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Clustering

e Input samples

e "Important” segments/clusters & ©e® oe °
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e Extensive previous work

- k-means
- spectral clustering

- mode-seeking (mean-shift)

e Our viewpoint:
data points drawn at random from some

unknown density distribution f
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Outline

e Background: scalar field analysis
e Algorithm

e Number of clusters

e Results (Interpretation of persistence diagrams)
e Spatial stability

e Conclusions



Scalar Field Analysis*

Setting: X topological space, f : X — R

Input: A finite sampling L of X,
the values of f at the sample points
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Scalar Field Analysis*

Setting: X topological space, f : X — R

Input: A finite sampling L of X,
the values of f at the sample points

Goal: Analyze landscape of graph(f):
- prominent peaks/valleys

- basins of attraction

*|Chazal, Guibas, Oudot, Skraba '09]
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- evolution of topology of super-level sets f ([, 00)) as a spans R.
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Persistence-Based Approach
in a nutshell...

- evolution of topology of super-level sets f ([, 00)) as a spans R.
- finite set of intervals (barcode) encode birth /death of homological features.

- barcode of f is close to barcode of f provided that ||f — f||oo is small.
R [Cohen-Steiner, Edelsbrunner, Harer '05]




Persistence-Based Approach

Assumptions: X triangulated space, f : X — R Lipschitz continuous

— build PL approximation fof f

— apply persistence algo. to :f |[Edelsbrunner, Letscher, Zomorodian '00]
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Persistence-Based Approach

Assumptions: X triangulated space, f : X — R Lipschitz continuous

— build PL approximation fof f

— apply persistence algo. to :f |[Edelsbrunner, Letscher, Zomorodian '00]
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Approximation of Super-Level Sets

Assumptions: X Riemannian manifold, f : X — R c-Lipschitz,
L geodesic e-cover of X, for some unknown £ > 0.

e Access to L not X

FOC—CE

F = f_l([()é,OO))
L, :=LNF“
fo = UpGLa BX(pa 5)

Va € R, LE C F* C [£5

a-+ce o.—CE

the filtrations { F'“},cr and
{ L% }ocr are ce-interleaved

\

their barcodes are ce-close.

. [Chazal, Cohen-Steiner, Glisse, Guibas, Oudot '09]
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Approximation of Super-Level Sets

Assumptions: X Riemannian manifold, f : X — R c-Lipschitz,
L geodesic e-cover of X, for some unknown £ > 0.

Guarantee:

V6 > e, {Falaecr and {R%(Ly) — R?°(La)}acr are 2cd-interleaved

\U/ [Chazal, Cohen-Steiner, Glisse, Guibas, Oudot '09]

their barcodes are 2co-close.
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Approximation of Super-Level Sets

Assumptions: X Riemannian manifold, f : X — R c-Lipschitz,
L geodesic e-cover of X, for some unknown ¢ > 0.
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Homological Features and Clusters

e Samples drawn from f

e Estimate f from samples




Homological Features and Clusters

e Samples drawn from f

e Estimate f from samples

o o X

Clusters: Prominent peaks correspond to persistent connected components of
the super-level set filtration of f
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Computing Clusters

How do we compute clusters from a barcode?
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Computing Clusters

How do we compute clusters from a barcode?

Input: Samples with estimated density f

Two steps:
1. Mode-seeking step [ Koontz et. al. '76]

2. Merge clusters according to persistence
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Algorithm

e Input: f(x),Rs,



Algorithm
e Input: f(z),Rs,

1. Sort x according to f

2. Forx € L

2a. For neighbors of x in R
If no higher neighbors = new cluster
else assign x to V f

2b. For adjacent clusters y to x

it [f(y) — flz)] < o

merge Into oldest adjacent cluster

11-2



Putting it together

e Estimate density

e Run algorithm with a = oo

- Standard persistence algorithm

e Use persistence diagram to choose threshold

e Re-run algorithm

12-1



Putting it together

e Estimate density

e Run algorithm with a = oc

- Standard persistence algorithm

e Use persistence diagram to choose threshold

e Re-run algorithm

12-2



Theoretical Guarantees

e Applying the result from scalar field work
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Theoretical Guarantees

e Applying the result from scalar field work

Approximation depends on co

Whole space is not uniformly sampled

A /"'\\ smaller ¢

J \'\‘\ larger ¢

>

e Approximation result holds in well-sampled regions w.h.p.

e More points = more of the space
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Number of Clusters

e Define a signal-to-noise ratio

Definition:Given two values do > di; > 0, the persistence diagram
Do f is called (d1, ds)-separated if every point of Dg f lies either in the
region D, above the diagonal line y = £ —d; or in the region Dy below
the diagonal y = x — dy and to the right of the vertical line x = d>.

'}
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Approximation

e Assume enough points that up to co is well-sampled w.h.p.

'}
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Approximation

e Assume enough points that up to co is well-sampled w.h.p.
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Feedback and Interpreting Diagrams

e If peaks are prominent enough, we will get the “right” number
of clusters

e Practically,

- Gives a sense of stability of the number of clusters

- Choice of threshold transparent w.r.t. number of clusters

e Rips parameter 9 = spatial scale

- Trade-off

Small 0 = good approximation
Large 0 = holds over a larger part of the space

16-1



Experiments

e Synthetic dataset
e Image segmentation

e Alanine-dipeptide conformations
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4 Rings

e Interlocking rings in R?

e 600k (100k 4 500k) points total

A
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Image Segmentation

e Each pixel is assigned color coordinates in LUV space
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Landscape
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Incorporating Spatial Information
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Alanine-dipeptide Conformations

e Clustering in 22-dim space

e 192k points
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Alanine-dipeptide Conformations

11; 5
].O' > >
9 =
8' _— '_5 5t
A — (0
6 = 4
n
5' ('U 3_
4t -+
31 v 2t
2| =
al 1
8 7 6 5 4 3 2 1 0. o33 4 5 6 7 8
. Number of clusters
Rank Prominence
1 o0
2 5677
3 3828
4 1335 :
5 850 :
| i §) 316 ;
| | I 253 :
8 72 |e:’
: J 9 30
10 22




Spatial stability

e Number of clusters are correct

e Can we say anything about the clusters themselves?

1. Each prominent cluster has a stable part

2. Unstable part can be very large
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Stable Part

Idea: Prominent clusters have a minimum size
under c-Lipschitz assumption

e Under small pertubations, prominent peak
part of the “same” cluster

e Soft clustering

1. Run the algorithm multiple times, with small pertubations

2. Find one-to-one correspondance between clusters

3. Find stable and unstable parts
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Conclusions

e Practical clustering algorithm (efficient in space and time)

e General framework
- Use your favorite density estimator
- Choice of neighborhood graph

e Easily-interpreted feedback
- No “black box" effect

e [heoretical guarantees

- Number of clusters
- Spatial stability

e Soft-clustering

e Higher-dimensional features
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