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Abstract

In this paper, we propose a novel pooling approach for shape classifica-
tion and recognition using the bag-of-words pipeline, based on topological
persistence, a recent tool from Topological Data Analysis. Our technique
extends the standard max-pooling, which summarizes the distribution of
a visual feature with a single number, thereby losing any notion of spa-
tiality. Instead, we propose to use topological persistence, and the derived
persistence diagrams, to provide significantly more informative and spa-
tially sensitive characterizations of the feature functions, which can lead
to better recognition performance. Unfortunately, despite their concep-
tual appeal, persistence diagrams are difficult to handle, since they are not
naturally represented as vectors in Euclidean space and even the standard
metric, the bottleneck distance is not easy to compute. Furthermore, clas-
sical distances between diagrams, such as the bottleneck and Wasserstein
distances, do not allow to build positive definite kernels that can be used
for learning. To handle this issue, we provide a novel way to transform per-
sistence diagrams into vectors, in which comparisons are trivial. Finally,
we demonstrate the performance of our construction on the Non-Rigid
3D Human Models SHREC 2014 dataset, where we show that topological
pooling can provide significant improvements over the standard pooling
methods for the shape pose recognition within the bag-of-words pipeline.

1 Introduction

In the recent years, databases of 3-dimensional objects have been getting larger
and larger. In order to automatically process these databases, many algorithms
relying on retrieval have been proposed. However, for certain tasks, classification
techniques can be more efficient. Efficient classification pipelines have been
proposed for images and some elements of these techniques such as the bag-
of-words methods [1] or feature learning using deep network architectures [2]
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have been used to perform retrieval and shape comparison. Traditionally, the
bag-of-words method relies on extracting an unordered collection of descriptors
from the shapes we consider, which are then quantized into a set of vectors
called “words”. The information given by this quantization process is then
summarized using a pooling scheme, which produces a vector usable by standard
learning algorithms. Ideally, all the steps of this framework should be robust
to transformations of the shape: translations, rotations, changes of scale, etc.
Modern bag-of-words approaches for 3D-shapes usually rely on a pooling method
called sum-pooling [1] which consists in taking the average of the value of each
words across the shape.

Since its introduction for image processing in [3], the bag-of-words pipeline,
which we present in Section 2, has been improved in various ways. Here, we
focus on the pooling part of the framework. Apart from the traditional sum-
pooling approach, a popular pooling method, called max-pooling introduced in
[4], consists in taking the maximum of the value for each visual word. Several
works have highlighted the improvement in accuracy obtained using this pooling
scheme as well as its compatibility with the linear kernel for learning purposes,
[4, 5]. The strength of max pooling is due in part to its remarkable robustness
properties. One of the main assumptions made in the bag-of-words approach
is that the “word” values that compose the output of the encoding step, are,
for a given class and a given word, i.i.d random variables. Refinements of the
max-pooling scheme have been proposed under this assumption: for instance
[6] proposed to consider the k highest values for each words to estimate the
probability of at least k features being present in the object. However, the
independence assumption of the word functions is unrealistic; for 3D shapes close
vertices tend to have similar word functions, as illustrated in Figure 1. Thus,
in this example, the generalization proposed by [6] ends up capturing the same
feature multiple times and providing multiple redundant values. On the other
hand, pooling on different parts of an image [7] and 3D shape [8, 9] has been
proposed to take advantage of spatial information, an approach known as Spatial
Pyramid Matching. This approach has drastically improved the performance of
the bag-of-words procedures on multiple datasets, although it contradicts the
identically distributed assumption, and lacks proper robustness guarantees.

In this work, we propose to see the word functions not as a unordered col-
lection of random values but as a random function defined on the vertices of a
graph (in our case, the mesh of the shape). Following this approach, we propose
to use persistent homology to capture information regarding the global struc-
ture of the word functions which is not available for the traditional max-pooling
approach.

Persistent homology was first introduced in the context of Topological Data
Analysis under the name size theory [10]. It was later generalized to higher
dimensions as persistent homology theory [11, 12]. The 0-dimensional persistent
homology of the superlevel-sets of a function encodes the prominence of the
peaks of the function into a collection of points in the plane, called a persistence
diagram. These diagrams enjoy strong robustness properties [13, 14, 15]. One
option to compare persistence diagrams is to use a distance between diagrams
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Figure 1: Example of a word function obtained on two different shapes in the
same pose and for the two different poses.

such as the bottleneck distance and to use nearest-neighbor algorithms as it
was done by [16]. However, in this work, we aim at being able to use classi-
fication algorithms such as SVM or logistic regression that requires a Hilbert
space structure, which is not the case of the space of persistence diagrams. One
approach to tackle this issue is to make use of the “kernel trick” by using a
positive-definite kernel in order to map the persistence diagrams into a Hilbert
space. As recently shown by Reininghaus et al. [17], one cannot rely on natural
distances such as the Wasserstein distance to build traditional distance-based
kernels such as the Gaussian kernel. This led the authors to propose another
kind of kernel. A major limitation of their approach, however, is that these
types of kernel are non-linear and the complexity of the classification becomes
linear with the size of the training set which causes scalability issues. Another
approach to directly embed persistence diagrams into a Hilbert Space was pro-
posed in [18]. However this embedding is highly memory-consuming as it maps
a single diagram into a set of functions and is not appropriate for dealing with
large datasets.

In this work, we propose to perform pooling by computing the persistence
diagrams of each word function. We then map these persistence diagrams into
Rd for some reasonable value of d -< 20- by considering the peaks with highest
prominence. Since we provide a direct mapping of persistence diagrams into Rd,
we can use it for the pooling stage for the bag-of-words procedure and achieve
good performance with respect to the classification phase. We call this pool-
ing approach Topological Pooling. Since it relies on persistence diagrams, this
method is stable with respect to most transformations the shape can undergo:
translations, rotations, etc., as long as the descriptors used in input are also
invariant to these transformations. Moreover, we show that this pooling ap-
proach is robust to perturbations of the descriptors. Finally we demonstrate
the validity of our approach compared to both sum-pooling and max-pooling
by performing pose recognition on the SHREC 2014 dataset.
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2 The bag of words pipeline

The bag-of-words pipeline consists of three main steps: feature extraction, cod-
ing and pooling. Here we describe each step briefly taking a functional point of
view, and we also introduce the notations we will need to define our new pooling
method. We will assume that the input to the pipeline is a set of M 3D-shapes
Gi represented as triangle meshes with vertices Vi.

Feature extraction aims at deriving a meaningful representation of the shape:
the feature function denoted as Fi : Vi → RN . It is usually done by computing
local descriptors (such as HKS [19], SIHKS [20], WKS [21], Shape-net features
[2], etc.) on each vertex of the mesh.

The purpose of coding is to decompose the values of the Fi by projecting
them on a set of points W = (wk)k∈[|1,K|] ∈ RN called a codebook. This allows
to replace each feature function by a family of functions (Ci : Vi → RK)i∈[1,M ],
called the word functions. In other words, for a coding procedure Coding and
codebook W , the Ci are defined through

Ci(Vi) = Coding(Fi(V ),W ).

There exist various coding methods, such as Vector Quantization [22], Sparse
Coding [4], Locally Constrained Linear Coding [23], Fisher Kernel [24] or Super-
vector [25]. The codebook is usually computed using K-means but supervised
codebook learning methods [23], [5] generally achieve better accuracy. In the
Sparse Coding approach, the one we use in this paper, W and C are computed
on the training set following

min
(Ci)i∈[1,M],W

M∑
i=1

∑
x∈Vi

(
‖(Fi(x))−WCi((Fi(x)))‖22 + λ‖Ci(Fi(x))‖1

)
,

with constraint ‖wi‖ ≤ 1 and regularization parameter λ. During the testing
phase, the optimization is only performed on C with the codebook already
computed.

The pooling step aims at summarizing properties of the family (Ci)i∈[1,M ]

and representing them through a compact vector (Pi)i∈[1,M ] which can then be
used in standard learning algorithms such as the SVM (Support Vector Ma-
chine). Usually, the pooling method depends on the coding scheme. For Vector
Quantization, one traditionally uses sum-pooling:

Pi = (SumPool(Ci,1), ..., SumPool(Ci,K))

= (
∑
x∈Vi

(Ci(Fi(x)))1, ...,
∑
x∈Vi

(Ci(Fi(x)))k).

Max-pooling was introduced along the Sparse Coding scheme by Yang et al. in
[4]. With this pooling technique, we summarize a function by its maximum:

Pi = (MaxPool(Ci,1), ...,MaxPool(Ci,K))

= (max
x∈V

(Ci(Fi(x)))1, ...,max
x∈V

(Ci(Fi(x)))K).
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Figure 2: A function f (red), a noisy approximation f̃ of f (blue) and their
respective local maxima. Despite having a lot of local maxima, f̃ only has two
“prominent peaks” (green and yellow).

It is interesting to note that the max-pooling approach is more robust than
the sum-pooling. Indeed, it is robust to usual transformations the shape can
undergo: translations, rotations, changes of scales, etc. However, it is still quite
limited as it summarizes a whole function by a single value. A natural idea is to
not limit ourselves to the global maximum of the function but rather to capture
all local maxima. On the other hand, in this naive form, the method results in
a very unstable pooling vector since arbitrarily small perturbations of the word
functions can create many local maxima, as shown in Figure 2. Thus, a pooling
approach consisting of taking the highest k local maxima is not stable. On the
other hand, in the example shown in Figure 2, we can see that, while there
are a lot of local maxima for the noisy function, both functions show only two
“prominent peaks”. These notions of “peak” and “prominence” are properly
defined in the 0-dimensional persistent homology framework which provides us
with tools to derive a robust pooling method.

3 Introducing 0-dimensional persistent homol-
ogy

0-persistent homology provides a formal definition of prominence and mea-
sures the prominence of each peak of a function f , with the promise that the
most prominent ones are stable under small perturbations of f . We provide a
brief overview of the computation of 0-dimensional persistent homology for the
superlevel-sets of a function defined on a graph, and invite the reader to consult
[11] for a more general introduction.

Let f be a function defined on the vertices of a finite graph G = (V,E). In
0-dimensional persistent homology, one focuses on the evolution of the connec-
tivity of the subgraphs Fα of G induced by the superlevel-sets of f : Fα = ({v ∈
V | f(v) ≥ α}, {(u, v) ∈ E | min(f(u), f(v)) ≥ α}), as α decreases from +∞
to −∞, as shown in figure 3. A vertex v is a local maximum if, for any edge
(v, u) in E, we have f(u) ≤ f(v). A peak p corresponds to a local maximum
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y = x

(a) (b) (c) (d) (e) (f) (g)

Figure 3: Evolution of the connectedness of the superlevel-sets Fα of a function
f in blue (a) as α (green) decreases from +∞ to −∞ (b-f). This evolution is
then encoded in a persistence diagram (g).

bp = f(vp) of f . We say that p is born at bp, see figure 3.(b). For a local
maximum vp, let C(vp, α) be the connected component of vp in Fα and let dp
be the largest value of α such that the maximum of f over C(vp, α) is larger
than bp, we say that p dies at dp. Intuitively, a peak dies when its connected
component gets merged with the one of another peak that has a higher maxi-
mum. Thus, there exists a vertex up which connects the two components such
that f(up) = dp. up is called a saddle, see figure 3.(c). The “prominence” of p
is then the difference bp − dp. The peak corresponding to the global maximum
of f dies when α reaches the minimum value of f on G1. Thus, a peak of f can
be described by the couple (bp, dp). The set of such points (with multiplicity)
in the plane is called a persistence diagram, denoted ∆f , see figure 3.(g).

Persistence diagrams are endowed with a natural metric called the bottleneck
distance. The definition of this metric involves the notion of partial matching.
A partial matching M between two diagrams ∆1 and ∆2 is a subset of ∆1×∆2

such that each point of ∆1 and ∆2 appears at most once in M . The bottleneck
cost C(M) of a partial matching M between two diagrams ∆1 and ∆2 is the
infimum of δ ≥ 0 that satisfy the following conditions:

• For any (p1, p2) ∈M , ||p1 − p2||∞ ≤ δ, and

• For any other point (b, d) of ∆1 or ∆2, b− d ≤ 2δ.

The bottleneck distance between two diagrams D1 and D2, is then defined as:

dB(∆1,∆2) = inf
δ
{δ | ∃M,C(M) ≤ δ}

Intuitively, the bottleneck distance can be seen as the cost of a minimum perfect
matching between persistence diagrams (with possibility to match points to the
diagonal y = x), where the cost is the length of the longest line, see figure 4.
A remarkable property of persistence diagrams, proven by [13] and [15], is their
robustness with respect to perturbations of f . Given two functions f and g
defined on some graph G, we have:

dB(∆f ,∆g) ≤ ||f − g||∞ = sup
v∈V
|f(v)− g(v)| (1)

1This point is slightly different from the traditional persistent homology framework. Usu-
ally, the death value of the peak corresponding to the global maximum is set to −∞.
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y = x

(a) (b)

Figure 4: (a): A real-valued function f (red) and a noisy approximation f̃ of f
(blue).(b): Their respective persistence diagrams have close bottleneck distance.

In other words, if we compare the diagrams of a function f and of a noisy version
of a function f̃ then each point p ∈ Df̃ can either be matched to a point of Df

or it has a low prominence, see figure 4.

Computation As 0-dimensional persistence encodes the evolution of the con-
nectivity of the superlevel-sets of a function, computing it can be done using
a simple variant of a Union-find algorithm; in practice we use Algorithm 1 de-
scribed by Chazal et al. [26], with parameter τ set to infinity. This algorithm
has close to linear complexity in the number of vertices of the meshes; more
precisely it has complexity O(|V | log(|V |) + |V |α(|V |)) where α is the inverse of
the Ackermann function.

4 Using persistence diagrams for pooling.

As we previously mentioned at the end of Section 2, a simple idea to enhance
the max-pooling approach is to consider the values of multiple local maxima.
However, this can be highly unstable under small perturbations of the word
functions. As we saw in Section 3, we can use persistence diagrams to deal
with this issue. Given a persistence diagram ∆, we define the prominence p of a
point (b, d) ∈ ∆ by p = b−d; in other words, the prominence corresponds to the
lifespan of a peak during the computation of the persistence diagram. Given a
function f on a graph G, we define the infinite-dimensional Topological Pooling
vector of f with i− th coordinate given by

TopoPool(f)i = pi(∆f ),

where pi(∆f ) is the i-th highest prominence of the points of ∆f if there is at
least i points in ∆f and 0 otherwise. Since the stability of persistence diagrams
given in Equation 1 implies the stability of the prominence of the points of ∆f ,
such a construction yields some stability for our pooling scheme.
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Figure 5: The real SHREC 2014 dataset

Proposition 1 Let G be a graph and f and g two functions on a graph G with
vertices V . Then, for any integer n, and any 0 < k < n,

|TopoPool(f)k − TopoPool(g)k| ≤ 2 sup
x∈V
|f(x)− g(x)|

Of course, in practice we cannot use an infinite-dimensional vector and we simply
consider a truncation of this vector keeping n first coordinates, we denote such a
truncated pooling vector “TopoPool-n”. Using the notations of Section 2, given
some n > 0, the pooling vectors (Pi)1≤i≤M we consider are

Pi = (TopoPool − n((Ci(Fi(x)))1), ..., T opoPool − n((Ci(Fi(x))))K).

5 Experiments

In this section we evaluate the sum-pooling, the max-pooling and our topological
pooling approaches on the SHREC 2014 dataset “Shape Retrieval of Non-Rigid
3D Human Models” [27], which we modify by applying a random rotation to
each 3D shape. The dataset is composed of 400 meshes of 40 subjects taking 10
different poses and we wish to classify each of these meshes with respect to the
pose taken by the subject. We consider both SIHKS features [20] and curvature-
based features corresponding to the unary features from [28] and composed of
64 values corresponding to the curvatures, the Gaussian curvature, the mean
curvature . . . The coding step is performed using Sparse Coding [4] and the
computation are performed performed using the SPAMS toolbox [29]. The
learning part is done using a Support Vector Machine. We use 3 shapes per
class for the training set, 2 for the validation set and 5 for the testing set. We
compare the traditional sum-pooling with our TopoPool-n with different values
for n -remark that n = 1 is equivalent to max-pooling- and under different
codebook sizes. As a baseline, we also display the results obtained using a rigid
Iterated Closest Point (ICP) [30] and a 1-nearest neighbour classification, which
aims at iteratively minimizing the distance between two point clouds through
rigid deformations. In our case it corresponds to finding the correct rotation to
align the shapes as two shapes in a similar pose are close, however the approach
can fail if it gets stuck in a local minimum and is not able to recover the correct
rotation. We run the experiment a hundred times, selecting the training and
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Pooling / Codebook size 40 60 80 100 120 140 160 180 200
SIHKS features
Sum-Pooling 0.53 0.56 0.60 0.60 0.58 0.62 0.61 0.60 0.60
TopoPool-1 0.46 0.55 0.53 0.54 0.58 0.59 0.63 0.64 0.64
TopoPool-5 0.69 0.71 0.69 0.70 0.73 0.70 0.74 0.73 0.72
TopoPool-10 0.70 0.71 0.71 0.69 0.72 0.71 0.73 0.74 0.72
TopoPool-15 0.72 0.73 0.71 0.70 0.74 0.71 0.74 0.75 0.71
TopoPool-20 0.72 0.73 0.70 0.72 0.73 0.72 0.73 0.75 0.73
Curvature features
Sum-Pooling 0.80 0.80 0.84 0.85 0.88 0.88 0.87 0.88 0.89
TopoPool-1 0.39 0.56 0.56 0.57 0.64 0.69 0.69 0.73 0.76
TopoPool-5 0.63 0.79 0.80 0.80 0.82 0.85 0.86 0.87 0.86
TopoPool-10 0.74 0.85 0.85 0.86 0.86 0.87 0.89 0.89 0.88
TopoPool-15 0.78 0.85 0.87 0.87 0.88 0.89 0.89 0.90 0.90
TopoPool-20 0.79 0.88 0.88 0.88 0.88 0.89 0.90 0.90 0.89
ICP 0.55

Table 1: Mean accuracy obtained on the SHREC 2014 dataset.

testing sets at random. We display the mean accuracy over the multiple runs
in Table 5.

The first noticeable fact about our experiments being the overall better re-
sults obtained by our Topological Pooling scheme compared to the max-pooling
and to the sum-pooling for the SIHKS features. In the case of curvature fea-
tures, Topological Pooling and sum-pooling gives similar accuracy results for
large codebooks but in the case of smaller codebooks, Topological pooling gives
much better results. It is interesting to notice that the gap between the differ-
ent pooling scheme decreases as the size of the codebook increases. Indeed, the
smaller the codebook, the richer each word function in terms of topology -and
thus the richer each persistence diagrams will be-.

Regarding the running time of our experiment in the case of SIHKS features,
online testing using the bag-of-words procedure with the largest codebook to
a given shape takes around 40 seconds, where most of the time is devoted to
computing the SIHKS. On the other hand, performing ICP between two shapes
takes 6 seconds, thus the online testing time for a single shape with ICP is 6
times the cardinality of our training set seconds; in our case 5 minutes. On the
other hand, with the ICP approach requires no offline training while the bag
of words requires to compute the codebook, perform the whole bag-of-words
pipeline on each training shape and compute the SVM which takes roughly 45
minutes. Overall we have to classify 350 shapes, the bag-of-words approach
requires 4 hour and a half while the ICP approach requires more than a day.
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6 Conclusion

In this paper, we proposed to use the canonical graph structure on shapes to
capture neighborhood information between the different feature vectors. We
then built discrete “word functions” on this graph instead of following the tra-
ditional approach of considering a collection of independent “word” vectors. We
then proposed to consider new pooling features making use of this new informa-
tion and generalizing the classical max-pooling approach by using the critical
points of the “word functions”. We proposed to use 0-dimensional persistent
homology to ensure stability of a pooling output relying on these features. Fi-
nally, we designed a new pooling method relying on these new features and we
experimentally showed that these features are efficient in a pooling context.
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