
1-1

Persistence based Clustering

July 9, 2009

Primoz Skraba

joint work with
Frédéric Chazal, Steve Y. Oudot, Leonidas J. Guibas

TGDA Workshop



2-1

Clustering

• Input samples



2-2

Clustering

• Input samples

• ”Important” segments/clusters



2-3

Clustering

• Input samples

• ”Important” segments/clusters

ill-posed problem



2-4

Clustering

• Input samples

• ”Important” segments/clusters

• Extensive previous work

- spectral clustering
- k-means

- mode-seeking (mean-shift)

ill-posed problem



2-5

Clustering

• Input samples

• ”Important” segments/clusters

• Extensive previous work

- spectral clustering
- k-means

- mode-seeking (mean-shift)

• Our viewpoint:
data points drawn at random from some

unknown density distribution f

ill-posed problem
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Outline

• Background: scalar field analysis

• Algorithm

• Results (Interpretation of persistence diagrams)

• Number of clusters

• Conclusions

• Spatial stability
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1

Scalar Field Analysis*

Setting: X topological space, f : X→ R

R

X

f

Input: A finite sampling L of X,
the values of f at the sample points

*[Chazal, Guibas, Oudot, Skraba ’09]
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1

Scalar Field Analysis*

Setting: X topological space, f : X→ R

- prominent peaks/valleys

- basins of attraction

R

X

L

f

Input: A finite sampling L of X,
the values of f at the sample points

Goal: Analyze landscape of graph(f):

*[Chazal, Guibas, Oudot, Skraba ’09]
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Persistence-Based Approach

in a nutshell...

X

R

- evolution of topology of super-level sets f̂−1([α,∞)) as α spans R.

- finite set of intervals (barcode) encode birth/death of homological features.

- barcode of f̂ is close to barcode of f provided that ‖f̂ − f‖∞ is small.

[Cohen-Steiner, Edelsbrunner, Harer ’05]
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Persistence-Based Approach

Assumptions: X triangulated space, f : X→ R Lipschitz continuous

→ build PL approximation f̂ of f

X

→ apply persistence algo. to ±f̂ [Edelsbrunner, Letscher, Zomorodian ’00]
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Persistence-Based Approach

Assumptions: X triangulated space, f : X→ R Lipschitz continuous

→ build PL approximation f̂ of f

X

→ apply persistence algo. to ±f̂ [Edelsbrunner, Letscher, Zomorodian ’00]

f̂
−f̂ −f̂

β0 β1

(6 prominent peaks) (ring-shaped basin of attraction)
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Approximation of Super-Level Sets

• Access to L not X

L geodesic ε-cover of X, for some unknown ε > 0.

Assumptions: X Riemannian manifold, f : X→ R c-Lipschitz,

Fα := f−1([α,∞))

Lα := L ∩ Fα

Lεα :=
S
p∈Lα BX(p, ε)

∀α ∈ R, Lεα+cε ⊆ Fα ⊆ Lεα−cε

Fα−cε

ε

Fα−cε

the filtrations {Fα}α∈R and
{Lεα}α∈R are cε-interleaved

⇓
their barcodes are cε-close.

[Chazal, Cohen-Steiner, Glisse, Guibas, Oudot ’09]
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ε



8-1

the bound of this theorem has been improved since the writing of the final version of the SODA paper.

here, interleaved is in some generalized sense, because arrows of the diagrams may not represent inclusions -¿ see paper∀δ ≥ ε, {Fα}α∈R and {Rδ(Lα) ↪→ R2δ(Lα)}α∈R are 2cδ-interleaved

⇓
their barcodes are 2cδ-close.

[Chazal, Cohen-Steiner, Glisse, Guibas, Oudot ’09]

Guarantee:

Approximation of Super-Level Sets

L geodesic ε-cover of X, for some unknown ε > 0.

Assumptions: X Riemannian manifold, f : X→ R c-Lipschitz,
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Approximation of Super-Level Sets

L geodesic ε-cover of X, for some unknown ε > 0.

Assumptions: X Riemannian manifold, f : X→ R c-Lipschitz,
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Homological Features and Clusters

X

• Samples drawn from f

• Estimate f̂ from samples
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Homological Features and Clusters

X
Clusters: Prominent peaks correspond to persistent connected components of

the super-level set filtration of f

R

• Samples drawn from f

• Estimate f̂ from samples



10-1

Computing Clusters
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Computing Clusters

How do we compute clusters from a barcode?

Two steps:

1. Mode-seeking step [ Koontz et. al. ’76]

2. Merge clusters according to persistence

Input: Samples with estimated density f̂
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Algorithm

• Input: f(x),Rδ, α
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Algorithm

• Input: f(x),Rδ, α

1. Sort x according to f

2. For x ∈ L
2a. For neighbors of x in Rδ

else assign x to ∇f

2b. For adjacent clusters y to x

if |f(y)− f(x)| ≤ α
merge into oldest adjacent cluster

If no higher neighbors ⇒ new cluster
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Putting it together

• Run algorithm with α =∞
- Standard persistence algorithm

• Use persistence diagram to choose threshold

• Re-run algorithm

5000

0

5,000

-∞
τ0

• Estimate density
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Theoretical Guarantees

• Applying the result from scalar field work

Approximation depends on cδ

Whole space is not uniformly sampled

• Approximation result holds in well-sampled regions w.h.p.

• More points ⇒ more of the space

smaller δ

larger δ
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Number of Clusters

• Define a signal-to-noise ratio

Definition:Given two values d2 > d1 ≥ 0, the persistence diagram
D0f is called (d1, d2)-separated if every point of D0f lies either in the
region D1 above the diagonal line y = x−d1 or in the region D2 below
the diagonal y = x− d2 and to the right of the vertical line x = d2.

-∞0
0

d2

d1

D1

D2

d2
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Approximation
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• Assume enough points that up to cδ is well-sampled w.h.p.
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Approximation
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Approximation

III

IVV

cδ

0
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d2d2 - cδ d2+cδ

2cδ

• Assume enough points that up to cδ is well-sampled w.h.p.
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Feedback and Interpreting Diagrams

• Rips parameter δ = spatial scale

- Gives a sense of stability of the number of clusters

- Trade-off

Small δ = good approximation

Large δ = holds over a larger part of the space

• If peaks are prominent enough, we will get the “right” number
of clusters

• Practically,

- Choice of threshold transparent w.r.t. number of clusters
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Experiments

• Synthetic dataset

• Image segmentation

• Alanine-dipeptide conformations
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4 Rings

• 600k (100k + 500k) points total

• Interlocking rings in R3
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Image Segmentation

• Each pixel is assigned color coordinates in LUV space
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Mandrill
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Incorporating Spatial Information

• Neighborhood graph: proximity in LUV space and image
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Alanine-dipeptide Conformations

• Clustering in 22-dim space

• 192k points
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Alanine-dipeptide Conformations
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Spatial stability

• Number of clusters are correct

• Can we say anything about the clusters themselves?

1. Each prominent cluster has a stable part

2. Unstable part can be very large
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Spatial stability

• Number of clusters are correct
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Stable Part

Idea: Prominent clusters have a minimum size
under c-Lipschitz assumption

• Under small pertubations, prominent peak
part of the “same” cluster

1. Run the algorithm multiple times, with small pertubations

2. Find one-to-one correspondance between clusters

3. Find stable and unstable parts

• Soft clustering
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Conclusions

• Practical clustering algorithm (efficient in space and time)

• Theoretical guarantees

- Number of clusters

- Spatial stability

• Easily-interpreted feedback

• Soft-clustering

- No “black box” effect

• General framework

- Use your favorite density estimator

- Choice of neighborhood graph

• Higher-dimensional features
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