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Introduction

@ Object acquisition by a high
precision laser scanner

@ Goal: accurate analysis of the
object’s geometry

@ Application: automatic objects
scanning by closed loop data
analysis
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Laser

CCD/PSD - Sensor

Object

Triangulation laser scanner: triangle formed by the camera optic
center, the laser emitter and the impact point The result given by the
scanner is a list of unoriented 3D points
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@ The initial dataset is a set of positions with no connectivity information

@ Additional constraint: holes should be detected but not filled, information
should be given on the initial raw dataset
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@ The initial dataset is a set of positions with no connectivity information

@ Additional constraint: holes should be detected but not filled, information
should be given on the initial raw dataset

@ Level sets methods ([HDD"92],[Kaz05],[KBHO06]...) cannot be used

@ It leads us to a scale space approach
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.
Multiscale Methods

@ Most multiscale approaches are defined on meshes

@ In [PKGO6], a curvature motion is defined and a back projecting operator
is associated

decomposition
i

—_—
reconstruction
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Introduction 3D Scale Space
Triangulation Methods

Triangulation of a set of points by level sets method

([HDD*92],[KBHO06]) (approximating methods):
A signed distance function to the surface is defined and its O level set is

sampled by the marching cube algorithm for example
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Introduction 3D Scale Space

Triangulation by Voronoi/Delaunay methods (interpolating methods)
Ball Pivoting Algorithm ([BMR*99]): A triangle between three points is
created if the r radius sphere going through those three points does not

contain any other point.
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Analogy in 2D image processing

Evolve an image by a PDE (e.g. heat equation), perform treatment at a
low resolution and propagate the results to the original image.
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3D equivalent evolution equation

Let p be a point of a data set M and denote by B,(p) the set of all
points g in M such that ||p—q| < r.

Theorem

In the local intrinsic coordinate system of a continuous and smooth
two-dimensional manifold M, for p € M the projection p’ of p on the
local regression plane has coordinates x,y =0, y,» = 0 and

Zy = HT’Z + o(r?), where H = %1% s the surface mean curvature at p
and ki, ky the surface principal curvatures at p.
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Conclusion

Consequence

o H~ 4<Pﬂ:2yﬁ(P)>

@ It is a very stable estimate since it relies on order 1 approximation

@ This yields our scale space operator:
Theorem

Let T, be the operator defined on the surface M transforming each point p
into its projection on the local regression plane. Then

T.(p) = p = = - (p) + o(s?). 1)

Thus, this operator is tangent to the mean curvature motion.
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Estimated Curvature on a perfect torus

Figure: left: theoretical curvature, right: scale-space estimated curvature
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Estimated Curvature on various point sets

80
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Visualization of scale space effects

@ A good way of seeing the evolution of a surface defined by a point cloud is
to watch the evolution of level sets and especially positive and negative
curvature level sets

@ At first the level sets capture texture variations but when the surface is
smoothed, is captures the object's shape
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Visualization of scale space effects

Figure: figs 1-4: 4 iterations of scale space are applied, fig. 5: by reverse scale
space points are moved back to their original positions
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Preprocessing: Normal estimation

=+ Points sampled on the surface

@ For each point normal direction [ "
is known by neighborhood PCA T T

@ Choose a point in a flat area,
pick one of the two possible
orientations

@ Propagate orientation in
neighborhoods
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Algorithm

©Q Iterate Projection Filter and keep a track at each step of the point
displacement

© Mesh the resulting samples. The obtained mesh is singularity free;
© Project the mesh back to the original points.

@ The result is an interpolating mesh which preserves textures and details.
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Initial points and their projections
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Resulting mesh of the projected points
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Back projected mesh of the initial points
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synthetic 1D example

7 x/f\

f +
,

+
"

Top: same initial points with direct BPA triangulation

Bottom: same initial points with Poisson Reconstruction

Conclusion
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Poisson Reconstruction of a car point set
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Scale Space Meshing of a car point set
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Coarse resolution Mesh (after projection
iterations)
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Mesh obtained at a high resolution
(back-projected)
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Comparison with other methods
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Figure: Direct meshing [BMR'99]
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Figure: Poisson Reconstruction [KBHO06]
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Figure: Scale Space Meshing
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Comparison between direct meshing...
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...and scale space meshing
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Discussion: radius choice

@ Every processing step relies strongly on the chosen radius

@ Estimate the necessary radius r to have approximately n neighbors per
point
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Discussion: radius choice

@ Every processing step relies strongly on the chosen radius

@ Estimate the necessary radius r to have approximately n neighbors per
point

@ r should be large enough to guarantee stability but small enough to
guarantee mathematical consistency

@ In practice we found that n = 20 is enough

@ Sampling irregularities: in areas where the density is too low, if the

distance between points is more than 2r no triangulation is given
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The mesh allows to:
@ detect curvature level lines as polylines

@ detect hole borders as polylines
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@ Thanks to a well defined curvature driven scale-space, we obtained a new
way of building a robust mesh
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Conclusion

@ Thanks to a well defined curvature driven scale-space, we obtained a new
way of building a robust mesh

@ This mesh interpolates points and preserves well details and textures
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Conclusion

@ Thanks to a well defined curvature driven scale-space, we obtained a new
way of building a robust mesh

@ This mesh interpolates points and preserves well details and textures

@ Future Work will focus on using the scale-space framework to deal with
point cloud registration, crest line detection.
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