July 9, 2009 TGDA Workshop

Persistence based Clustering

Primoz Skraba

joint work with Frédéric Chazal, Steve Y. Oudot, Leonidas J. Guibas

• Input samples

- Input samples
- "Important" segments/clusters

- Input samples
- "Important" segments/clusters ill-posed problem

- Input samples
- "Important" segments/clusters ill-posed problem
- Extensive previous work
 - *k*-means
 - spectral clustering
 - mode-seeking (mean-shift)

- Input samples
- "Important" segments/clusters ill-posed problem
- Extensive previous work
 - *k*-means
 - spectral clustering
 - mode-seeking (mean-shift)

• Our viewpoint:

data points drawn at random from some unknown density distribution \boldsymbol{f}

Definition of a Cluster

 \bullet Basins of attraction of "significant" peaks of f

Definition of a Cluster

 \bullet Basins of attraction of "significant" peaks of f

Definition of a Cluster

 \bullet Basins of attraction of "significant" peaks of f

Outline

- Background: scalar field analysis
- Algorithm
- Number of clusters
- Results (Interpretation of persistence diagrams)
- Spatial stability
- Conclusions

Scalar Field Analysis*

Setting: \mathbb{X} topological space, $f : \mathbb{X} \to \mathbb{R}$

Input: A finite sampling L of X, the values of f at the sample points

*[Chazal, Guibas, Oudot, Skraba '09]

Scalar Field Analysis*

Setting: \mathbb{X} topological space, $f : \mathbb{X} \to \mathbb{R}$

Input: A finite sampling L of X, the values of f at the sample points

*[Chazal, Guibas, Oudot, Skraba '09]

Scalar Field Analysis*

Setting: \mathbb{X} topological space, $f : \mathbb{X} \to \mathbb{R}$

Input: A finite sampling L of X, the values of f at the sample points

Goal: Analyze landscape of graph(f):

- *prominent* peaks/valleys
- basins of attraction

*[Chazal, Guibas, Oudot, Skraba '09]

Persistence-Based Approach in a nutshell...

- evolution of topology of super-level sets $\widehat{f}^{-1}([\alpha,\infty))$ as α spans $\mathbb R$.

Persistence-Based Approach in a nutshell...

- evolution of topology of super-level sets $\widehat{f}^{-1}([\alpha,\infty))$ as α spans $\mathbb R$.

Persistence-Based Approach in a nutshell...

- evolution of topology of super-level sets $\widehat{f}^{-1}([\alpha,\infty))$ as α spans $\mathbb R$.

Persistence-Based Approach in a nutshell...

- evolution of topology of super-level sets $\hat{f}^{-1}([\alpha,\infty))$ as α spans \mathbb{R} .
- finite set of intervals (barcode) encode birth/death of homological features.

Persistence-Based Approach in a nutshell...

- evolution of topology of super-level sets $\hat{f}^{-1}([\alpha,\infty))$ as α spans $\mathbb R$.
- finite set of intervals (barcode) encode birth/death of homological features.
- barcode of \hat{f} is close to barcode of f provided that $\|\hat{f} f\|_{\infty}$ is small. ${\mathbb R}$ [Cohen-Steiner, Edelsbrunner, Harer '05]

X

Persistence-Based Approach

Assumptions: X triangulated space, $f : X \to \mathbb{R}$ Lipschitz continuous

- \rightarrow build PL approximation \hat{f} of f
- ightarrow apply persistence algo. to $\pm \hat{f}$ [Edelsbrunner, Letscher, Zomorodian '00]

Persistence-Based Approach

Assumptions: X triangulated space, $f : X \to \mathbb{R}$ Lipschitz continuous

- \rightarrow build PL approximation \hat{f} of f
- ightarrow apply persistence algo. to $\pm \hat{f}$ [Edelsbrunner, Letscher, Zomorodian '00]

Assumptions: X Riemannian manifold, $f : X \to \mathbb{R}$ *c*-Lipschitz, *L* geodesic ε -cover of X, for some unknown $\varepsilon > 0$.

• Access to L **not** \mathbb{X}

Assumptions: X Riemannian manifold, $f : X \to \mathbb{R}$ *c*-Lipschitz, *L* geodesic ε -cover of X, for some unknown $\varepsilon > 0$.

• Access to L **not** \mathbb{X}

$$F^{\alpha} := f^{-1}([\alpha, \infty))$$
$$L_{\alpha} := L \cap F^{\alpha}$$
$$L_{\alpha}^{\varepsilon} := \bigcup_{p \in L_{\alpha}} B_{\mathbb{X}}(p, \varepsilon)$$

 $\forall \alpha \in \mathbb{R}, \ L^{\varepsilon}_{\alpha+c\varepsilon} \subseteq F^{\alpha} \subseteq L^{\varepsilon}_{\alpha-c\varepsilon}$

Assumptions: X Riemannian manifold, $f : X \to \mathbb{R}$ *c*-Lipschitz, *L* geodesic ε -cover of X, for some unknown $\varepsilon > 0$.

• Access to L **not** \mathbb{X}

$$F^{\alpha} := f^{-1}([\alpha, \infty))$$
$$L_{\alpha} := L \cap F^{\alpha}$$
$$L_{\alpha}^{\varepsilon} := \bigcup_{p \in L_{\alpha}} B_{\mathbb{X}}(p, \varepsilon)$$

 $\forall \alpha \in \mathbb{R}, \ L^{\varepsilon}_{\alpha+c\varepsilon} \subseteq F^{\alpha} \subseteq L^{\varepsilon}_{\alpha-c\varepsilon}$

Assumptions: X Riemannian manifold, $f : X \to \mathbb{R}$ *c*-Lipschitz, *L* geodesic ε -cover of X, for some unknown $\varepsilon > 0$.

• Access to L not \mathbb{X}

$$F^{\alpha} := f^{-1}([\alpha, \infty))$$
$$L_{\alpha} := L \cap F^{\alpha}$$
$$L_{\alpha}^{\varepsilon} := \bigcup_{p \in L_{\alpha}} B_{\mathbb{X}}(p, \varepsilon)$$

 $\forall \alpha \in \mathbb{R}, \ L^{\varepsilon}_{\alpha+c\varepsilon} \subseteq F^{\alpha} \subseteq L^{\varepsilon}_{\alpha-c\varepsilon}$

Assumptions: X Riemannian manifold, $f : X \to \mathbb{R}$ *c*-Lipschitz, *L* geodesic ε -cover of X, for some unknown $\varepsilon > 0$.

• Access to L not $\ \mathbb{X}$

$$F^{\alpha} := f^{-1}([\alpha, \infty))$$
$$L_{\alpha} := L \cap F^{\alpha}$$
$$L_{\alpha}^{\varepsilon} := \bigcup_{p \in L_{\alpha}} B_{\mathbb{X}}(p, \varepsilon)$$

 $\forall \alpha \in \mathbb{R}, \ L^{\varepsilon}_{\alpha+c\varepsilon} \subseteq F^{\alpha} \subseteq L^{\varepsilon}_{\alpha-c\varepsilon}$

the filtrations $\{F^{\alpha}\}_{\alpha \in \mathbb{R}}$ and $\{L^{\varepsilon}_{\alpha}\}_{\alpha \in \mathbb{R}}$ are $c\varepsilon$ -interleaved \downarrow

their barcodes are $c\varepsilon$ -close.

7-6

[Chazal, Cohen-Steiner, Glisse, Guibas, Oudot '09]

Assumptions: X Riemannian manifold, $f : X \to \mathbb{R}$ *c*-Lipschitz, *L* geodesic ε -cover of X, for some unknown $\varepsilon > 0$.

Guarantee:

 $\forall \delta \geq \varepsilon, \{F_{\alpha}\}_{\alpha \in \mathbb{R}} \text{ and } \{\mathcal{R}^{\delta}(L_{\alpha}) \hookrightarrow \mathcal{R}^{2\delta}(L_{\alpha})\}_{\alpha \in \mathbb{R}} \text{ are } 2c\delta \text{-interleaved}$

[] [Chazal, Cohen-Steiner, Glisse, Guibas, Oudot '09]

their barcodes are $2c\delta$ -close.

Homological Features and Clusters

- $\bullet\,$ Samples drawn from f
- Estimate \hat{f} from samples

Homological Features and Clusters

- Samples drawn from f
- Estimate \hat{f} from samples

Clusters: Prominent peaks correspond to persistent connected components of the super-level set filtration of f

How do we compute clusters from a barcode?

How do we compute clusters from a barcode? Input: Samples with estimated density \hat{f}

How do we compute clusters from a barcode?

Input: Samples with estimated density \hat{f}

Two steps:

1. Mode-seeking step [Koontz et. al. '76]

How do we compute clusters from a barcode?

Input: Samples with estimated density \hat{f}

Two steps:

1. Mode-seeking step [Koontz et. al. '76]

Computing Clusters

How do we compute clusters from a barcode? **Input:** Samples with estimated density \hat{f} Two steps:

- 1. Mode-seeking step [Koontz et. al. '76]
- 2. Merge clusters according to persistence

Algorithm

• Input: $f(x), \mathcal{R}_{\delta}, \alpha$

Algorithm

- Input: $f(x), \mathcal{R}_{\delta}, \alpha$
- 1. Sort \boldsymbol{x} according to \boldsymbol{f}
- 2. For $x \in L$
 - 2a. For neighbors of x in \mathcal{R}_{δ} If no higher neighbors \Rightarrow new cluster else assign x to ∇f
 - 2b. For adjacent clusters y to xif $|f(y) - f(x)| \le \alpha$ merge into oldest adjacent cluster

Putting it together

- Estimate density
- Run algorithm with $\alpha=\infty$
 - Standard persistence algorithm
- Use persistence diagram to choose threshold
- Re-run algorithm

Putting it together

- Estimate density
- Run algorithm with $\alpha=\infty$
 - Standard persistence algorithm
- Use persistence diagram to choose threshold
- Re-run algorithm

• Applying the result from scalar field work

• Applying the result from scalar field work

Approximation depends on $c\delta$

• Applying the result from scalar field work

Approximation depends on $c\delta$

Whole space is **not** uniformly sampled

• Applying the result from scalar field work

Approximation depends on $c\delta$

Whole space is **not** uniformly sampled

• Approximation result holds in well-sampled regions w.h.p.

• Applying the result from scalar field work

Approximation depends on $c\delta$

Whole space is **not** uniformly sampled

- Approximation result holds in well-sampled regions w.h.p.
- More points \Rightarrow more of the space

Number of Clusters

• Define a *signal-to-noise* ratio

Definition: Given two values $d_2 > d_1 \ge 0$, the persistence diagram $D_0 f$ is called (d_1, d_2) -separated if every point of $D_0 f$ lies either in the region D_1 above the diagonal line $y = x - d_1$ or in the region D_2 below the diagonal $y = x - d_2$ and to the right of the vertical line $x = d_2$.

Approximation

• Assume enough points that up to $c\delta$ is well-sampled w.h.p.

Approximation

• Assume enough points that up to $c\delta$ is well-sampled w.h.p.

Approximation

• Assume enough points that up to $c\delta$ is well-sampled w.h.p.

Feedback and Interpreting Diagrams

- If peaks are prominent enough, we will get the "right" number of clusters
- Practically,
 - Gives a sense of stability of the number of clusters
 - Choice of threshold transparent w.r.t. number of clusters

- Rips parameter $\delta = {\rm spatial \ scale}$
 - Trade-off

Small $\delta = \text{good approximation}$ Large $\delta = \text{holds over a larger part of the space}$

Experiments

- Synthetic dataset
- Image segmentation
- Alanine-dipeptide conformations

4 Rings

- \bullet Interlocking rings in \mathbb{R}^3
- 600k (100k + 500k) points total

4 Rings

19-1

4 Rings

Image Segmentation

• Each pixel is assigned color coordinates in LUV space

Mandrill

Landscape

Street

Koala

Incorporating Spatial Information

• Neighborhood graph: proximity in LUV space and image

Alanine-dipeptide Conformations

- Clustering in 22-dim space
- 192k points

Alanine-dipeptide Conformations

Spatial stability

- Number of clusters are correct
- Can we say anything about the clusters themselves?
 - 1. Each prominent cluster has a stable part
 - 2. Unstable part can be very large

Spatial stability

- Number of clusters are correct
- Can we say anything about the clusters themselves?
 - 1. Each prominent cluster has a stable part
 - 2. Unstable part can be very large

Spatial stability

- Number of clusters are correct
- Can we say anything about the clusters themselves?
 - 1. Each prominent cluster has a stable part
 - 2. Unstable part can be very large

Stable Part

Idea: Prominent clusters have a minimum size under c-Lipschitz assumption

 Under small pertubations, prominent peak part of the "same" cluster

- Soft clustering
 - 1. Run the algorithm multiple times, with small pertubations
 - 2. Find one-to-one correspondance between clusters
 - 3. Find stable and unstable parts

Conclusions

- Practical clustering algorithm (efficient in space and time)
- General framework
 - Use your favorite density estimator
 - Choice of neighborhood graph
- Easily-interpreted feedback
 - No "black box" effect
- Theoretical guarantees
 - Number of clusters
 - Spatial stability
- Soft-clustering
- Higher-dimensional features