) = [a, b′′) and [a, c̄) = [a, c̄′1), point c̄′1 lies
inside the wedge bounded by[a, b′′) and[a, c′). Now, inside this wedge, the arc of circle∂BE(a,dE(a, c′))
is included in the closed Euclidean ballBE(b′′,dE(b′′, c′)). It follows thatdE(b′′, c̄′1) ≤ dE(b′′, c′), and by
the triangle inequality,

dE(b̄′2, c̄
′
1) ≤ dE(b̄′2, b

′′) + dE(b′′, c̄′1) = dE(b′, b′′) + dE(b′′, c̄′1) ≤ dE(b′, b′′) + dE(b′′, c′) = dE(b′, c′).

Thus,dE(b̄′2, c̄
′
1) ≤ dX(b′, c′). Combined with Eq. (7), this inequality yieldsdE(b̄′, c̄′) ≤ dX(b′, c′). Now,

recall thatdX(b, b′) = dX(a, b)− dX(a, b′) sinceb′ lies on the shortest path supportτab. Idem,dX(c, c′) =
dX(a, c)− dX(a, c′) sincec′ lies on the shortest path supportτca. Therefore, we havedE(b̄, b̄′) = dX(b, b′)
anddE(c̄, c̄′) = dX(c, c′). Combining these relations with the triangle inequality, we obtain:

dE(b̄, c̄) ≤ dE(b̄, b̄′) + dE(b̄′, c̄′) + dE(c̄′, c̄) ≤ dX(b, b′) + dX(b′, c′) + dX(c′, c),

which is equal todX(b, c) sinceb′, c′ lie on the shortest path supportτbc betweenb andc. This proves Eq.
(6), and thus also the claim.�

Claim 5.10.4 concludes the proof of Theorem 5.10.�

Open geodesic balls ofX in which the angle condition of Definition 5.8 is satisfied by all geodesic
triangles are often callednormal balls in the literature. They enjoy many interesting properties, among
which the most important ones to us are the fact that normal balls are convex(i.e. any two points in a normal
ball B have a unique shortest path support, which is also included inB), and the fact that for any point
p ∈ X the mapq 7→ γpq, whereγpq is a shortest path fromp to q parametrized with constant speed, is
uniquely defined and continuous within any normal ball that containsp. As a result, intersections of normal
balls are either empty, or convex and contractible — see Propositions 9.1.16 and 9.1.17 as well as Remark
9.1.18 of [10]. Combined with Theorem 5.10, this fact proves Lemma 5.5.

5.3 The case of witness complexes

The one-parameter families ofČech and witness complexes can be interleaved in a same way as in Eq. (3),
modulo some additional conditions on the landmarks and witnesses densities:

Lemma 5.11 LetX be a Lipschitz domain in the plane, of doubling dimensiond. LetW be a geodesic
δ-sample ofX, andL an ε-sparse geodesicε-sample ofX. For any parameterα > 0, we haveCα(L) ⊆
CWX,ν(L) as soon asν ≥ 2ld, where l = ⌈log2

2α+ε+2δ
ε ⌉. Conversely, for any parameterν, we have

CWX,ν(L) ⊆ Cα(L) for all valuesα ≥ (2ν + 3)ε.

Proof. Let α > 0 be a parameter, andσ = [p0, · · · , pk] a simplex ofCα(L). The open geodesic balls
BX(pi, α) have a non-empty common intersection. Letc be a point in the intersection, and letw ∈ W
be a point ofW closest toc in the intrinsic metric. We then havedX(w, c) ≤ δ, which implies that
dX(w, pi) < α + δ for all i = 0, · · · , k. Now, sinceL is ε-sparse, the points ofL that lie within geodesic
distanceα+ δ of w are centers of pairwise-disjoint open geodesic balls of same radiusε

2 , packed inside the
open ballBX(w,α + δ + ε

2). Since the doubling dimension ofX is d, the maximum possible number of
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such balls is at most2ld, wherel = ⌈log2
2α+ε+2δ

ε ⌉. This implies that the vertices ofσ are among the2ld

points ofL nearest tow in the intrinsic metric. As a result,w is aν-witness ofσ as soon asν ≥ 2ld. Since
this is true for any simplexσ ∈ Cα(L), we conclude thatCα(L) ⊆ CWX,ν(L) for all ν ≥ 2ld.

Let nowν ∈ N be a parameter, andσ a simplex ofCWX,ν(L). Consider anyν-witnessw of σ. The vertices
of σ are among theν + 1 points ofL closest tow in the geodesic distance, and they all lie in the same path-
connected component ofX asw. Therefore, their geodesic distances tow are less than(2ν+3)ε, according
to Lemma 4.13 and its subsequent comment. Thus, for allα ≥ (2ν + 3)ε, w belongs to the open geodesic
balls of same radiusα centered at the vertices ofσ, whose common intersection is therefore non-empty. It
follows thatCWX,ν(L) ⊆ Cα(L). �

Letting l(α) = ⌈log2
2α+ε+2δ

ε ⌉ andν(α) = 2l(α)d, we deduce from Lemma 5.11 the following inclu-
sions, which correspond to the ones of Eq. (3) for witness complexes:∀α > 0,

Cα(L) ⊆ CWX,ν(α)(L) ⊆ C(2ν(α)+3)ε(L).

The above inclusions induce a sequence similar to the one of Eq. (4):∀β ≥ (2ν(α) + 3)ε,

Cα(L) ⊆ CWX,ν(α)(L) ⊆ Cβ(L) ⊆ CWX,ν(β)(L) ⊆ C(2ν(β)+3)ε(L).

This sequence provides upper and lower bounds on the ranks of the homomorphisms induced at homology
level by the inclusionCWX,ν(α)(L) →֒ CWX,ν(β)(L), as in Eq. (5):∀β ≥ (2ν(α) + 3)ε, ∀k ∈ N,

rank Hk(Cα(L) → Hk(C(2ν(β)+3)ε(L)) ≤ rank Hk(CWX,ν(α)(L)) → Hk(CWX,ν(β)(L)) ≤ dimHk(Cβ(L)).

Equality between the upper and lower bounds is guaranteed by Lemma 5.5, using the same analysis as in
the introduction of Section 5 and assuming thatα > ε and(2ν(β) + 3)ε ≤ 1

3sfs(X). We thus obtain:

Theorem 5.12 LetX be a Lipschitz planar domain,W a geodesicδ-sample ofX, andL a finite geodesic
ε-sample ofX. Then, for any choice of parametersα and β ≥ (2ν(α) + 3)ε such thatα > ε and
(2ν(β) + 3)ε ≤ 1

3sfs(X), the Betti numbers ofX can be obtained as the ranks of the homomorphisms
induced at homology level by the inclusionCWX,ν(α)(L) →֒ CWX,ν(β)(L), provided thatδ, ε are small enough.

6 Algorithms

In this section, we describe high-level procedures for estimatingsfs, for generating geodesicεsfs-samples,
and for computing the homology of a Lipschitz planar domain. Our algorithms relyessentially on two
oracles, whose implementations depend on the application considered. Section 7 will be devoted to the
implementation of such oracles on a sensor network.

6.1 Computing the systolic feature size

Lemma 5.6 suggests a simple procedure for computing the systolic feature size:given a Lipschitz domain
X in the plane, and a pointx ∈ X, grow a geodesic ballB aboutx at constant speed, starting with a radius
of zero, and ending whenB covers the path-connected componentXx of X containingx. Meanwhile,
focus on the wavefront∂B as the radius ofB increases – this wavefront evolves as the iso-level sets of the
geodesic distance tox:

– if at some stage the wavefrontself-intersects, meaning that there is a pointy ∈ ∂B with at least two
different shortest paths supports tox, then interrupt the growing process and return the current value
of the radius ofB;
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– else, stop onceB coversXx and return+∞.
By detecting the first self-intersection event in the growing process, the procedure finds a point ofCLX(x)
closest tox in the intrinsic metric, and therefore it returnsdX(x,CLX(x)), which by Lemma 5.6 is equal to
sfs(x). The procedure relies on two oracles: the first one detects whetherB coversXx entirely; the second
one detects whether the wavefront self-intersects at a given valuer of the radius ofB, or rather, between
two given valuesr1 < r2 of the radius ofB.

6.2 Generating geodesicεsfs-samples

Given a Lipschitz domainX in the plane, and a real numberε > 0, we can use the procedure of Section
6.1 to generate geodesicεsfs-samples ofX. Our algorithm relies on a greedy packing strategy that builds a
point setL iteratively by inserting at each iteration a point ofX that is far away from the current point setL
in the intrinsic metric.

In the initialization phase, the algorithm selects an arbitrary pointp ∈ X and setsL = {p}. It also
assigns top the open geodesic ballBp of centerp and radius ε

1+ε sfs(p), wheresfs(p) is estimated using
the procedure of Section 6.1. Ifsfs(p) = +∞, thenBp coincides with the path-connected component ofX
containingp. The main loop of the algorithm proceeds in a similar fashion. At each iteration,an arbitrary
point q ∈ X \⋃p∈LBp is selected and inserted inL. Pointq is then assigned the open geodesic ballBq of
centerq and radius ε

1+ε sfs(q). The process stops whenX \⋃p∈LBp = ∅.
The algorithm uses a variant of an oracle of Section 6.1, which can tell whether a given union of geodesic

balls coversX, and return a point outside the union in the negative. Upon termination, every pointx ∈ X
lies in some open ballBp, and we havedX(x, L) ≤ dX(x, p) < ε

1+ε sfs(p), which is at mostε sfs(x) since
sfs is 1-Lipschitz in the intrinsic metric (Lemma 3.3). Moreover,dX(x, p) is finite becauseBp is included in
the path-connected component ofX containingp. Therefore, upon termination,L is a geodesicεsfs-sample
of X. Let us show that the algorithm indeed terminates:

Lemma 6.1 For all ε > 0, the algorithm terminates.

Proof. Our approach is to bound the pairwise Euclidean distances between the points ofL from below by
some positive value, and then to apply a packing argument. Leth = min{1, sfs(X)}. Note that we do not
usesfs(X) directly, since the latter might be infinite. In contrast,0 < h < +∞.

Consider any two pointsp, q inserted inL by the algorithm, and assume without loss of generality that
q was inserted afterp. If sfs(p) = +∞, then the ballBp coincides withXp, the path-connected component
of X that containsp. Therefore,q does not belong toXp, and we havedX(p, q) = +∞ > hε

1+ε . If

sfs(p) < +∞, thendX(p, q) is at least the radius ofBp, which is equal to ε
1+εsfs(p) ≥ ε

1+εsfs(X) ≥ hε
1+ε .

In any case, we havedX(p, q) ≥ hε
1+ε for all pointsp, q ∈ L. We will now bound this quantity from below

by another quantity depending ondE(p, q), which will then enable us to use a packing argument.
Consider the setK of all pairs of pointsx, y ofX such thatdX(x, y) ≥ hε

1+ε . K is a closed subset ofX×
X, which is compact sinceX is, henceK itself is also compact. It follows that the map10 g(x, y) = dE(x,y)

dX(x,y)

reaches its minimumm overK. This minimum is positive since∀(x, y) ∈ K, we havedX(x, y) > 0, which
implies thatx 6= y and hence thatdE(x, y) > 0.

From the previous paragraphs, we deduce that, for all pointsp, q ∈ L, dE(p, q) is at leastm dX(p, q) ≥
mhε
1+ε . Hence, the points ofL are centers of pairwise-disjoint open Euclidean balls of same radiusmhε

2(1+ε) > 0,

packed insideX ⊕ BE

(
0, mhε

2(1+ε)

)
, where⊕ stands for the Minkowski sum. SinceX is compact, so is

X ⊕ BE

(
0, mhε

2(1+ε)

)
, which therefore contains only finitely many disjoint open Euclidean balls of same

10This map is well-defined sincedX(x, y) ≥ hε
1+ε

> 0 for all (x, y) ∈ K.

29



positive radius. It follows thatL is finite. And since the algorithm inserts one point inL per iteration, the
process terminates.�

We will now show that the size of the output of the algorithm lies within a constantfactor of the optimal,
the constant depending on the doubling dimension of(X, dX).

Lemma 6.2 For anyε ∈]0, 1[, the output landmarks set isε1+εsfs-sparse, and its size is within2ld times the

size of any geodesicεsfs-sample ofX, wherel =
⌈
log2

3+3ε+2ε2

1−ε

⌉
and whered is the doubling dimension

of (X, dX).

The influence of the doubling dimensiond of X is illustrated in Figure 2 (right), where the domain consists
of two copies of the domain of Figure 2 (left), glued together along the tips of their branches. The systolic
feature size at any point ofX is at least half the perimeter of a hole, which is equal to2 + 2

2k−1 . Consider
the setsP = {p, p′} andQ = {q1, · · · , qk}. For any pointx ∈ X, the geodesic distance fromx to P is at
most2, as in the case of Figure 2 (left). As for the geodesic distance fromx to Q, it is at most2 + 2

2k−1 .
Both distances are bounded from above bysfs(x), so thatP andQ are geodesicsfs-samples ofX. Now, for
anyqi ∈ Q, the geodesic distance fromqi to any otherqj is greater than half the length of the shortest loop
throughqi that winds around a hole. Therefore, the geodesic distance fromqi to Q \ {qi} is greater than
sfs(qi). It follows thatQ is sfs-sparse. However, the size ofQ is k

2 times the size ofP , wherek is of the
order of2d, as observed before Theorem 4.17.

Proof of Lemma 6.2. LetL be the output landmarks set. Given any two pointsp 6= q ∈ L, assume without
loss of generality thatp was inserted inL beforeq. Then,q does not belong to the open geodesic ball of
centerp and radius ε

1+ε sfs(p). Hence,dX(p, p) ≥ ε
1+ε sfs(p), which is at least ε1+ε min{sfs(p), sfs(q)}.

Therefore,L is ε
1+εsfs-sparse.

Let nowL′ ⊂ X be any geodesicεsfs-sample ofX. Consider the functionπ : L → L′ that maps
each point ofL to its nearest neighbor inL′ in the intrinsic metric, breaking ties arbitrarily. We then have
|L| =

∑
q∈L′ |π−1({q})|. Therefore, to bound the size ofL, it is enough to bound the size of each set

π−1({q}).
Let q ∈ L′, and letp1, · · · , pk be the points ofπ−1({q}). All the pointspi belong to the path-connected

componentXq of X that containsq, sinceL′ is a geodesicεsfs-sample ofX. If sfs(q) = +∞, thenXq is
simply connected, and therefore the algorithm picks only one point fromXq. It follows that|π−1(q)| = 1.
Assume from now on thatsfs(q) < +∞, which means thatXq is not simply connected and hence that the
sfs(pi) are finite.

SinceL′ is a geodesicεsfs-sample ofL, for all i = 1, · · · , k we havedX(pi, q) < ε sfs(pi), which is
at most ε

1−ε sfs(q) sincesfs is 1-Lipschitz in the intrinsic metric (Lemma 3.3). Hence, thepi belong to the
open geodesic ball of centerq and radius ε

1−ε sfs(q). Moreover, assuming without loss of generality that
p1, · · · , pk were inserted inL in this order, we have that, for all1 ≤ i < j ≤ k, pj does not belong to
the open geodesic ball of centerpi and radius ε

1+ε sfs(pi). Hence,dX(pi, pj) ≥ ε
1+ε sfs(pi), which is at

least ε
(1+ε)2

sfs(q) sincedX(pi, q) ≤ ε sfs(pi) and sincesfs is 1-Lipschitz in the intrinsic metric. Therefore,

thepi are centers of pairwise-disjoint open geodesic balls of radiusε
2(1+ε)2

sfs(q), packed inside the open

geodesic ball of centerq and radius
(

1
1−ε + 1

2(1+ε)2

)
ε sfs(q) = 3+3ε+2ε2

2(1−ε)(1+ε)2
ε sfs(q).

It follows from the previous paragraph that the size ofπ−1({q}) is bounded by the maximum number
of open geodesic balls of radius ε

2(1+ε)2
sfs(q) that can be packed inside an open geodesic ball of radius

3+3ε+2ε2

2(1−ε)(1+ε)2
ε sfs(q). By Lemma 4.16, this number is at most the minimum numbern of geodesic balls of

radius ε
2(1+ε)2

sfs(q) that are necessary to cover a geodesic ball of radius3+3ε+2ε2

2(1−ε)(1+ε)2
ε sfs(q). The ratio
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between the two radii is3+3ε+2ε2

1−ε , thereforen is at most
(
2d
)l

= 2ld, wherel =
⌈
log2

3+3ε+2ε2

1−ε

⌉
andd

is the doubling dimension of(X, dX). Thus, for all pointq of L′, the size ofπ−1(q) is at most2ld, which
implies that|L| ≤ 2ld |L′|. �

Note that the algorithm introduced in this section can also be used to generate (uniform) ε-sparse
geodesicε-samples ofX, for any inputε > 0. It suffices indeed to remove the estimation ofsfs from
the algorithm, which is no longer needed, and to consider open geodesic balls of radiusε instead of radius
ε

1+εsfs. The arguments of the proofs of Lemmas 6.1 and 6.2 still hold in this context, andthe technical
details are slightly simpler.

6.3 Computing the homology of Lipschitz domains in the plane

Given a finite samplingL of some Lipschitz planar domainX, a variant of the procedure of Section 6.1
can be used to buildDX(L): grow geodesic balls around the points ofL at same speed, and report the
intersections between the fronts. The homology ofDX(L) gives then the homology ofX, provided thatL
is dense enough, by Theorem 4.3. However, in many practical situations,X is only known through a finite
samplingW , which makes it hard to detect the intersections between more than two fronts.In this type of
discrete setting, it is relevant to replace the construction ofDX(L) by the ones ofCWX,ν(L) or Rα(L), for
some subsetL ⊆ W of landmarks, since these constructions only require to compare geodesicdistances
at the points ofL or W . The Betti numbers ofDX(L) (and hence the one ofX) can then be obtained
as the ranks of the homomorphisms induced at homology level by the inclusionsCWX,ν(L) →֒ CWX,ν′(L) or
Rα(L) →֒ Rα′(L), for well-chosen parametersν, ν ′ or α, α′, thanks to the results of Section 5.

More precisely, if we choose for instance to use witness complexes, then we can select two integer
parametersν ≤ ν ′ and buildCWX,ν(L) andCWX,ν′(L) by means of comparisons between the geodesic distances
from the points ofW to the points ofL. Then, using simplicial homology with coefficients in a field,
which in practice will beZ/2 – omitted in our notations, we have that for allk ∈ N the inclusion map
i : CWX,ν(L) →֒ CWX,ν′(L) induces a homomorphismi∗k : H∆

k (CWX,ν(L)) → H∆
k (CWX,ν′(L)). By applying

the persistence algorithm [40] to the filtrationCWX,ν(L) →֒ CWX,ν′(L), we can compute the rank ofi∗k. Now,
thanks to Theorem 5.12, for any given choice of parametersν ′ > ν ′ > 0, the rank ofi∗k coincides with
thekth Betti number ofX provided thatW,L are dense enough (i.e. thatδ, ε are small enough). Thus, the
homology of the domain can be inferred using witness complexes, under sufficient sampling density.

7 Application to Sensor Networks

We have implemented the algorithms of Section 6 in the context of sensor networks, where the nodes do not
have geographic locations, and where the intrinsic metric is approximated by the shortest path length in the
connectivity graphG = (W,E), which is assumed to comply with thegeodesicunit disk graph model. This
means that each node has a geodesic communication range ofµ, so that two nodesw,w′ ∈W are connected
in the graph iffdX(w,w′) ≤ µ. All edges have a unit weight, and we denote bydG the associated graph
distance – also called hop-count distance. This geodesic unit disk graphmodel is the analog of the standard
Euclidean unit disk graph model in the intrinsic metric.

Lemma 7.1 Assume thatW is a geodesicδ-sample ofX, with δ < µ
2 . Then, for all nodesw,w′ ∈ W , we

have:
dX(w,w′)

µ
≤ dG(w,w′) ≤ dX(w,w′)

µ

(
1 +

4δ

µ
+

µ

dX(w,w′)

)

31



Proof. Letw,w′ ∈W be two nodes of the graph. We first give an upper bound ondG. Consider a shortest
pathζ from w to w′ insideX. We have|ζ| = dX(w,w′). Let 0 = t0 ≤ t1 ≤ · · · ≤ tm−1 ≤ tm = 1
be distributed alongI in such a way thatdX(ζ(ti), ζ(ti+1)) = µ − 2δ for all i = 0, · · · ,m − 2, while

dX(ζ(tm−1), ζ(tm)) ≤ µ − 2δ. Clearly, we havem =
⌈

dX(w,w′)
µ−2δ

⌉
. For all i, let wi be a point ofW

closest toζ(ti) in the intrinsic metric. SinceW is a geodesicδ-sample ofX, we havew0 = ζ(t0) = w,
wm = ζ(tm) = w′, anddX(wi, ζ(ti)) ≤ δ for any otheri. It follows from the triangle inequality that:
dX(wi, wi+1) ≤ dX(wi, ζ(ti)) + dX(ζ(ti), ζ(ti+1)) + dX(ζ(ti+1), wi+1) ≤ µ. Therefore,[wi, wi+1] is an
edge of the communication graphG, and thus toζ corresponds a pathγ in G. Bothζ andγ connectw tow′

and are made ofm pieces stitched together. Hence,dG(w,w′) ≤ m =
⌈

dX(w,w′)
µ−2δ

⌉
, which is bounded from

above by:
⌈

dX(w,w′)

µ

(
1 +

4δ

µ

)⌉
≤ dX(w,w′)

µ

(
1 +

4δ

µ

)
+ 1 =

dX(w,w′)

µ

(
1 +

4δ

µ
+

µ

dX(w,w′)

)
.

Let us now give a lower bound ondG. Let γ be any path fromw to w′ in the communication graphG.
For any consecutive nodeswi, wi+1 along the path, we havedX(wi, wi+1) ≤ µ since[wi, wi+1] is an edge

of G. Therefore, by the triangle inequality,γ must have at least
⌈

dX(w,w′)
µ

⌉
edges. Since this is true for any

pathγ fromw tow′ in G, dG(w,w′) ≥
⌈

dX(w,w′)
µ

⌉
≥ dX(w,w′)

µ . �

Assume now thatL is a ε
1+εsfs-sparse geodesicεsfs-sample11 of X. Suppose thatδ << µ << ε << 1.

Given a witnessw ∈ W , every landmarkp ∈ L that is not its closest landmark satisfies:dX(w, p) =

Ω(ε) >> µ, which implies thatdG(w, p) is an accurate approximation todX(w,p)
µ , by Lemma 7.1. If now

p is the landmark closest tow, then we may as well havedX(w, p) << µ, but in this case we also have
dX(w, p) << dX(w, q) for all q ∈ L \ {p}, which implies thatdG(w, p) < dG(w, q). As a result,dG may
change the order of the distances between the landmarks andw, but interverted distances must have similar
values. In this respect, we can say thatdX is a faithful approximation todX , as it is known that the persistent
homology of the family ofν-witness complexes is stable under such small perturbations [13].

Systolic feature size computation. Given a nodex, we estimate the geodesic distance ofx to its cut-locus,
which by Lemma 5.6 is equal tosfs(x). Wanget al. [38] proposed a distributed algorithm for detecting the
cut-locus, which works as follows: the nodex sends a flood message with initial hop count 1; each node
receiving the message forwards it after incrementing the hop count. Thus, every node learns its minimum
hop count to the nodex. Then, each pair of neighbors check whether their least common ancestor (LCA)
is at hop-count distance at leastd. If so, then they also check whether their two shortest paths to the LCA
contain nodes at leastd away from each other (by looking at thed2 -ring neighborhoods of the nodes of the
paths). Every pair satisfying these conditions is called a cut pair. As proved in [38], every hole of perimeter
greater thand yields a cut pair. Then, every cut node checks its neighbors, and if it has the minimum hop
count, then it reports back tox with the hop count value. Thus,x gets a report from one node on each
connected component of the cut-locus, and learns the systolic feature size as the minimum hop value.

Landmarks selection and witness complex computation. The landmarks selection procedure imple-
ments the incremental algorithm of Section 6.2 in a distributed manner. A node hastwo states,coveredand
uncovered. A covered node lies inside the geodesic ball of some landmark. Initially, all the nodes are un-
covered. They wait for different random periods of time, after which they promote themselves to the status
of landmark. Each new landmark floods the network, computes its systolic feature size, and informs all the

11One may as well assume thatL is anε-sparse geodesicε-sample ofX, in a uniform version of the setting.
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nodes within its geodesic ball to be covered. Thus, every node eventuallybecomes covered or a landmark
itself.

The geodesic witness complex is computed in a similar way as in [23]. The selected landmarks flood
the network, and every node records its minimum hop counts to them. With this information, it determines
which simplices it witnesses. A round of information aggregation collects all thesimplices and constructs
the witness complex in a centralized manner. In a planar setting, where only theBetti numbersβ0 andβ1

are non-zero, we only need to build the 2-skeleton of the witness complex. Therefore, each node may store
only its three nearest landmarks, and it may avoid forwarding messages from other landmarks. This reduces
the message complexity drastically.

As for ν-witness complexes, they are computed with the exact same procedure, except that each node
stores its geodesic distances to itsν + 1 nearest landmarks.

Simulation results and discussion. Figures 4 through 8 present our simulation results. We considern
sensor nodes randomly distributed in a Lipschitz planar domain. Two nodes within unit Euclidean distance
of each other are connected, so that the resulting communication network is aunit disk graph. The average
node degree in this graph is denoted byd. The intrinsic metric is approximated by the graph distance in
the connectivity network, where each edge can be either unweighted (hop-count distance) or weighted by
its Euclidean length (weighted graph distance). Our aim is to evaluate the dependency of the landmarks
selection and homology computation on various parameters. For the homology computation we use the pair
of complexesCWX (L) andCWX,ν(L), whereL is the landmarks set andν is an integer parameter that ranges
typically between2 and11. The inclusionCWX (L) ⊆ CWX,ν(L) holds because we restrict our construction to
the 2-skeleta of the complexes. Figure 4 shows a typical example, withε = 0.5 (a) andε = 0.25 (b). In both
cases, only the genuine 3 holes persist and are therefore identified as non-trivial 1-cycles in the geodesic
Delaunay triangulation.

• Nodes density.We vary the number of nodes from 217 to 355. The average degree remains the
same. The result is shown in Figure 5. Again, the persistent homology between the witness complex
CWX (L) and theν-witness complexCWX,ν(L) gives the homology of the domain. Thus, only the intrinsic
geometry of the domain matters, not the scale of the network, as long as the latterremains dense
enough.

• Landmarks density.Figure 6 shows our results on the same setup as above, withε = 0.85 (a) and
ε = 0.15 (b). In the first case, only two holes are captured, because of the low landmarks density.
In the second case, three non-genuine holes are not destroyed in theν-witness complex, because the
value of the relaxation parameterν is too small given the relatively low nodes density. Increasingν
from 2 to 4 produces the correct answer (c). But settingν to too high a value (ν = 11, ε = 0.25)
destroys some of the genuine holes (d). Throughout our experiments, the algorithm produced correct
results with small values ofν (ν ≤ 4), provided that the nodes and landmarks sets were reasonably
dense. This demonstrates the practicality of our approach, despite the large theoretical bounds stated
in Theorems 4.14 and 4.17.

• Weighted graph distance vs. hop-count distance.Since the hop-count distance is a poor approximation
to the geodesic distance, the range of values ofε that work fine with it is reduced. In Figure 7 for
instance, the scheme works well withε = 0.5, but not withε = 0.25, in contrast with the results of
Figure 4.

• Packing strategy.Figure 8 shows some of our sampling results. It appears that different packing
strategies can produce samples of very different sizes, as predicted by Lemma 6.1. Maximizing the
ratio dX(q,L)

sfs(q) at each iteration seems to be a very effective strategy in practice, but it is also time-
consuming, and it tends to choose landmarks near the boundaries of the domain, which can be a
quality or a defect, depending on the application considered.
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8 Conclusion

We have introduced a new quantity, called the systolic feature size, and showed that it is well-suited for the
sampling and analysis of Lipschitz domains in the plane. In particular, given adomainX and a landmarks
setL that is sufficiently densely sampled fromX, the bound on the density depending on the systolic
feature size ofX, we have proved that the geodesic Delaunay triangulation ofL is homotopy equivalent to
X. The systolic feature size depends essentially on the global topology ofX, and it is rather insensitive
to the local geometry. As a result, it enables to have very sparse sets of landmarks, which makes it a
convenient theoretical tool for geometric data analysis. In this context, wehave devised generic procedures
for estimating the systolic feature size and for generating geodesicεsfs-samples of Lipschitz planar domains.

With more practical applications in mind, we have focused on the geodesic witness complex and its re-
laxed version, proving that these two complexes sandwich the geodesic Delaunay triangulation under some
conditions. As an application, we have shown that it is possible to estimate the homology of a Lipschitz pla-
nar domainX from a finite set of landmarksL without actually buildingDX(L) explicitly, by constructing
CWX (L) andCWX,ν(L) and computing their persistent homology. To give theoretical guarantees tothis ap-
proach, we proved in the conference version of the paper that the persistent homology betweenCWX (L) and
CWX,ν(L) coincides with the homology ofDX(L), yet under some fairly stringent sampling conditions. Our
practical experiments in the context of sensor networks suggest that milder conditions should be sufficient.
Taking a different approach in the present paper, we have uncovered some sufficient conditions that depend
solely on the systolic feature size.

This work can be generalized in several ways. In a near future, we intend to look at possible extensions
for bounded domains in higher-dimensional Euclidean spaces, with applications in robotics and geometric
data analysis. Also, it would be relevant to generate homology bases whose elements isolate the various
holes ofX. There exists some work along this line, but for a slightly different context[27]. Finally, in order
to make the approach fully practical, it would be necessary to devise distributed variants of the procedures
that build the simplicial complexes and compute the persistent homology. Whethersuch variants exist is
still an open question at this time.
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A Appendix – Proof of Proposition 2.2

We use singular homology with real coefficients, so that our homology groups are vector spaces over the
field R – omitted in our notations. Please refer to [31, Chap. 2] for an introduction to homology theory.

Proof of (i). The proof is by induction onk. The casek = 1 is trivially true. Assume now that the
result is true up to somek ≥ 1, and considerk + 1 planar setsX1, · · · , Xk+1 satisfying the hypotheses
of Proposition 2.2 (i). Notice that each path-connected component ofX1 ∩ · · · ∩ Xk+1 is the intersection
of some path-connected componentY of

⋂k
i=1Xi with Z = Xk+1, which by the induction hypothesis are

simply connected. Intuitively, the presence of a hole in the intersectionY ∩Z would automatically imply the
presence of a hole inY or inZ. Thus, the path-connected components ofY ∩Z must be simply connected,
sinceY andZ are.

Formally, sinceY , Z andY ∩ Z are ANR’s, the triad(Y ∪ Z, Y, Z) is excisive and the Mayer-Vietoris
long exact sequence holds:

· · · → H2(Y ∪ Z)
∂2→ H1(Y ∩ Z)

φ→ H1(Y ) ⊕H1(Z) → · · ·
SinceY andZ are simply connected, we haveH1(Y ) = H1(Z) = 0, thereforekerφ = H1(Y ∩ Z). By
exactness,kerφ is also equal toim ∂2, which is trivial since we haveH2(Y ∪Z) = 0, Y andZ being subsets
of R2. As a result, we haveH1(Y ∩Z) = 0. SinceH1(Y ∩Z) is the direct sum of theH1(C), forC ranging
over all the path-connected components ofY ∩Z, we haveH1(C) = 0 for each path-connected component
C of Y ∩ Z. This implies that the fundamental group ofC is trivial: indeed, sinceC is a path-connected
planar set, its fundamental group is either free or uncountable, and therefore it is trivial if and only if its
abelianization (which is preciselyH1(C)) is. As a conclusion,C is simply connected, which proves the
result fork + 1 and thereby concludes the induction.�

To prove (ii), we need an easy intermediate result:

Lemma A.1 If X,Y are path-connected planar sets such thatX ∩ Y 6= ∅, thenX ∪ Y is path-connected.

Proof. Let p ∈ X ∩ Y , and letq be any other point ofX ∪ Y . If q ∈ X, then there exists a path betweenp
andq in X, which is path-connected. Otherwise,q lies inY , and there exists a path betweenp andq in Y ,
which is also path-connected. Therefore, every point ofX ∪ Y is path-connected top in X ∪ Y , which is
therefore path-connected.�

We can now prove (ii):

Proof of (ii). Assume thatX ∩ Y is not empty. Intuitively, the topological type ofX ∪ Y partially
determines the topological type ofX ∩Y , in the sense thatX ∪Y would have a hole if everX ∩Y were not
path-connected, sinceX,Y themselves are path-connected. Formally, sinceX, Y andX ∩ Y are ANR’s,
the triad(X ∪ Y,X, Y ) is excisive and the Mayer-Vietoris long exact sequence holds:

· · · → H1(X ∪ Y )
∂1→ H0(X ∩ Y )

φ→ H0(X) ⊕H0(Y )
ψ→ H0(X ∪ Y )

∂0→ 0.

SinceX ∩ Y 6= ∅, Lemma A.1 tells us thatX ∪ Y is path-connected, thereforedimH0(X ∪ Y ) = 1. This
implies thatdim ker ∂0 = 1, and hence thatrank ψ = dim ker ∂0 = 1, by exactness. By the homomorphism
theorem, we havedim kerψ = dim(H0(X) ⊕ H0(Y )) − rank ψ, which is equal to1 sinceX andY are
path-connected. Hence, by exactness,rank φ = dim kerψ = 1. Moreover, since by assumptionX ∪ Y
is simply connected, we havedimH1(X ∪ Y ) = 0, which implies thatrank ∂1 = 0. By exactness, we
havedim kerφ = rank ∂1 = 0. Hence, by the homomorphism theorem,dimH0(X ∩ Y ) = dim kerφ +
rank φ = 1, which means thatX ∩ Y is path-connected.�
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