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Abstract

It is a well-known fact that, under mild sampling conditions, the restricted Delaunay trian-
gulation provides good topological approximations of 1- and 2-manifolds. We show that this is
not the case for higher-dimensional manifolds, even under stronger sampling conditions. Specifi-
cally, it is not true that, for any compact closed submanifold M of Rn, and any sufficiently dense
uniform sampling L of M , the Delaunay triangulation of L restricted to M is homeomorphic
to M , or even homotopy equivalent to it. Besides, it is not true either that, for any sufficiently
dense set W of witnesses, the witness complex of L relative to W contains or is contained in
the restricted Delaunay triangulation of L.

1 Background and definitions

All manifolds considered in this paper are compact closed submanifolds of Euclidean space Rn.
The reach of a manifold M , or rch(M) for short, is the minimum distance of a point on M to the
medial axis of M . All our manifolds have a positive reach. This is equivalent to saying that they
are C1-continuous, and that their normal vector field satisfies a Lipschitz condition.

Given a (finite or infinite) subset L of a manifold M , and a positive parameter ε, L is an
ε-sample of M if every point of M is at Euclidean distance at most ε to L. In addition, L is
ε-sparse if the pairwise Euclidean distances between the points of L are at least ε. Note that an
ε-sparse sample of a compact set is always finite. Parameter ε is sometimes made adaptative in
the literature [1], its value depending on the distance to the medial axis of the manifold. In this
context, our ε-samples are called uniform ε-samples.

For any finite set of points L ⊂ Rn, D(L) denotes the n-dimensional Delaunay triangulation
of L, and DM (L) its Delaunay triangulation restricted to a given subset M of Rn. By definition,
DM (L) is the nerve of the restriction of the Voronoi diagram of L to X. For any simplex σ of D(L),
V(σ) stands for the face of the Voronoi diagram of L that is dual to σ. The following result comes
from [1, 2]:

Theorem 1.1 If M is a smooth curve in the plane or a smooth surface in 3-space, and if L is a

finite ε-sample of M , with ε < 0.1 rch(M), then DM (L) is homeomorphic to M .

Let L, W be two subsets of Rn, such that L is finite. Given a point w ∈ W and a simplex
σ = [p0, · · · , pk] with vertices in L, w is a witness of σ (or simply w witnesses σ) if p0, · · · , pk

are among the k + 1 nearest neighbors of w in the Euclidean metric, that is: ∀p ∈ {p0, · · · , pk},
∀q ∈ L \ {p0, · · · , pk}, ‖w − p‖ ≤ ‖w − q‖. The witness complex of L relative to W , or CW (L) for
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Figure 1: Left: 2-d version of hypersurface M (bold), defined as the boundary of the Minkowski
sum of hypercube [−∆

2 , ∆
2 ]2 (solid) with the ball of radius ∆

2 centered at the origin (copies of this
ball are dashed). Hypercube [−∆, ∆]2 is marked by dotted lines. Right: M and its medial axis.

short, is the maximum abstract simplicial complex with vertices in L, whose faces are witnessed
by points of W . From now on, W will be referred to as the set of witnesses, and L as the set of
landmarks. As pointed out in [7, 8], when W samples a manifold M , the witness complex CW (L)
can be viewed as a discrete version of the restricted Delaunay triangulation DM (L), and as such it
should be closely related to it. This is true indeed for curves and surfaces, as stated in the following
result of [3, 9]:

Theorem 1.2 There exists a positive constant c such that, if M is a smooth curve in the plane

or a smooth surface in 3-space, and if L is an ε-sample of M , with ε ≤ c rch(M), then CW (L) is

included in DM (L) for any set of witnesses W ⊆ M , and it coincides with DM (L) if W = M .

2 Negative results

In this section, we prove that Theorems 1.1 and 1.2 do not hold as is for higher-dimensional
manifolds. We first show that DM (L) is not always homeomorphic to M , even though L is an Ω(ε)-
sparse O(ε)-sample of M , for arbitrarily small ε (Theorem 2.1). Our proof builds on an example
of [6, §11], which deals with hypersurfaces in R4. The intuitive idea is that, when DM (L) contains
badly-shaped tetrahedra, called slivers, it is possible to make its normals turn by a large angle
(say π

2 ) by perturbing the points of L infinitesimally. It follows that the combinatorial structure
of DM (L) can be modified by small perturbations of M . We then extend our counter-example to
show that DM (L) may even not be homotopy equivalent to M (Theorem 2.2). Finally, we show
that CW (L) may not be included in DM (L), even for arbitrarily dense sets W ⊆ M (Theorem 2.3).
The fact that CW (L) may not contain DM (L) if W ( M has already been proved in [9].

Theorem 2.1 For any positive constant µ < 1
3 , there exist a compact closed hypersurface M in R4

and an Ω(ε)-sparse O(ε)-sample L of M , with ε = µ rch(M), such that DM (L) is not homeomorphic

to M . The constants hidden in the Ω and O notations are absolute and do not depend on µ.
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Figure 2: Left: tetrahedron [u, v, w, p0] and its dual Voronoi edge. Right: after perturbation of M .

Proof. Let ∆ = 2
µ
. In R4, endowed with an orthonormal frame (x, y, z, t), we construct a

hypersurface M of reach ∆
2 = 1

µ
. Consider the Minkowski sum of hypercube [−∆

2 , ∆
2 ]4 with the ball

of radius ∆
2 centered at the origin. The result is a smoothed-out version of hypercube [−∆, ∆]4, as

illustrated in Figure 1 (left). Let M be its boundary. The reach of M is ∆
2 , as shown in Figure 1

(right). Let ε = µ rch(M) = 1, and let δ > 0 be an arbitrarily small parameter. Consider points
u = (1, 0, 0, ∆), v = (1, 1, 0, ∆), w = (0, 1, 0, ∆), and p0 = (0, 0, δ, ∆). Let c0 = (1

2 , 1
2 , δ

2 , ∆). It is
easily seen that c0 is the circumcenter of [u, v, w, p0]. Moreover, all these points belong to M , which
coincides with hyperplane t = ∆ in their vicinity. Let r0 = ‖c0−u‖ = ‖c0−v‖ = ‖c0−w‖ = ‖c0−p0‖.
We generate an ε-sparse 2ε-sample L0 of M by an iterative process, starting with L0 = {u, v, w, p0},
and inserting at each iteration the point of M lying furthest away from the current point set L0,
until the farthest point of M is no farther than 2ε from L0. Since M is compact, the process
terminates, and the outcome is a 2ε-sample of M . Moreover, since u, v, w, p0 lie at least ε away
from one another, and since every point inserted in L0 lies at least 2ε away from L0 at the time
of its insertion, L0 is ε-sparse. Finally, no point of ball B(c0, r0) lies farther from {u, v, w, p0}

than 2r0 = 2
√

1
2 + δ2

4 , which is less that 2ε since δ is arbitrarily small. It follows that the interior

of B(c0, r0) contains no point of L0, which implies that [u, v, w, p0] belongs to DM (L0), its dual
Voronoi edge intersecting M at c0. Observe also that, since u, v, w, p0 belong to hyperplane t = ∆,
the normal of [u, v, w, p0] is aligned with vector (0, 0, 0, 1), as shown in Figure 2 (left).

We now deform M slightly and create a small bump at c0, such that the top of the bump is
moved by δ

2 into the t-dimension, outward the hypercube. This bump changes the local feature
size of M . However, since δ is arbitrarily small, the radius of curvature of the bump can be forced
to be at least ∆

2 , which implies that the reach of M remains equal to ∆
2 = 1

µ
. Furthermore, since

c0 is the center of a Delaunay ball of radius greater than 1, we can assume that δ is small enough
for the points of L0 to remain on M . Let c = (1

2 , 1
2 , δ

2 , ∆ + δ
2) be at the top of the bump. Since

the points of L0 are located in hyperplane t = ∆ in the vicinity of [u, v, w, p0], c is equidistant to
u, v, w, p0, and closer to these points than to any other point of L0. This implies that the open ball
Bc = B(c, ‖c− u‖) contains no point of L0 and has u, v, w, p0 on its bounding sphere. Hence, Bc is
a Delaunay ball circumscribing [u, v, w, p0], and c belongs to the Voronoi edge dual to [u, v, w, p0].
Moreover, since u, v, w and (0, 0, 0, ∆) are cocircular, ∂Bc passes also through (0, 0, 0, ∆).
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We deform M further by creating another small bump, at point (0, 0, 0, ∆) this time, so as to
move this point by δ into the t-dimension, outward the hypercube. Let p = (0, 0, 0, ∆ + δ) be the
top of the bump — see Figure 2 (right). A quick computation shows that ‖c− p‖ = ‖c− u‖, which
implies that p ∈ ∂Bc. Here again, by choosing δ sufficiently small, we can make sure that the radius
of curvature of the bump is at least ∆

2 , which means that the reach of the deformed hypersurface
is still ∆

2 = 1
µ
. We can also make sure that the bump of p is disjoint from the bump of c since

‖c− p‖ > 1√
2
, and that the points of L0 \ {p0} remain1 on M . It follows that Bc is empty of points

of L, where L is defined by L = L0 ∪{p}\{p0}. Since ∂Bc contains u, v, w, p, Bc is a Delaunay ball
circumscribing [u, v, w, p]. Equivalently, c belongs to the Voronoi edge e dual to [u, v, w, p]. Note
also that L is an (ε − δ)-sparse (2ε + δ)-sample of M .

Since [u, v, w, p] is included in hyperplane z = 0, its dual Voronoi edge e is aligned with (0, 0, 1, 0),
as illustrated in Figure 2 (right). This edge is incident to four Voronoi 2-faces, which are dual to the
four facets of [u, v, w, p]. These 2-faces can be seen as extrusions, into the z-dimension (0, 0, 1, 0),
of the edges of the Voronoi diagram of {u, v, w, p} inside hyperplane z = 0. Among these Voronoi
edges, two lie above the plane t = ∆ + δ

2 , and two lie below. As a result, in R4, two Voronoi

2-faces incident to e lie above hyperplane t = ∆ + δ
2 . These two Voronoi 2-faces do not intersect

M , except at c and possibly at the bump of p. Now, the circumradii of the facets of [u, v, w, p] are

at most ‖c − u‖ =
√

1+δ2√
2

< µ rch(M), thus, inside hyperplane z = 0, Amenta and Bern’s normal

lemma [1, Lemma 7] states that the edges of the Voronoi diagram of {u, v, w, p} make angles of at

most arcsin µ
√

3
1−µ

< π
3 with vector (0, 0, 0, 1). As a consequence, any Voronoi 2-face f incident to e

in R4 makes an angle of at most π
3 with the plane passing through c, of directions (0, 0, 1, 0) and

(0, 0, 0, 1) (note that the affine hull aff(f) intersects this plane along the line aff(e)). Since p lies 1√
2

away from this plane and only δ
2 above c, for sufficiently small δ the Voronoi 2-faces incident to e

lying above hyperplane t = ∆+ δ
2 do not intersect the bump of p. As a consequence, they intersect

M only at c, and therefore their dual Delaunay triangles are incident to exactly one tetrahedron
of DM (L), namely [u, v, w, p]. Hence, DM (L) is not a closed hypersurface, and for this reason it
cannot be homeomorphic to M . ¤

Observe that the example given in the proof corresponds to a degenerate case, since the Voronoi
edge e dual to tetrahedron [u, v, w, p] intersects M tangentially at c. This degeneracy can be
removed by inflating the bump of c infinitesimally, so that it intersects e twice and transversally,
but still no other Voronoi edge.

Note also that tetrahedron [u, v, w, p] is a sliver, since vertex p lies close to the affine hull of
[u, v, w]. The original counter-example of [6] was designed to highlight the fact that the normals
of slivers in the restricted Delaunay triangulation may differ significantly from the normals of the
underlying manifold. This is not true for non-sliver simplices, as shown in Lemma 15 of [6]. Thus,
the fact that [u, v, w, p] is a sliver in our counter-example is crucial.

Theorem 2.2 For any positive constant µ < 1
3 , there exist a compact closed hypersurface M in R4

and an Ω(ε)-sparse O(ε)-sample L of M , with ε = µ rch(M), such that DM (L) is not homotopy

equivalent to M . The constants hidden in the Ω and O notations are absolute and do not depend

on µ.

Proof. Let ∆ = 2
µ
, and let δ > 0 be an arbitrarily small parameter. We begin our analysis

with the example built in the proof of Theorem 2.1. We will modify M and L in such a way that

1They lie at least ε away from p0, and hence at least ε − δ away from (0, 0, 0, ∆).
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Figure 3: Top: pentahedron [p, u, v, w, q] and the duals of [p, u, v, w], [p, u, v, q], and [p, v, w, q].
Bottom: the bump of cpuvq and cpvwq (the bump of c has been slightly deflated).

tetrahedron [p, u, v, w] will no longer belong to DM (L) while its four facets will still. This will
prevent DM (L) from being homotopy equivalent to M .

Consider point q = (1+
√

2
2 , 1

2 , δ2, ∆ + δ). The distance of q to hyperplane t = ∆ is δ, which
is arbitrarily small. Hence, as explained in the proof of Theorem 2.1, it is possible to deform M

slightly by creating a small bump of radius of curvature at least ∆
2 at point (1+

√
2

2 , 1
2 , δ2, ∆), so that

M now passes through q while its reach remains ∆
2 = 1

µ
. Moreover, since q lies farther than 1

2 from
{p, u, v, w}, we can assume without loss of generality that its bump does not affect the positions of
p, u, v, w.

The circumcenter of pentahedron [p, u, v, w, q] is c′ = (1
2 , 1

2 , δ2

2 , ∆+ δ
2), and its circumradius r′ is

less than ε = 1 (for sufficiently small δ). It follows that every point of M lying in the ball B(c′, r′)
is at distance O(ε) of {p, u, v, w, q}. In addition, q is farther than ε

2 from {p, u, v, w}. Therefore, if
we modify L by inserting q and deleting all the points that lie in the interior of B(c′, r′), L remains
an Ω(ε)-sparse O(ε)-sample of M . Moreover, [p, u, v, w, q] is now a Delaunay pentahedron, whose
dual Voronoi vertex is c′.

Note that line (c, c′) is the affine hull of the Voronoi edge e dual to [p, u, v, w], and that c′ is an
endpoint of e — see Figure 3 (top). Recall that, among the four 2-faces incident to e, two lie above
hyperplane t = ∆+ δ

2 . Let fpuv and fpvw denote these two 2-faces. They are dual to triangles [p, u, v]
and [p, v, w] respectively, since p lies above hyperplane t = ∆, which contains [u, v, w]. Moreover,
fpuv and fpvw are convex polygons, whose boundaries are two cycles of Voronoi edges that intersect
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each other along e. In the cycle of ∂fpuv, one edge adjacent to e, noted epuvq, is dual to tetrahedron
[p, u, v, q]. Similarly, in the cycle of ∂fpvw, one edge adjacent to e, noted epvwq, is dual to [p, v, w, q].
Note that c′ is an endpoint of both epuvq and epvwq. Moreover, it can be easily checked that the

line aff(epuvq) passes also through point cpuvq =
(

1
2 + δ2(δ2+1)

1+
√

2
, 1

2 ,−1
2 , ∆ + δ

2 + δ(δ2+1)

1+
√

2

)

, while the

line aff(epvwq) passes through cpvwq =
(

1
2 , 1

2 + δ2(δ2 + 1),−1
2 , ∆ + δ

2 + δ(δ2 + 1)
)

. This implies that

epuvq and epvwq make angles of O(δ) with hyperplane t = ∆ + δ
2 . So, we are in a situation where

tetrahedron [p, u, v, w] has a horizontal dual edge, while two of its adjacent tetrahedra, namely
[p, u, v, q] and [p, v, w, q], have almost horizontal dual edges, as illustrated at the top of Figure 3.

Since ‖cpuvq − p‖ = ‖cpuvq − u‖ = ‖cpuvq − v‖ = ‖cpuvq − q‖ < ‖cpuvq − w‖, which is less than
ε = 1 for sufficiently small δ, we can modify2 L such that the ball B(cpuvq, ‖cpuvq − q‖) contains
no point of L in its interior, while L still remains an Ω(ε)-sparse O(ε)-sample of M . Similarly, we
can assume without loss of generality that B(cpvwq, ‖cpvwq − q‖) is a Delaunay ball. It follows that
cpuvq ∈ epuvq and cpvwq ∈ epvwq. Since cpuvq and cpvwq lie O(δ) away from each other, O(δ) above
hyperplane t = ∆, and Ω(ε) away from L, we can deform M by creating a bump passing through
cpuvq and cpvwq, of height O(δ) and radius of curvature at least ∆

2 , while maintaining the points of
L on M — see Figure 3 (bottom). Moreover, since cpuvq and cpvwq also lie Ω(ε) away from c, we
can assume without loss of generality that their bump does not touch the bump of c. It follows that
tetrahedra [p, u, v, w], [p, u, v, q], and [p, v, w, q] belong to DM (L), while M is still tangent at c to
the Voronoi edge e dual to tetrahedron [p, u, v, w]. We call M+ the current version of hypersurface
M , and DM+

(L) the Delaunay triangulation of L restricted to M+.
Our last operation consists in deflating slightly the bump of c, such that M no longer intersects

e, and thus [p, u, v, w] no longer belongs to DM (L), as illustrated at the bottom of Figure 3. Note
however that [p, u, v, q] and [p, v, w, q] (and thus triangles [p, u, v] and [p, v, w]) are still in DM (L),
since the bump of cpuvq and cpvwq is disjoint from the bump of c. Recall also that the Voronoi
2-faces dual to [p, u, w] and [u, v, w] lie below hyperplane t = ∆ + δ

2 , and that they make angles
of at most π

3 with vector (0, 0, 0, 1). Since the deflation of the bump of c is arbitrarily small, the
Voronoi 2-faces dual to [p, u, w] and [u, v, w] still intersect M . As a consequence, the two triangles
remain in DM (L). We call M− the current version of hypersurface M , and DM−

(L) the Delaunay
triangulation of L restricted to M−.

The result of these operations is that, although L is an Ω(ε)-sparse O(ε)-sample of both hyper-
surfaces M+ and M−, whose homotopy types and reaches are the same as the ones of M , DM+

(L)
and DM−

(L) are different. Specifically, tetrahedron [p, u, v, w] is contained in DM+

(L) but not in
DM−

(L), whereas its facets belong to both complexes. It follows that the Euler characteristics of
DM+

(L) and DM−

(L) differ3, which implies that the complexes have different homotopy types.
Therefore, at least one of them is not homotopy equivalent to the 3-sphere M . ¤

Witness complex. It is proved in [9] that the witness complex CW (L) may not contain DM (L)
when the sets W, L are drawn from a smooth surface M such that W ( M . However, we know from
[3] that CW (L) is still included in DM (L) in this case. Below we prove that this latter statement
no longer holds if M is a smooth manifold of dimension 3 or more:

Theorem 2.3 For any positive constants µ, ν < 1
3 , there exist a compact closed hypersurface M

in R4, an Ω(ε)-sparse O(ε)-sample L of M , and a δ-sample W of M , with ε = µ rch(M) and

2For instance, we can simply delete the points of L that lie in the interior of the ball B(cpuvq, ‖cpuvq − q‖).
3Specifically, χ(DM+

(L)) = χ(DM−

(L)) − 1.
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δ = ν rch(M), such that CW (L) is not included in DM (L). The constants hidden in the Ω and O

notations are absolute and do not depend on µ nor ν. Moreover, W can be made indifferently finite

or infinite, and arbitrarily dense.

Proof. Let M−, L, e, and c be defined as in the proof of Theorem 2.2. Recall that tetrahedron
[p, u, v, w] does not belong to DM−

(L), whereas its facets do. We assume without loss of generality
that c is not an endpoint of the Voronoi edge e, which means that the bounding sphere of the De-
launay ball B(c, ‖c−p‖) contains no point of L other than p, u, v, w. This condition can be ensured
by an infinitesimal perturbation of the points of L \ {p, u, v, w}. Let dc = minp′∈L\{p,u,v,w} ‖c− p′‖.
This quantity is greater than ‖c − p‖ since B(c, ‖c − p‖) contains no point of L \ {p, u, v, w}.

Consider any (finite or infinite) set of witnesses W ⊆ M− such that, for each facet σ of [p, u, v, w],
W contains at least one point of M− ∩ V(σ) (every such point witnesses σ and its subsimplices).
Assume further that W contains the top point of the bump of c (call this point c′′). In the last
stage of the perturbation of M described in the proof of Theorem 2.2, we slightly deflated the
bump of c, such that c′′ lies strictly below c. Note that p is the vertex of [p, u, v, w] lying furthest
away from c′′. Since the deflation is arbitrarily small, we can assume without loss of generality that
‖c− c′′‖ < 1

2(dc −‖c− p‖). This implies that the ball B(c′′, ‖c′′ − p‖) ⊆ B(c, ‖c− p‖+ 2‖c− c′′‖) is
included in the interior of B(c, dc). As a result, B(c′′, ‖c′′− p‖) contains no point of L \ {p, u, v, w}.
Since p, u, v, w belong to B(c′′, ‖c′′ − p‖), tetrahedron [p, u, v, w] is witnessed by c′′. And since the
facets of [p, u, v, w] and their subsimplices are witnessed by points of W , [p, u, v, w] belongs to the
witness complex CW (L). However, we saw in the proof of Theorem 2.2 that [p, u, v, w] does not
belong to DM−

(L). ¤

3 Conclusion

We have proved that the structural properties of the restricted Delaunay triangualtion and witness
complex on 1- and 2-manifolds do not hold on higher-dimensional manifolds. This implies in
particular that the Delaunay-based approach to meshing and reconstruction is unlikely to work as
is in higher dimensions. One possible way of getting rid of pathological cases is to use the sliver
exudation technique of [5], which assigns weights to the vertices of the triangulation in order to
remove slivers from the vicinity of the restrited Delaunay triangulation. This strategy has been
successfully applied in [4, 6].
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