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Motivation for 3D shapes

-_Eeneralized framework for classification and
recognition

m Biomedical imaging (surgery assistance...)
m Object compression for storage/retrieval

m CAD applications, Art archival, terrain
modeling
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Other 2D/3D
Representations

3 Shock graphs
[Kimia-Tannenbaum-Zucker, Siddigi-Zucker....]
0 Medial Axis

[Blum, Damon, Giblin, Kimia, Pizer, Siddiqi]
0 M-Reps [Nackman-Pizer, Fletcher....]
0 Morse-Theoretic

[Shinagawa, Kunii and Kergosien, Schroeder,
Edelsbrunner, Schmidt et. al., Andres et al.,
Samir et al. ...]

VISSTA NC STATE UNIVERSITY




Coordinate-Free
Representation
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Pictorially...
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In words...

v

m Fast and simple tool for surface
comparison
T Topological
Classification 11> or skeletal
graph

[ Coarse representation

Fine representation }

m Higher level of
C discrimination.
N Geometric
Recognition NS> information
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Topology

m  Goal: Represent a surface/manifold in subparts
which may be glued together

o Information in Topology
= How to capture topology?
— Critical points
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Morse theory

Study of smooth and compact surfaces by exploiting a defined Morse

|functi0n

A smooth function/? : S — [Rin a smooth manifold S is called a
Morse function if all of its critical points are non-degenerate.

> A critical point p,=(uy,V,) is degenerate if the Hessian of
is singular

m Ciritical points of a Morse function are:
— isolated
— landmarks on the surface
m Saddle points determine topological changes of the surface
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Height Function

O IA height function on smooth manifold is a real
valued function such that

h(x,y,z)=z,V(x,y,z)e M
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Not invariant to
*Rotation

— Reeb graph ma crnatively be described as a quotient space
M/ ~ where the Equivalence relation ~ is defined as:

- p~qiff
IR IC B <€ ConnComp (Levelset(q)) = /4" (h(q))
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Choice of a Morse
function

Height Function:

Not invariant to
rotation.(Reeb,
Shinagawa et al.,
Edelsbrunner et al.,
Ben Hamza et al. )

VISSTA

Spherical sampling

of a surface:

Requires a reference
point.

(S. Baloch and K.)

Geodesic

Function

Completely intrinsic
to a surface.

(Hilaga et al. )
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Global Geodesic Function

T

ntegrated geodesic distance

»> Given a 2D surface as a 3D mesh represented by p,._, .....,
vertices

> d(.) being the
, GGF g(.) is defined as:
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Global Geodesic Function
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lllustration of the GGF
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Global Geodesic Function
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TG Characterization

+

m Morse framework provides a powerful means
for gleaning topological and geometric
information,

m For a surface F(X,y,z) and a height function
h(f(.),.), we seek level sets

F(x,y,z).(h(x,y,f(x,y))—Ct)=0
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Iso-geodesic curves

Starting point p at the
iso-geadesic level i

m [so-geodesic curves are smoothly interpolated.

m The adjacency of nodes is verified through path
connectedness. ( with D. Aouada )
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Examples of Reeb-like
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Topological Characterization
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Topological Characterization (2)

m The adjacency of nodes is verified through path
connectedness.
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Geometric characterization

S I1/s]

JUC
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Geometric characterization (2)

m Surface sampling.
m [so-geodesic curves are smoothly interpolated.
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Tag modeling
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Iso-geodesic curves bear
geometric features: Find a
model to simply represent a set
of these curves along each
edge.

=0
g2
(@]
=5
o o
(@)
)
o O
> 3
o D
g3
('DO

NC STATE UNIVERSITY




Geometric modeling (1)

+

m Capturing geometry

m TaG weighted skeletal graphs

— Unique, compact and “complete”
representation of 3D shape
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Geometric Modeling (2)

m Given mcurves ¢,...,C,,, at levels r,...,r,

S.H. Baloch, H.K., W. Mio, and A. Srivastava,
"3D curve interpolation and object
reconstruction”, IEEE ICIP, 2005.
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In Summary

with  go <a<b<1,

and C(t)NC(t) =2 if t # 1o NC STATE UNIVERSITY




Geometric modeling: whitney

embedding-Dimension Reduction

Let m be a compact Hausdorff n-dimensional
manifold, 2< r < o there is a
embedding of m in [REa

( Constructive proof due to Broomhead and Kirby, SIAM DS 2000)

=ln our problem, we are to embed a in
[ Aouada, et al. ICIP 08, IEEE Trans. On IP 09]
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Curve Modeling

Vri _Vrj P - 19 . .
. ~—_ (i,7) e {1,.... N}% and ¢ /—’.]}
Vi = Vi

- is ,.:-I.....]-/}-
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Whithey Embedding

arg min min
i=1,..L
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Example illustrating the
problem

+

m Distinguishing three objects with the same
graphical representation.

m Find 3D curves to assign to each edge.
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“Modeling of heads”

Human7 _dge1
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Other Applications
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Squigraph Model
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Representation

Sets of
Space Curves
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Object comparison/
classification

+

[ Registration [ Invariant

e Complicated » e Easyto compute

e Time consuming ¢ Inexpensive to store

e From curve comparison to
invariant comparison

invariants offer a simple alternative !
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Geometric Model

Matching
+

m Curves are fundamental blocks in vision and imaging

m Curves undergo geometrical transformations (e.g. biological
organs)

m Matching tantamount to coping with variability of
characteristic curves

m Invariants (Boutin, Fels-Olver, Kogan,
Hickman et al., Manay et al. )
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Invariants

+

m Integral Invariants
— Robust to noise

— Too costly to make independent of

parameterization
— Hard to compare
m Differential Invariants

— Easy to compute and to apply
— Sensitive to noise
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Intuitively...invariant

+
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Integral Jet Space

m Special affine action on spatial curves can
be prolonged to the action on the integral
variables of order |=i+j (withs. Feng, 1. Kogan)

tx"yjzkdx, j+k#0 Yl_].k:rx"yjzkdy i+k#0

1 ly

R ; A
Z. _J- x'y'zhdz, i+ j#0
4

ij k
0

m The jet space is defined as:
(X’ Y’ Z’ Z100 DZOIO 9Y100 9ZOI] ’ZOZO 9ZlOl 72110 9Y101 9X110 9X101 9X020 )
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3D Integral Invariants

HWe achieve two special affine integral

Invariants:
I, =nX+n/-nY

L, =2n(XYZ =37, X+3YZ, — 2Z,-2 Z})+ 52 XY A3 X4
—6ZXy, —4YZ,,—2YY,)-2n(3YX, -3 ZX,,+ X4,— X))

n=Y/-22,, n,=XY-2Y  n= XZ-2 7,
where

m The full affine integral invariant is easily to

derived as [Feng et aI.I, 09]

[=22
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Examples of invariants

Original Curve Transformed Curve

Invariant 12 for boh _ the curves above
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Invariants: Shannon
Surprisal

+

NC STATE UNIVERSITY




Space Curves

Using Frenet frame to generalize: From planar to space curves
JT

( |'f

(t) = x(t)-At and ag(t) = 7(t) - At

eyl t),agltl| _-l‘v:\lzul:u.\l"._- (L4 (-n.\lu,:-lff) .

In{f.(ay, ag))

..’ll!i:' ('nsljn.l.'|:| 'S -
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Intrinsic Riemannian Metric

+

m For two given curves 7:.-7. , define an
oriented curve 2,=1-1,

m First take form F,
F:(-7.7])° — R
(0, ,0,) — —In(f, (et ) i = In(f, (ct,) ]

One then defines a projection on 277

2.0)= [ 9(F(1))ds
i
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Riemannian Metric

+

m Define a Flat norm (Vaillant, Glaunes
07)

D(Y,.75)=8( A = A3) & sup 2, (9):|dg] < 1,V < 1}
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Comparison of complex shapes
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Performance Evaluation

Overall

CCR
——aMRG
~4—Squigraph

1 1 1 1

1 L 1
03 04 05 06 0.7 08 0%
False Positive

’ ‘Table 1. Overall performance summary.
Method PDF CCR aMRG  Squigraph
AUC 87.95% 92.53% 93.389% 97.35%
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Bipedal Shapes
+
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Conclusion/Ongoing Work

+

m Framework for 3D shape modeling

m Other theoretical issues
— Robustness issues

— Sampling in 3D
m Other application avenues
m Experiment with real data
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